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Abstract. The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric tempera-
ture inversion especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer
between the ground and the boundary layer. As a result, the difference between the surface air temperature, measured at a
height of 2 m, and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in
polar regions and are of interest to understand the mechanisms responsible for surface-atmosphere heat, mass and momentum
exchanges and are critical for satellite validation studies.

In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the
Polar Environment Atmospheric Research Laboratory(PEARL), Eureka, Nunavut, Canada, at 80°N latitude. The drones are
the Matrice 100 and M210-RTFK-Matrice 210 RTK quad-copters manufactured by DJI and were flown over Eureka during
the February-March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on
a Raspberry Pi single-board computer, three platinum wire temperature sensors, GNSS-Global Navigation Satellite System
receiver, and a pressure-senserbarometric altimeter.

We demonstrate that the drones can be effectively used in the High-Aretie-extremely challenging High Arctic conditions
to measure vertical temperature profiles up to 60 m ef-above the ground and sea ice surface at ambient temperatures down to

-46 °C. Our results indicate that the inversion lapse rates within 0-10 m altitude range above the ground can reach the values of
~0-+-0:310-30 °C/100 m (~100-300 °C/km). The results are in a good agreement with the coincident surface air temperatures
measured at 2, 6 and 10 m levels at the National Oceanic and Atmospheric Administration flux tower at PEAREthe Polar
Environment Atmospheric Research Laboratory. Above 10 m a-weaker-more gradual inversion with an order of magnitude
smaller lapse rates is recorded by the drone. Fhe-inversion-strength-This inversion lapse rate agrees well with ene-the results
obtained from the radiosonde temperature measurements. Above the sea ice ;-drone temperature profiles are found to have an
isothermal layer above a surface based layer of instability which is attributed to the sensible-heat flux through the sea ice. With
the drones we were able to evaluate the influence of local topography on the surface-based inversion structure above the ground
and to measure extremely cold temperatures of air that can pool in topographic depressions. The unique technical challenges

of conducting drone campaigns in the winter High Arctic are highlighted in the paper.
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1 Introduction

Atmospheric temperature is one of the key parameters used to study climate —Jn-sita<(World Meteorological Organization,

2021). Atmospheric temperature measurements are conducted from-the-ground-by-means-of-in-situ using different types of
thermemeters-temperature sensors installed at the meteorological observing stations on the ground (Taalas, 2018)and—from

-, marine platforms, i.e. ships and buoys (National Data
Buoy Center), and airborne platforms, i.e. radiosonde (Luers and Eskridge, 1998; DuBois et al., 2002), dropsonde (Skony et al.,

1994; Cohn et al., 2013; Wang et al., 2013; Intrieri et al., 2014), sounding rocket (Webb et al., 1961) and aircraft (Antokhin
et al., 2012; McBeath, 2014; Nédélec et al., 2015; Berkes et al., 2017). In-situ measurements provide high accuracy and high

temporal resolution temperature datasets and serve as a "golden standard" for validation for other methods.

Atmospheric air temperatures are also derived from the measurements conducted using remote sensing instruments, i.e.
radiometers (Tomlinson et al., 2011; Pietroni et al., 2014) and LIDARs (Behrendt, 2005) installed on the ground, airborne

and satellite-borne platforms. Satellite temperature observations are especially valuable, since they provide global coverage
reaching the areas where ground-based air temperature measurements are challenging due to a small number of monitoring
sitesin-the-areas, i.e. above ocean surface (Jackson and Wick, 2010), in mountain ridges (Orellana-Samaniego et al., 2021),
in the Arctic er-Antareticajand Antarctic (Soliman et al., 2012).

The World Meteorological Organization (WMO) assess-assesses global temperature fields and temperature anomalies based

on the measurements of air temperature at 1.25 to 2 m above the ground level on the land. These temperatures are referred to

or "near-surface” air temperatures
(SATs, Rennie et al., 2014). SATs measured by means remote sensing are also used in the WMO assessments. However, they

are obtained-derived from so called "skin" temperatures, which are temperatures at the surface-air interface, since they are

"surface"

retrieved from radiometric measurements (Li et al., 2013). Also, satellite-based temperature datasets suffer from missing data

due cloud interference. A review of current cloud filtering approaches and a novel method for recovering the temperatures
under cloudy skies can be found in Wang et al. (2019) and references therein.

In polar regions in the absence of sunlight strong surface-based temperature inversions (SBIs) occur frequently. The occur-
rence rate is >70 and >90% of the time in the Arctic and Antaretiea-Antarctic respectively during winter months (see Bradley
et al. (1993); Walden et al. (1996); Hudson and Brandt (2005) and references therein). Due to terrestrial radiative cooling of
the surface in clear sky conditions and suppressed turbulent heat transfer between the ground and the boundary layer under
light wind conditions, the difference between strface-SAT and skin temperature can be significant. Based on temperature mea-
surements conducted at the South Pole in the winter of 2001, it was found that "median difference between the temperatures
at 2 m and the surface" could reach 1.3 °C in winter in clear sky conditions, which is equal to a 65 °C/100 m (650 °C/km)
inversion lapse rate (Hudson and Brandt, 2005). According to the observations the strongest temperature gradient is confined
within a 0.2 m air layer above the surface where the temperature difference is equal to 0.8 °C leading to a 400 °C/100 m
(4000 °C/km) inversion lapse rate. This difference between 2 m surface-temperature-SAT and skin temperature results in a
negative bias in the surface-temperature-SAT products obtained from the satellite measurements (see Adolph et al., 2018 and
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references therein). Between 2 m and 100 m the monthly mean temperature gradient varies within 11.1-12.8 °C/100 m (111-
128 °C/km) in March-September as reported by Hudson and Brandt (2005) based on radiosonde (RS) data from South Pole
covering 1994-2003.

Pietroni et al. (2014) studied the characteristics of SBI over the course of a year of 2005 at Dome C, Antarctica. They
measured temperature profiles up to 205 m from the ground using a scanning microwave radiometer with 10-50 m vertical
resolution. SBI temperature gradients during the summer months was found to be between 0 and 15 °C/100 m (0-150 “C/km).
SBLwas observed in 67% of the time and some daily cycle was registered in temperature profiles. During the winter months the
SBI temperature gradient could exceed 30 °C/100 m (300 °C/km). The SBI was observed in 9% of the time with no diurnal
cycle in the temperature profiles.

Boylan et al. (2016) characterised SBIs over Antarctica based on the data from satellite observations (Infrared Atmospheric
Sounding Interferometer, IAS). atmospheric reanalysis model (ERA-Interim) and dropsondes. They found that over land IAST
SATSs, derived by interpolating temperatures at the lowest retrieved level, are 3.10 °C larger than dropsonde SATSs. Over sea ice,
in contrast, IAST SATs are found to be 3.45 °C smaller than dropsonde SATs. These differences are associated with extremely.
shallow inversion layers that satellite products can not resolve. Due to that accurate satellite-based SBI measurements are
limited to relatively deep SBIs.

According to Bradley et al. (1993) the mean rate of the temperature change within the inversion measured in December-
March during 1967-1986 at the RS sites in the Canadian Arctic and Alaska is in the range of 1.5-2.3 °C/100 m (15-23 °C/km),
which is much less than ere-was measured in Antarctica. Walden et al. (1996) reported the multi-year monthly averaged
inversion lapse rate for 0-250 m altitude as being between +2-and-+81.2 and 1.8 °C/km-100 m (12-18 °C/km) in Barrow, Alaska
(1953-1990) and between 26-and-242.0 and 2.4 °C/km-100 m (20-24 °C/km) in Eureka, Nunavut (1967-1990). Lesins et al.
(2010) reported on a weakening of the winter inversion strength at Eureka from 1985 to 2007 using the station RS observations.
Zhang et al. (2011) analysed a dataset covering 20 years (1990-2009) of RS observations from 39 Arctic and 6 Antarctic sites
and compared it to a reanalysis dataset and to simulations from climate models to examine spatial and temporal variability of
SBI including frequency of occurrence, depth and intensity and relationships among them. They found the strength, occurrence
frequency and depth of the SBI are larger in winter and fall than in summer and spring and are positively correlated between
each other, both spatially and temporally. Also all three characteristics are in inverse relationship with surface temperature.
Lesins et al. (2012), based on the data from 22 Canadian Arctic RS stations covering 1971 to 2010, suggested that a strong SBI
plays an important role in Arctic amplification of climate change. Smith and Bonnaventure (2017) analysed air and ground
temperature data collected at Alert, Nunavut, Canada and found the SBI occurrence may have an effect on the spatial variation
in the High Arctic permafrost thermal state, specifically in the regions with thin snow cover. Pavelsky et al. (2011) showed
a correlation between the inversion strength and annual sea ice concentration in the Arctic and AntareticaAntarctic. After
analysing data on the near-surface temperature inversions from the Atmospheric Infrared Sounder they suggested the inversion
strength could be controlled by the ice concentration through modulation of the surface heat fluxes. Thus, monitoring and

characterisation of SBI remains important in understanding its role in atmospheric processes and ocean-atmosphere interaction.
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In recent years Remotely Piloted Aircraft Systems (RPAS), or drones, have become a commonplace in industry and sci-
ence (Cassano, 2014; Chabot and Bird, 2015; Kriduchi and Philipona, 2016; Cowley et al., 2017; Masi¢ et al., 2019; Gaffey and
Bhardwaj, 2020; Lampert et al., 2020a,b). There are two main drone types used in research: fixed-wing and multi-reterrotary-wing.
Both have certain advantages and limitations which affect the performance in specific situations - Fixed-wing-drones(Gonzalez-
Jorge et al., 2017).

When two RPAS of the same mass are compared to each other, fixed-wing RPAS usually outperform rotary-wing drones in
terms of flight endurance, design simplicity and cost of operation and maintenance. Fixed-wing RPAS are optimal for large area

surveys where longer endurance, fast-faster speed and hence larger spatial coverage are the most critical factors (Jouvet et al.,
2019; Zappa et al., 2020).

For these reasons they are widely used for meteorological and atmospheric science applications (Knuth and Cassano, 2014;

Cassano, 2014; Cassano et al., 2016; de Boer et al., 2018; Bérfuss et al., 2018; Zappa et al., 2020) and glaciology (Jouvet et al.,
2019).

On the other handmulti-reter-vehieles—, rotary-wing drones have better payload capacity and can hover in one spot, which
is critical for photography surveys. Alse-their-Their lower speeds and superior manoeuvrability means that flying in the rough
topographic environment become less challenging (Shahmoradi et al., 2020). Multi-rotor-Rotary-wing RPASs are easier to
operate and they do not require special equipment such as a catapult or a long runway for a launch. Hewevershorterflight-time

Research projects which require to cover small areas (a few km?), carry simple and lightweight payloads (a few kg) and fly
within hundred meters above the ground with complex topography became feasible due to remote operation capabilities, high
mobility and manoeuvrability and low operational costs of the drone in comparison with manned aircraft. Easier access to the
drone pilot training programs, shorter amount of time required for learning and certification as well as piloting independence
make the drones attractive for small scale research initiatives.

Advantages and limitations of a small fixed-wing airborne measurement system (DataHawk, 1 m wingspan, 0.7 kg take-off
weight) for in-situ atmospheric measurements within and above the boundary layer are discussed by Lawrence and Balsley
(2013). The DataHawk is built around an "off-the-shelf” elastic foam airframe and a low-cost custom-designed autopilot. It is
equipped with a suite of sensors to measure temperature, humidity and wind at ~1 m spatial resolution, >1 km horizontal scale
and within the altitude range from a few meters up to 9 km (balloon-drop deployment option) above the ground level.

The application of multi-rotor RPAS to study temperature inversions up to 1000 m above the ground in urban areas in
winter time has been reported by MaSic¢ et al. (2019). Their drone was built based on an open-source flight controller and
commercially available propulsion system and carbon fibre frame. These authors conducted observations in many different
SBI scenarios at ambient temperatures falling below -20 °C in the context of local air pollution. They found a correlation
between the hazardous air pollution events and strong and shallow SBIs formed below 150 m altitudes above the ground lever.
During such conditions the SBI temperature gradients could reach values larger than 3 °C/100 m (30 °C/km). It was also
noticed that at 2-3 ny/s drone vertical speeds, temperature profiles are affected by a response time of the temperature sensor.
This resulted in a hysteresis patterns in the temperature vertical profiles measured on the ascent and descent similar to those
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previously reported by Cassano (2014) and cannot be neglected. The hysteresis was corrected by calculating the arithmetic

mean of the temperatures recorded at each altitude level during the ascending and the descending phases. Masi¢ et al. (2019)
also highlighted the advantages of using drones in comparison with other techniques (RS, microwave radiometry, cable-car and

ground-based measurements). Among those advantages are lower operation cost per single temperature profile, good control
over the flight parameters, ability to measure temperature during both ascent and descent and finer vertical resolution. All of

them are critical for SBI measurements.

In polar regions drones provide unique opportunities to conduct research-due-to-theirremote-operation-capabilities; mobility

and-relatively low-costin-comparison-with-manned-aireraftstudies in rapidly changing and often hard to predict environmental
conditions due to low risks of operation. However, the harsh environment of high latitudes including surface-air-temperatures

below -30 °C, elese-proximity to the Earth’s magnetic pole, poor performance of Global Navigation Satellite System (GNSS)

receivers and complete darkness during the polar night pose challenges for drone operations (Gustafsson and Bendz, 2018).

A review of research applications of a smaller (up to ~~25 kg) and larger (~~500 kg) fixed-wing RPAS in Antarctica between
2007 and 2013 together with the results of observations of atmospheric boundary layer temperatures using the Small Unmanned
Meteorological Observer (SUMO) drone (Reuder et al., 2012) in the vicinity of McMurdo Station is presented by Cassano
(2014). SUMO is designed around "off-the-shelf” expanded propylene airframe and an opensource autopilot system (Reuder
et al., 2009). Observations made during SUMO drone flights covered various meteorological situations including well-mixed
and stable boundary layers as well as the situations where the boundary layer was rapidly changing. The flights were conducted
within -29 and 0 °C temperature range and up to 1400 m altitude above the ground level, Cassano (2014) concluded that the
SUMO drone proved itself to be an effective tool to measure sharp, shallow SBIs due to its small dimensions and light weight
0.80 m wingspan, 0.6 ke take-off weight), deployment and operation simplicity and low cost. However, it was pointed out that
short (~~30 min) endurance of the drone limited the useful maximum range to 5-10 km from the launch/landing site. It was
also found that the temperature sensors suffered from a 2.5-5 s time lag, which had to be corrected during data possessing by

introducing an appropriate time delay between altitude and temperature readings (Mahesh et al., 1997).
Technical difficulties and examples of application of a 19 kg quad-copter custom built for polar missions to study atmospheric

boundary layer at 79°N in Greenland and deployable from a research vessel has been recently reported by Lampert et al.
(2020a). Fhe-These authors measured vertical profiles of meteorological parameters within 1000 m altitude range at up to
8 m/s drone ascent/descent speeds and provided detailed analyses of their findings and factors affecting the results such as

the impact of rotor blades, turbulent fluctuations and heat produced by drone motors on temperature measurements. Adse-they

They suggested a novel approach for time lag correction in which the temperature sensor response time is not fixed, but is tied
to the vertical velocity to handle changing directions and rates of air flow around the sensors. They also highlighted that due to

Earth’s magnetic field anomalies and magnetic disturbances produced by the vessel, takeoff and landing had to be performed
manually and certain adjustments had to be applied to the autopilot system to correct for this during operations.

Many research groups have developed RPASs on open-source platforms (Ebeid et al., 2017) and optimized them for specific
applications —while-others-utilize-(Rold4n et al., 2015; Kriduchi and Philipona, 2016; Villa et al., 2016; Jouvet et al., 2019;
Lampert et al., 2020b). Others have utilized "off-the-shelf" airframes (Cowley et al., 2017; Burgués and Marco, 2020) and their
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modifications (Reuder et al., 2012; Lawrence and Balsley, 2013; Masi¢ et al., 2019) or sophisticated commercial solutions
(Knuth and Cassano, 2014; Cassano et al., 2016; Birfuss et al., 2018; Zappa et al., 2020). Although;-both-Both approaches
have their merits and a variety of successful examples can be found in the literature (Gaffey and Bhardwaj, 2020). However,
many factors like technology availability and flexibility, equipment and maintenance cost have to be taken into consideration
during project planning.

As drone technology emerged and became more accessible recently, we started to develop a concept to study SBI at the Polar
Environment Atmospheric Research Laboratory (PEARL, Fogal et al., 2013) in Eureka, Nunavut, Canada, at 80°N latitude with
RPAS in 2016. We were driven by the idea of using a commercial "turn-key" drone solution for our application. Keeping this
in mind, the plan was to evaluate and learn whether an "off-the-shelf" rotary-wing drone can be economic, robust and reliable
in the High Arctic environment, so the time and efforts spent on a-the development of a custom system can be saved.

The goal of this paper is to present the results of the first pilot studies of the temperature profiles within 60 m of the ground
conducted in Eureka using a custom built temperature sensing system installed on a commercial multi-reterrotary-wing RPAS.

To achieve the goal the following tasks have been accomplished.

Technical tasks:

— Two commercial quad-copters with different navigation systems were identified, acquired and flown in Eureka to demon-
strate and evaluate the feasibility of conducting drone operations at 80°N (see subsection 2.1).

— A custom built temperature measurement system was installed and tested onboard the quad-copters to evaluate its po-
tential in providing reliable temperature-dataair temperature data (see subsection 2.2).

— The quality of air temperature measurements, conducted in field conditions, relative to sensor locations onboard the

drone was examined using three identical temperature sensors (see subsections 3.1.2 and 3.2.2).
Scientific tasks:

— The results of the drone SBI measurements were validated against the data from the flux tower, radiosondes and weather
stations in Eureka (see subsections 3.1.2 and 3.2.2).

— Drone vertical temperature profiles collected over flat terrain and in a gully in Eureka were examined to determine the

role of local topography in-the-SBlshaping-on SBI shaping (see subsection 3.2.3).

— Drone vertical temperature profiles collected over the sea ice were examined for the signs of the sensible-heat flux

through the sea ice (see subsection 3.2.4).

The paper describes the results of the tests and measurements, discusses the performance of the drones and the challenges

of conducting drone operations in the High Arctic in winter conditions.
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2 Methods and instrumentation
2.1 Remotely piloted aircraft systems

Two RPASs have been identified, acquired and tested to study SBI in the harsh environment of the High Arctic in Eureka.
Both drones are commercially available quad-copters manufactured by DJI. Detailed-specifications-of the-drones-can-befound
on-the- DH-web-page-()-—The first drone, Matrice 100 (M100), is a development grade quad-copter with 650 mm diagonal
wheelbase and 3.6 kg maximum takeoff weight. The drone can be powered either from a standard (TB47D, 4500 mAh) or
extended (TB48D, 5700 mAh) capacity lithium polymer (LiPo) battery and can be configured to use a single battery or two in
parallel. Depending on the configuration typical hovering time can vary between 19 and 40 min with 0.5-1.2 kg of payload.

Both TB47D and TB48D batteries are equipped with internal temperature sensors. The readings from the sensors are displayed
on the screen of the remote controller tablet during the flight. For navigation the drone relies on its Inertial Measurement
Unit (IMU), compass and GNSS. It allows one to conduct flights in so-called positioning mode (P-mode) and attitude mode

A-mode). In P-mode the drone utilizes onboard GNSS receiver and barometric altimeter to maintain its horizontal and vertical

osition. Bearing information is taken from the onboard compass. According to specificationits-hovering-aceuraey-, drone’s
hovering accuracy in P-mode is better than 0.5 m and 2.5 m in vertical and horizontal directions respectively. In A-mode the

drone only utilizes its barometric altimeter to maintain altitude, horizontal position is not retained.
The second drone, Matriee-210-RTKAM210-RTKDJI Matrice 210 RTK (M210 RTK), is an industrial grade quad-copter.
It has 643 mm diagonal wheel-base-wheelbase and 6.14 kg maximum takeoff weight. It employs a pair of standard (TB50,

4280 mAh) or extended (TBSS5, 7660 mAh) capacity batteries. Both TB50 and TBS55 battery types are equipped with internal
screen of the remote controller tablet during the flight. The heater turns itself on if the battery temperature falls below 15 °C to
maintain battery’s optimal operation conditions. Maximum drone flight time varies between 13 and 32 min depending on the
payload weight and type of the batteries installed. Approximate maximum payload is 1.7 kg with a set of standard batteries and
1 kg with extended capacity batteries. The M2+6-RTIK-M210 RTK differs from the M100 by its advanced navigation system
which employs Real-Time Kinematic (RTK), a differential GNSS technique, that-can-provide-high-pesitioning-performance
which provides high positioning accuracy when used together with a base station in P-mode. According to specification a
hovering accuracy of 0.1 m hevering-aceuraey-in both vertical and horizontal directions can be reached by utilizing the drone
together with DJI D-RTK ground system kit (RTK mode). The drone is also equipped with an obstacle avoidance system to
make the flights safer. The air-frames of both drones are made with carbon fibre and aluminum, which makes them suitable
for low temperatures. The drones and their payload configuration are shown in Figures 1 and 2. Detailed specifications of
the drones can be found on-line: DJI M100 - https://www.dji.com/ca/matrice100, DJI M210 RTK - https://www.dji.com/ca/

matrice-200-series. Payload details are discussed further in the paper.


https://www.dji.com/ca/matrice100
https://www.dji.com/ca/matrice-200-series
https://www.dji.com/ca/matrice-200-series
https://www.dji.com/ca/matrice-200-series
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compass/GNSS

top RTD | MT3339 GNSS

BMP280 pole RTD

rotor3 RTD
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Figure 1. DJI M100 drone and its payload.
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Figure 2. DJIM216-RTK- M210 RTK drone and its payload.
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2.2 Onboard data collection system and sensors

To record the ambient air temperature during the flights three identical platinum wire Resistance Temperature Detector (RTD)
sensors were-are installed aboard the drones. The RTD sensors are 1 mm in diameter and 15 mm long ceramic wire-wound
elements (1PT100KN1510, Omega Engineering, Inc.). Each RTD element is connected to its own MAX31865PMBI1 periph-
eral module (Maxim Integrated Products, Inc., 2014). The modules employ the MAX31865 resistance-to-digital converter
optimized for platinum RTDs. The converter has 0-6310.03 °C resolution and 0.5 °C (0.05% of full scale) total accuracy at
21 ms conversion time. The modules with RTD elements were-are housed in a 25 mm diameter and 75 mm long PVC tubes
for protection. The first module was-is attached to the top side of the drone close to its center point (top RTD, see Figures 1
and 2). The second module was-is attached to the tip of a ~60 cm long pole at the front side of the drone (pole RTD). This
was-is done to minimize the influence of turbulent air flows produced by the drone’s propellers on temperature measurements
(Greene et al., 2018; Lampert et al., 2020a). The third module was-is mounted under the left rear rotor (rotor 3 RTD). All three
modules are connected to the onboard data collection system via a Serial Peripheral Interface (SPI).

To record the horizontal location of the drone a spare GNSS module is installed onboard. The module utilizes MediaTek
Chipset MT3339 capable of up to 10 Hz data update rate. The module is connected to the onboard data collection system via
UART interface.

To have an altitude reference a separate barometric altimeter is installed. The altimeter is a BMP280 digital pressure sensor
(Bosch Sensortec, 2018). It is connected to the onboard data collection system via Inter-Integrated Circuit (I2C) interface. The
accuracy of the altimeter is 0.5 m. The altimeter was verified by comparing its pressure readings to simultaneous measure-

ments taken with a Vaisala WXT-520 weather transmitter within the pressure range between 926-925 and 1002 mbarhPa. The

results showed good agreement between the two sensors (number of data points N = 14791, Pearson’s correlation coefficient
R =0.99999).

The onboard data collection system is built on a Raspberry Pi (RPi) model 3 single-board computer with Raspbian operating
system (The Raspberry Pi Foundation). Power to the RPi is provided from the drone’s extended power port (output voltage
range: 18-26V) via 5V universal battery eliminator circuit (UBEC) DC/DC step-down voltage converter. The acquisition code,
written in Python, polls each sensor at a sampling frequency of 10 Hz and saves the acquired data in ASCII format to the RPi’s

microSD card for post processing. Total weight of the data collection system together with the sensors is <0.3 kg.
2.3 Site description

Drone flights were conducted in Eureka, a small research base located on Ellesmere Island, Nunavut, Canada. The base consists
of three main areas: the Environment and Climate Change Canada (ECCC) Weather Station (WS) - a facility complex built at
the northern side of Slidre Fjord, on Fosheim Peninsula of the island (79.9890°N, 85.9386°W, 10 m: a.s.l,, #1 pin in Figure 3),
the Eureka Aerodrome (ICAO code: € YEUCYEU, 79.9944°N 85.8119°W, 83 m: a.s.l., #1 pin in Figure 4) located ~2.5 km
east-north-east of the ECCC WS, and PEARL - an atmospheric research facility, which includes several laboratories at different

locations within the vicinity of Eureka.

10
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The region around Eureka is a polar desert with mean annual temperatare-SAT about -19 °C and annual water equivalent
precipitation of 70 millimeters (Bernard-Grand’Maison and Pollard, 2018). The region has very little snow cover during the
winter period, i.e. 20-30 cm deep snow drifts in the hollows and almost no snow on small hummocks.

In Eureka the standardized meteorological observations are conducted at two observing stations. The first station is a WMO
certified site (Eureka Climate or Eureka C, WMO ID: 71613) located ~100 m east by north of the ECCC WS main build-
ing (see-Figure-marked by #2 pin in Figure 3). The second station is a NAV Canada autematie-meteorological station (Eu-
reka Aerodrome or Eureka A, WMO ID: 71917) located nearby the Eureka Aerodrome runway (seeFigtre-marked by #4 pin

in Figure 4). It monitors the weather conditions specific to the aerodrome. Both-stations-provide-hourly-weatherreports—The
stations measure temperature, relative humidity (RH), wind speed and direction and atmospheric pressure in automatic mode.
Additionally, ECCC staff conducts hourly weather observations (visibility and weather conditions) from the rooftop deck of
the ECCC WS main building (#1 pin in Figure 3), from which the region of the whole aerodrome down the fjord is visible.
Due to ~2.5 km separation between ECCC WS and Eureka A sites the weather conditions and visibility observed at ECCC
WS are assigned to Eureka A for aviation purposes. The results of meteorological measurements at both sites are stored in
ECCC archives at I hour period for the temperature, dew point, RH, wind speed and direction, visibility and pressure and at

15 minutes period for precipitations.
Also, radiosondes are launched routinely twice a day at 11:15 and 23:15 UTC from the ECCC WS hydrogen shed (#3 pin

in Figure 4) all year round. Radiosondes provide vertical profiles of pressure, temperature, relative humidity, wind speed and

direction from the ground up to 30-35 km.

Additionally, meteorological measurements are conducted at PEARL. An automatic weather transmitter (Vaisala WXT-510)
is installed at the Zero Altitude PEARL Auxiliary Laboratory (OPAL, 79.9905°N, 85.9388°W), located ~160 m north of the
ECCC WS main building —(pin #4 in Figure 3). The OPAL weather transmitter provides data on the weather conditions at its

The National Oceanic and Atmospheric Administration (NOAA) Flux Tower (FT), a 2 m by 2 m wide and 10 m tall tower,
is installed approximately 250 m north-north-east of the East end of the aerodrome runway. Geographical coordinates of the
FT are: 79.9955°N, 85.7716°W (see Figure-pin #7 in Figure 4). The FT is equipped with temperature sensors (at 2, 6 and
10 m levels relative to the FT base), anemometers, precipitation sensors, barometer and other meteorological and scientific
instruments. Detailed descriptions of the FT instrumentation suite and related measurements made at the site can be found in

Grachev et al., 2018 and references therein. Both-the-weather-transmitter-at- OPAl-and-the- Measurements at the FT are made at
10 Hz sampling rate for the sonic anemometers, 3 Hz - for the aspirated RTD sensors and once per minute for the rest of the

11
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The-second-site-¢FS2; the Fiord Test Site and the Runway Test Site. The the Fiord Test Site (FTS, marked in green shading
in Figure 3) is a 0.5 km by 0.5 km area on the ice of the Slidre Fjord ~200 m east-south-east of the ECCC WS and Eureka C
meteorological station. The fjord is covered by ice between September and July with an ice thickness of about 6:50.2-0.5 m
in October and reaching 22-2.5 m in May according to the ice surveys performed by ECCC staff at the WS (Ice Thickness
Program, Canadian Ice Service). The ice is characterized by low snow drifts on its flat surface and no signs of ice-breaking
cracks or leads during the measurement period. This site was chosen to investigate the features of the SBI above the ice covered

ocean.

© Google Earth
Image © 2021 Maxar Technologies

Figure 3. The Fjord Test Site (FTS) - a flight region on Slidre Fjord near Eureka Weather Station. Pins in the figure indicate the locations
of the ECCC WS main building - #1, Eureka C weather observing site - #2, hydrogen shed (RS launch site) - #3 , OPAL - #4, temperature

rofiles measured by M210 RTK in the fjord on 10 March 2020 - #5-#7 (see further details in the text). The drone takeoff/landing pad is
marked by a star symbol.
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The Runway Test Site (RTS, marked in green shading in Figure 4) is an inverted L-shape area of 1 km by I km near the

East end of the runway of Eureka Aerodrome. The site was chosen specifically to study SBI over land due to a favourable
combination of a flat terrain and local topographic features. It is a thermokarst landscape of ice-rich permafrost tundra with

305 a flat plateau located at the northern side of the runway and surrounded by gullies (Pollard, 2000). The RTS is located in

roximity to the Eureka A meteorological station and includes the NOAA FT. The drone takeoff/landing locations for both
sites are marked by a helicepter-star symbol in Figures and-3 and 4.

Image © 2021 Maxar Technologies , & 14" [ S : Ry b e

Figure 4. The Runway Test Site (RTS) - a flight region near the Eureka Aerodrome and NOAA Flux Tower. Pins in the figure indicate the
locations of the Eureka Acrodrome - #1, west side of the runway - #2, east side of the runway - #3, Eurcka A weather observing site - #4,
Fort Eureka buildings - #)5, temperature profile measured by M100 on 28 February 2017 - #6, NOAA Flux Tower - #7, gully - #8 (see further
details in the text). Black dotted line represents typical ground track of M210 RTK during the measurements of the vertical temperature
profiles near the Flux Tower in March 2020. The drone takeoff/landing pad is marked by a star symbol.
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2.4 Drone batteries in cold environment

The cold and harsh environment of the High Arctic brings certain challenges to drone operations (see Ader and Axelsson,
310 2017; Kramar and Maatta, 2018; Lampert et al., 2020a and therein). Among these are very low ambient temperatures, complete
darkness during polar night, and navigation difficulties associated with elese-proximity to the the North Magnetic Pole and poor
GNSS performance at high latitudes.
According to specifications, certified operation temperatures are: -10 to 40 °C for M100 and -20 to 50 °C for M2+6-RTKM210 RTK.
In the High Arctic typical winter ambient temperatures fall below -30 °C. The main technical challenge associated with cold
315 temperatures is poor performance of lithium batteries (Zhang et al., 2003). While the electronics and mechanics of the drones
work well down to -40 °C, the efficiency of the batteries drops drastically below -20 °C, which affects the duration of the
flight. According to Pesaran et al., 2013 the optimal range of operating temperatures for lithium batteries spans between 15
and 35 °C. We observed that while the drone’s batteries generate internal heat during flight, this cannot keep the batteries
within the optimal operation temperature range at below -20 °C ambient air temperatures, even in the case of the M210-RTK
320 M210 RTK which is equipped with battery heaters. To solve this an enclosure made of 25 mm thick extruded polystyrene rigid
insulation sheet (R=5 per 25 mm of thickness) was built around the battery compartments of both drones (see Figures 1 and

2). It allows easy installation and removal of the batteries and keeps them at optimal operational temperature around-during

the flight. Battery temperatures were maintained at about 30 °C during-the-eperationaccording to the data from M100 and
M210 RTK battery temperature monitoring systems.

325 2.5 Flight strategy and operation challenges

All drone operations reported here were performed within the framework of the research activities conducted at PEARL and in
accordance with Canadian Aviation Regulations for RPAS. Special procedures were established for operations in the vicinit

of Eureka Aerodrome.

The initial flight strategy consisted of several automatic (using an autopilot) or manual flights per day at various locations
330 within the RTS and FTS in the line-of-sight conditions with periodic ascents and descents. Before June 1, 2019, the flights
were conducted under Special Operation Flight Certificate, which restricted the maximum flight altitude for the drones to 91 m

300 ft) above the ground level, the minimum visibilit -to 305 m
1000 ft) above the ground level. After June 1, 2019, the flights were conducted according to the updated Part IX of the
Canadian Aviation Regulations—Speeial-procedures—were-established-for-operations-in-the-vicinity-of Bureka-/Aerodrome, in

335 which the maximum flight altitude for basic operations was extended to 122 m (400 ft) above the ground level.

- to 4.8 km (3 statute miles) and the minimum cellin

atsSo to comply with the
updated air space regulations and to increase the number of temperature profiles measured per flight before the drone batteries
are drained, in 2020 our maximum flight altitude was ~100 m above the ground level.
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Every time before conducting a flight the weather conditions were checked to make sure they are favourable for SBI
measurementsformation: sky is clear, ambient temperature is below -30 °C, and wind speed is below 5 km/h.

To address the issues associated with effects of cold weather on the pitet’s-performanee-performance of the drone pilot all
flight controls were conducted from a truck parked nearby the flight region. Also the pilot wore touchscreen friendly electrically
heated gloves to be able to navigate the drone using a tablet and to keep their hands warm.

Potential challenges associated with propeller icing and darkness during the operations did not occur. AH-the-flights—were
performed-At below -30 °C ambient temperature and at areund-~70% relative humidity —In-such-eonditions(corresponds to
354 ppmyv water vapour mixing ratio) the air was very dry and we have-net-observed-did not observe any indications of icing
on the propellers nor on the drone airframe during the flights (for comparison, 70% relative humidity at 0 °C corresponds to
4257 ppmy water vapour mixing ratio). Since the operations were conducted at the end of February to the beginning of March
there was enough sunlight during the day to eenduet-perform the flights in well illuminated conditions.

The challenges and solutions related to drone navigation are discussed in subsequent sections of the paper.

3 Results and Discussion
3.1 MI100 drone
3.1.1 MI100 first test flights and navigation challenges

Our first tests with M100 in Eureka (79.99°N, -85.77°W) were conducted in February 2017. The purpose of the tests was
to evaluate the possibility of attoremets-automatic flights and demonstrate the capability of the sensors and data collection
system to provide reliable data at ambient temperatures below -30 °C in the High Arctic.

The drone was programmed to perform autenomous-automatic flights according to a predefined way-point pattern at constant

altitude above the < round within the RTS in P-mode yJnP-mede

oarom Hratitaii 1o ofitar—ana—ve ar—po O H€a

information—is-takenfrom-the-onboard-compass—Unfortunately(see Figure 4). Unfortunately, in Eureka M100 autonomous

automatic flights were unsuccessful. The drone failed to maintain constant altitude and systematically climbed up during the

course of the flight while the telemetry indicated that the flight was performed at fixed altitude. By the end of each autenemeus
automatic flight the drone could gain an extra 30-50 m of altitude relative to predefined settings. Also there were many cases
when the drone lost its bearing and flew in circular patterns.

Similar tests conducted in Halifax, NS, Canada, located at a more southerly latitude (44.6°N, 63.6°W), did not have such
problems and the drone performance was satisfactory during those flights. We associate these navigation issues with a failure
of M100 navigation system to lock on the GNSS signal and poor performance of the internal compass and barometric altimeter

in the High Arctic latitudes and at low temperatures.
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Due to this, all further tests with M100 in Eureka were performed in se-called-attitude-mode(A-mode)-in-which-the-GNSS

notused-for-positioning.-and the droneu esits-barome altimeter-to-maintain-altitude. Since altitude maintenance

was problematic as well, the flights were conducted in true manual mode based on visual observations.
3.1.2 MI100 temperature measurements

During further flights we tested the performance of the sensors and data collection system. The drone was flown in a pattern with

periodic ascents and descents to measure vertical temperature profiles —Each-temperature-(three profiles total). Each vertical

profile consisted of temperature measurements conducted on a single ascent followed by single descent at a fixed location
within the FS+regionRTS (see Figure 4, #6 pin). An example of the-temperature-profileraw_temperature profile (Flight 1,
Profile 2) measured above packed snow at the East end of the runway 250 m south of the FT on February-28 -February 2017
is shown in Figure (Flight-+—Profile1+5 (a). The altitude scale is taken relative to the altitude-of-the-location of the drone
takeoff/landing pad which is at the same level as the FT base. Temperature variations measured atthe FFatby FT RTD sensors

at 3 Hz sampling rate at 2, 6 and 10 m above the surface during the time frame of the drone flights-are-shown-in-thick-tines-in

as-ascent and descent (19:39-19:41 UTC) as well
as 19:00 and 20:00 UTC Eureka A temperatures are also shown in Figureforreference—lItcan-beseen-thatastrong-temperature

O NFALAR ntha £ O hove—the nd h N—1Rve on nee o oce—to—raN2° m—edq A 00°C e
V W V WAV,

40°C/km-dashedtine-in-Figure- 5 (a) and (b).

An—e male—a he a o A

Some difference is observed in the temperature meastrements-profiles carried out on the drone’s ascent and descent. This
is associated with the response time of the temperature sensors, vertical speed of the drone and air mixing produced by the
drone propellers. During the tests the ascent/descent vertieal-speed of the drone was—+-+-2varied between 1 and 2.8 m/s. This
Such vertical speed results in hysteresis loops (time lag) in the measured temperature vertical profiles when the response time
of the sensors is not optimal (Cassano, 2014; Masi¢ et al., 2019). Slight differences in the temperature readings from the three
RTD sensors can be explained by the different locations of the sensors on the drone frameairframe. The readings from the RTD
attached under the left rear rotor (rotor 3 RTD) exhibit a systematic bias relative to the readings from the two other sensors
(top and pole, see Figure 1 for locations of the RTDs on the drone frame). The bias is more visible during the drone’s descent
when in the presence of a strong-steep temperature inversion the propulsion system pushes warmer air from above the drone
downward and mixes it with colder air under the drone.

To correct for the time lag we followed the approach suggested by Cassano (2014) and introduced a fixed time shift between
recorded altitudes and pole RTD temperatures to minimize the difference between the temperature profiles taken on the ascent
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and descent. For the measurements conducted on 28 February 2017 the optimal time lag was found to be 3.3 s which is 0.9 s
405 smaller than the time constant of 1PTI00KN1510 RTD element (4.2 s at 63.2% response at 1 m/s air flow speed according to
the RTD element specification). Raw (black solid line) and corrected (red solid line) temperature profiles from the pole sensor

are shown in Figure 5 (b).
It can be seen that according to the drone measurements a steep SBI is present in the first 10 m above the ground. The
inversion becomes weaker above 10 m. To retrieve SBI lapse rates the corrected drone temperature profile was than averaged
410 (blue solid line in Figure 5 (b)). The profile was split into two parts in terms of altitude above the ground (below and above
10 m) and a linear fit was applied to each part. The SBI lapse rates for 0-10 m and 10-50 m layers was found to be 32 °C/100 m
(320 °C/km, blue dotted line in Figure 5 (b)) and 5 °C/100 m (50 °C/km, dashed blue line in Figure 5 (b)). Temperature profiles
from the RS launched from the ECCC WS at 11:15 and 23:15 UTC and corrected for the altitude difference between the ECCC

WS and the RTS takeoff/landing pad elevations are depicted in Figure 5 (b) for reference.
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Figure 5. An example of raw (a) and time lag corrected (b) temperature profiles measured by M100 near the takeoff/landing pad 250 m south
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se rate, blue dashed line represents 5 °C/100 m (50 °C/km) inversion lapse rate (see details in text
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f the FT between 19:39 and 19:41 UTC on 28 February 2017. In subplot (b) blue dotted line represents 32 °C/100 m (320 °C/km) inversion




415 Figure 6 shows Eureka A and 2, 6 and 10 m 3 Hz RTD FT temperatures (a), SBI lapse rates (b) retrieved from linear

regressions of the FT temperatures as well as Eureka A and FT 1 minute wind speeds (c¢) between 19:30 and 20:30 UTC on 28

February 2017. The FT data taken during the time frame of three sets of M 100 ascents and descents (19:37-19:43 UTC) are

highlighted by thicker lines in Figure 6. Drone SBI lapse rates retrieved from three time lag corrected and averaged temperature
rofiles for 0-10 m layer (black symbols in Figure 6 (b)) are found to be in a good agreement with FT SBI lapse rates retrieved

420 from the temperatures measured at 2, 6 and 10 m above the ground level (thick grey solid line in Figure 6 (b)).
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Figure 6. Time evolution of: (a) - air temperatures (T) from the FT 2, 6, and 10 m RTDs and Eureka A sensor, (b) - FT and M100 SBI

lapse rates and (c) - wind speeds (WS) from 1 minute FT 11 m wind vane and Eureka A anemometer between 19:00 and 20:00 UTC on 28

February 2017. The FT data taken during the time frame of three sets of M100 ascents and descents (19:37-19:43 UTC) are highlighted b
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The results of the tests conducted in February 2017 showed that the drone was able to provide reliable data at ambient
temperatures below -40 °C. The-temperature-profiles-obtained-from-the-drone-Drone temperature profiles and SBI lapse rates
for 0-10 m altitude layer are in agreement with the data from the FT. Comparisons with RS data indicated some variations
in the absolute temperatures and the-SBI lapse rates obtained from the instruments. While in Figure 5 the drone temperature
profile has reasonably good match with the 23:15 UTC RS profile, a several degrees positive or negative bias can be observed
between the profiles from day to day. First of all, this could be due to the time difference between the drone flights and RS
launches, which were several hours apart. Secondly, the RS are launched from the ECCC WS. The F5++region-RTS and the
ECCC WS have ~3.3 km horizontal separation from each other and are sitting at different elevations above the mean sea level.
When the RS reaches the elevation of the TSIRTS, it is ~73 m above the launch site ground. Due to this and local topographic
features, the SBI sensed by the RS could differ from the SBI sensed by the drone.

3.2 M210-RFK-droneM210 RTK drone

3.2.1 M2HO-RTKAlightprocedureM210 RTK flight procedure

In 2018 the M100 was replaced by the M2+0-RFKM210 RTK. The main purpose of the replacement was to improve the

positioning accuracy and enhance the stability during autonomous-flights-—Alse-the-original-onboard-data-colleetion-automatic

navigation system managed to engage the RTK mode all the time and kept the positioning accuracy and stability of the drone
within the specification. Also the tests showed that the drone provides equally good performance while flying either in RTK
mode or in P-mode when RTK system is intentionally disabled.

Due to some technical problems with M210 RTK initial firmware and a few hardware failures, full scale operations in
Eureka resumed only in 2020. Temperature measurements were conducted at both the RTS and the FTS. Typical flight time
varied between 22 and 29 min per a set of two TBSS batteries. Since we had two sets of batteries available and it usually took
~v4 hours to recharge them with a standard charging hub (DJTIN2CH), M210 RTK temperature measurements were limited to
two flights per day.

Also the original GNSS receiver (MediaTek, MT3339) of the data collection system used with M100 was replaced by a
more advanced one built on u-blox MAX-M8Q concurrent GNSS engine (Zubax Robotics, 2019). It obtains position infor-

mation from GPS, GLONASS and Galileo constellations simultaneously at up to 15 Hz update-sampling rate. Additionallythe

temperature-sensor-attached-to-the-pole, the pole temperature sensor was equipped with a small fan which provided continuous
aspiration of the RTD element by forced air flow at ~1 m/s speed to improve its response time.

resolve hardware related biases of the temperature measurement system (RTD element production tolerance, MAX31865PMB1
module digitization errors), before the flights we conducted a laboratory test where all three RTDs were placed as close to each
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After the flights the RTDs were validated against the temperature measurements in the flowing water and melting ice. Pole
temperature sensor was found to be the most accurate. Its absolute bias did not exceed -0.003:£0.013 °C according to the
results of the temperature measurements in the melting ice. Top and rotor 3 temperature sensor biases were found to be less
than 0.254+0.02 °C and 0.3030.02 °C, correspondingly according to the results from the air flow, flowing water and melting
ice tests. The biases were taken into account at the data post-processing phase to retrieve temperature values from our March
2020 drone measurements. In addition the time lag was corrected following the same procedure applied to M100 data and
described by Cassano (2014).

On 2 and 3 March 2020 four preliminary flights were performed in Eureka to test the drone and the flight procedure. The
results of the preliminary flights showed that when the M210 RTK navigation system failed to engage RTK mode, which
happened sporadically, the drone performance was somewhat similar to that observed with M100. Main symptoms of the
failure were circular shape flight tracks, fly away events and/or the inability of the drone to keep its altitude constant during.
the flight. Unfortunately, due to a "black box" type of the drone’s navigation system it was not possible to find a solution. But
when the RTK mode was engaged, the vertical and horizontal positioning accuracy of M210 RTK was maintained well within

Our measurement flights started on 5 March 2020. Between 5 and 9 March 2020 the flights were conducted at the RTS.
Each operation day consisted of two types of flight. The first type was an automatic flight with periodic ascents and descents
along the preprogrammed way-points from the East end of the runway towards the FT (flux tower flight). An example of the
way-points and flight trajectory is marked in black open circles and black solid line respectively in Figure 7, This type of flight
was conducted to study the SBI and its temporal and spatial variability over a flat terrain (see subsection 3.2.2).

Adl-the-measurements_The second type was a manually controlled flight with a temperature profile measured in the gully
close to the East end of the runway following by a profile at the edge of the runway. An example of the flight trajectory is
marked in blue solid line in Figure 7. This type of flight (gully versus runway flight) was conducted to investigate how local
topography could influence the SBI (see subsection 3.2.3).

On 10 March 2020 at the end of the campaign two measurement flights were carried out on Slidre Fjord near the ECCC WS
to study the SBI over the ice covered ocean (fjord flight, see subsection 3.2.4).

Table 1 summarizes the flights conducted between 2 and 10 March 2020 using the M210 RTK drone. All the measurement
flights between 5 and 10 March 2020 were performed at low ascent/descent speeds (<0.1-0.7 m/s) to further minimize the

effect of the RTD response time on the resuttstemperature readings. The obstacle avoidance system of the drone was disabled
i 6The 18:00, 2020-using-the-M2H0-RTK
drone—The-19:00 and 20:00 UTC meteorologlcal conditions are outlined in Table 2 for three locations: +—the- ECCC-WS
itter-at-Bureka A, Eureka C and

ARSI AN AR

during all flights.

OPAL{6PAL). Unfortunately, due to a hardware failure no meteorological data were available from the FT for the time period
covering M210-RTK-M210 RTK flights.
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© Google Earth
Image © 2021 Maxar Technologies

Figure 7. M210 RTK flux tower (black solid line) and gully versus runway (blue solid line) flight trajectories at the Runway Test Site (RTS

on 6 March 2020. Pins in the figure indicate the locations of the East side of the Eureka Aerodrome runway - #3, NOAA Flux Tower - #7

ully - #8. Typical way-points of the drone flights near the FT are marked in red open circles (WP1-WP11). Typical way-points of the gull

versus runway drone flights are marked in blue open circles (RP1-RP2 - runway temperature profile, GP1-GP2 - gully temperature profile).
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Table 1. M210 RTK flights in 2020.

Takeoff time Landing time  Flight duration . Average speed
Date (UTC) (UTC) (min) Type of operations of ascent/descent (m/s)

2 March 2020 18:22 18:51 29 test flight near the FT 2/3
18:56 19:18 24 test flight near the FT 6/4

3 March 2020 18:29 19:55 26 test flight in the gully 3.5/-
19:01 19:23 22 test flight near the FT 0.2/0.2

5 March 2020 18:25 18:48 22 6 temperature profiles near the FT 0.7/0.7
18:52 19:15 23 gully vs runway temperature profiles 0.3/-

6 March 2020 18:28 18:52 24 gully vs runway temperature profiles 0.1/-
18:52 19:15 23 5 temperature profiles near the FT 0.3/0.3

7 March 2020 18:29 18:53 24 gully vs runway temperatures profiles 0.1/-
19:02 19:25 23 6 temperature profiles near the FT 0.3/0.3

9 March 2020 18:30 18:54 24 gully vs runway temperatures profiles 0.1/-
18:59 19:23 24 3 temperature profiles near the FT 0.4/0.3

10 March 2020 18:39 19:04 25 2 temperature profiles on the fjord 0.2/0.2
19:10 19:33 23 1 temperature profile on the fjord 0.2/0.2
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Table 2. Meteorological conditions at the Eureka Aerodrome (Eureka A), the Eureka Climate (Eureka C), and Zero Altitude PEARL Auxil-
iary Laboratory (OPAL) at 18:00/19:00/20:00 UTC during the measurement campaign in March 2020.

) Temperature RH Wind direction  Wind speed Visibility Pressure .
Date Location °C) (%) ©) (km/h) (km) (hPa) Conditions
2March 2020  Eureka A -29.8/-30.3|-30.1  74|73|73 5023]12 50617 2412411241 992.9|992.9993.0  mainly clear
Eureka C  -31.8/-30.8]-30.2  75|75|76 12]12(9 8|5|8 NA 1003.1]1003.11003.2 NA
OPAL -31.2|-30.3]-29.9  67/67|68 57|79|54 9|5/10 NA 1002.2|1002.2|1002.3 NA
3March2020 Eureka A -27.1]-27.2|-27.2  7575|75 18816 816/9 4.8/8.88.1 994.7|994.9/995.5 snow
Eureka C  -27.6|-26.1]-27.3  79|81|79 10/8]9 709|7 NA 1004.9|1005.1|1005.7 NA
OPAL -27.1|-25.7|-26.5  70/70|71 32|359|18 8|9|6 NA 1004.1/1004.3|1004.9 NA
5March 2020  Eureka A  -43.6/-413|-41.8  65/66/66 6/36/36 313 241241241 1012.7]1012.6]1012.8 clear
Eureka C  -43.2|-43.3]-43.5  64/64/63 8|13|11 4[3[7 NA 1023.51023.5/1023.7 NA
OPAL -44.3|-44.2|-43.4  64]66|65 40|53|39 913|7 NA 1022.6]1022.6/1022.8 NA
6March 2020  Eureka A -43.2/-43.9|-43.1  65|64/64 6/35/36 51412 16.1]16.1]16.1  1009.1]1009.21009.4 ice crystals
Eureka C  -45.6|-44.6/-44.7  59/6060 121812 8136 NA 1020.1]1020.1/1020.3 NA
OPAL -45.1|-43.8|-44.5  64|64|63 54|18|62 8|96 NA 1019.1]1019.2|1019.3 NA
7March 2020  Eureka A  -45.8|-44.7|-44.3  63|63/63 4135(36 4311 2412411241 1006.3/1006.1]1006.5 clear
Eureka C -46.1‘—46.0‘—45.9 60‘60‘60 10|13|9 9|3|3 NA 1017.1‘1017.1“017.2 NA
OPAL -45.8|-45.6/-45.4  64/61|62 36/39|44 10|5|5 NA 1016.2/1016.11016.3 NA
9 March 2020  Eureka A -45.7|-46.1-453  62]62/62 81912 544 241241241 1002.9]1002.9]1003.2 clear
Eureka C -46.9‘-46.8‘-46.6 59‘60‘59 8‘12‘6 4|5|2 NA 1013.8‘1013.9“014.1 NA
OPAL  -47.6|-46.8-46.9  62|62/63 2(47/41 12/4/6 NA 1012.9/1013.0/1013.2 NA
10 March 2020 Eureka A -44.3|-42.4|-43.6  63|64/63 36/12]1 1144 24.124.1]24.1  1006.4/1006.7/1007.3 clear
Eureka C -45.6‘-46.0‘-45.6 61‘59‘60 12‘12‘10 5|8|2 NA 1017.4‘1017.7“018.0 NA
OPAL -45.4|-45.5]-45.3  61/61|61 26162|47 4|6|4 NA 1016.5]1016.7]1017.1 NA
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3.2.2  Flux-towerflightsFlux tower flights: SBI variabili

Figures 8-11 show bias and time lag corrected temperature profiles measured on Mareh-5-9 March 2020 at various locations
near the FT within the FSt++regionRTS. The measurements were conducted in clear sky conditions with-tight-and at the wind
speeds not exceeding 45 km/h for most of the time according to Eureka A meteorological station. Temperature profiles from
the RS launched at 11:15 and 23:15 UTC from the ECCC WS and-together with 18:00, 19:00 and 20:00 UTC Eureka A

temperatures are shown in Figures 8-11 for reference.
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In the first flight on Mareh-5(18:25—38:48HFC)- March 2020 the drone was set to follow predefined-way-points—twice

fly twice from the East end of the runway towards the FT along WP1-WP7 way-points and acquire three temperature profiles
during each pass (see Figure 8, pass 1 and 2 i i i

East-end-of-therunway-towards-the FFalong WP1-WP3 (a), WP3-WP5 (b) and WP5-WP7 (c)). For these measurements the
optimal time lag was found to be 2.5 s. As it can be seen from the figure the temperatures dropped below -40 °C and a streng

steep SBI was measured by the drone with an inversion lapse rate ef-reaching ~6-320-30 °C/100 m within the 0-10 m layer.

According to Figure 8, the bias and time lag corrected readings from the top and rotor 3 RTDs are-pesitively-biased-by
O3have 0.15 °C and +71.4 °C respeetively-positive residue, respectively, in comparison with the readings from the pole
RTD. Be §

REFDs-is-within-0:2The top RTD together with its MAX31865PMB1 module was plugged directly into the expansion board
of the data collection system. It was located within a few centimetres from the Zubax GNSS and BMP280 modules. Internal
temperature sensors of Zubax GNSS and BMP280 modules typically recorded temperatures which were 0.9 and 2.5 °C larger
if compared to the pole RTD temperatures at -40 °C -ambient temperature. We consider the heat produced by those modules

and dissipated in the surrounding air could result in additional bias recorded by the top RTD. The rotor 3 RTD showed higher
temperature during the flightsprobably—, probably, because the heat generated by the spinning motor warms-warmed up the

air around it while the air +s-was pushed downwards by the rotor 3 propeller and aspirates-aspirated the RTD located below
it. This result is in a good agreement with the findings reported by Greene et al. (2018), who studied the quality of the drone

temperature measurements relative to the sensor locations on the airframe in a laboratory environment. The authors concluded

the-that sensors installed right above or below the drone can be decoupled from the environment by stagnation in the air flow
and can suffer from enhanced self-heating effects. Additionally, warm air streams caused by the spinning propellers can result
in up to 1 °C positive bias in the temperature readings for the sensors located in elese-proximity to the motors.
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Figure 8. Temperature profiles measured during M210 RTK two-pass flux tower flight along WP1-WP7 way-points (see Figure 7) on
5 March 2020 featuring biases between RTDs attached to different locations (color coded) on the air-frame and SBI temporal and spatial

variability: (a) - WP1-WP3, (b) - WP3-WP5, (c) - WP5-WP7.
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Also, some difference is observed in the temperature measurements-earried-out-profiles measured on the drone’s ascents and
descents and some artefacts are visible in the pole and top RTD profiles around 5 m altitudes and below. In the isothermal
region above 20 m the ascent/descent temperature differences are less noticeable for the top and pole sensors in comparison
with the rotor 3 sensor. We
This could be due to a combination of factors which include errors introduced by the fixed time lag correction, drone vertical
and horizontal speed fluctuations, air mixing produced by the drone propellers —The-difference-becomes-more-visible-as well
as natural temperature variations. The differences in the rotor 3 RTD readings become more noticeable during the drone’s

descent into the strong-SBEsteeper SBI (Figure 6 (a) and (b)). The propulsion system pushes warmer air from above the drone
downwards and mixing it with colder air under the drone (downwash flow). This effect is similar to one observed during

the M100 test flights in 2017. Additionally, some slight variation in the readings ean-be-observed-is visible in the profiles

measured on the first and second pass conducted 279 minutes apart from each other. This is attributed to a change in the

ambient conditions over time-, since according to the FT temperature data (see Figure 6) natural temperature fluctuations of
~1 °C per minute occur nearly continuously during periods of extremely stable boundary conditions in Eureka, Lampert et al.
(2020a) also noticed up to ~2 °C differences in the time lag corrected temperature profiles taken on the ascents and descents
differences to small variations in the meteorological conditions at hi
time intervals as well as to the heat generated by a local heat source (research vessel) and dissipated in the air at lower altitudes
(<70 m). The temperature sensors installed onboard ALICE drone were TSYS01 and a fine wire RTD.

To make the subsequent figures easier to read, only the measurements from the pole RTD are presented —further in the paper.
After the temperature sensor validation tests in melting ice, this RTD was considered to be the most accurate sensor onboard
our drone for air temperature measurements. It was forcibly aspirated and located away from the drone heat sources (motors,
batteries and large electronics).

On Mareh-6and- and 7;- March 2020 two more flights were performed (Figures 9 ;—and 10). The profiles show similar SBI

pattern for both cases. As-canbeseenfrom-thefigures-the-SBlwasstronger-On 6 March 2020 the SBI was steeper below 7-10 m
with an-the inversion lapse rate reaching 0:220 °C/m-and-weaker-orclose-to-isothermal-above-100 m in comparison to the SBI on
7 March 2020, which featured larger variability between individual temperature profiles. Above 10 m —FerMareh-more gradual

and close to isothermal temperature dependence is observed in both instances. For 7 March 2020 the average temperature was
by about 1 °C lower along the entire altitude range in comparison with Mareh-6-—6 March 2020. A ~1.5 °C temperature

drop was also registered by the Eureka A station and RS. On each day between Mareh-5and- and 7 March 2020 a 2-2.7 °C

her altitudes (70-1000 m) occurred within few minute

positive bias in the temperatures measured by the drone at 30 m altitude above the ground relatively to those measured by
the RS launched at 23:15 is observed. Both the drone and the RS recorded a similar inversion strength—0-6-62lapse rates
(0-2 °C/100 m) in the altitude range higher than 30 m above the ground.

On Mareh-9 March 2020 the drone temperature profiles did not show as strong-steep a SBI below 10 m even though the
temperatures were lower and remained below -42 °C along the altitude range of the drone measurements (Figure 11). However,

according to the RS measurements, the temperature did not change significantly in comparison with Mareh-7 March 2020 and
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the profiles obtained with the drone and the RS on Mareh-9 March 2020 are found to be in a good agreement featuring the
inversion lapse rate of ~6:033 °C/100 m within 5-55 m layer. During this flight the RTK system failed-afew—times-and
experienced a number of intermittent failures and the drone was not able maintain-drone’s-to maintain its altitude properly.
Due to that the flight had to be restarted several times. The drone managed to complete the measurements of only three vertieal

temperature profiles and performed only one ascent/decent which covered below 10 m altitude range before the battery drained.

For 6 and 7 March 2020 FT flights the optimal time lag was found to be 2 s, while for 9 March 2020 FT flight such time la
correction resulted in increased difference between the ascent/descent temperature profiles and was neglected.

Most of the drone temperature profiles measured between Mareh-5and- and 9 March 2020 show positive bias in comparison

with the RS profiles (see Figures 8-

wethwith-11). For 5 March 2020 the drone pole temperatures at ~~2 m level above the ground were found to be ~0.5 °C warmer
than 18:00 UTC Eureka A temperatures. Eurcka A temperature variations over 3 hours between 18:00 and 20:00 UTC totalled
2.3 2C. For 6:9 March 2020 close to the ground drone pole temperatures were up to ~2 °C warmer than 18:00, 19:00 and
20:00 UTC Eureka A temperatures. Again, we attribute these differences to the horizontal and vertical separation between the

measurement sites, time difference between the measurements and natural temperature variations.
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Figure 9. Temperature profiles measured during M210 RTK flux tower flight along WP1-WP11 way-points on 6 March 2020. Line colors
represent individual profiles in the course of the flight (see Figure 7 for details).
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3.2.3 GullyversusrunwayflightsGully versus runway flights: SBI and local topograph

Figures 12-13 demonstrate the-runway and gully temperature meastrements—condueted-onMareh-profiles measured on 5-9-
‘March 2020. The gully’s lowest point was located ~30 m below the surface level of the runway. Preliminary flights showed
that due to large altitude span and limited flight time it is not possible to complete ascent/descent profiles in both the gully
and above the runway at low vertical speed on one set of batteries. Also to keep better track of the remaining capacity of the
batteries and to maintain vertical speed at constant value it was more convenient to conduct the measurements on the ascents
starting from the ground, rather than on the descents starting from some altitude level. Because of that, the temperatures shown

in Figures 12-13 are those obtained on the drone’s ascents only. Aseent-Average ascent speed was kept at 0.1-0.3 m/sor-below-
. An application of 2 s time lag correction did not result in any improvements in the profiles and was omitted for these flights.

On-Mareh-On Sand- and 9 March 2020 (Figure 12) the profiles measured at the runway smoothly extends the profiles

measured in the gully. For both days the runway and gully profiles are close to each other in the 0-50 m region. However, for
Mareh-5 March 2020 the SBI was strenger-steeper in the gully (inversionlapserates~0-+10 °C/m100 m inversion lapse rate),
but sveaker-more gradual above the runway. For Mareh-9 March 2020 the shapes of the SBI at the runway and in the gully
are similar to each other, while it was generally by 2 °C colder at the gully surface in comparison with the runway surface
suggesting that colder air pools in the gully depressions.

On Mareh-6and- and 7 March 2020 (Figure 13) a different SBI regime was observed. The profiles are close to each other in
shape but shifted vertically by an amount equal to the gully depth. This suggest that the local radiative cooling was responsible
for both profiles and that there was no air flow interaction between the gully and runway sites. In contrast on March-Sand

_and 9 March 2020 (Figure 12) it appears that a weak surface horizontal air flow advected from the runway to the the-gully
ereating-the-gully created similar temperature profiles.
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3.2.4 FjordflightsFjord flights: detection of ocean heat flux through the ice

Figure 14 shows temperature profiles measured on Mareh-10 March 2020 on Slidre Fjord at various distances from the shore-
line. The measurements were carried out to investigate the features of the temperature profiles above the ice covered ocean
caused by heat flux through the sea ice (Pavelsky et al., 2011). According to the ice survey conducted on Mareh-6 March 2020
by the staff at the ECCC WS, the ice thickness was ~1.9 m (Ice Thickness Program, Canadian Ice Service). All three profiles
measured at ~35, 210 and 414 m from the shoreline feature an isothermal atmospheric layer between 10 and 30-40 m. Above
40 m the SBI is characterized by ~0:055 °C/100 m inversion lapse rate, while in the region between 0 to 10 m above the ice
surface an unstable lapserate(-0-1+>C/m)-layer can be seen. In this case drone measurements were conducted within 500 m
from the RS launch site and Eureka C meteorological station. Elevation separation between the sea ice level and ground level
of the RS launch site and Eureka C was ~10 m. Drone temperature profiles-profile measured ~35-and-41+4210 m from the
shoreline are-(pin #6 in Figure 3) is found to be in a good agreement with 23:15 UTC RS profile in the altitude range between

30 and 55 m above the sea ice. Temperatures measured by the drone at 12 m above the sea ice ~210 and ~414 from the
shoreline (pins #6 and with#7 in Figure 3) agree within £0.5 °C with the temperatures measured at Eureka C site at 18:00
19:00 -BFEEurekaCtemperatareand 20:00 UTC.
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3.2.5 Lessons learned and future prospects

Although our sensors and data collection system allowed measurements at low temperatures, the response time of our RTDs did
affect the temperature readings. The use of fine wire type RTDs would be beneficial since they have faster response (Wildmann
et al., 2013), however their readings could suffer from temperature fluctuations due to turbulent flows caused by spinning
propellers and would require additional filtering of raw data (Greene et al., 2018; Lampert et al., 2020a). Furthermore, we
found that special care has to be taken to the temperature sensor mounting since the mechanical vibrations induced in the
drone’s air-frame during the flight tends to break the leads of our RTD elements.

Conducting the flight operations while residing inside a truck parked near by the flight region worked well for the drone

pilot in control. We will continue this practice further during our winter fite-field operations in Eureka.

Our results show the drone’s flight time per a single battery charge was within the value specified by the manufacturer.
However, as we would expect, the number of available batteries, their power capacity and time required for recharging became
the key factors limiting our airborne time, hence, the amount of temperature measurements conducted per day. This can be
solved by establishing a larger bank of spare batteries and utilization of multiple or more advanced chargers.

In the future, our payload can be improved by an installation of a non-contact infrared thermometer and-a-tidartoeking
downwardslooking downwards, a laser altimeter and temperature sensors with better response time. The thermometer would
allow measurements of the surface-skin temperature simultaneously with the airtemperatureSAT, while the kidarlaser altimeter
would provide data on the drone’s altitude above the ground with a precision better than barometric altimeter. The Hidar-altimeter

also can be used to track fine scale topography of the surface during the flight.

a o Thow_the drone_c Aioht fimepe nola hattary charoe

the-key factors limiting-our airborne time,-heneeForcibly aspirated fast temperature sensors placed away from the drone heat
sources and areas of stagnated air flow are a key tool in providing reliable readings. Additionally, a development of robust
time lag correction method, similar to one applied for the RS temperature (Mahesh et al., 1997) and humidity (Miloshevich
et al.,, 2004) measurements, but more specific to the sensors installed onboard multi-rotor RPAS is required. To derive true

air temperatures from the sensor readings and to obtain accurate scientifically useful results from the drone measurements the
method should account for the i ishi

hence, for the variable time lag (Lampert et al., 2020a). To measure air temperatures within 0-10 m above the ground using
multi-rotor RPAS an attention has to be paid to the development of an optimal flight strategy, which would minimize the effects
of downwash, produced by the drone propellers. In these terms, horizontal flights at the lowest possible altitudes, allowing to
sense undisturbed air close to the ground, seem to be more preferable than ascent/descent type flights used in our study. All
these aspects have to be carefully considered during future mission planning and equipment integration stages.
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4 Conclusions

We have reported on the application of two commercial drones made by DJI to investigate the SBI within 60 m of the ground
in the harsh environment of High Arctic winter at ambient temperatures down to -46 °C. The results of test flights conducted
with the M100 drone revealed issues in its navigation system, which made autenomous-automatic flights in Eureka almost
impossible. The issues were related to frequent losses of GNSS lock as well as poor performance of compass and barometric

altimeter in high latitudes and at low temperatures. The-M210-RTK-This resulted in many occasions when M100 failed to

maintain its altitude above the ground, drone fly away events and circular shape flight tracks when flown automatically alon

the preprogrammed set of way-points in P-mode. The M210 RTK drone equipped with RTK navigation system performed
better than M100 and allowed autonemous—flights—whenR modewas-engaged—Whea—-M210-R atted-to-engageR

moede-itbehavedsimilarly-toM100us to conduct automatic flights in RTK mode.

Our results show that multi-rotor drones can be effectively used in the High Arctic to characterize SBI and its temporal and
spatial features. Our drone temperature profiles are in agreement with the temperatures from the FT measured at 2, 6, and 10 m
above surface-the ground and Eureka A temperature. The inversion lapse rates within the 0-10 m layer can reach the values
of ~0-4-6:310-30 °C/100 m (~100-300 °C/km). This is about half the lapse rate measured by Hudson and Brandt (2005)
for 0-2 m altitude layer above the snow surface on the Antarctic Plateau. In the 10-60 m layer above the ground the SBI is
characterized by weaker-smaller inversion lapse rates, which are in the range of ~0-62-0:042-4 °C/100 m (~20-40 °C/km) or
less. In this region our firdings-drone lapse rates agree well with the EurekaRS-datalapse rates obtained from the Eureka RSs,
launched within 4 hours after the drone flights. Also our 10-60 m drone lapse rates are close to the results of multi-year studies

conducted by Bradley et al. (1993) and by Walden et al. (1996) based on Eureka RS data covering 1967-1990.
Comparisons of the results of the SBI measurements conducted in the gully and above flat area near the East end of the

runway stggesting-suggest that local topography and a change in the micro-meteorological conditions could be factors shaping
the inversion in the gully. Above the sea ice, the temperature profiles are found to be isothermal above a shallow unstable
surface layer revealing the impact of sensible-the heat flux through the ice. A detailed study with thorough analysis of the
FT and drone temperature data as well as heat flux data are required for better understanding of processes responsible for the
inversion formation above the ground and sea ice surface.

For the flux tower and fjord flights our optimal temperature sensor time lag was found to be 3.3 and 2-2.25 s for naturally
aspirated (2017 flights) and forcibly aspirated (2020 flights) pole RTD, correspondingly. Our time lag values are close to 2-5 s
time lag reported by (Cassano, 2014) for their naturally aspirated Pt 1000 Heraeus M222 and Sensirion SHT 75 sensors installed
at SUMO fixed-wing drone. However, the measurement conditions, which include different sensor type and much larger RPAS
air speeds used during their studies, make direct comparisons challenging (SUMO drone cruise air speed is 15 m/s).

Our results confirmed the findings reported by Greene et al. (2018) and showed that when a sensor is installed onboard a

drone for the air temperature measurements, the most critical factors affecting the accuracy and responsivity of the sensor are

its time constant and location,
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Drone field studies of SBIs have the advantage of providing a rapid three-dimensional picture of the air temperature distri-
bution. This allows one to identify spatial and temporal changes in the inversion strength-lapse rates with altitude that cannot
be captured neither-by a fixed height-flux—towernor-by radiosondes;-which-tack-sufficient-vertical-and-timeresolutionposition
flux tower. Also, the ability of the multi-rotor drones to perform flights and measure temperatures in the near surface layer,

insufficient time resolution as well as vertical resolution, especially in the 0-10 m layer above the ground, where the largest
temperature gradients are observed. Furthermore, drones are able to study the influence of topography on the SBI structure and

to measure extremely cold temperatures of air that can pool in topographic depressions. Finally, we demonstrated that drone
measurements can determine the depth of unstable surface layers that form over sea ice during calm and clear conditions. All
these unique capabilities by a drone can provide boundary layer meteorologists with a more realistic assessment of the pro-
cesses that shape the temperature distribution in winter Arctic environments with important implications in the interpretation

of regional variations in the skin—surface air temperature difference and the surface sensible-and-radiative-heat fluxes.
Data availability. All the measurement data are available from ABT upon request.
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