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Abstract. The portable microAeth® MA200 (MA200) is widely applied for measuring black carbon in
human exposure profiling and mobile air quality monitoring. Due to its relatively new in the market,
the field lacks a refined assessment of the instruments performance under various settings and data
postprocesing approaches. This study assessed the mobile real-time performance of the MA200 in an
urban area, Augsburg, Germany. Noise reduction and negative value mitigation were explored via
different data postprocessing methods (i.e., local polynomial regression (LPR), optimized noise
reduction averaging (ONA), and centered moving average (CMA)) under common interval time
(i.e., 5, 10, and 30 s). After noise reduction, the treated-data were evaluated and compared by (1) the
amount of useful information attributed to microenvironmental characteristics retained; (2) relative
number of negative values left; (3) reduction and retention of peak-samples; and (4) the amount of
useful signal retained after correction for local background conditions. Our results identify CMA as a
useful tool for isolating the central trends of raw black carbon concentration data in real time while
reducing non-sensical negative values and the occurrence and magnitudes of peak-samples that affect
visual assessment of the data without substantially affecting bias. Correction for local background
concentrations improved the CMA treatment by bringing nuanced microenvironmental changes into
more visible. This analysis employs a number of different postprocessing methods for black carbon

data, providing comparative insights for researchers looking for black carbon data smoothing
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approaches, specifically in a mobile monitoring framework and data collected using the microAeth®

series of aethalometers.

Keywords: Black carbon; Mobile measurement; Noise reduction; Peak-sample; Background correction

1 Introduction

Black carbon particulate matter with size ranging from 0.01 to 1 pm (Zhou et al., 2020), is a pollutant
comprising a range of carbonaceous materials produced by the incomplete combustion of fossil fuel
and biomass containing carbon (Goldberg, 1985), and is suspected of exerting significant impact on
health (Anenberg et al., 2012; Janssen et al., 2011; Nichols et al., 2013). Subsequently, it also has an
important role in climate systems due to its strong radiative forcing potential (Kutzner et al., 2018,
Sadiq et al., 2015). The International Agency for Research on Cancer (IARC) has classified black
carbon as a 2B carcinogen, while researchers have linked black carbon exposures to cardiovascular,
respiratory, and neurological diseases (e.g., Nichols et al., 2013). However, the hyper-local nature of
air quality among small-scale urban blocks is difficult to characterize with the existing monitoring
networks which typically rely on fixed monitors (Apte et al., 2017), especially for on-road

concentrations.

Although some progress has been made in the study of black carbon monitoring, however, many
studies are limited for mobile monitoring data. In the previous studies, Hegler et al. (2011) and Van
den Bossche et al. (2015) evaluated the optimized noise reduction averaging (ONA) for postprocessing
mobile monitoring data. However, due to the high spatial heterogeneity of black carbon, the ONA
algorithm may ignore important microenvironmental effects and lead researchers to perhaps incorrectly
conclude that resolution of microenvironmental source information cannot be determined from their
data. One manufacturer of acthalometers suited for mobile monitoring (by their size, weight, and
battery characteristics), AethLabs (San Francisco, CA, USA) offers additional forms of data
postprocessing (i.e., noise reduction), that given their accessibility and potential direct application to
the field and may be representative of methods, including the local polynomial regression (LPR) and
centered moving average (CMA) algorithms. The interpretation accuracy of data analyzed and reported
upon in black carbon mobile monitoring study can be increased by assessing the relative performance

of these methods to each other and to ONA.

An AethLabs instrument, the microAeth® MA200 (MA200; AethLabs, San Francisco, CA, USA) was
recently developed for measuring personal exposures to black carbon, ambient and vertical profiles of
black carbon concentrations, and indoor emissions concentrations of black carbon, among other black
carbon phenomena. The MA200 continuously collects aerosol particles on a filter and measures the
optical attenuation (ATN) at 5 wavelengths (880, 625, 528, 470, and 375 nm) with a data collection
time-base as frequent as 1 Hz. The cross-spectrum measurement provides insight into the composition
of light-absorbing carbonaceous particles and allows to distinguish among the different optical

signatures of various combustion sources such as fossil fuel (primarily diesel), biomass, and potentially
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tobacco combustion (Helin et al, 2018). This instrument supports the DualSpot® loading
compensation method, which corrects the optical loading effect (Virkkula et al., 2007) and provides
more additional information about aerosol optical properties. In our study, the equivalent black carbon
(eBC), the preferred term for describing black carbon assessed with mass absorption cross-section
(MAC) facilitated optical absorption methods (Petzold et al., 2013), was used when targeting

quantitative values.

The raw data outputted by the MA200 at high frequencies (e.g., 1 Hz) can exhibit noise that obscure
nuanced signals surrounding the central tendency of the data, increasing the difficulty of analysis in
mobile settings or during rapidly changing micro-environmental characteristics. These negative values
usually contain valid information required for noise reduction or smoothing, and so simply removing
them may result in bias. Noise reduction of the raw data without direct removal of negative values is
thereby recommended to enhance data quality and temporal resolution (Liu et al., 2020). Moreover,
high-time resolution measurements of air quality at roadside are susceptible to one-off events (e.g., the
occasional passing of heavy-duty diesel vehicles or the stochastic passing of a cigarette smoker) that
may not represent the general context of the street in study. This may lead to overestimation of eBC
levels when averaged over time/space as they introduce peaks in the dataset. In addition, when the
sampling equipment traverses from highly-polluted to a low-polluted area, such as a park, the
instrument produces strong negative values due to the measurement principle of the instrument and the
strength of the pollution gradient between microenvironments. Therefore, the noise reduction method
should also be evaluated based on the retention of actual peak-samples concentrations and number of

peak-samples associated with identifiable sources of pollution.

In addition, air pollution concentrations at a specific time and place may consist of two primary aspects:
contributions from local source emissions and a background concentration (Tan et al., 2014).
Background concentrations, especially the high background concentration of typical pollution events
(such as haze), can obscure the contribution of local sources of pollution (Van et al., 2013; Van den
Bossche et al., 2015). Moreover, real-time changes in local sources, meteorology, and regional
transport cause changes in the pollution background (Brantley et al., 2014), which will affect the
comparability of measurements over different time periods, even at different times on the same days
(Li et al., 2019). Therefore, we employed background concentration values to evaluate the noise
reduction in mobile data after postprocessing and to provide a better assessment for local sources

contribution of air pollution to measured concentrations.

In this study, the application of several common methods for postprocessing black carbon data to
improve reliable mobile measurements at high frequencies, including ONA (Hagler et al., 2011), LPR,
and CMA, was assessed in the urban city. The postprocessing assessments data were focused on the
microAeth® MA200. The quality of each noise reduction approach was assessed by analyzing
post-processed data under the following criteria: (1) retention of detailed information attributed to

microenvironmental characters; (2) relative number of negative values remained; (3) reduction and
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retention of peak-samples; and (4) retention of detailed information on microenvironmental characters

after background correction.

2 Methods

2.1 Instrumentation

In this study, seven MA200 portable black carbon monitors (MA200-0051, MA200-0053,
MA200-0059, MA200-0060, MA200-0155, MA200-0153, MA200-159) (microAeth® MA200;
AethLabs, San Francisco, CA, USA) were used simultaneously to measure black carbon levels at the
city center under different interval times (5 s, 10 s, and 30 s). The MA200 measures optical ATN from
black carbon on a filter across 5 optical wavelengths: infrared, red, green, blue, and ultra-violet (880,
625, 528, 470, and 375 nm, respectively). Measurement of optical ATN at 880 nm characterizes the
eBC concentration. The detection limit of the MA200 is reported at 30 ng eBC/m® and it notifies
concentrations at the resolution of 1 ng/m3 (AethLabs, 2018). In mobile monitoring, the MA200 can be
used to estimate personal exposure and quantify eBC mass concentrations in different
microenvironments. It can be used to identify the hot spots and to quantify black carbon levels on roads
and highways as well as in various other mobile environments (Apte et al., 2011, Dons et al., 2012,
Maduefio et al.,, 2019) including bicycles (Wojcik et al., 2014, Samad and Vogt, 2020), trains
(Andersen et al., 2019), and airplanes (Kim et al., 2019). The device can also be applied in long-term
stationary monitoring, vertical profiling, and atmospheric measurement with unmanned aerial vehicles
(Cao et al., 2020, Chilinski et al., 2018, Pikridas et al., 2019), balloons (Ferrero et al., 2016, 2014, 2011,
Markowicz et al., 2017, Samad and Vogt, 2020), community monitoring, indoor air quality monitoring,
and the assessment of personal exposure and related health effects (Isley et al., 2017). In order to
reduce the noise concentration of the data obtained with high time resolution, smoothing algorithms

can be used.

AethLabs offers tools for applying several noise reduction algorithms to MA-series device data on its
website (https://aethlabs.com [note: a free account is required]). To evaluate the relative performance of
MAZ200, this study analyzed black carbon data collected from multiple MA200 devices, identified
individually by serial numbers. Comparative measurements of the MA200 and a stationary
Aecthalometer (AE33, Magee Scientific, Berkeley, USA) taken approximately for 30 to 60 min between
walks showed a good agreement (Pearson’s r =0.933) (Liu et al., 2021). In addition, it is worth noting
that when the AE33 was used for monitoring black carbon at the same time as the MA200, the AE33
was placed in container, while MA200 was used outdoor (in the stroller) during the individual walks,
which may have different relative humidity and temperature. This phenomenon did not influence the
consistency of eBC concentration measured with both instruments. Information about the date, duration,
and time resolution (time base) of each MA200 device are summarized in Table 1. To demonstrate the
unit-to-unit comparability between the MA200 units, we performed intercomparisons at fixed

monitoring stations (Table S1) and during collocated mobile measurements (Fig. S2). No wavelength
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dependence was observed between different instruments for fixed and mobile monitoring

measurements.

Table 1 Measurements of black carbon by different MA200 devices.

Measurement Date Start time End time Time
Serial number Site
number (dd/mm/yyyy) (hh:mm:ss) (hh:mm:ss) base (s)

1 27/09/2018 MA200-0051 10:29:10 13:38:20 10
2 15/11/2018 MA200-0059 11:53:42 16:13:12 10
3 16/11/2018 MA200-0053 11:34:06 16:33:56 10

Augsburg,
4 26/08/2019 MA200-0060 11:01:56 15:44:46 10

Germany
5 21/02/2020 MA200-0155 10:00:10 13:10:00 5
6 21/02/2020 MA200-0153 10:00:10 13:10:00 10
7 21/02/2020 MA200-0159 10:00:10 13:10:00 30
8 24/11/2020 MA200-0059 09:40:57 11:09:07 10

Munich,

9 01/12/2020 MA200-0051 13:29:05 15:19:00 5

Germany
10 18/12/2020 MA200-0051 14:39:30 15:19:30 30

2.2 Study design and routes

The MA200 instrument is able to measure black carbonin 1s,5s, 10s, 30s, 60 s, and 300 s interval
times. The 1 s time base exhibits the most challenging interpretation because of poor signal to noise
ratio especially at low concentrations, which is similar to other optical black carbon monitors (Hagler
et al., 2011). Therefore, 1 s measurement resolution may be most useful when sampling in high
concentration environments, performing direct emissions testing and requiring high time resolution for
application. However, the eBC average concentration is low in the city center of Augsburg, Germany,
(measured at 2.62 pg/m? in winter by Gu, (2012)) thus we did not use the 1 s time base. Moreover, 60 s
and 300 s are too long distance for mobile monitoring, which may affect the accuracy of the spatial
variation of pollutants, hence both time bases were also not selected in this study. In order to better
understand at which interval time of sampling might be most useful in this context, mobile
measurements at low eBC concentrations, three MA200 devices were used in parallel to measure eBC

concentrations with the interval times of 5 s, 10 s, and 30 s (Measurement numbers 5-7 in Table 1).

To account for the different land use types of the microenvironments, a fixed walking route within the
center of the city was determined. Wherever possible, the mobile measurements were carried out on the
right side of the road simulating people’s common habits (driving and walking on the right side in
Germany). All walks along the route were conducted on weekdays, with clear skies and calm winds to
avoid misrepresentation of typical urban exposure conditions. The route started from Augsburg
University of Applied Sciences (UAS) and continued approximately 14 km for 3 h average walking
time, passing through different types of land use to ensure that different microenvironments were
represented the entire areas and the validity of the results (Fig. S1). Meanwhile, as performed in our

previous study (Liu et al., 2021), we divided the monitoring route into four microenvironment groups
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in Augsburg, including high traffic flow (H_Traffic, average 500-1000 vehicles/h), medium traffic flow
(M_Traffic, average 200-500 vehicles/h), low traffic flow (L_Traffic, average 1-200 vehicles/h), and
park area (N_Traffic, average 0 vehicles/h), according to the actual traffic density examined during the

daytime and determining from the traffic flow observed by street views.

Briefly, the study was consisted of the following phases, (1) collecting raw black carbon data using the
sampling instruments (MA200); (2) smoothing the acquired raw black carbon data under different
postprocessing methods (i.e., noise reduction); (3) comparing the noise reduction data based on the
detail change of value characters and number of negative value; (4) following the peak-samples
identification by coefficient of variation (COV) approach and (5) following the background estimation
and correction by thin plate regression spline (TPRS) approach; (6) finally, selecting the best noise

reduction approach.

2.3 Instrumentation preparation

The instruments were prepared and adjusted in our laboratory before each walk, consisting of “zero”
calibration checks, the examination of the MA200 filter cassette, battery, GPS, and memory checks.
Flow calibrations were adjusted with a factory-calibrated flow meter (Alicat Scientific, Inc. Tucson,

AZ, USA).

2.4 Postprocessing methods

The relative utility of the different postprocessing methods is determined by (1) the ability to perceive
nuanced differences between microenvironmental pollution characteristics after after noise reduction;
(2) the relative number of negative eBC values remained; (3) the reduction and retention of
peak-samples; and (4) the ability to perceive nuanced differences between microenvironmental
pollution characteristics with the noise-reduced data after background correction. These methods

include ONA, LPR, and CMA.

2.4.1 ONA (optimized noise reduction averaging)

The principle of the ONA is based on the time series of three parameters in the original observation
data, namely the observation time, the original eBC concentration, and the optical ATN, as specifically
described by Hagler et al. (2011). Briefly, a AATN threshold is manually set to prevent the algorithm
from recalculating eBC until a certain amount of ATN has been detected (e.g., enough black carbon has
deposited on the filter to “confidently” calculate an eBC concentration). The aims to reduce erroneous
and spurious estimation by dynamically extending the effective sample time-base, hence, there is
sufficient ATN to significantly reduce the error effects of instrument noise. This effective time-base
will be longer in low concentrations than at higher concentrations and, hence, *no* negatives and less
eBC noise will be reported. When using ONA algorithm, this AATN threshold needs to be manually
assigned. Hagler et al., (2011) implemented a AATN threshold of 0.05 to postprocess data from a fixed
monitoring site. However, when applied to MA200 data, a AATN threshold of 0.05 results in a very

smooth curve and may obscure more information than is necessary to provide a usefully smoothed
6
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curve. For this reason, a lower AATN threshold of 0.01 was selected for the mobile measurement data

of our study (Figure S3).

2.4.2 LPR (local polynomial regression)

The LPR algorithm is a non-parametric tool similar to a moving average, but it operates on polynomial
regression rather than simple averaging (Masry, 1996, Breidt and Opsomer, 2000, Kai et al., 2010). In
LPR, the number of points across which to smooth must be manually identified. This value should be
chosen to balance effective smoothing of the measured values and the sensitivity required to provide
spatial resolution in mobile measurements (e.g., distance over which the average was taken). The
distance resolution was chosen at approximately about 100 m. Assuming the sampling speed is 1.3 m/s,
when the interval time is 5 s, 10 s, and 30 s, the smoothing number of points are 15, 7, and 3,

respectively.

2.4.3 CMA (centered moving average)

The CMA algorithm is a smoothing technique used to make the long-term trends of a time series
clearer (Easton and McColl, 1997). Unlike a simple moving average, CMA has no shift or group delay
in the data processing, as it incorporates data from both before and after the datapoint that is being
smoothed. The smoothing number of points was determined as previously described in the LPR

algorithm, assuming a sampling speed of 1.3 m/s.

2.5 Comparison analysis after noise reduction approach

2.5.1 The nuance of microenvironmental characters and the proportion of negative values.

After postprocessing data, the character change of the treated data is used as criterion to select the best
method. In this regard, when the treated data provide more detailed microenvironmental characters, the
data reflect the actual situation of air pollutants and facilitate the identification of pollution sources.
However, if the microenvironmental characters is less detailed, it may hinder to identify the pollution
source. Therefore, more detailed microenvironmental features contributed more accurate information.
In addition, the number of remaining negative values is determined as another criterion to propose the
best method. And, the method with the smallest proportion of the negative values is selected as the best
method. The proportion of negative values remaining was calculated as the number of negative values

divided by the total sample size.

2.5.2 Peak-sample identification

An earlier study by Brantley et al. (2014) compared several methods for identifying and eliminating
peak-samples in mobile air pollution measurements. These include identifying samples outside of a
threshold based on a median produced using road segmentation, an a-trimmed arithmetic average (Van
den Bossche et al., 2015), a running coefficient of variation (COV) (Hagler et al., 2012), an estimate of
background standard deviation (Drewnick et al., 2012), a running low 25 % quantile (Choi et al., 2012)
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and 3 times the standard deviation (Wang et al., 2015). The formula for the running method used in this
analysis is previously described by Hagler et al. (2012) with minor modification (Eq. 1):

\/1 PISNCIESS
7 i=t-3
cov, = — (D

all

=

where COV. is the 70 s sliding COV of the t-th eBC sample under a 10s timebase (representing 30 s
prior to the sample, the sample, and 30 seconds after the sample), x; is the i-th eBC sample, x is the
average of the t-th eBC sample and the three samples before and after it, and x.z is the average of all
eBC data in one experiment. The 99th quantile of the 70 s sliding COV of all eBC data is used as the
threshold for determining “peak-sample”. The eBC samples that are greater than this threshold are
flagged as peak-samples along with the eBC samples 3 data points before and after. However, under
different time bases (e.g., 5 s, and 30 s), the sliding COV of the t-th black carbon sample are different.

Accordingly, the COV equation is required for modification under different time base.

To calculate the reduction value of peak-samples, the number of peak-samples was calculated before
and after postprocessing data, and the difference value was obtained. Then the change in the number of
peak-samples was divided by the total number of peak-samples before postprocessing data to calculate
the proportion of peak-samples values. After noise reduction, we compared the reduction values and
the number of peak-samples to further evaluate postprocessing methods. In short, if the reduction value
of peak-samples is high, the treated data has a high peak noise reduction without removing the numbers
of peak-samples. Therefore, the method with high reduction value of peak-samples and retaining the

number of peak-samples after postprocessing is considered as the better method.

2.5.3 Background estimation and correction

The ability of a processing method to adequately remove the estimated background concentration was
used to evaluate which method provides the most useful information related to microenvironmental
effects. A noise reduction method that appears to better facilitate background estimation and correction
(as described below calculated from noise-reduced data via a defined background estimation and

evaluation approach) is assessed to select a better postprocessing method.

Background correction methods include the single sample standardization method, the sliding
minimum method, the linear regression postprocessing method, and the spline (of minimum) regression
postprocessing method. Brantley et al. (2014) suggests that a thin plate regression spline (TPRS)
method can reliably evaluate the background value of mobile measurements, and used to examine the
“useful” information in the noise-reduced data (i.e. non-spurious, non-background pollution trends).
Briefly, the TPRS approach includes three steps: first, the noise reduction data of pollutant was
processed by a 30 s moving average; second, the results of the 30 s moving average were sequentially
processed by the specified time window (i.e., 5 and 10 min), and the position of the minimum sample

of pollutant concentration was identified in each window; and finally, thin-plate spline regression was
8
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used to fit the sample of minimum pollutant concentration obtained in the previous step, then the

background concentration at each time point was obtained.

3 Results and discussion

The average ¢eBC concentrations of raw, ONA-processed, LPR-processed, and CMA-processed data
(Measurements 1-10) monitored by all instruments were compared in this study (Table S2). The results
show that the three postprocessing methods accounted of +1 % bias from the average of raw
concentrations. This indicates that the average concentration under each postprocessing method did not

affect the average concentration of the raw unprocessed data.

3.1 Postprocessing data under different interval time

As shown in Figure 1, three MA200s were used at the time bases of 5 s, 10 s, and 30 s. The proportion
of negative values in the raw data collected under different time base of was 42.1 %, 37.6 %, and
30.5 %, for 5 s, 10 s, and 30 s, respectively (Fig. la, Table 2, Fig S4a). Following that, the raw data
were processed using ONA, LPR, and CMA (Fig. 1b, ¢, and 1d).

In the 5 s time base, the eBC values changed very rapidly (Fig. 1a), and the ONA processing of the data
resulted in only one value (which was negative) (Fig. 1b). Thus, the microenvironmental characters of
the eBC concentration was not reproduced. We found all A ATN (ATNio)+ o v—ATNp) data were
negative in the raw data collected at 5 s, which, according to the ONA method described above,
resulted in only a single value. In short, after the first measurement, the A ATN threshold (which is
positive) for calculating the next value was never reached. The first value was likely a negative value
due to a combination of instrument noise, coincidence, and a low background concentration (i.e., low
baseline instrument signal), which is consistent with both the raw data measurements and the typical
low eBC concentrations in the city center of Augsburg, Germany (Gu, 2012). It is unclear why AATN
remained negative, but, given the long series of low concentration vales in the beginning of the sample
and the initial negative measurement, it is possible that the summed A ATN became increasingly
negative as a result of the initial negative A ATN measurement. The subsequent measurements at
low-concentration did not exceed the magnitude of the initial negative A ATN value. Under these
conditions, a cumulative negative sum of AATN would prevent the positive AATN threshold from
being achieved at all. If true, this phenomenon highlights one potential weakness of the ONA algorithm,
such as difficulty registering a signal under low concentrations and requires further investigation of
the conditions under which ONA is truly unbiased. At any rate, the observed phenomenon prevented
the use of ONA in the 5 s time base (Fig. 1b). Previous studies in which ONA was successfully applied
implemented a 1 s time base (Hagler et al., 2011; Van den Bossche et al. 2015). After postprocessing
with LPR and CMA, the microenvironmental characters retained more detailed information of the eBC
concentration. Further comparison of their negative values revealed that remaining negative values

comprised 28.1 % for LPR and 22.9 % for CMA after postprocessing.
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In the 10 s interval time base, the negative values were not found after ONA processing, suggesting
that a reasonable smoothing effect is obtained at low black carbon concentration. The
microenvironmental character presented strong changes against the raw data, remaining less detailed
information of air pollution. After postprocessing with LPR and CMA, the microenvironmental
characters revealed more detailed information of air pollution, with 30.2 % of negative values for LPR
and 25.3 % for CMA. In the 30 s interval time base, the negative values comprised 0 % of the
post-processed data for ONA, 25.5 % for LPR, and 22.4 % for CMA. The 30 s interval dataset
presented the lowest proportion of negative values before and after postprocessing, due to the longer
interval times of sampling. However, the longer 30 s measurement period results in more distance
covered during each measurement, given the mobile nature of the sampling device. Thus, 30 s black
carbon measurements may be too long to detect local concentration peaks in urban contexts that

supported in other study (Kerckhoffs et al., 2016).

The ONA algorithm showed a strong ability to extract negative values. As a result, the ONA-treated
data may present bias that obscure nuanced microenvironmental trends (Fig. 1b). Interestingly, LPR
and CMA postprocessing are capable of decreasing negative values while retaining
microenvironmental trends. Both methods are promising for the analysis of spatiotemporal changes in
pollutant concentrations with sensitivity to local sources. Previous studies have shown that the
spatiotemporal variability of black carbon is highly heterogeneous (Liu et al., 2019; Liu et al., 2021);
the ability to capture spatiotemporal variability of microenvironments is critical for assessing

differential exposures among populations.
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Figure 1 The temporal fluctuations of the black carbon levels measured with the MA200 at sampling
time bases of 5 s, 10 s, and 30 s during a typical sampling period (about 190 min), (a), raw data without
noise reduction, (b), data treated with optimized noise reduction averaging, (c), data treated with local
polynomial regression, and (d), data treated with centered moving average. The analysis was carried
out on data streams from three MA200s all collected during a single sampling run (Measurements 5, 6

and 7).

Table 2 The proportion of negative values and average noise reduction under the different
postprocessing methods (values are shown as (%), NV [%]: Proportion of negative values remained,

NR [%]: Average noise reduction. -, no data, measurements 1-10).

Interval time Factor RAW ONA LPR CMA
s NV 42.1 - 28.1 22.9
S
NR 0 100 72.0 87.4
NV 37.6 0 30.2 253
10s
NR 0 5.54 223 47.7
NV 30.5 0 25.5 22.4
30s
NR 0 0.62 6.24 39.1

3.2 Reduction and number of peak-samples after postprocessing methods

The processing of peak-sample is a pivotal evaluation index for the measurement of time-averaged
roadside air quality. Passing vehicles, for example, may bias estimates of typical local concentrations
due to their contribution to the dataset of peak concentrations that may substantially related to
arithmetic averages. Therefore, after noise reduction, we compare the reduction values and the retained

number of peak-samples to further evaluate the postprocessing methods.

In the interval time 5 s, the average reduction of peak-samples for the LPR and CMA algorithms was
72.0 % and 87.4 %, respectively (as discussed above, the ONA method could not be used). In this
interval time, the reduction of peak-samples was relatively high, indicating that when monitoring black
carbon at low concentrations and high sample frequencies, the drastic noise may occur in the raw data,
and the higher noise reduction may affect the actual values. Therefore, the suitable interval time should
be considered when monitoring low eBC concentrations. In the interval time 10 s, the average
reduction of peak-samples for the CMA (47.7 %) is higher than ONA (5.54 %) and LPR (22.7 %). In
the interval time 30 s, CMA presented the greatest average reduction of peak-samples (39.1 %)
compared to ONA (6.24 %) and LPR (0.62 %) (Table 2, Fig. S4b). The retention of peak-samples
remaining after postprocessing was also assessed using the COV method (Measurements 1-10). The
result showed that all three algorithms retained all peak-samples before and after postprocessing. In this
regard, CMA retained all peak samples despite the highest reduction in their magnitude. Therefore,
CMA highlights microenvironmental trends while preserving the identity of peak-samples, facilitating
the identification of local pollution sources, and may thus be a better postprocessing method than ONA

or LPR (Table 2, Fig. S4b).
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To further characterize the distribution of peak-sample concentration under CMA, we performed an
intensive graphical analysis on a single data stream (Measurement 4; Fig. 2). As shown in Figure 2,
eBC values along the main roads and intersections were higher than other locations, presumably due in
large part to stop-and-go traffic and cars in close proximity to the mobile monitor (Fig. 2). It can be
seen from Figure 2a that the peak-samples of black carbon were mainly found in 4 locations,
represented by red triangles. Vehicle counts and traffic in these locations vary depending on the time of
measurement. The highest eBC values were repeatedly found in the streets with moderately high traffic
volumes and dense coverage with relatively high buildings (street canyon situation), indicating that
heterogeneity in air pollution concentrations in Augsburg and similar settings is largely caused by a
combination of effects from traffic and topography (Buonanno et al., 2011). To determine whether
peak-samples are due to local sources or instrumental artifacts, and to provide further evidence that
traffic and topography effects are primary contributors to spatial heterogeneity in pollution
concentrations, we compared the data measurements of the three collocated MA200 units during
Measurements 5, 6, and 7. The results showed that there were no major differences in the hot spot areas
(an indicator of considerable peak-samples) identified by the measurements of the three instruments

(Fig. S5).
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Figure 2 Identification of the spatial (a) and temporal (b) distribution characteristics of black carbon
peak-samples based on the coefficient of variation method (the analysis based on measurement 4), ©

OpenStreetMap contributors. Distributed under a Creative Commons BY-SA License.

It should be noted that a predecessor instrument to the MA200, the AE51, has demonstrated some
sensitivity to mechanical shock during mobile measurements (Cai et al., 2013). Apte et al (2011)
observed spurious, 1-3 second spikes of + 200 - 2,000 pg/m?* while monitoring black carbon in an
auto rickshaw. When AethLabs took control of manufacturing the AES51, which was originally
produced by Magee Scientific (Berkeley, CA, USA), instrument opto-electronics were redesigned
to reduce such sensitivity. Researchers using redesigned AE51 demonstrated only a small effect on

data. For example, Hankey (2014), using the same means of identifying such spurious
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measurements as Apte et al (2011), observed that approximately 1-2 % of their data collected via
bicycle trailer were attributed to spurious mechanical shock. Supporting this improvement, Cai et
al (2013) found evidence of a substantial improvement in data quality related to vibration-related
spikes after an equipment upgrade by AethLabs, which reflected the aforementioned
improvements to opto-electronics. In addition, there were no major mechanical shocks to or
unique vibrational effects on the stroller and no major different of accelerometer data in the raw

data, precluding these as potential con-founders on all 3 instruments.

3.3 Comparison of background estimation and correction after noise reduction

Local air pollution can be highly affected by long-range and regional transport. The timing and
magnitude of such transport varies in space and time and is highly dependent upon the stochasticity of
meteorology. As a result, local background concentration changes may vary, affecting the
comparability of measurements made at the same location at different times (Brantley et al., 2014). For
this reason, reliable comparison of time-variable mobile measurements across a city (and thus reliable
pinpointing of hotspots and pinpointing of key local sources) requires effective methods to estimate,
isolate, and remove the effects of fluctuations in background concentration. Our analysis indicates that
the effectiveness of background correction is affected by the noise reduction method chosen during

postprocessing.

After postprocessing, the data were evaluated using the TPRS method. We calculated the 5 min
and 10 min background concentrations under different postprocessing approaches. As shown in
Figures 3a and b, the background concentration after LPR processing has both the largest proportion of
negative values and the most-negative values (i.e. negative values of the greatest absolute magnitude),
resulting in estimates of background-corrected concentrations that are greater than actual monitored
concentrations. Background concentrations calculated after ONA and CMA postprocessing presented
fewer and lower negative values than LPR, but were not convincingly different from each other.
Therefore, to further compare the ONA and CMA algorithm, we also compared concentrations after
background correction (Fig. 3¢ and d). As shown in Figures 3¢ and d, when the concentration is lower
than 1 pg/m? (black circle lines), the background-corrected results after the ONA processing are
smoother than after CMA. This result dampens the signal of local pollutant sources, resulting in a

lower utility of post-processed data.
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Figure 3 Background concentration of black carbon under different time-series :(a), spline of 5 min
minimums, (b), spline of 10 min minimums; and background correction of black carbon under different

time-series (c¢) spline of 5 min minimums; (d), spline of 10 min minimums. Analyses are based on

Measurement 4.

In order to verify the CMA applicability and its advantages, this study further analyzed the eBC
concentrations measured by a fixed background monitoring station at the University of Applied
Sciences (UAS) (Fig. S6) (Cyrys et al., 2006). The background value under the 5 min window exhibits
wave-like characteristics, and the fitting curve in the 10 min window is relatively smooth. However, the
TPRS-based background value often does not fluctuate greatly over short periods, and the black carbon
background value curve under the 5 min window does not conform to the “actual” urban background
situation as estimated using the fixed-site monitor data, which are assumed to primarily represent the
fluctuations in background concentrations. Moreover, by comparing the curve produced by the spline
of 10 min minimums with the eBC background concentration (Background-UAS, Fig. S6), it can be

found that the background correction method based on the time series can well characterize the
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time-varying characteristics of background pollution in each experiment, suggesting that, of the two

options, 10 min showed the better window for fitting the background value curve of black carbon.

Under the TPRS method, the background concentration of eBC can be fitted at any sampling time. The
TPRS-estimated background contribution of the observed eBC concentration averaged 37.8 % of the
total measured concentration. However, when the contribution of background concentration to a single
measurement was examined, a large fluctuation (10.4 -71.3 %) was observed, which may be closely
related to sizeable changes in the meteorological conditions, traffic conditions along the road (and
overtime at the same point in the road), and urban street canyon effects in each measurement.
Therefore, based on the comparison of background correction, the CMA showed better applications for

estimating the background concentration and location source contribution.

3.4 Generalizability

To verify the generalizability of our assessment, we performed another three measurement runs in
Munich (Measurement 8, 9, 10). Raw data were post-processed for noise reduction using CMA (Fig.
S7). The results showed that the following method is equally applicable in a city like Munich as in our
study site in Augsburg, two cities that differ in location and environmental characteristics (e.g.,
population, economy, traffic density etc.). After treated by CMA, the peak-samples can be identified in
different interval times (Fig. S8), and the estimated background concentrations showed few negative
values (Fig. S9). Further research into the transferability of our results to a more diverse set of contexts

is still needed.

3.5 Practical implication

The MA200 is widely used to measure human exposure to black carbon and for mobile air quality
monitoring. In this study the MA200 were applied in mobile measurements in an urban area
(Augsburg), and the sensitivity of the final analysis to various data postprocessing methods was
investigated. In contrast to our findings, Hagler et al., (2011) suggested the use of ONA algorithm to
postprocess Acthalometer data from microAeth AES5S1, portable AE42, and rackmount AE21
aethalometers (Magee Scientific, Berkeley, CA, USA). In their analysis, ONA demonstrated a strong
noise reduction in all datasets and retained spatiotemporal variation. ONA also reduced the occurrence
of negative data values in low concentration sampling environments. However, for the microAeth®
series of black carbon monitoring instruments, our study showed that ONA leads to a considerable
dampening of spatiotemporal resolution in local black carbon signals at street level - an effect that is

lower under CMA postprocessing.

In addition, our analysis highlights that the selection of an appropriate data postprocessing method is
crucial to the proper assessment and interpretation of exposure-relevant microenvironmental
contributors to pollution concentrations in urban areas. This analysis is important when estimating
exposures that occur during transit, where spatiotemporal variability in pollution concentrations is vast,

like in commuter traffic (Snyder et al., 2013). Due to the typically low-but-heterogeneous nature of
15
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eBC concentrations in many areas like Augsburg, noisy measurement with the MA200 under
high-frequency sampling may obscure actual trends in measured values. This study demonstrated that
postprocessing MA200 data using CMA can reliably extract the actual signals from such noise and,
alternatively, that postprocessing via ONA and LPR could be less reliable. Future researchers and
agencies may find a distillation of our results in the form of the flow diagram in Scheme 1 useful in
determining how to reliably assess spatiotemporal variability of MA200 measurements for black

carbon in different microenvironments.
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Scheme 1 The proposed decision tree for mobile monitoring data from the microAeth® MA200.

4 Conclusion

A mobile monitoring campaign was conducted in the city center of Augsburg, Germany to determine a
suitable noise reduction algorithm for the MA200 acthalometer. Our results showed that, at the interval
time of 5's, 10 s, and 30 s, CMA postprocessing effectively removed spurious negative concentrations
without major bias and reliably highlighted effects from local sources, effectively increasing
spatiotemporal resolution in mobile measurements. Evaluation of the effects of each method on
peak-sample reduction and the estimation of background concentrations further support the reliability
of CMA algorithm. Further analysis is needed to understand how well these findings apply in different

seasons; across different diurnal patterns; and in more-rural, more-urban, and non-German locations.
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