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Abstract. The portable microAeth® MA200 (MA200) is widely applied for measuring black carbon in

human exposure profiling and mobile air quality monitoring. Due to its relatively new in the market,

the field lacks a refined assessment of the instruments performance under various settings and data

postprocesing approaches. This study assessed the mobile real-time performance of the MA200 in an25

urban area, Augsburg, Germany. Noise reduction and negative value mitigation were explored via

different data postprocessing methods (i.e., local polynomial regression (LPR), optimized noise

reduction averaging (ONA), and centered moving average (CMA)) under common interval time

(i.e., 5, 10, and 30 s). After noise reduction, the treated-data were evaluated and compared by (1) the

amount of useful information attributed to microenvironmental characteristics retained; (2) relative30
number of negative values left; (3) reduction and retention of peak-samples; and (4) the amount of

useful signal retained after correction for local background conditions. Our results identify CMA as a

useful tool for isolating the central trends of raw black carbon concentration data in real time while

reducing non-sensical negative values and the occurrence and magnitudes of peak-samples that affect

visual assessment of the data without substantially affecting bias. Correction for local background35
concentrations improved the CMA treatment by bringing nuanced microenvironmental changes into

more visible. This analysis employs a number of different postprocessing methods for black carbon

data, providing comparative insights for researchers looking for black carbon data smoothing
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approaches, specifically in a mobile monitoring framework and data collected using the microAeth®

series of aethalometers.40
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1 Introduction

Black carbon particulate matter with size ranging from 0.01 to 1 μm (Zhou et al., 2020), is a pollutant

comprising a range of carbonaceous materials produced by the incomplete combustion of fossil fuel

and biomass containing carbon (Goldberg, 1985), and is suspected of exerting significant impact on45
health (Anenberg et al., 2012; Janssen et al., 2011; Nichols et al., 2013). Subsequently, it also has an

important role in climate systems due to its strong radiative forcing potential (Kutzner et al., 2018,

Sadiq et al., 2015). The International Agency for Research on Cancer (IARC) has classified black

carbon as a 2B carcinogen, while researchers have linked black carbon exposures to cardiovascular,

respiratory, and neurological diseases (e.g., Nichols et al., 2013). However, the hyper-local nature of50
air quality among small-scale urban blocks is difficult to characterize with the existing monitoring

networks which typically rely on fixed monitors (Apte et al., 2017), especially for on-road

concentrations.

Although some progress has been made in the study of black carbon monitoring, however, many

studies are limited for mobile monitoring data. In the previous studies, Hegler et al. (2011) and Van55
den Bossche et al. (2015) evaluated the optimized noise reduction averaging (ONA) for postprocessing

mobile monitoring data. However, due to the high spatial heterogeneity of black carbon, the ONA

algorithm may ignore important microenvironmental effects and lead researchers to perhaps incorrectly

conclude that resolution of microenvironmental source information cannot be determined from their

data. One manufacturer of aethalometers suited for mobile monitoring (by their size, weight, and60
battery characteristics), AethLabs (San Francisco, CA, USA) offers additional forms of data

postprocessing (i.e., noise reduction), that given their accessibility and potential direct application to

the field and may be representative of methods, including the local polynomial regression (LPR) and

centered moving average (CMA) algorithms. The interpretation accuracy of data analyzed and reported

upon in black carbon mobile monitoring study can be increased by assessing the relative performance65
of these methods to each other and to ONA.

An AethLabs instrument, the microAeth® MA200 (MA200; AethLabs, San Francisco, CA, USA) was

recently developed for measuring personal exposures to black carbon, ambient and vertical profiles of

black carbon concentrations, and indoor emissions concentrations of black carbon, among other black

carbon phenomena. The MA200 continuously collects aerosol particles on a filter and measures the70
optical attenuation (ATN) at 5 wavelengths (880, 625, 528, 470, and 375 nm) with a data collection

time-base as frequent as 1 Hz. The cross-spectrum measurement provides insight into the composition

of light-absorbing carbonaceous particles and allows to distinguish among the different optical

signatures of various combustion sources such as fossil fuel (primarily diesel), biomass, and potentially
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tobacco combustion (Helin et al., 2018). This instrument supports the DualSpot® loading75
compensation method, which corrects the optical loading effect (Virkkula et al., 2007) and provides

more additional information about aerosol optical properties. In our study, the equivalent black carbon

(eBC), the preferred term for describing black carbon assessed with mass absorption cross-section

(MAC) facilitated optical absorption methods (Petzold et al., 2013), was used when targeting

quantitative values.80

The raw data outputted by the MA200 at high frequencies (e.g., 1 Hz) can exhibit noise that obscure

nuanced signals surrounding the central tendency of the data, increasing the difficulty of analysis in

mobile settings or during rapidly changing micro-environmental characteristics. These negative values

usually contain valid information required for noise reduction or smoothing, and so simply removing

them may result in bias. Noise reduction of the raw data without direct removal of negative values is85
thereby recommended to enhance data quality and temporal resolution (Liu et al., 2020). Moreover,

high-time resolution measurements of air quality at roadside are susceptible to one-off events (e.g., the

occasional passing of heavy-duty diesel vehicles or the stochastic passing of a cigarette smoker) that

may not represent the general context of the street in study. This may lead to overestimation of eBC

levels when averaged over time/space as they introduce peaks in the dataset. In addition, when the90
sampling equipment traverses from highly-polluted to a low-polluted area, such as a park, the

instrument produces strong negative values due to the measurement principle of the instrument and the

strength of the pollution gradient between microenvironments. Therefore, the noise reduction method

should also be evaluated based on the retention of actual peak-samples concentrations and number of

peak-samples associated with identifiable sources of pollution.95

In addition, air pollution concentrations at a specific time and place may consist of two primary aspects:

contributions from local source emissions and a background concentration (Tan et al., 2014).

Background concentrations, especially the high background concentration of typical pollution events

(such as haze), can obscure the contribution of local sources of pollution (Van et al., 2013; Van den

Bossche et al., 2015). Moreover, real-time changes in local sources, meteorology, and regional100
transport cause changes in the pollution background (Brantley et al., 2014), which will affect the

comparability of measurements over different time periods, even at different times on the same days

(Li et al., 2019). Therefore, we employed background concentration values to evaluate the noise

reduction in mobile data after postprocessing and to provide a better assessment for local sources

contribution of air pollution to measured concentrations.105

In this study, the application of several common methods for postprocessing black carbon data to

improve reliable mobile measurements at high frequencies, including ONA (Hagler et al., 2011), LPR,

and CMA, was assessed in the urban city. The postprocessing assessments data were focused on the

microAeth® MA200. The quality of each noise reduction approach was assessed by analyzing

post-processed data under the following criteria: (1) retention of detailed information attributed to110
microenvironmental characters; (2) relative number of negative values remained; (3) reduction and
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retention of peak-samples; and (4) retention of detailed information on microenvironmental characters

after background correction.

2 Methods

2.1 Instrumentation115

In this study, seven MA200 portable black carbon monitors (MA200-0051, MA200-0053,

MA200-0059, MA200-0060, MA200-0155, MA200-0153, MA200-159) (microAeth® MA200;

AethLabs, San Francisco, CA, USA) were used simultaneously to measure black carbon levels at the

city center under different interval times (5 s, 10 s, and 30 s). The MA200 measures optical ATN from

black carbon on a filter across 5 optical wavelengths: infrared, red, green, blue, and ultra-violet (880,120
625, 528, 470, and 375 nm, respectively). Measurement of optical ATN at 880 nm characterizes the

eBC concentration. The detection limit of the MA200 is reported at 30 ng eBC/m3 and it notifies

concentrations at the resolution of 1 ng/m3 (AethLabs, 2018). In mobile monitoring, the MA200 can be

used to estimate personal exposure and quantify eBC mass concentrations in different

microenvironments. It can be used to identify the hot spots and to quantify black carbon levels on roads125
and highways as well as in various other mobile environments (Apte et al., 2011, Dons et al., 2012,

Madueño et al., 2019) including bicycles (Wójcik et al., 2014, Samad and Vogt, 2020), trains

(Andersen et al., 2019), and airplanes (Kim et al., 2019). The device can also be applied in long-term

stationary monitoring, vertical profiling, and atmospheric measurement with unmanned aerial vehicles

(Cao et al., 2020, Chiliński et al., 2018, Pikridas et al., 2019), balloons (Ferrero et al., 2016, 2014, 2011,130
Markowicz et al., 2017, Samad and Vogt, 2020), community monitoring, indoor air quality monitoring,

and the assessment of personal exposure and related health effects (Isley et al., 2017). In order to

reduce the noise concentration of the data obtained with high time resolution, smoothing algorithms

can be used.

AethLabs offers tools for applying several noise reduction algorithms to MA-series device data on its135
website (https://aethlabs.com [note: a free account is required]). To evaluate the relative performance of

MA200, this study analyzed black carbon data collected from multiple MA200 devices, identified

individually by serial numbers. Comparative measurements of the MA200 and a stationary

Aethalometer (AE33, Magee Scientific, Berkeley, USA) taken approximately for 30 to 60 min between

walks showed a good agreement (Pearson’s r =0.933) (Liu et al., 2021). In addition, it is worth noting140
that when the AE33 was used for monitoring black carbon at the same time as the MA200, the AE33

was placed in container, while MA200 was used outdoor (in the stroller) during the individual walks,

which may have different relative humidity and temperature. This phenomenon did not influence the

consistency of eBC concentration measured with both instruments. Information about the date, duration,

and time resolution (time base) of each MA200 device are summarized in Table 1. To demonstrate the145
unit-to-unit comparability between the MA200 units, we performed intercomparisons at fixed

monitoring stations (Table S1) and during collocated mobile measurements (Fig. S2). No wavelength
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dependence was observed between different instruments for fixed and mobile monitoring

measurements.

Table 1Measurements of black carbon by different MA200 devices.150

Measurement

number

Date

(dd/mm/yyyy)
Serial number

Start time

(hh:mm:ss)

End time

(hh:mm:ss)

Time

base (s)
Site

1 27/09/2018 MA200-0051 10:29:10 13:38:20 10

Augsburg,

Germany

2 15/11/2018 MA200-0059 11:53:42 16:13:12 10

3 16/11/2018 MA200-0053 11:34:06 16:33:56 10

4 26/08/2019 MA200-0060 11:01:56 15:44:46 10

5 21/02/2020 MA200-0155 10:00:10 13:10:00 5

6 21/02/2020 MA200-0153 10:00:10 13:10:00 10

7 21/02/2020 MA200-0159 10:00:10 13:10:00 30

8 24/11/2020 MA200-0059 09:40:57 11:09:07 10
Munich,

Germany
9 01/12/2020 MA200-0051 13:29:05 15:19:00 5

10 18/12/2020 MA200-0051 14:39:30 15:19:30 30

2.2 Study design and routes

The MA200 instrument is able to measure black carbon in 1 s, 5 s, 10 s, 30 s, 60 s, and 300 s interval

times. The 1 s time base exhibits the most challenging interpretation because of poor signal to noise

ratio especially at low concentrations, which is similar to other optical black carbon monitors (Hagler

et al., 2011). Therefore, 1 s measurement resolution may be most useful when sampling in high155
concentration environments, performing direct emissions testing and requiring high time resolution for

application. However, the eBC average concentration is low in the city center of Augsburg, Germany,

(measured at 2.62 μg/m3 in winter by Gu, (2012)) thus we did not use the 1 s time base. Moreover, 60 s

and 300 s are too long distance for mobile monitoring, which may affect the accuracy of the spatial

variation of pollutants, hence both time bases were also not selected in this study. In order to better160
understand at which interval time of sampling might be most useful in this context, mobile

measurements at low eBC concentrations, three MA200 devices were used in parallel to measure eBC

concentrations with the interval times of 5 s, 10 s, and 30 s (Measurement numbers 5-7 in Table 1).

To account for the different land use types of the microenvironments, a fixed walking route within the

center of the city was determined. Wherever possible, the mobile measurements were carried out on the165
right side of the road simulating people’s common habits (driving and walking on the right side in

Germany). All walks along the route were conducted on weekdays, with clear skies and calm winds to

avoid misrepresentation of typical urban exposure conditions. The route started from Augsburg

University of Applied Sciences (UAS) and continued approximately 14 km for 3 h average walking

time, passing through different types of land use to ensure that different microenvironments were170
represented the entire areas and the validity of the results (Fig. S1). Meanwhile, as performed in our

previous study (Liu et al., 2021), we divided the monitoring route into four microenvironment groups
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in Augsburg, including high traffic flow (H_Traffic, average 500-1000 vehicles/h), medium traffic flow

(M_Traffic, average 200-500 vehicles/h), low traffic flow (L_Traffic, average 1-200 vehicles/h), and

park area (N_Traffic, average 0 vehicles/h), according to the actual traffic density examined during the175
daytime and determining from the traffic flow observed by street views.

Briefly, the study was consisted of the following phases, (1) collecting raw black carbon data using the

sampling instruments (MA200); (2) smoothing the acquired raw black carbon data under different

postprocessing methods (i.e., noise reduction); (3) comparing the noise reduction data based on the

detail change of value characters and number of negative value; (4) following the peak-samples180
identification by coefficient of variation (COV) approach and (5) following the background estimation

and correction by thin plate regression spline (TPRS) approach; (6) finally, selecting the best noise

reduction approach.

2.3 Instrumentation preparation

The instruments were prepared and adjusted in our laboratory before each walk, consisting of “zero”185
calibration checks, the examination of the MA200 filter cassette, battery, GPS, and memory checks.

Flow calibrations were adjusted with a factory-calibrated flow meter (Alicat Scientific, Inc. Tucson,

AZ, USA).

2.4 Postprocessing methods

The relative utility of the different postprocessing methods is determined by (1) the ability to perceive190
nuanced differences between microenvironmental pollution characteristics after after noise reduction;

(2) the relative number of negative eBC values remained; (3) the reduction and retention of

peak-samples; and (4) the ability to perceive nuanced differences between microenvironmental

pollution characteristics with the noise-reduced data after background correction. These methods

include ONA, LPR, and CMA.195

2.4.1 ONA (optimized noise reduction averaging)

The principle of the ONA is based on the time series of three parameters in the original observation

data, namely the observation time, the original eBC concentration, and the optical ATN, as specifically

described by Hagler et al. (2011). Briefly, a ∆ATN threshold is manually set to prevent the algorithm

from recalculating eBC until a certain amount of ATN has been detected (e.g., enough black carbon has200
deposited on the filter to “confidently” calculate an eBC concentration). The aims to reduce erroneous

and spurious estimation by dynamically extending the effective sample time-base, hence, there is

sufficient ATN to significantly reduce the error effects of instrument noise. This effective time-base

will be longer in low concentrations than at higher concentrations and, hence, *no* negatives and less

eBC noise will be reported. When using ONA algorithm, this ΔATN threshold needs to be manually205
assigned. Hagler et al., (2011) implemented a ΔATN threshold of 0.05 to postprocess data from a fixed

monitoring site. However, when applied to MA200 data, a ΔATN threshold of 0.05 results in a very

smooth curve and may obscure more information than is necessary to provide a usefully smoothed
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curve. For this reason, a lower ΔATN threshold of 0.01 was selected for the mobile measurement data

of our study (Figure S3).210

2.4.2 LPR (local polynomial regression)

The LPR algorithm is a non-parametric tool similar to a moving average, but it operates on polynomial

regression rather than simple averaging (Masry, 1996, Breidt and Opsomer, 2000, Kai et al., 2010). In

LPR, the number of points across which to smooth must be manually identified. This value should be

chosen to balance effective smoothing of the measured values and the sensitivity required to provide215
spatial resolution in mobile measurements (e.g., distance over which the average was taken). The

distance resolution was chosen at approximately about 100 m. Assuming the sampling speed is 1.3 m/s,

when the interval time is 5 s, 10 s, and 30 s, the smoothing number of points are 15, 7, and 3,

respectively.

2.4.3 CMA (centered moving average)220

The CMA algorithm is a smoothing technique used to make the long-term trends of a time series

clearer (Easton and McColl, 1997). Unlike a simple moving average, CMA has no shift or group delay

in the data processing, as it incorporates data from both before and after the datapoint that is being

smoothed. The smoothing number of points was determined as previously described in the LPR

algorithm, assuming a sampling speed of 1.3 m/s.225

2.5 Comparison analysis after noise reduction approach

2.5.1 The nuance of microenvironmental characters and the proportion of negative values.

After postprocessing data, the character change of the treated data is used as criterion to select the best

method. In this regard, when the treated data provide more detailed microenvironmental characters, the

data reflect the actual situation of air pollutants and facilitate the identification of pollution sources.230
However, if the microenvironmental characters is less detailed, it may hinder to identify the pollution

source. Therefore, more detailed microenvironmental features contributed more accurate information.

In addition, the number of remaining negative values is determined as another criterion to propose the

best method. And, the method with the smallest proportion of the negative values is selected as the best

method. The proportion of negative values remaining was calculated as the number of negative values235
divided by the total sample size.

2.5.2 Peak-sample identification

An earlier study by Brantley et al. (2014) compared several methods for identifying and eliminating

peak-samples in mobile air pollution measurements. These include identifying samples outside of a

threshold based on a median produced using road segmentation, an α-trimmed arithmetic average (Van240
den Bossche et al., 2015), a running coefficient of variation (COV) (Hagler et al., 2012), an estimate of

background standard deviation (Drewnick et al., 2012), a running low 25 % quantile (Choi et al., 2012)
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and 3 times the standard deviation (Wang et al., 2015). The formula for the running method used in this

analysis is previously described by Hagler et al. (2012) with minor modification (Eq. 1):
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where COVt is the 70 s sliding COV of the t-th eBC sample under a 10s timebase (representing 30 s

prior to the sample, the sample, and 30 seconds after the sample), xi is the i-th eBC sample, x is the

average of the t-th eBC sample and the three samples before and after it, andxall is the average of all

eBC data in one experiment. The 99th quantile of the 70 s sliding COV of all eBC data is used as the

threshold for determining “peak-sample”. The eBC samples that are greater than this threshold are250
flagged as peak-samples along with the eBC samples 3 data points before and after. However, under

different time bases (e.g., 5 s, and 30 s), the sliding COV of the t-th black carbon sample are different.

Accordingly, the COV equation is required for modification under different time base.

To calculate the reduction value of peak-samples, the number of peak-samples was calculated before

and after postprocessing data, and the difference value was obtained. Then the change in the number of255
peak-samples was divided by the total number of peak-samples before postprocessing data to calculate

the proportion of peak-samples values. After noise reduction, we compared the reduction values and

the number of peak-samples to further evaluate postprocessing methods. In short, if the reduction value

of peak-samples is high, the treated data has a high peak noise reduction without removing the numbers

of peak-samples. Therefore, the method with high reduction value of peak-samples and retaining the260
number of peak-samples after postprocessing is considered as the better method.

2.5.3 Background estimation and correction

The ability of a processing method to adequately remove the estimated background concentration was

used to evaluate which method provides the most useful information related to microenvironmental

effects. A noise reduction method that appears to better facilitate background estimation and correction265
(as described below calculated from noise-reduced data via a defined background estimation and

evaluation approach) is assessed to select a better postprocessing method.

Background correction methods include the single sample standardization method, the sliding

minimum method, the linear regression postprocessing method, and the spline (of minimum) regression

postprocessing method. Brantley et al. (2014) suggests that a thin plate regression spline (TPRS)270
method can reliably evaluate the background value of mobile measurements, and used to examine the

“useful” information in the noise-reduced data (i.e. non-spurious, non-background pollution trends).

Briefly, the TPRS approach includes three steps: first, the noise reduction data of pollutant was

processed by a 30 s moving average; second, the results of the 30 s moving average were sequentially

processed by the specified time window (i.e., 5 and 10 min), and the position of the minimum sample275
of pollutant concentration was identified in each window; and finally, thin-plate spline regression was
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used to fit the sample of minimum pollutant concentration obtained in the previous step, then the

background concentration at each time point was obtained.

3 Results and discussion

The average eBC concentrations of raw, ONA-processed, LPR-processed, and CMA-processed data280
(Measurements 1-10) monitored by all instruments were compared in this study (Table S2). The results

show that the three postprocessing methods accounted of ±1 % bias from the average of raw

concentrations. This indicates that the average concentration under each postprocessing method did not

affect the average concentration of the raw unprocessed data.

3.1 Postprocessing data under different interval time285

As shown in Figure 1, three MA200s were used at the time bases of 5 s, 10 s, and 30 s. The proportion

of negative values in the raw data collected under different time base of was 42.1 %, 37.6 %, and

30.5 %, for 5 s, 10 s, and 30 s, respectively (Fig. 1a, Table 2, Fig S4a). Following that, the raw data

were processed using ONA, LPR, and CMA (Fig. 1b, 1c, and 1d).

In the 5 s time base, the eBC values changed very rapidly (Fig. 1a), and the ONA processing of the data290
resulted in only one value (which was negative) (Fig. 1b). Thus, the microenvironmental characters of

the eBC concentration was not reproduced. We found all Δ ATN (ATNt(0)+ Δ t’–ATN0) data were

negative in the raw data collected at 5 s, which, according to the ONA method described above,

resulted in only a single value. In short, after the first measurement, the ΔATN threshold (which is

positive) for calculating the next value was never reached. The first value was likely a negative value295
due to a combination of instrument noise, coincidence, and a low background concentration (i.e., low

baseline instrument signal), which is consistent with both the raw data measurements and the typical

low eBC concentrations in the city center of Augsburg, Germany (Gu, 2012). It is unclear why ΔATN

remained negative, but, given the long series of low concentration vales in the beginning of the sample

and the initial negative measurement, it is possible that the summed Δ ATN became increasingly300
negative as a result of the initial negative Δ ATN measurement. The subsequent measurements at

low-concentration did not exceed the magnitude of the initial negative Δ ATN value. Under these

conditions, a cumulative negative sum of ΔATN would prevent the positive ΔATN threshold from

being achieved at all. If true, this phenomenon highlights one potential weakness of the ONA algorithm,

such as difficulty registering a signal under low concentrations and requires further investigation of305
the conditions under which ONA is truly unbiased. At any rate, the observed phenomenon prevented

the use of ONA in the 5 s time base (Fig. 1b). Previous studies in which ONA was successfully applied

implemented a 1 s time base (Hagler et al., 2011; Van den Bossche et al. 2015). After postprocessing

with LPR and CMA, the microenvironmental characters retained more detailed information of the eBC

concentration. Further comparison of their negative values revealed that remaining negative values310
comprised 28.1 % for LPR and 22.9 % for CMA after postprocessing.
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In the 10 s interval time base, the negative values were not found after ONA processing, suggesting

that a reasonable smoothing effect is obtained at low black carbon concentration. The

microenvironmental character presented strong changes against the raw data, remaining less detailed

information of air pollution. After postprocessing with LPR and CMA, the microenvironmental315
characters revealed more detailed information of air pollution, with 30.2 % of negative values for LPR

and 25.3 % for CMA. In the 30 s interval time base, the negative values comprised 0 % of the

post-processed data for ONA, 25.5 % for LPR, and 22.4 % for CMA. The 30 s interval dataset

presented the lowest proportion of negative values before and after postprocessing, due to the longer

interval times of sampling. However, the longer 30 s measurement period results in more distance320
covered during each measurement, given the mobile nature of the sampling device. Thus, 30 s black

carbon measurements may be too long to detect local concentration peaks in urban contexts that

supported in other study (Kerckhoffs et al., 2016).

The ONA algorithm showed a strong ability to extract negative values. As a result, the ONA-treated

data may present bias that obscure nuanced microenvironmental trends (Fig. 1b). Interestingly, LPR325
and CMA postprocessing are capable of decreasing negative values while retaining

microenvironmental trends. Both methods are promising for the analysis of spatiotemporal changes in

pollutant concentrations with sensitivity to local sources. Previous studies have shown that the

spatiotemporal variability of black carbon is highly heterogeneous (Liu et al., 2019; Liu et al., 2021);

the ability to capture spatiotemporal variability of microenvironments is critical for assessing330
differential exposures among populations.
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Figure 1 The temporal fluctuations of the black carbon levels measured with the MA200 at sampling

time bases of 5 s, 10 s, and 30 s during a typical sampling period (about 190 min), (a), raw data without

noise reduction, (b), data treated with optimized noise reduction averaging, (c), data treated with local335
polynomial regression, and (d), data treated with centered moving average. The analysis was carried

out on data streams from three MA200s all collected during a single sampling run (Measurements 5, 6

and 7).

Table 2 The proportion of negative values and average noise reduction under the different

postprocessing methods (values are shown as (%), NV [%]: Proportion of negative values remained,340
NR [%]: Average noise reduction. -, no data, measurements 1-10).

Interval time Factor RAW ONA LPR CMA

5 s
NV 42.1 - 28.1 22.9

NR 0 100 72.0 87.4

10 s
NV 37.6 0 30.2 25.3

NR 0 5.54 22.3 47.7

30 s
NV 30.5 0 25.5 22.4

NR 0 0.62 6.24 39.1

3.2 Reduction and number of peak-samples after postprocessing methods

The processing of peak-sample is a pivotal evaluation index for the measurement of time-averaged

roadside air quality. Passing vehicles, for example, may bias estimates of typical local concentrations

due to their contribution to the dataset of peak concentrations that may substantially related to345
arithmetic averages. Therefore, after noise reduction, we compare the reduction values and the retained

number of peak-samples to further evaluate the postprocessing methods.

In the interval time 5 s, the average reduction of peak-samples for the LPR and CMA algorithms was

72.0 % and 87.4 %, respectively (as discussed above, the ONA method could not be used). In this

interval time, the reduction of peak-samples was relatively high, indicating that when monitoring black350
carbon at low concentrations and high sample frequencies, the drastic noise may occur in the raw data,

and the higher noise reduction may affect the actual values. Therefore, the suitable interval time should

be considered when monitoring low eBC concentrations. In the interval time 10 s, the average

reduction of peak-samples for the CMA (47.7 %) is higher than ONA (5.54 %) and LPR (22.7 %). In

the interval time 30 s, CMA presented the greatest average reduction of peak-samples (39.1 %)355

compared to ONA (6.24 %) and LPR (0.62 %) (Table 2, Fig. S4b). The retention of peak-samples

remaining after postprocessing was also assessed using the COV method (Measurements 1-10). The

result showed that all three algorithms retained all peak-samples before and after postprocessing. In this

regard, CMA retained all peak samples despite the highest reduction in their magnitude. Therefore,

CMA highlights microenvironmental trends while preserving the identity of peak-samples, facilitating360
the identification of local pollution sources, and may thus be a better postprocessing method than ONA

or LPR (Table 2, Fig. S4b).
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To further characterize the distribution of peak-sample concentration under CMA, we performed an

intensive graphical analysis on a single data stream (Measurement 4; Fig. 2). As shown in Figure 2,

eBC values along the main roads and intersections were higher than other locations, presumably due in365
large part to stop-and-go traffic and cars in close proximity to the mobile monitor (Fig. 2). It can be

seen from Figure 2a that the peak-samples of black carbon were mainly found in 4 locations,

represented by red triangles. Vehicle counts and traffic in these locations vary depending on the time of

measurement. The highest eBC values were repeatedly found in the streets with moderately high traffic

volumes and dense coverage with relatively high buildings (street canyon situation), indicating that370
heterogeneity in air pollution concentrations in Augsburg and similar settings is largely caused by a

combination of effects from traffic and topography (Buonanno et al., 2011). To determine whether

peak-samples are due to local sources or instrumental artifacts, and to provide further evidence that

traffic and topography effects are primary contributors to spatial heterogeneity in pollution

concentrations, we compared the data measurements of the three collocated MA200 units during375
Measurements 5, 6, and 7. The results showed that there were no major differences in the hot spot areas

(an indicator of considerable peak-samples) identified by the measurements of the three instruments

(Fig. S5).

b

Figure 2 Identification of the spatial (a) and temporal (b) distribution characteristics of black carbon380

peak-samples based on the coefficient of variation method (the analysis based on measurement 4), ©

OpenStreetMap contributors. Distributed under a Creative Commons BY-SA License.

It should be noted that a predecessor instrument to the MA200, the AE51, has demonstrated some

sensitivity to mechanical shock during mobile measurements (Cai et al., 2013). Apte et al (2011)

observed spurious, 1-3 second spikes of ± 200 - 2,000 µg/m3 while monitoring black carbon in an385

auto rickshaw. When AethLabs took control of manufacturing the AE51, which was originally

produced by Magee Scientific (Berkeley, CA, USA), instrument opto-electronics were redesigned

to reduce such sensitivity. Researchers using redesigned AE51 demonstrated only a small effect on

data. For example, Hankey (2014), using the same means of identifying such spurious
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measurements as Apte et al (2011), observed that approximately 1-2 % of their data collected via390

bicycle trailer were attributed to spurious mechanical shock. Supporting this improvement, Cai et

al (2013) found evidence of a substantial improvement in data quality related to vibration-related

spikes after an equipment upgrade by AethLabs, which reflected the aforementioned

improvements to opto-electronics. In addition, there were no major mechanical shocks to or

unique vibrational effects on the stroller and no major different of accelerometer data in the raw395

data, precluding these as potential con-founders on all 3 instruments.

3.3 Comparison of background estimation and correction after noise reduction

Local air pollution can be highly affected by long-range and regional transport. The timing and

magnitude of such transport varies in space and time and is highly dependent upon the stochasticity of

meteorology. As a result, local background concentration changes may vary, affecting the400
comparability of measurements made at the same location at different times (Brantley et al., 2014). For

this reason, reliable comparison of time-variable mobile measurements across a city (and thus reliable

pinpointing of hotspots and pinpointing of key local sources) requires effective methods to estimate,

isolate, and remove the effects of fluctuations in background concentration. Our analysis indicates that

the effectiveness of background correction is affected by the noise reduction method chosen during405
postprocessing.

After postprocessing, the data were evaluated using the TPRS method. We calculated the 5 min

and 10 min background concentrations under different postprocessing approaches. As shown in

Figures 3a and b, the background concentration after LPR processing has both the largest proportion of

negative values and the most-negative values (i.e. negative values of the greatest absolute magnitude),410

resulting in estimates of background-corrected concentrations that are greater than actual monitored

concentrations. Background concentrations calculated after ONA and CMA postprocessing presented

fewer and lower negative values than LPR, but were not convincingly different from each other.

Therefore, to further compare the ONA and CMA algorithm, we also compared concentrations after

background correction (Fig. 3c and d). As shown in Figures 3c and d, when the concentration is lower415

than 1 μg/m3 (black circle lines), the background-corrected results after the ONA processing are

smoother than after CMA. This result dampens the signal of local pollutant sources, resulting in a

lower utility of post-processed data.
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Figure 3 Background concentration of black carbon under different time-series :(a), spline of 5 min420
minimums, (b), spline of 10 min minimums; and background correction of black carbon under different

time-series (c) spline of 5 min minimums; (d), spline of 10 min minimums. Analyses are based on

Measurement 4.

In order to verify the CMA applicability and its advantages, this study further analyzed the eBC

concentrations measured by a fixed background monitoring station at the University of Applied425
Sciences (UAS) (Fig. S6) (Cyrys et al., 2006). The background value under the 5 min window exhibits

wave-like characteristics, and the fitting curve in the 10 min window is relatively smooth. However, the

TPRS-based background value often does not fluctuate greatly over short periods, and the black carbon

background value curve under the 5 min window does not conform to the “actual” urban background

situation as estimated using the fixed-site monitor data, which are assumed to primarily represent the430
fluctuations in background concentrations. Moreover, by comparing the curve produced by the spline

of 10 min minimums with the eBC background concentration (Background-UAS, Fig. S6), it can be

found that the background correction method based on the time series can well characterize the
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time-varying characteristics of background pollution in each experiment, suggesting that, of the two

options, 10 min showed the better window for fitting the background value curve of black carbon.435

Under the TPRS method, the background concentration of eBC can be fitted at any sampling time. The

TPRS-estimated background contribution of the observed eBC concentration averaged 37.8 % of the

total measured concentration. However, when the contribution of background concentration to a single

measurement was examined, a large fluctuation (10.4 -71.3 %) was observed, which may be closely

related to sizeable changes in the meteorological conditions, traffic conditions along the road (and440
overtime at the same point in the road), and urban street canyon effects in each measurement.

Therefore, based on the comparison of background correction, the CMA showed better applications for

estimating the background concentration and location source contribution.

3.4 Generalizability

To verify the generalizability of our assessment, we performed another three measurement runs in445
Munich (Measurement 8, 9, 10). Raw data were post-processed for noise reduction using CMA (Fig.

S7). The results showed that the following method is equally applicable in a city like Munich as in our

study site in Augsburg, two cities that differ in location and environmental characteristics (e.g.,

population, economy, traffic density etc.). After treated by CMA, the peak-samples can be identified in

different interval times (Fig. S8), and the estimated background concentrations showed few negative450
values (Fig. S9). Further research into the transferability of our results to a more diverse set of contexts

is still needed.

3.5 Practical implication

The MA200 is widely used to measure human exposure to black carbon and for mobile air quality

monitoring. In this study the MA200 were applied in mobile measurements in an urban area455

(Augsburg), and the sensitivity of the final analysis to various data postprocessing methods was

investigated. In contrast to our findings, Hagler et al., (2011) suggested the use of ONA algorithm to

postprocess Aethalometer data from microAeth AE51, portable AE42, and rackmount AE21

aethalometers (Magee Scientific, Berkeley, CA, USA). In their analysis, ONA demonstrated a strong

noise reduction in all datasets and retained spatiotemporal variation. ONA also reduced the occurrence460

of negative data values in low concentration sampling environments. However, for the microAeth®

series of black carbon monitoring instruments, our study showed that ONA leads to a considerable

dampening of spatiotemporal resolution in local black carbon signals at street level - an effect that is

lower under CMA postprocessing.

In addition, our analysis highlights that the selection of an appropriate data postprocessing method is465

crucial to the proper assessment and interpretation of exposure-relevant microenvironmental

contributors to pollution concentrations in urban areas. This analysis is important when estimating

exposures that occur during transit, where spatiotemporal variability in pollution concentrations is vast,

like in commuter traffic (Snyder et al., 2013). Due to the typically low-but-heterogeneous nature of
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eBC concentrations in many areas like Augsburg, noisy measurement with the MA200 under470

high-frequency sampling may obscure actual trends in measured values. This study demonstrated that

postprocessing MA200 data using CMA can reliably extract the actual signals from such noise and,

alternatively, that postprocessing via ONA and LPR could be less reliable. Future researchers and

agencies may find a distillation of our results in the form of the flow diagram in Scheme 1 useful in

determining how to reliably assess spatiotemporal variability of MA200 measurements for black475

carbon in different microenvironments.

Scheme 1 The proposed decision tree for mobile monitoring data from the microAeth® MA200.

4 Conclusion

A mobile monitoring campaign was conducted in the city center of Augsburg, Germany to determine a480
suitable noise reduction algorithm for the MA200 aethalometer. Our results showed that, at the interval

time of 5 s, 10 s, and 30 s, CMA postprocessing effectively removed spurious negative concentrations

without major bias and reliably highlighted effects from local sources, effectively increasing

spatiotemporal resolution in mobile measurements. Evaluation of the effects of each method on

peak-sample reduction and the estimation of background concentrations further support the reliability485
of CMA algorithm. Further analysis is needed to understand how well these findings apply in different

seasons; across different diurnal patterns; and in more-rural, more-urban, and non-German locations.
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