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Abstract. The portable microAeth® MA200 (MA200) is widely applied for measuring black carbon in22

human exposure profiling and mobile air quality monitoring. Due to its relatively new on the market,23
the field lacks a refined assessment of the instruments performance under various settings and data24
post-processing approaches. This study assessed the mobile real-time performance of the MA200 to25

determine a suitable noise reduction algorithm in an urban area, Augsburg, Germany. Noise reduction26

and negative value mitigation were explored via different data post-processing methods (i.e., local27

polynomial regression (LPR), optimized noise reduction averaging (ONA), and centered moving28

average (CMA)) under common sampling interval times (i.e., 5, 10, and 30 s).After noise reduction,29

the treated-data were evaluated and compared by (1) the amount of useful information attributed to30
retention of microenvironmental characteristics; (2) relative number of negative values remaining; (3)31
reduction and retention of peak samples; and (4) the amount of useful signal retained after correction32
for local background conditions. Our results identify CMA as a useful tool for isolating the central33
trends of raw black carbon concentration data in real time while reducing non-sensical negative values34
and the occurrence and magnitudes of peak samples that affect visual assessment of the data without35
substantially affecting bias. Correction for local background concentrations improved the CMA36
treatment by bringing nuanced microenvironmental changes into more visible. This analysis employs a37
number of different post-processing methods for black carbon data, providing comparative insights for38
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researchers looking for black carbon data smoothing approaches, specifically in a mobile monitoring39
framework and data collected using the microAeth® series of aethalometers.40

Keywords: Black carbon; Mobile measurement; Noise reduction; peak sample; Background correction41

1 Introduction42

Black carbon particulate matter with size ranging from 0.01 to 1 μm (Zhou et al., 2020), is a pollutant43
comprised of a range of carbonaceous materials produced by the incomplete combustion of fossil fuel44
and biomass containing carbon (Goldberg, 1985), and is suspected of exerting significant impact on45
health (Anenberg et al., 2012; Janssen et al., 2011; Nichols et al., 2013). Black carbon also has an46
important role in climate systems due to its strong radiative forcing potential (Kutzner et al., 2018,47
Sadiq et al., 2015). The International Agency for Research on Cancer (IARC) has classified black48
carbon as a 2B carcinogen, while researchers have linked black carbon exposures to cardiovascular,49
respiratory, and neurological diseases (e.g., Nichols et al., 2013). However, the high spatial variability50
of black carbon among small-scale urban blocks is difficult to characterize with existing monitoring51
networks which typically rely on fixed monitors (Apte et al., 2017), especially for on-road52
concentrations. Recently, mobile monitoring has been widely applied for the collection of real-time air53
quality measurements to assess local air quality, and air pollutant exposures (Liu et al., 2020, 2021).54
This method can improve the spatiotemporal resolution of measurement data in the urban environment55
and enables the collection of data such as the traffic-related air pollutant concentrations (Liu et al.,56
2019). Therefore, mobile measurements are favourably used in human exposure studies to quantify57
individual exposures and to demonstrate the importance of exposure differences in different58
microenvironments.59

Instrument manufacturers in the USA have recently developed a new instrument for measuring black60
carbon concentrations in a variety of exposure-related contexts, including personal exposure61
assessment, ambient and vertical profiling, and indoor emissions concentration measuremnts, among62
others. This instrument, the microAeth® MA200 (MA200; AethLabs, San Francisco, CA, USA),63
continuously collects aerosol particles on a filter and measures the optical attenuation (ATN) at 564
wavelengths (880, 625, 528, 470, and 375 nm) with a data collection time base as frequent as 1 Hz.65
This instrument supports the DualSpot® loading compensation method, which corrects the optical66
loading effect (Virkkula et al., 2007) and provides more additional information about aerosol optical67
properties. However, the raw data recorded by the MA200 at high frequencies (e.g., 1 Hz) can exhibit68
noise that obscures nuanced signals surrounding the central tendency of the data, increasing the69
difficulty of analysis in mobile settings or during rapidly changing micro-environmental characteristics.70
These negative values usually contain valid information required for noise reduction or smoothing, and71
so simply removing them may result in bias. Noise reduction of the raw data without direct removal of72
negative values is thereby recommended to enhance data quality and temporal resolution (Liu et al.,73
2020). In addition, when the sampling equipment traverses from a highly polluted to a low polluted74
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area, such as a park, the instrument produces strong negative values due to the measurement principle75
of the instrument and the strength of the pollution gradient between microenvironments. Therefore, the76
raw black carbon concentrations collected by MA200 need to be post-processed to ensure that77
researchers can adequately analyse the spatiotemporal distribution of black carbon.78

Some progress has been made in the study of black carbon monitoring (Apte et al., 2011; Dons et al.,79
2012; Cao et al., 2020), however, noise reduction algorithms have not been fully assessed for the new80
generation of micro-aethalometers and for mobile monitoring contexts. In previous studies, Hagler et al.81
(2011) and Cheng et al. (2013) evaluated optimized noise reduction averaging (ONA) for82
post-processing mobile monitoring data. Due to the high spatial heterogeneity of black carbon, the83
ONA algorithm may ignore important microenvironmental effects and lead researchers to perhaps84
incorrectly conclude that resolution of microenvironmental source information cannot be determined85
from their data.86

In this study, we aim to determine a suitable noise reduction algorithm for the MA200 aethalometer,87
starting with ONA, and moving on to two additional smoothing techniques offered by AethLabs in88
their suite of free online data post-processing (i.e., noise reduction) tools: the local polynomial89
regression (LPR) and centered moving average (CMA) algorithms. The interpretation accuracy of data90
analysed and reported upon in black carbon mobile monitoring study can be increased by assessing the91
relative performance of these post-processing methods to each other and to ONA. The quality of each92
noise reduction approach was assessed on data collected in an urban environment and post-processed93
with ONA, LPR, and CMA. Assessment criteria included (1) retention of detailed information94
attributed to microenvironmental characteristic; (2) relative number of negative values remained; (3)95
reduction and retention of peak samples; and (4) retention of detailed information on96
microenvironmental characteristics after background correction.97

2 Methods98

2.1 Instrumentation99

2.1.1 Sampling Equipment100

The MA200 measures optical ATN from black carbon on a filter across 5 optical wavelengths: infrared,101
red, green, blue, and ultra-violet (880, 625, 528, 470, and 375 nm, respectively). A common black102
carbon metric called “equivalent black carbon” (eBC) is assessed via the 880 nm channel. The103
detection limit of the MA200 is reported at 30 ng/m3 eBC under a 5 min time base and 150 mL/min104
flow rate (SingleSpot™ mode) and with resolution of 1 ng/m3 (AethLabs, 2018). In mobile monitoring,105
the MA200 can be used to estimate personal exposure and quantify eBC mass concentrations in106
different microenvironments. It should be noted that a predecessor instrument to the MA200, the AE51,107
has demonstrated some sensitivity to mechanical shock during mobile measurements (Cai et al., 2013).108
When AethLabs took control of manufacturing the AE51, which was originally produced by Magee109
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Scientific (Berkeley, CA, USA), instrument opto-electronics were redesigned to reduce such sensitivity.110
Researchers using redesigned AE51 demonstrated only a small effect on data. Supporting this111
improvement, Cai et al (2013) found evidence of a substantial improvement in data quality related to112
vibration-related spikes after an equipment upgrade by AethLabs. In addition, there were no major113
mechanical shocks to or unique vibrational effects on the instrument and no major differences of114
accelerometer data in the raw data, precluding these as potential confounders on all instruments.115

2.1.2 Instruments preparation116

In this study, seven MA200 portable black carbon monitors (serial numbers MA200-0051,117
MA200-0053, MA200-0059, MA200-0060, MA200-0155, MA200-0153, MA200-159) were used118
simultaneously to measure black carbon levels at the city centre under different interval times (5 s, 10 s,119
and 30 s). To evaluate the relative performance of MA200, this study analysed black carbon data120
collected from multiple MA200 devices, identified individually by serial numbers. The instruments121
were prepared and adjusted in our laboratory before each walk, consisting of “zero” calibration checks,122
the examination of the MA200 filter cassette, battery, GPS, and memory checks. Flow calibrations123
were adjusted with a factory-calibrated flow meter (Alicat Scientific, Inc. Tucson, AZ, USA).124

Comparative measurements of the MA200 and a stationary Aethalometer (AE33, Magee Scientific,125
Berkeley, USA) taken approximately 30 to 60 min between walks showed a good agreement (Pearson’s126
r =0.933) (Liu et al., 2021). In addition, it is worth noting that when the AE33 was used for monitoring127
black carbon at the same time as the MA200, the AE33 was placed in a fixed station, while the MA200128
was used outdoors (in the stroller) during the individual walks, which may have presented different129
relative humidity and temperature values. This condition did not influence the consistency of eBC130
concentration measured with both instruments. Information about the date, duration, and time131
resolution (time base) of each MA200 device are summarised in Table 1. To demonstrate the132
unit-to-unit comparability between the MA200 units, we performed intercomparisons at fixed133
monitoring stations (Table S1) and during collocated mobile measurements (Fig. S2). No wavelength134
dependence was observed between different instruments for fixed and mobile monitoring135
measurements.136

Table 1Measurements of black carbon by different MA200 devices.137

Measurement

number

Date

(dd/mm/yyyy)
Serial number

Start time

(hh:mm:ss)

End time

(hh:mm:ss)

Time

base (s)
Site

1 27/09/2018 MA200-0051 10:29:10 13:38:20 10

Augsburg,

Germany

2 15/11/2018 MA200-0059 11:53:42 16:13:12 10

3 16/11/2018 MA200-0053 11:34:06 16:33:56 10

4 26/08/2019 MA200-0060 11:01:56 15:44:46 10

5 21/02/2020 MA200-0155 10:00:10 13:10:00 5

6 21/02/2020 MA200-0153 10:00:10 13:10:00 10

7 21/02/2020 MA200-0159 10:00:10 13:10:00 30
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8 24/11/2020 MA200-0059 09:40:57 11:09:07 10
Munich,

Germany
9 01/12/2020 MA200-0051 13:29:05 15:19:00 5

10 18/12/2020 MA200-0051 14:39:30 15:19:30 30

2.2 Study design and routes138

The MA200 instrument is able to measure black carbon in 1 s, 5 s, 10 s, 30 s, 60 s, and 300 s interval139
times. The 1 s time base exhibits the most challenging interpretation because of low signal to noise140
ratio especially at low concentrations, which is similar to other optical black carbon monitors (Hagler141
et al., 2011). Therefore, 1 s measurement resolution may be most useful when sampling in high142
concentration environments, performing direct emissions testing and requiring high time resolution for143
the application. However, the eBC average concentration is low in the city centre of Augsburg,144
Germany, (measured at 2.62 μg/m3 in winter by Gu, (2012)) thus we did not use the 1 s time base.145
Moreover, 60 s and 300 s are too long distance for mobile monitoring, which may affect the accuracy146
of the spatial variation of pollutants, hence both time bases were also not selected in this study. In order147
to better understand at which interval time of sampling might be most useful in this context – mobile148
measurements at low eBC concentrations – three MA200 devices were used in parallel to measure eBC149
concentrations with the interval times of 5 s, 10 s, and 30 s (Measurement numbers 5-7 in Table 1).150

To account for the different land-use types of the microenvironments, a fixed walking route within the151
centre of the city was determined. Wherever possible, the mobile measurements were carried out on the152
right side of the road simulating people’s common habits (driving and walking on the right side in153
Germany). All walks along the route were conducted on weekdays, with clear skies and calm winds to154
avoid misrepresentation of typical urban exposure conditions. The route started from Augsburg155
University of Applied Sciences (UAS) and continued approximately 14 km for 3 h average walking156
time, passing through different types of land-use to ensure that different microenvironments were157
represented the entire areas and the validity of the results (Fig. S1). Meanwhile, as performed in our158
previous study (Liu et al., 2021), we divided the monitoring route into four microenvironment groups159
in Augsburg, including high traffic flow (H_Traffic, average 500-1000 vehicles/h), medium traffic flow160
(M_Traffic, average 200-500 vehicles/h), low traffic flow (L_Traffic, average 1-200 vehicles/h), and161
park area (N_Traffic, average 0 vehicles/h), according to the actual traffic density examined during the162
daytime and determining from the traffic flow observed by street views.163

Briefly, the study consisted of the following phases, (1) collecting raw black carbon data using the164
sampling instruments (MA200); (2) smoothing the acquired raw black carbon data under different165
post-processing methods (i.e., noise reduction); (3) comparing the noise reduction data based on the166
detail of microenvironmental characteristic and number of negative values; (4) following the peak167
samples identification by the coefficient of variation (COV) and (5) following the background168
estimation and correction by thin plate regression spline (TPRS); and (6) finally, selecting the best169
noise reduction approach.170



6

2.3 Post-processing methods171

In order to reduce the noise of concentration data obtained using high time resolutions, post-processing172
algorithms can be used. AethLabs offers tools for applying several noise reduction algorithms (ONA,173
LPR, and CMA) to MA-series device data on its website (https://aethlabs.com [note: a free account is174
required]). The relative utility of the different post-processing methods is determined by (1) the ability175
to perceive nuanced differences between microenvironmental pollution characteristics after noise176
reduction; (2) the relative number of negative eBC values remaining; (3) the reduction and retention of177
peak samples; and (4) the ability to perceive nuanced differences between microenvironmental178
pollution characteristics with the noise-reduced data after background correction.179

2.3.1 ONA (optimized noise reduction averaging)180

ONA is based on the time series of three parameters in the original observation data, namely the181
observation time, the original eBC concentration, and the amount of change in optical ATN over time,182
as specifically described by Hagler et al. (2011). Briefly, a ∆ATN threshold is manually set to prevent183
the algorithm from recalculating eBC until a certain amount of ATN has been detected (e.g., enough184
black carbon has deposited on the filter to “confidently” calculate an eBC concentration). The aim is to185
reduce erroneous and spurious estimation by dynamically extending the effective sample time base,186
hence, there is sufficient ATN to significantly reduce the error effects of instrument noise. This187
effective time base will be longer in low concentrations than at higher concentrations and, hence, when188
operating properly, *no* negatives and less eBC noise will be reported. When using the ONA189
algorithm, this ΔATN threshold needs to be manually assigned. Hagler et al., (2011) implemented a190
ΔATN threshold of 0.05 to post-process data from a fixed monitoring site by different Aethalometer191
models (AE21, AE42, and AE51). However, when applied to MA200 data, a ΔATN threshold of 0.05192
results in a very smooth curve and may obscure more information than is necessary to provide a193
usefully smoothed curve. For this reason, a lower ΔATN threshold of 0.01 was selected for the mobile194
measurement data of our study (Fig. S3).195

2.3.2 LPR (local polynomial regression)196

The LPR algorithm is a non-parametric tool similar to a moving average, but it operates on polynomial197
regression rather than simple averaging (Masry, 1996, Breidt and Opsomer, 2000, Kai et al., 2010). In198
LPR, the number of points across which to smooth must be manually identified. This value should be199
chosen to balance effective smoothing of the measured values and the sensitivity required to provide200
spatial resolution in mobile measurements (e.g., the distance over which the average was taken). The201
distance resolution was chosen at approximately 100 m. Assuming the sampling speed is 1.3 m/s, when202
the interval time is 5 s, 10 s, and 30 s, the smoothing number of points are 15, 7, and 3, respectively.203

2.3.3 CMA (centered moving average)204

The CMA algorithm is a smoothing technique used to make the long-term trends of a time series205
clearer (Easton and McColl, 1997). Unlike a simple moving average, CMA has no shift or group delay206
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in the data processing, as it incorporates data from both before and after the datapoint that is being207
smoothed. The smoothing number of points was determined as previously described in the LPR208
algorithm, assuming a sampling speed of 1.3 m/s.209

2.4 Comparison analysis after noise reduction approach210

2.4.1 The nuance of microenvironmental characteristics and the proportion of negative values.211

After post-processing data, the characteristic change of the treated data is used as criterion to select the212
best method. In this regard, when the treated data provide more detailed microenvironmental213
characteristics, the data reflect the actual situation of air pollutants and facilitate the identification of214
pollution sources. However, if microenvironmental trends are less pronounced, it may hinder the215
identification of the pollution source. Therefore, more detailed microenvironmental features result in216
more accurate information. In addition, the number of remaining negative values is determined as217
another criterion to propose the best method. Specifically, the method with the smallest proportion of218
the negative values is selected as the best method. The proportion of negative values (NV) remaining219
was calculated as the number of negative values divided by the total sample size.220

2.4.2 Peak sample identification221

An earlier study by Brantley et al. (2014) compared several methods for identifying and eliminating222
peak samples in mobile air pollution measurements. These include identifying samples outside of a223
threshold based on a median produced using road segmentation, an α-trimmed arithmetic average (Van224
den Bossche et al., 2015), a running coefficient of variation (COV) (Hagler et al., 2012), an estimate of225
background standard deviation (Drewnick et al., 2012), a running low 25 % quantile (Choi et al., 2012)226
and 3 times the standard deviation (Wang et al., 2015). The formula for the running method used in this227
analysis is previously described by Hagler et al. (2012) with minor modification (Eq. 1):228
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where COVt is the 70 s sliding COV of the t-th eBC sample under a 10s time base (representing 30 s230

prior to the sample, the sample, and 30 seconds after the sample), xi is the i-th eBC sample, x is the231

average of the t-th eBC sample and the three samples before and after it, andxall is the average of all232

eBC data in one experiment. The 99th quantile of the 70 s sliding COV of all eBC data is used as the233
threshold for determining “peak sample”. The eBC samples that are greater than this threshold are234
flagged as peak samples along with the eBC samples 3 data points before and after. However, under235
different time bases (e.g., 5 s, and 30 s), the sliding COV of the t-th black carbon sample is different.236
Accordingly, the COV equation is required for modification under different time base.237

To calculate the reduction of peak samples (RP), the number of peak samples was calculated before238
and after post-processing data, and the difference value was obtained. Then the change in the number239
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of peak samples was divided by the total number of peak samples before post-processing data. After240
noise reduction, we compared the reduction and the number of peak samples to further evaluate241
post-processing methods. In short, if the reduction of peak samples is high, the treated data has a high242
peak noise reduction without removing the numbers of peak samples. Therefore, the method with high243
reduction of peak samples and retaining the number of peak samples after post-processing is244
considered as the better method.245

2.4.3 Background estimation and correction246

The ability of a processing method to adequately remove the estimated background concentration was247
used to evaluate which method provides the most useful information related to microenvironmental248
effects. A noise reduction method that appears to better facilitate background estimation and correction249
(as described below calculated from noise-reduced data via a defined background estimation and250
evaluation approach) is assessed to select a better post-processing method.251

Background correction methods include the single sample standardization method, the sliding252
minimum method, the linear regression post-processing method, and the spline (of minimum)253
regression post-processing method. Brantley et al. (2014) suggests that a thin plate regression spline254
(TPRS) method can reliably evaluate the background value of mobile measurements, and be used to255
examine the “useful” information in the noise-reduced data (i.e. non-spurious, non-background256
pollution trends). Briefly, the TPRS approach includes three steps: first, the noise reduction data of257
pollutant was processed by a 30 s moving average; second, the results of the 30 s moving average were258
sequentially processed by the specified time window (i.e., 5 and 10 min), and the position of the259
minimum sample of pollutant concentration was identified in each window; and finally, thin-plate260
spline regression was used to fit the sample of minimum pollutant concentration obtained in the261
previous step, then the background concentration at each time point was obtained.262

3 Results and discussion263

The average eBC concentrations of raw, ONA-processed, LPR-processed, and CMA-processed data264
(Measurements 1-10) monitored by all instruments were compared in this study (Table S2). The results265
show that the three post-processing methods accounted of approximately 1 % bias from the average of266
raw concentrations (except measurement 5, ONA-processed data at 5 s). This indicates that the average267
concentration under each post-processing method did not affect the average concentration of the raw268
unprocessed data.269

3.1 Post-processing data under different interval time270

As shown in Figure 1, three MA200s were used at the time bases of 5 s, 10 s, and 30 s. The proportion271
of negative values in the raw data collected under different time base of was 42.1 %, 37.6 %, and272
30.5 %, for 5 s, 10 s, and 30 s, respectively (Fig. 1a, Table 2, Fig S4a). Following this, the raw data273
were processed using ONA, LPR, and CMA (Fig. 1b, 1c, and 1d).274
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In the 5 s time base, the eBC values changed very rapidly (Fig. 1a), and the ONA processing of the data275
resulted in only one value (which was negative) (Fig. 1b). Thus, the microenvironmental characteristics276
of the eBC concentration were not reproduced. We found all ΔATN (ATNt(0)+Δt’–ATN0) data were277
negative in the raw data collected at 5 s, which, according to the ONA method described above,278
resulted in only a single value. In short, after the first measurement, the ΔATN threshold (which is279
positive) for calculating the next value was never reached. The first value was likely a negative value280
due to a combination of instrument noise, coincidence, and a low background concentration (i.e., low281
baseline instrument signal), which is consistent with both the raw data measurements and the typical282
low eBC concentrations in the city centre of Augsburg, Germany (Gu, 2012). It is unclear why ΔATN283
remained negative, but, given the long series of low concentration vales at the beginning of the284
sampling and the initial negative measurement, it is possible that the summed ΔATN became285
increasingly negative as a result of the initial negative ΔATN measurement. The subsequent286
measurements at low-concentration did not exceed the magnitude of the initial negative ΔATN value.287
Under these conditions, a cumulative negative sum of ΔATN would prevent the positive ΔATN288
threshold from being achieved at all. If true, this condition highlights one potential weakness of the289
ONA algorithm, such as difficulty registering a signal under low concentrations and requires further290
investigation of the conditions under which ONA is truly unbiased. The observed event prevented the291
use of ONA in the 5 s time base (Fig. 1b). Previous studies in which ONA was successfully applied292
implemented a 1 s time base (Hagler et al., 2011; Van den Bossche et al. 2015). After post-processing293
with LPR and CMA, the microenvironmental characteristics retained more detailed information of the294
eBC concentration. Further comparison of their negative values revealed that the remaining negative295
values comprised 28.1 % and 22.9 % of the dataset for LPR and CMA, respectively, after296
post-processing.297

In the 10 s interval time base, negative values were not found after ONA processing, suggesting that a298
reasonable smoothing effect is obtained at low black carbon concentration. The microenvironmental299
characteristic presented strong changes against the raw data, remaining less detailed information of air300
pollution. After post-processing with LPR and CMA, the microenvironmental characteristics revealed301
more detailed information of air pollution, with 30.2 % of negative values for LPR and 25.3 % for302
CMA. In the 30 s interval time base, the negative values comprised 0 % of the post-processed data for303
ONA, 25.5 % for LPR, and 22.4 % for CMA. The 30 s interval dataset presented the lowest proportion304
of negative values before and after post-processing, due to the longer interval times of sampling.305
However, the longer 30 s measurement period results in more distance covered during each306
measurement, given the mobile nature of the sampling device. Thus, 30 s black carbon measurements307
may be too long to detect local concentration peaks in urban contexts that supported another study308
(Kerckhoffs et al., 2016).309

The ONA algorithm showed a strong tendency to remove negative values and, depending on the ΔATN310
threshold employed by the user, can remove potentially meaningful low peaks. As a result, the311
ONA-treated data may present bias that obscure nuanced microenvironmental trends (Fig. 1b).312
Interestingly, LPR and CMA post-processing are capable of decreasing negative values while retaining313
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microenvironmental trends. Both methods are promising for the analysis of spatiotemporal changes in314
pollutant concentrations with sensitivity to local sources. Previous studies have shown that the315
spatiotemporal variability of black carbon is highly heterogeneous (Liu et al., 2019; Liu et al., 2021);316
the ability to capture spatiotemporal variability of microenvironments is critical for assessing317
differential exposures among populations.318

319

Figure 1 The temporal fluctuations of the black carbon levels measured with the MA200 at sampling320
time bases of 5 s, 10 s, and 30 s during a typical sampling period (about 190 min), (a), raw data without321
noise reduction, (b), data treated with optimized noise reduction averaging, (c), data treated with local322
polynomial regression, and (d), data treated with centered moving average. The analysis was carried323
out on data streams from three MA200s all collected during a single sampling run (Measurements 5, 6324
and 7).325

Table 2 The proportion of negative values and average reduction of peak samples under the different326
post-processing methods (values are shown as (%), NV [%]: Proportion of negative values remained,327
RP [%]: Average reduction of peak samples. -, no data, measurements 1-10).328

Interval time Factor RAW ONA LPR CMA

5 s
NV 42.1 - 28.1 22.9

RP 0 100 72.0 87.4

10 s NV 37.6 0 30.2 25.3
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RP 0 5.54 22.3 47.7

30 s
NV 30.5 0 25.5 22.4

RP 0 0.62 6.24 39.1

3.2 Reduction and number of peak samples after post-processing methods329

The processing of peak sample is a pivotal evaluation index for the measurement of time-averaged330
roadside air quality. Passing vehicles, for example, may bias estimates of typical local concentrations331
due to their contribution to the dataset of peak concentrations that may substantially related to332
arithmetic averages. Therefore, after noise reduction, we compare the reduction and the retained333
number of peak samples to further evaluate the post-processing methods.334

In the interval time 5 s, the average reduction of peak samples (RP) for the LPR and CMA algorithms335
was 72.0 % and 87.4 %, respectively (as discussed above, the ONA method could not be used). In this336
interval time, the reduction of peak samples was relatively high, indicating that when monitoring black337
carbon at low concentrations and high sample frequencies, drastic noise may occur in the raw data, and338
higher noise reduction may affect the actual values. Therefore, a suitable interval time should be339
considered when monitoring low eBC concentrations. In the interval time 10 s, the average reduction of340
peak samples for the CMA (47.7 %) is higher than ONA (5.54 %) and LPR (22.7 %). In the interval341
time 30 s, CMA presented the greatest average reduction of peak samples (39.1 %) compared to ONA342
(6.24 %) and LPR (0.62 %) (Table 2, Fig. S4b). The retention of peak samples remaining after343
post-processing was also assessed using the COV method (Measurements 1-10). The result showed that344
all three algorithms retained all peak samples before and after post-processing. In this regard, CMA345
retained all peak samples despite the highest reduction in their magnitude. Therefore, CMA highlights346
microenvironmental trends while preserving the identity of peak samples, facilitating the identification347
of local pollution sources, and may thus be a better post-processing method than ONA or LPR (Table 2,348
Fig. S4b).349

To further characterise the distribution of peak sample concentration under CMA, we performed an350
intensive graphical analysis on a single data stream (Measurement 4; Fig. 2). As shown in Figure 2,351
eBC values along the main roads and intersections were higher than other locations, presumably due in352
large part to stop-and-go traffic and cars in close proximity to the mobile monitor (Fig. 2). It can be353
seen from Figure 2a that the peak samples of black carbon were mainly found in 4 locations,354
represented by red triangles. Vehicle counts and traffic in these locations vary depending on the time of355
measurement. The highest eBC values were repeatedly found in the streets with moderately high traffic356
volumes and dense coverage with relatively high buildings (street canyon situation), indicating that357
heterogeneity in air pollution concentrations in Augsburg and similar settings is largely caused by a358
combination of effects from traffic and topography (Buonanno et al., 2011). To determine whether359
peak samples are due to local sources or instrumental artefacts, and to provide further evidence that360
traffic and topography effects are primary contributors to spatial heterogeneity in pollution361
concentrations, we compared the data measurements of the three collocated MA200 units during362
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Measurements 5, 6, and 7. The results showed that there were no major differences in the hot spot areas363
(an indicator of considerable peak samples) identified by the measurements of the three instruments364
(Fig. S5).365

b

366

Figure 2 Identification of the spatial (a) and temporal (b) distribution characteristics of black carbon367

peak samples based on the coefficient of variation method (the analysis based on measurement 4), ©368

OpenStreetMap contributors. Distributed under a Creative Commons BY-SA License.369

3.3 Comparison of background estimation and correction after noise reduction370

Local air pollution can be highly affected by long-range and regional transport. The timing and371
magnitude of such transports vary in space and time and are highly dependent upon the stochasticity of372
meteorology. As a result, local background concentration changes may vary, affecting the373
comparability of measurements made at the same location at different times (Brantley et al., 2014). For374
this reason, reliable comparison of time-variable mobile measurements across a city (and thus reliable375
pinpointing of hotspots and pinpointing of key local sources) requires effective methods to estimate,376
isolate, and remove the effects of fluctuations in background concentration. Our analysis indicates that377
the effectiveness of background correction is affected by the noise reduction method chosen during378
post-processing.379

After post-processing, the data were evaluated using the TPRS method. We calculated the 5 min and 10380
min background concentrations under different post-processing approaches. As shown in Figures 3a381
and b, the background concentration after LPR processing has both the largest proportion of negative382

values and the most negative values (i.e. negative values of the greatest absolute magnitude), resulting383

in estimates of background-corrected concentrations that are greater than actual monitored384
concentrations. Background concentrations calculated after ONA and CMA post-processing presented385
fewer and lower negative values than LPR, but were not convincingly different from each other.386
Therefore, to further compare the ONA and CMA algorithm, we also compared concentrations after387
background correction (Fig. 3c and d). As shown in Figures 3c and d, when the concentration is lower388
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than 1 μg/m3, the background-corrected results after the ONA processing are smoother than after CMA.389
This result dampens the signal of local pollutant sources, resulting in a lower utility of post-processed390
data.391

392

Figure 3 Background concentration of black carbon under different time-series :(a), spline of 5 min393
minimums, (b), spline of 10 min minimums; and background correction of black carbon under different394
time-series (c) spline of 5 min minimums; (d), spline of 10 min minimums. Analyses are based on395
Measurement 4.396

In order to verify the CMA applicability and its advantages, this study further analysed the eBC397
concentrations measured by a fixed background monitoring station at the University of Applied398
Sciences (UAS) (Fig. S6) (Cyrys et al., 2006). The background value under the 5 min window exhibits399
wave-like characteristics, and the fitting curve in the 10 min window is relatively smooth. However, the400
TPRS-based background value often does not fluctuate greatly over short periods, and the black carbon401
background value curve under the 5 min window does not conform to the “actual” urban background402
situation as estimated using the fixed-site monitor data, which are assumed to primarily represent the403
fluctuations in background concentrations. Moreover, by comparing the curve produced by the spline404
of 10 min minimums with the eBC background concentration (Background-UAS, Fig. S6), it can be405
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found that the background correction method based on the time series can well characterize the406
time-varying characteristics of background pollution in each experiment, suggesting that, of the two407
options, 10 min showed the better window for fitting the background value curve of black carbon.408

Under the TPRS method, the background concentration of eBC can be fitted at any sampling time. The409
TPRS-estimated background contribution of the observed eBC concentration averaged 37.8 % of the410
total measured concentration. However, when the contribution of background concentration to a single411
measurement was examined, a large fluctuation (10.4 -71.3 %) was observed, which may be closely412
related to sizeable changes in the meteorological conditions, traffic conditions along the road (and over413
time at the same point in the road), and urban street canyon effects in each measurement. Therefore,414
based on the comparison of background correction, the CMA showed better applications for estimating415
the background concentration and location source contribution.416

3.4 Generalizability417

To verify the generalizability of our assessment, we performed another three measurement runs in418
Munich (Measurement 8, 9, 10). Raw data were post-processed for noise reduction using CMA (Fig.419
S7). The results showed that the following method is equally applicable in a city like Munich as in our420
study site in Augsburg, two cities that differ in location and environmental characteristics (e.g.,421
population, economy, traffic density etc.). After treated by CMA, the peak samples can be identified in422
different interval times (Fig. S8), and the estimated background concentrations showed few negative423
values (Fig. S9). Further research into the transferability of our results to a more diverse set of contexts424
is still needed.425

3.5 Practical implications426

The MA200 is widely used to measure human exposure to black carbon and for mobile air quality427

monitoring. In this study the MA200 were applied in mobile measurements in an urban area428

(Augsburg), and the sensitivity of the final analysis to various data post-processing methods was429

investigated. In contrast to our findings, Hagler et al., (2011) suggested the use of the ONA algorithm430

to post-process Aethalometer data from microAeth AE51, portable AE42, and rackmount AE21431

aethalometers (Magee Scientific, Berkeley, CA, USA). In their analysis, ONA demonstrated a strong432

noise reduction in all datasets and retained spatiotemporal variation. ONA also reduced the occurrence433

of negative data values in low concentration sampling environments. However, for the microAeth®434

series of black carbon monitoring instruments, our study showed that ONA under reasonable delta ATN435

thresholding may lead to a considerable dampening of spatiotemporal resolution in local black carbon436

signals at street level - an effect that is lower under CMA post-processing.437

In addition, our analysis highlights that the selection of an appropriate data post-processing method is438

crucial to the proper assessment and interpretation of exposure-relevant microenvironmental439

contributors to pollution concentrations in urban areas. This analysis is important when estimating440

exposures that occur during transit, where spatiotemporal variability in pollution concentrations is vast,441
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like in commuter traffic (Snyder et al., 2013). Due to the typically low-but-heterogeneous nature of442

eBC concentrations in many areas like Augsburg, noisy measurement with the MA200 under443

high-frequency sampling may obscure actual trends in measured values. This study demonstrated that444

post-processing MA200 data using CMA can reliably extract the actual signals from such noise and,445

alternatively, that post-processing via ONA and LPR could be less reliable. Future researchers and446

agencies may find a distillation of our results in the form of the flow diagram in Scheme 1 useful in447

determining how to reliably assess spatiotemporal variability of MA200 measurements for black448

carbon in different microenvironments.449

450

Scheme 1 The proposed decision tree for mobile monitoring data from the microAeth® MA200.451

4 Conclusion452

A mobile monitoring campaign was conducted in the city centre of Augsburg, Germany to determine a453
suitable noise reduction algorithm for the MA200 aethalometer. Our results showed that, at the interval454
time of 5 s, 10 s, and 30 s, CMA post-processing effectively removed spurious negative concentrations455
without major bias and reliably highlighted effects from local sources, effectively increasing456
spatiotemporal resolution in mobile measurements. Evaluation of the effects of each method on peak457
sample reduction and the estimation of background concentrations further support the reliability of the458
CMA. Further analysis is needed to understand how well these findings apply in different seasons;459
across different diurnal patterns; and in more-rural, more-urban, and non-German locations.460
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