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Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties

in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which

cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is

developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to

retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation5

experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and

humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated

water vapor by more than half.

1 Introduction

Upper-troposphere and lower-stratosphere (UTLS) water vapor plays an essential role in controlling the outgoing longwave10

radiation (Huang et al., 2010; Dessler et al., 2013). It is argued to be a potential driver of surface climate change (Solomon

et al., 2010) and to have important chemical effects (Shindell, 2001; Kirk-Davidoff et al., 1999; Anderson et al., 2012). Water

vapor may enter the UTLS via two pathways: 1) through the slow ascent of the Brewer-Dobson circulation, and 2) through

convective overshoots by transporting moist air or ice particles that sublimate in a warmer environment. While previous studies

(Anderson et al., 2012; Sun and Huang, 2015; Werner et al., 2020) have demonstrated the linkage between anomalously high15

water vapor concentrations and overshooting convections, the relative importance of deep convection to the UTLS water vapor

budget is still under debate (Randel et al., 2015). To elucidate the problem, it is important to observe and understand the water

vapor distributions above convective storms.

While the knowledge of the UTLS composition has been contributed by aircraft in-situ measurements, it remains challenging

to sample air in extreme weather conditions near the top of storms. Satellite observational products have been extensively used20

to investigate the spatial and temporal variability of UTLS water vapor (Sun and Huang, 2015; Randel and Park, 2019; Yu

et al., 2020; Wang and Jiang, 2019; Jiang et al., 2020). However, these products have a few limitations. First, above severe

storms, the atmospheric profiles obtained by cloud-clearing retrieval schemes (Susskind et al., 2003; Gambacorta et al., 2014)
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used by current hyperspectral infrared sounders are not reliable due to the overcast condition (Zhou et al., 2005). Second, for

limb-view and radio occultation instruments, the large sampling footprints limit the sensitivity of measurements to small-scale25

variations.

Recently, researchers have demonstrated the feasibility of single-footprint retrieval in cloudy-sky conditions by using sim-

plified cloud parameters estimated from thermal radiances in the window channels (DeSouza-Machado et al., 2018; Feng

and Huang, 2018). Feng and Huang (2018) found that observations from existing satellite hyperspectral infrared sounders,

such as AIRS (the atmospheric infrared sounder, Chahine et al., 2006), IASI (Infrared Atmospheric Sounding Interferometer,30

Blumstein et al., 2004) and CrIS (Cross-track Infrared Sounder, Bloom, 2001), contain substantial information content above

optically thick upper-tropospheric clouds. They proposed a cloud-assisted retrieval technique and demonstrated that it is pos-

sible to detect both hydration and dehydration anomalies in the UTLS using infrared hyperspectra by validating their retrieval

using aircraft observations. In these studies, the retrieval algorithm assumes that the upper-tropospheric clouds can be repre-

sented by a slab (thick and uniform layer) of ice clouds with fixed microphysics properties; a retrieval method following this35

assumption is referred to as slab-cloud retrieval in this paper.

However, neglecting the variability in cloud parameters, including cloud microphysical properties and the vertical distribu-

tion of ice content and temperature, may induce uncertainties in the spectral radiances. Yang et al. (2013) showed that the size

and shape of ice particles have an impact on the scattering and absorption properties of ice clouds. Moreover, cloud emission

is important to the satellite-measured radiance at the TOA, because of weak infrared attenuation in the stratospheric column.40

Given the temperature lapse rate (Biondi et al., 2012) near the top of convective clouds, thermal emission from ice particles

below the cloud top can be non-negligible to the satellite-measured radiance. Therefore, it is necessary to assess, and constrain,

the impacts of these factors on retrieval accuracy.

On the other hand, the cloud uncertainties can be reduced by using collocated cloud data from active lidar or radar obser-

vations in the same satellite constellation as the hyperspectral infrared sounder. For example, the DARDAR-cloud (Delanoë45

and Hogan, 2008, 2010) product combines radar reflectivity measurements from CloudSat (Stephens et al., 2002) and lidar

attenuated backscatter ratio from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, Winker et al.,

2003) to provide ice water content (IWC) and effective radius profile, which can be integrated with the infrared hyperspectra

from AIRS to form a synergetic UTLS retrieval.

Due to the lack of observations above storms, it is necessary to use an observing system simulation experiment (OSSE)50

to quantitatively evaluate the ability of such a synergetic retrieval and compare it to the slab-cloud method. In this study, we

perform an OSSE based on the ‘true’ atmospheric conditions simulated by a high-resolution numerical weather prediction

(NWP) model. This paper is structured as follows. The basic components of the OSSE, including the NWP model and radiative

transfer model, are described in Section 2. We also discuss the radiance uncertainty induced by cloud microphysics properties

and vertical IWC distribution using the synthetic data with respect to both the slab-cloud and synergetic methods. In section55

3, a quantitative evaluation of the retrieval of UTLS temperature, humidity, and IWC is performed. The application of the

improved synergetic-cloud retrieval scheme to the existing instruments is discussed in Section 4.
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2 Method

The OSSE in this study consists of the following components:

1. a cloud-resolving NWP model, which is used to provide the ‘Truth’ of atmospheric conditions during a tropical cyclone60

event, as described in Section 2.1;

2. a radiative transfer model, which is used as a forward model in the retrieval and to generate synthetic infrared hyperspec-

tra with the instrument specifications of AIRS, as described in Section 2.2;

3. retrieval algorithms as explained in Section 2.3; and

4. comparisons between the retrieved quantities and the Truth in Section 3.65

2.1 Numerical weather prediction model

In this study, we use the Global Environmental Multiscale model (GEM) of Environment and Climate Change Canada (here-

after ECCC, Côté et al., 1998; Girard et al., 2014) to provide a detailed and realistic representation of storm-impacted at-

mospheric and cloud profiles, following the study of Qu et al. (2020). The GEM model is formulated with non-hydrostatic

primitive equations with a terrain-following hybrid vertical grid. It can be run as a global model or a limited-area model and70

is capable of one-way self-nesting. For the experiments conducted here, three self-nested domains are used with areas of

3300×3300, 2000×2000, and 1024×1024 km2 and horizontal grid-spacings of 10, 2.5, and 1 km, respectively, centered in a

tropical Pacific region. All simulations use 67 vertical levels, with vertical grid-spacing ∆z≈250 m in the UTLS region and a

model top at 13 hPa. The simulation is initialized with conditions from the ECCC global atmospheric analysis at 00:00 UTC

16 May 2015. It runs for 24 hours until 00:00 UTC 17 May 2015. Model outputs at 1 km horizontal grid-spacing are saved75

every 10 minutes and used in the OSSE.

For the two high-resolution simulations with 2.5 and 1 km horizontal grid-spacing, the double-moment version of the bulk

cloud microphysics scheme of Milbrandt and Yau (2010a, b; hereinafter referred to as MY2) is used. This scheme predicts the

mass and number mixing ratio for each of six hydrometeors including non-precipitating liquid droplets, ice crystals, rain, snow,

graupel, and hail. Condensation (ice nucleation) is formed only upon reaching grid-scale supersaturation with respect to liquid80

(ice). In addition to the MY2 scheme, the planetary boundary-layer scheme (Bélair et al., 2005) and the shallow convection

scheme (Bélair et al., 2005) can also produce cumulus, stratocumulus, and other low-level clouds, which are of less relevance

to our UTLS-centric OSSE.

A snapshot from the 1-km resolution GEM simulation, 410 minutes after the initial time step, is used for the radiance

simulation, because the storm matures and then generates abundant samples suitable for the retrieval at this time. Figure 185

shows the atmospheric conditions at this time step, including the distributions of temperature and water vapor at 81 hPa, at

which level the variance is the largest. The distribution of the simulated cloud field is indicated by BT1231, the brightness

temperature in a window channel at 1231 cm−1, simulated by a radiative transfer model (see the description below). A cold

BT1231 suggests a deep convective cloud (DCC) that extends to the tropopause level. Overshooting DCCs are identified based
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on the BT difference between a water vapor channel (BT1419 cm
−1 at 7.0 µm) and BT1231 (8.1 µm, Aumann and Ruzmaikin,90

2013). 9941 overshooting DCC profiles are identified using this criterion, their locations are marked in Figure 1. From the

GEM outputs, these profiles are confirmed to be precipitating, with continuous clouds extending from near-ground to vertical

levels above 120 hPa, the level of tropopause. We use the BT-based criterion to select retrieval locations, instead of examining

GEM-simulated cloud and precipitation fields, to mimic the scenario of using infrared radiance measurements only to identify

overshooting DCCs, as performed in Feng and Huang (2018). Among the identified overshooting clouds, 100 profiles are95

randomly selected to construct a test set. The size of the samples is verified to meet the convergence requirement of the

statistical evaluation conducted in Section 3. The rest of simulation profiles, in the number of O(106), regardless of cloud

conditions, are used to construct an a priori dataset to define the prior knowledge used in the retrieval in Section 2.3.

2.2 Radiative transfer model

This study uses the MODerate spectral resolution TRANsmittance, version 6.0 (MODTRAN 6.0) (Berk et al., 2014) to simulate100

the infrared radiances observed by satellite. MODTRAN 6.0 provides a line-by-line (LBL) algorithm that calculates radiance

at 0.1 cm−1 spectral steps. This algorithm is validated against a benchmark radiation model, LBLRTM, showing less than

0.005 differences in atmospheric transmittance throughout most of the spectrum (Berk and Hawes, 2017). MODTRAN 6.0

implements a spherical refractive geometry package and the DISORT discrete ordinate model to solve the radiative transfer

equation accounting for both absorptive and scattering media in the atmosphere (Berk and Hawes, 2017).105

In this study, we use MODTRAN 6.0 to simulate the all-sky radiances with user-defined atmospheric profiles including

cloud information. The model has 80 fixed atmospheric pressure levels. Above the GEM model top, the values from a standard

tropical profile (McClatchey, 1972) are placed between 13 and 0.1 hPa. The prescription of the cloud information is based on

an optical library of Yang et al. (2013). The cloud optical library provides a look-up table for the single-scattering properties

of ice particles of different habit shapes, roughness, and sizes. Following Bani Shahabadi et al. (2016), we assume a gamma110

distribution of particle sizes and calculate the single-scattering properties of each ice habit for the effective radius range between

1 to 100 µm. The effect of effective radius and ice habit on the simulated infrared radiance is discussed in Section 2.2.1, over

the spectral ranges from 200 to 2700 cm−1. Liquid clouds at lower levels are neglected because their infrared emissions are

completely attenuated by ice clouds in the DCC samples concerned here.

In this OSSE, to mimic the retrieval using existing measurements, we follow the instrument specifications of AIRS, an115

infrared hyperspectral infrared sounder onboard the Aqua satellite since 2002. This instrument has 2378 channels from 650

to 2665 cm−1 with a noise equivalent temperature difference (NEdT) around 0.3 K (at 250K reference level). Using AIRS

spectral response function, synthetic radiances are generated using MODTRAN 6.0 from the atmospheric profiles of the GEM

test set described above, and then are added with random, spectrally uncorrelated noise based on the NEdT of AIRS. These

infrared radiance spectra are used as the simulated observations in the OSSE.120
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Figure 1. GEM-simulated atmospheric conditions used as the "Truth" in the OSSE. (a) Brightness temperature [K] of upwelling radiances

at TOA at 1231 cm-1. (b) Temperature [K] at 81 hPa. (c) Water vapor volume mixing ratio [ppmv] at 81 hPa. (d) Column integrated water

vapor (CIWV) from 110 to 70 hPa. Solid color-coded dots mark the locations of deep convective clouds from which the test set is sampled to

conduct the retrievals; in transparent colors are the rest of simulated fields. The variable fields are taken at 410 minutes after the initial time

step.
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2.2.1 Cloud induced uncertainties

In the following, we evaluate the radiance variability that results from 1) the variability in cloud microphysics properties,

especially the effective radius of ice particles, and 2) the variability in the vertical distribution of the IWC profile. The surface

roughness of ice particles is neglected as it mainly affects the scattering angle which plays a minor role in the infrared channels.

We focus on tropical cyclone events for their relevance to the OSSE case here.125

To gain the knowledge of cloud ice particles and their impacts on the infrared radiance spectrum and also to prescribe relevant

information in the UTLS retrieval (see the descriptions below), DARDAR-cloud, a synergic lidar-radar retrieval product, is

sampled to form a cyclone overpasses dataset based on the CloudSat 2D-TC data (Tourville et al., 2015). This overpass dataset

identifies satellite overpasses within 1000km from the cyclone centers. From these overpasses, profiles with overshooting

DCCs above 16km altitude (OT-DCC) are selected from 947 cyclones in the western part of the Pacific from 2006 to 2016. A130

total number of 98293 profiles are identified, which consists of IWC and effective radius at a vertical resolution of 60 m.

First, based on the identified OT-DCC profiles, we calculate the probability distribution function of the effective radius of

ice particles at the cloud top. Fig .2 shows that the ice particles are typically small, with an average effective radius of 21.5 µm

and the 1st and 99th percentiles of 13.3 and 39.7 µm respectively. According to Heymsfield (1986) and Baum et al. (2011),

over 80% of the small ice particles at tropical high-altitudes are solid columns. Hence, in the following, we consider the ice135

particles to be solid column only, with a rough surface but varying effective radius.

Then, we randomly select 100 profiles from identified OT-DCCs to evaluate the effects of varying IWC and effective radius

on the infrared radiance spectra. We calculate the upwelling infrared radiances R(Re,IWC0) using IWC0, the mean IWC

of OT-DCCs, and effective radius Re of every profile. Fig. 3 (a) shows the mean and the standard deviation (STD) of the

equivalent brightness temperature of R(Re,IWC0) caused by effective radius variations. Similarly, the mean and STD of140

R(Re0, IWC) caused by IWC variations are shown in Fig. 3 (b). Note that a 0.1 cm−1 spectral resolution is used in radiative

transfer calculation for this evaluation.

As shown in Fig.3 (a,b), the mean spectra of OT-DCCs show cold, and relatively uniform, brightness temperatures in the

window and weak absorption channels that largely result from the emission of the cloud top. While the varying effective radius

and IWC have a weak effect on the strong absorption channels, it greatly impacts the cloud emission, thus leading to large145

radiance variations in the window and weak absorption channels. In the mid-infrared, the standard deviation of brightness

temperatures due to effective radius, as shown by the red curve in Fig. 3 (a), is around 1 K, and the standard deviation due to

IWC profile, as shown in Fig. 3 (b), is around 4 K. Therefore, the infrared radiances are more sensitive to the IWC than the

effective radius.

It is interesting to note that despite the similarity between the two STD spectra in Figure 3 (a) and (b) in the mid-infrared,150

there are noticeable differences in the far-infrared channels (wavenumbers smaller than 500 cm−1), suggesting that far-infrared

channels, e.g., from future instruments, such as FORUM (https://www.forum-ee9.eu) and TICFIRE (Blanchet et al., 2011), may

be advantageous for the UTLS retrieval, which is beyond the scope of this OSSE but warrants future investigations.
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Here, in Fig. 3 (c) we investigate what spectral uncertainties may be caused by the slab-cloud assumption. Similarly,

R(Re,IWC), the radiances corresponding to the effective radius and IWC of individual profiles, are computed for the 100155

profiles selected earlier. For each radiance spectrum, we calculate the brightness temperature of a window channel at 1231

cm−1,BT1231. Following the slab-cloud assumption used by Feng and Huang (2018), we then place at the vertical layer where

the atmospheric temperature differs the least from BT1231, a 500-m thick cloud layer with uniform IWC of 1.5 g/m3. The

temperature of this vertical layer is adjusted toBT1231. With this prescribed cloud layer, radiances are calculated again for each

profile, denoted as R(Re0,slab) ; note that the BT1231 values of R(Re,IWC) and R(Re0,slab) are identical. The difference160

between R(Re,IWC) and R(Re0,slab) at other frequencies can be interpreted as radiance residuals not explained by the

slab-cloud assumption. The mean bias and STD of the residuals, as well as the root-mean-square of the residuals (RMSE), are

shown in Fig. 3 (c).

Fig. 3 (c) shows that the slab-cloud assumption cannot fully account for the spectral variations of cloud emission. The

assumption leads to a spectrally tilted mean radiance bias as shown by the blue curve in Fig. 3 (c). The STD of the radiance165

residual is of a similar magnitude to the mean bias, suggesting that removing the mean bias would not significantly reduce the

errors in the simulated spectra. The RMSE ofR(Re0,slab) shows minimum errors of around 0.1 K in the mid-infrared window

and maximum errors over 0.5 K in the far-infrared channels. This RMSE spectrum, referred to as εcld, is also calculated using

an AIRS-like spectral response function to represent the radiance uncertainty induced by slab-cloud assumption in Section 2.3.

2.3 Retrieval Algorithm170

The cloud-assisted retrieval proposed by Feng and Huang (2018) is an optimal estimation method (Rodgers, 2000) that retrieves

atmospheric states above clouds using infrared spectral radiances. Similar to Eq.1 in Feng and Huang (2018), we express the

relation between the observation vector, y, and the state vector, x, as follows:

y = F (x0) +
∂F

∂x
(x−x0) + ε (1)

= y0 +K(x−x0) + ε (2)175

Following a similar definition to Feng and Huang (2018), the state vector includes temperature xt and the logarithm of specific

humidity, xq , in 67 model layers. x0 refers to the first guess of the state vector, which is the mean of the a priori. y contains

the infrared radiances observation, yrad. F is the forward model that relates x to y. Here, the forward model is the radiative

transfer model, MODTRAN 6.0, configured with the spectral response function of the AIRS instrument. The forward model

can be linearly approximated by the Jacobian matrix K. ε is the residual that includes the measurement error and the forward180

model error.

Following the optimal estimation method (Rodgers, 2000, Eq. 5.9), the estimate of x, x̂, is expressed as:

x̂= x0 +GK(x−x0) +G(y−Kx) (3)

G= SaK
T (KSaKT +Sε)−1 (4)
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Figure 2. Histogram of the effective radius (µm) of the cloud ice particles at 100 hPa, based on the samples of 947 tropical cyclone events

taken from the DARDAR-cloud dataset. The vertical dotted lines represent 1th and 99th percentiles of the effective radius.

Where Sa and Sε are the covariance matrix of the state vector as given by the a priori dataset and that of the error in185

the observation vector, respectively. Sε is set to be a diagonal matrix because the observation errors in different channels are

considered to be uncorrelated.

The x̂ can then be iteratively solved through:

x̂i+1 = x0 + (KT
i S

−1
ε Ki +S−1

a )−1KT
i S

−1
ε [y−F (x̂i) +Ki(x̂i−x0)] (5)

Where the subscript i refers to the ith iteration step.190

The equations described above are adopted from Feng and Huang (2018), where the state vector x includes temperature

and the logarithm of specific humidity. For comparison, we adopt the slab-cloud retrieval scheme of Feng and Huang (2018)

as described above and refer to the result as the slab-cloud retrieval in the following. The only difference to Feng and Huang

(2018) is in the prescription of Sε. While Sε in Feng and Huang (2018) is the square of NESR (noise equivalent spectral

radiances), Sε in this study for slab-cloud retrieval contains the sum of the square of NESR and the square of εcld, as depicted195

in Figure 3, to account for the radiance uncertainties induced by slab-cloud assumption.
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Figure 3. Effect of (a) Effective radius and (b) IWC on the infrared radiance spectrum from 200 to 2700 cm−1.

The blue curves represent the mean of the radiances, R(Re,IWC0) and R(Re,IWC0), driven by Re and IWC variations, respectively; the

grey areas, as well as the red curves (corresponding to the right y-axis), denote the STD of the radiances. (c) The mean bias, STD, and RMSE

of the radiances simulated with the slab-cloud assumption, R(Re0,slab) . The brightness temperature spectra are convolved and presented

at a spectral resolution of 5 cm−1.

2.3.1 Synergetic-cloud retrieval

The radiance uncertainty due to the slab-cloud assumption, εcld, can be largely eliminated by incorporating collocated obser-

vations of cloud profile, from active sensors (CloudSat-CALIPSO) along the same track as the hyperspectral infrared sounder

(such as AIRS). Instead of simply prescribing the cloud profile from the active sensors in the forward model, motivated by200

the work of Turner and Blumberg (2018), we include relevant cloud variables in a synergetic retrieval. Turner and Blumberg

(2018) demonstrated that the additional observation vector, such as atmospheric and cloud profiles from other instruments

and NWP products, can improve the precision of the retrieval and also the convergence in cloudy scenes. Following this idea,

the observation vector y in Eq.1 is formulated as: [yrad,yother], where yrad is the infrared radiances observation, and yother

includes elements other than radiances observation that we refer to as additional observation vector. Specifically, we include205

collocated cloud observations, [yiwc,yRe], which mimics those from the DARDAR-cloud product, in the observation vector y
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Figure 4. Spectral signals of above-storm atmospheric variations in (a) temperature and (c) water vapor. The signals are obtained by differ-

encing the upwelling radiances at the TOA simulated from the mean profile (black curves in panels b and d) and the radiances simulated from

the mean profile of the overshooting convections near the cyclone center (blue curves in panel b and d). These signals are shown in a spectral

resolution of 0.1 cm−1. In a and c, the grey dotted lines denote the NEdT of 0.3 K (characterizing the AIRS instrument) and the black solid

lines denote the uncertainties combining the NEdT and slab-cloud assumption-induced radiance uncertainty, εcld, which are convoluted in 5

cm−1 spectral intervals

and also add [xiwc,xRe] to the state vector x. At every iteration step (Eq. 5), [xiwc,xRe] is updated along with temperature and

humidity profiles. This retrieval method is referred to as the synergetic-cloud retrieval method in the following.

In this OSSE, yiwc is set to be the logarithm of the IWC profile to be consistent with the retrieval of active cloud sensors

within the field of view of the infrared sounder. For example, the DARDAR-cloud product provides effective radius and IWC210

retrieval based on observation from CloudSat and CALIPSO. The uncertainty in IWC measurements is estimated by averaging

the posterior uncertainty of IWC, provided by DARDAR-cloud product for every footprint, in the OT-DCC profiles identified in

Section 2.2.1. This estimated precision is denoted as εiwc, which corresponds to an around 20% uncertainty in IWC at vertical

levels near the tropopause. Then, we account for the IWC observation uncertainty by randomly perturbing the yiwc so that the

yiwc deviates from the truth by an error that has a standard deviation of εiwc. Similarly, the effective radius observation yRe215

is obtained by assuming an uncertainty of 5 um. We note that this uncertainty prescription is higher than the typical value in

the DARDAR-cloud product (1.6 µm) as we aim to account for sampling differences of the instruments. Because the satellite-

measured infrared radiances are most sensitive to cloud emission near the cloud top, we only keep the top 1.5 km of IWC

profile in yiwc, which corresponds to six model layers in the radiative transfer calculations.
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The diagonal elements of Sε for yiwc and yRe are then set by conservatively quadrupling the square of the uncertainty ranges220

of these variables specified above.

In the state vector, xiwc contains the six layers of the logarithm of IWC at the same model layers as yiwc. Note that xiwc

and yiwc are not required to have the same vertical resolution; in practice, the vertical resolution of yiwc can be much finer

than model layers. The first guess and covariance matrix of xiwc are calculated using the same a priori dataset described in

the previous section, although the cross-correlation between IWC and other atmospheric variables is neglected. Consequently,225

the forward model for relating xiwc to yiwc is a matrix that linearly interpolates the pressure level of xiwc to match the level of

yiwc.

2.4 Additional atmospheric observations

Besides the cloud observations, other products that provide collocated atmospheric profiles can be useful in improving the pre-

cision of the posterior estimation. These additional products may include the atmospheric observations from other instruments230

that are in the same satellite constellation as the hyperspectral infrared sounder or from a NWP model. In this study, we inves-

tigate the effect of additional atmospheric observations by adding an observation vector yatm, which contains the temperature

and the logarithm of specific humidity at a later time step: 810 minutes after the initial time, in the GEM simulation.

The distribution of retrieval variable fields is shown in Figure 6. As inferred by the brightness temperature, the massive spatial

coverage of DCCs is evident at the time step used as the ‘Truth’ (410 minutes after the initial time in the GEM simulation).235

At the later time step (810 minutes), the atmospheric data used as yatm are taken from the same locations but deviate from the

‘Truth’ as they are not directly above the convective overshoots at this later time step. The RMSE between atmospheric profiles

from the two time steps (410 and 810 minutes) defines the uncertainties in yatm. To be conservative, the uncertainty of yatm is

set by quadrupling the square of the RMSE in the corresponding diagonal elements of Sε.

3 Results240

Five retrieval cases are designed to assess the retrieval performance of the slab-cloud and synergetic cloud retrieval methods.

Among them, Cases 1 and 2 use the slab-cloud retrieval method; Cases 3 and 4 use the synergetic cloud retrieval method that

incorporates cloud observations. Cases 2 and 4 differ from Cases 1 and 3 in that they add yatm in the retrieval. The components

of state vectors and observation vectors for the four cases are listed in Table 1. Case 5 is added to ascertain the improvements

attributable to infrared radiances (as opposed to other sources of information). In this case, we estimate the state vector without245

using infrared radiances yrad in the synergetic cloud retrieval. Case 5 is relatively uniform in space and it is therefore not

included in the figures but listed in Tables 1 and 2 for comparison.

Before conducting the retrieval experiments, the capability of retrieval methods is investigated 1) by comparing the spectral

signal of atmospheric anomalies to the radiance uncertainties, and 2) by calculating the information content for each element

of the state vector.250
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Feng and Huang (2018) demonstrated that the spectral signal of water vapor perturbations emerges above the noise level

defined by instrument NEdT. Here, we are interested in whether the atmospheric variations, as simulated by the NWP model

and depicted in Figure 1, produce spectral signals that are not obscured by radiance uncertainty due to slab-cloud assumption

(εcld).

Figure 1 shows that near the cyclone center (141o E, 16o N), there are strong cooling and hydration above overshooting255

DCCs. The mean profile of this region is denoted as tcold and qmois for temperature and water vapor, respectively. The spectral

signals of water vapor are then obtained by differencing R(t0, qmois) - R(t0, q0), where t0 and q0 are the mean of the a priori

dataset. The strength of signals under different spectral specifications was depicted in Feng and Huang (2018) and are not

repeated here. The spectral signals are then compared to radiance uncertainties in Figure 4.

Figure 4 shows that the radiance uncertainty from the slab-cloud assumption, εcld, does not completely obscure the signal of260

temperature or water vapor. In the CO2 and water vapor channels where the signal mainly comes from, the TOA radiances are

not sensitive to cloud emission due to a stronger atmospheric attenuation at these channels. εcld becomes larger in the wings

of absorption channels, where the signals are already masked by the instrument NEdT. Therefore, the information content in

temperature and water vapor is not expected to be lost due to the uncertainty caused by the slab-cloud assumption.

We next examine the DFS [degree of freedom for signal (Rodgers, 2000)] of temperature and water vapor in the four retrieval265

cases (Table 1). DFS is defined as the trace of averaging kernel A, which relates the retrieved state x̂i+1 to the true state x0 , as

derived from Equation 5 at the end of the iteration:

x̂i+1−x0 =A(x−x0) (6)

A= (KTS−1
ε K +S−1

a )−1KTS−1
ε K (7)

For a proper comparison, only the infrared radiance observation is included to calculate the DFS, so that a higher DFS270

indicates higher information content brought by infrared radiances yrad. Because the DFS depends on the cloud distribution,

we calculate the average of DFS in the 100-profile test set with individual IWC profiles.

As expected from Figure 4 (a,b), the DFS of temperature and water vapor differ, although not substantially, between Cases

1 and Case 3. The DFS of temperature increases from 3.31 to 4.15 by adopting the synergetic-cloud method owing to the

improved sounding near the cloud top, where sparse ice cloud particles do not fully attenuate the atmospheric emission. In275

comparison, the slab-cloud retrieval method fails to capitalize the information near the cloud top, as it neglects the contributions

to satellite radiances from the vertical layers around the assumed sharp cloud boundary. Therefore, the synergetic retrieval

method is expected to achieve a better result in temperature.

Moreover, a significant DFS of IWC (1.93 out of 6, on average) is found. The DFS suggests the sensitivity of infrared

radiances to the IWC profile near the cloud top, which is consistent with the large spectral variations caused by perturbation280

in the IWC profile simulated from the DARDAR-cloud product (Figure 4 (b)). Hence, the retrieval method can improve the

precision in IWC products provided by collocated cloud observations. Note that the DFS for IWC varies from 0.96 to 2.71 in

the test set, depending on the optical depth near the cloud top. Low ice density near the cloud top leads to higher DFS of IWC.

For example, the DFS in IWC increases from 0.99 to 2.44 in Figure 7 (f) compared to Figure 7 (c). On the other hand, the DFS
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Table 1. State vector and observational vector of four cases of simulation experiments.

x y DFS

Slab-cloud

Case 1 xt,xq yrad t: 3.31/20, q: 0.88/20

Case 2 xt,xq yrad, yatm Same as Case 1

Synergetic-cloud

Case 3 xt,xq , xiwc,xRe yrad, yiwc, yRe t: 4.15/20, q :0.93/20, IWC :1.93/6, Re: 0.01/1

Case 4 xt,xq , xiwc,xRe yrad,yatm, yiwc, yRe same as Case 3

Case 5 xt,xq , xiwc,xRe yatm, yiwc, yRe \

Table 2. Performance assessments of four cases of simulation experiments.

t [K] at 81 hPa q [ppmv] at 81 hPa CIWV [g/m2] from 110 to 70 hPa IWC [g/m3] at 90 hPa

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

prior 6.8 7.1 -1.8 1.5 -0.30 0.34 -0.0014 0.0237

[yatm,yiwc] 7.7 10.4 -1.7 2.3 -0.17 0.24 -0.0049 0.0094

Slab-cloud

Case 1 -0.1 4.5 -1.8 2.4 -0.28 0.37 \ \

Case 2 0.8 4.1 -0.6 1.0 -0.11 0.16 \ \

Synergetic-cloud

Case 3 -0.2 3.5 -1.7 2.2 -0.2 0.30 0.0028 0.0051

Case 4 0.8 2.7 -0.8 1.1 -0.09 0.16 0.0028 0.0051

Case 5 2.7 4.9 -1.5 2.0 -0.15 0.25 -0.0041 0.0089

in effective radius is very limited (0.01). It can be expected from Figure 3 (a,b) which shows that effective radius has a smaller285

impact on infrared radiances compared to IWC.

In the following, retrieval is performed for the 100 profiles in the test set using Eq. 5 and following the OSSE framework

described above. We then evaluate the retrieval performance through the mean bias and RMSE in temperature, humidity, and

IWC between the retrieved profiles and the truth, as shown in Figure 5. The retrieval performance is also evaluated with regard

to these quantities at selected levels and with regard to CIWV integrated from 110 to 70 hPa.290
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3.1 Slab-cloud retrieval

To recap, Cases 1 and 2 use the slab-cloud retrieval method. Improving upon Feng and Huang (2018), Case 1 accounts for the

radiance uncertainties due to the slab-cloud assumption, while Case 2 further incorporates additional atmospheric observations

to improve the precision of the method.

The results of Case 1 are shown in red solid curves in Figures 5 and 7. The major improvement in Case 1, compared to the295

prior (blue solid curves), is the temperature profile from 100 to 75 hPa. Although there are some DFS values for water vapor,

Case 1 does not improve much from the first guess.

Case 2 improves from Case 1 owing to the information carried by the additional atmospheric observation, yatm. Case 2 is

represented by the red dotted curves in Figures 5 and 7. It approaches the truth more than Case 1, despite the warm/dry biases

in the first guess and yatm (See Figure 5 (a,c)). Noticeably, it increases the retrieved water vapor concentration by around 1300

ppmv on average and reduces the RMSE from 2.4 ppmv to 1.0 ppmv, as shown in Figure 5 (c,d) and Table 2. For the CIWV,

Case 2 reduces the RMSE by half, compared to Case 1.

To demonstrate how well the retrieved atmospheric field represents the spatial variability in the truth, namely a moister and

colder UTLS region above the cyclone center as shown in Figure 1, the distributions of water vapor, temperature, and CIWV

are presented in Figure 6. It shows that the ’true’ spatial patterns are well reproduced by Case 2 retrieval.305

Furthermore, individual profiles from two clusters of overshooting DCCs, which includes the DCCs near the cyclone center

and those in the south of the domain, are randomly selected to investigate how well the retrieval reproduces the vertical

variability in temperature and water vapor. The all-sky optical depth from TOA, along with the IWC profile, at the two locations

is shown in Figure 7 (c,d). Less than 13.5% of the atmospheric emission transmits to the TOA is from layers where all-sky

optical depth is higher than 2. Therefore, the retrievable radiative signals come from the atmospheric column above thick cloud310

layers, i.e., where optical depth is less than 2.

Figure 7 (a-c) shows the results in a location close to the cyclone center. At this location, the slab-cloud method prescribes

the cloud layer at the cold-point due to the strong cloud emission. Atmospheric anomalies above 86 hPa have an impact on

TOA infrared radiances. Around 80 hPa, the truth profile that we aim to retrieve is around 8 K colder than the prior and nearly

3 ppmv moister. While the result from Case 1 overcomes the bias in temperature, it produces moistening in a board vertical315

range which, as explained in Feng and Huang (2018), is due to the strong smoothing (smearing) effect of the averaging kernel

in this case. In comparison, Case 2 correctly produces a peak moistening around 80 hPa, while keeping its temperature profile

similar to Case 1.

Figure 7 (d-f) shows the results in a location south of the domain, where the slab-cloud method prescribes the cloud layer

at 95 hPa. At this location, the cloud emission from the top 1.5 km cloud layer affects infrared radiances strongly, which can320

be inferred from the optical depth (Figure 7 (f)), leading to a large radiance residual that cannot be explained by slab-cloud

assumption. Therefore, Case 1 fails to improve upon the prior. Case 2 leads to a moister posterior compared to the prior owing

to the addition of yatm. However, Case 2 fails to update the temperature profile above the cloud layer. Instead, it approaches

the yatm in lower altitudes that lead to unrealistic vertical oscillation in temperature near 100 hPa.
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Figure 5. Mean and RMSE of temperature (a,b), water vapor (c,d) profiles from the four cases of the retrieval simulation experiments. Bias

(e) and RMSE (f) of IWC profiles. Blue curves show the bias and RMSE in the prior. Retrieval cases using the slab-cloud method are marked

in the solid curve (case 1 in red and case 2 in orange), while the retrievals using the synergetic-cloud method are marked in the dotted curve

(case 2 in red and case 4 in orange).
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Figure 6. Horizontal distributions of the anomalies, defined as the deviation from x0, in water vapor (in the units of ppmv, upper panels),

temperature (in the units of K, middle panels) at 81 hPa, and column integrated water vapor between 110 and 70 hPa (in the units of g/m2,

lower panels). The truth fields are shown in the first column, with its background grey-shaded for BT1231. The second to fifth columns show

retrieved results from the four cases of simulation experiments described in Table 1. The fifth column show distribution of the additional

observation vector, yatm, incorporated in the retrievals of Cases 2 and 4. This additional atmospheric observation yatmis taken from 810

minutes after the initial simulation time step.
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Figure 7. (a,d) Temperature and (b,e) water vapor profiles of first guess (blue solid) and truth (black solid) and the posterior (red and yellow

curves represent the slab-cloud and synergetic-cloud retrieval method, respectively, while the solid curves are cases without yatm and dotted

curves include yatm), for two profiles from the test set. (c,f) IWC (red curve, corresponding to the upper x-axis) and all-sky optical depth

from the TOA (blue curve, corresponding to the lower x-axis) of two selected profiles. Dotted black lines mark the vertical range of ice

clouds included in the yiwc and xiwc, while ice clouds in the lower vertical levels are prescribed to be the same as the cloud observation.

3.2 Synergetic-cloud retrieval325

Using the synergetic-cloud retrieval method, Case 3 becomes more sensitive to water vapor and temperature compared to Case

1, as indicated by the reduced RMSE in Table 2 and the better resemblance of the truth in Figure 6. It retrieves higher water

vapor concentration from 110 to 70 hPa, in comparison with Case 1. Owing to the radiative emission from in-cloud layers

between 110 to 95 hPa, Cases 3 and 4 become sensitive to temperature profile near the cloud top. Hence, Cases 3 and 4 reduce

the RMSE compared to other cases.330

The advantage of the synergetic retrieval method, especially when IWC near the cloud top is relatively small, is illustrated

in Figure 7 (d-f). At this location, the radiative signal from the moistening near the cloud top can be transmitted to the TOA.

As a result, Case 3 produces the enhanced water vapor in Figure 7 (e) and approaches the truth cloud-top temperature much

better than Cases 1 and 2. Case 4 further benefits from yatm which constrains the profile in the vertical ranges below 110 hPa

and above 80 hPa. Case 4 reproduces the oscillating temperature feature in Figure 7 (d), correcting the warm bias found in both335

yatm and the first guess around 90 hPa.
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In addition, Figure 5 (e,f) shows that the synergetic retrieval method can improve upon the collocated cloud observations by

reducing the mean biases in the IWC profile. At 90 hPa, where the retrieved 1.5 km cloud layer overlaps the most between the

test set, the retrieval reduces the RMSE and mean biases in the yiwc by half. This can be beneficial considering the sampling

difference between the active sensor and infrared instruments.340

While the improvement in Cases 2 and 4 shows the advantage of including additional atmospheric products, yatm, one caveat

is in the proper evaluation of the uncertainty range, which is included in the covariance matrix of the observation vector. This

is important as the uncertainty range in yatm constrain the posterior uncertainty range of the retrieval at each vertical level. In

this study, we account for the difficulties in evaluating Sε by increasing the RMSE in the yatm, so that the square root of Sε of

yatm is equivalent to a doubling of RMSE shown in Figure 5 (b,d) blue dot line.345

Although the additional measurement vector, yatm, itself does not contain the spatial variability pattern as seen in Figure

6, the corresponding covariance in Sε properly accounts for its variability (uncertainty) by prescribing a large value around

80 hPa but smaller values at other vertical ranges. Therefore, it increases the confidence to the posterior at levels where the

thermodynamic variables are relatively constant. The increased confidence in turn enhances the degree of freedom in the

ranges around 80 hPa, where the warm and dry signals mainly come from. Therefore, even though yatm itself deviates from350

the truth, including yatm in optimal estimation can still improve the posterior estimation. In reality, the uncertainty in available

atmospheric products can be estimated by inflating the precision of the product to account for sampling size differences through

comparison with NWP models and collocated observations.

4 Conclusion and Discussion

Sounding the UTLS thermodynamical conditions has been a challenge. Using simulation experiments, we aim to understand355

whether the variability in temperature and humidity field, especially above convective storms, can be detected by hyperspectral

infrared sounders. Our focus is to investigate and constrain the uncertainties induced by clouds. Two retrieval schemes are

tested, including a slab-cloud scheme that uses mainly the infrared radiance measurements and a synergic cloud retrieval

scheme that combines cloud observations from collocated active sensors.

First, we find that uncertainties in cloud properties near the top of overshooting deep convective clouds have a non-negligible360

impact on the TOA infrared radiances (Figure 3). The variation in brightness temperature of the TOA radiances due to vertical

distribution of IWC may amount to about 4 K. It is the largest in window channels and weak absorption channels which

are sensitive to cloud emission. Adopting a slab-cloud assumption, which locates a clear-cut cloud top using the brightness

temperature of the window channel, alleviates, but does not fully eliminate, the cloud effect on the radiance spectrum (Figure 3

(c)). This remaining radiance uncertainty is accounted for in this study and is found to not significantly obscure the temperature365

and humidity signals in the retrieval. Therefore, it is affirmed that the cloud-assisted retrieval as proposed by Feng and Huang

(2018), can improve the sounding of UTLS temperature and water vapor compared to the prior knowledge. However, this

retrieval neglects information content from the in-cloud atmosphere. As a result, it may lead to biases in individual temperature
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profiles. For example, as shown in Figure 7 (c), the slab-cloud retrieval fails to reproduce the oscillating temperature anomalies,

although it still detects the moistening water vapor anomalies above convective storms.370

Second, we find that the synergetic-cloud retrieval method, especially after incorporating additional atmospheric observa-

tions yatm, is sensitive to temperature, water vapor, and also IWC profile, near and above the cloud top. It substantially reduces

the RMSE in temperature from 7.1 to 2.7 K compared to the prior. It also reduces the RMSE in column integrated water vapor

by half. It is capable of producing the strong moistening feature of the individual profile (as shown by Figure 7 (b)) and detect-

ing the oscillating temperature anomalies (as shown by Figure 7 (c)). The retrieved distributions of temperature and humidity375

also best resemble the horizontal distribution patterns in the truth at a fixed pressure level (Figure 6).

In conclusion, the OSSEs here suggest that it is promising to apply the synergetic-retrieval method, using the infrared hyper-

spectra and cloud profiles from the existing instruments: AIRS, CloudSat, and CALIPSO, to retrieve the UTLS temperature and

water vapor above the deep convective clouds. One suitable application is the tropical cyclone events which generate massive

upper tropospheric thick clouds that provide a favorable condition for the retrieval technique developed here, which we will380

address in an accompanying paper (Feng and Huang., 2021). Although not explicitly discussed in this study, similar results

shown in Figures 5 to 7 can be obtained using other hyperspectral infrared sounders, e.g., IASI and CrIS, due to their similar

spectral specifications to AIRS. As discussed in Feng and Huang (2018), the sensitivity to water vapor and cloud microphysics

properties (see Section 2.2.1) can be further improved by including a far-infrared coverage provided by future instruments, .e.g.,

FORUM and TICFIRE. While a limited number of samples is available for the synergetic retrieval to perform, instruments in385

geostationary orbit, such as IRS (Infrared Spectrometer) and GIIRS (Geostationary Interferometric Infrared Sounder) (Schmit

et al., 2009; Holmlund et al., 2021), can greatly increase the collocation with other spaceborne active sensors over convective

region. It may also benefit the understanding of convective impacts by providing time-continuous observations (Li et al., 2018)

in future research. The ability of the synergetic retrieval method in using hyperspectral infrared observations to improve the

NWP outputs (yNWP ) also suggests the advantage of including cloudy-sky observations in the global data assimilation system390

as performed in Okamoto et al. (2020).
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