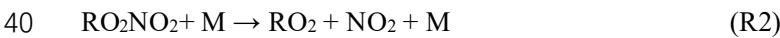
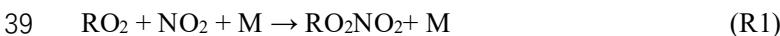


1 **Thermal dissociation cavity-enhanced absorption spectrometer for measuring NO₂,**
2 **RO₂NO₂ and RONO₂ in the atmosphere**

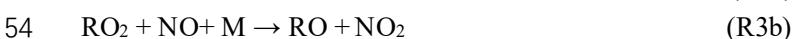
3 Chunmeng Li¹, Haichao Wang^{1, 2, 3*}, Xiaorui Chen¹, Tianyu Zhai¹, Shiyi Chen¹, Xin Li¹, Limin Zeng¹, Keding Lu^{1,*}

4 ¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences
5 and Engineering, Peking University, Beijing, 100871, China.

6 ² School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, 510275, China.



7 ³ Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the
8 Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern
9 Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.

10 * Correspondence: wanghch27@mail.sysu.edu.cn; k.lu@pku.edu.cn


11 **Abstract.** We developed thermal dissociation cavity-enhanced absorption spectroscopy (TD-CEAS) for the in situ
12 measurement of NO₂, total peroxy nitrates (PNs, RO₂NO₂), and total alkyl nitrates (ANs, RONO₂) in the atmosphere.
13 PNs and ANs were thermally converted to NO₂ at the corresponding pyrolytic temperatures and detected by CEAS
14 at 435–455 nm. The instrument sampled sequentially from three channels at ambient temperature, 453 K and 653 K,
15 with a cycle of 3 min, to measure NO₂, NO₂+PNs, and NO₂+PNs+ANs. The absorptions between the three channels
16 were used to derive the mixing ratios of PNs and ANs by spectral fitting. The detection limit (LOD, 1 σ) for retrieving
17 NO₂ was 97 parts per trillion (pptv) in 6 s. The measurement uncertainty of NO₂ was 9%, while the uncertainties of
18 PNs and ANs detection were larger than those of NO₂ due to chemical interferences that occurred in the heated
19 channels, such as the reaction of NO (or NO₂) with the peroxy radicals produced by the thermal dissociation of
20 organic nitrates. Based on laboratory experiments and numerical simulations, we created a look-up table method to
21 correct these interferences in PNs and ANs channels under various ambient organic nitrates, NO, and NO₂. Finally,
22 we present the first field deployment and compare it with other instruments during a field campaign in China. The
23 advantages and limitations of this instrument are outlined.

24 1. Introduction

25 Organic nitrates (ONs) act as temporary NO_x reservoir species, which affect atmospheric circulation and impact air
26 quality and climate (Mellouki et al., 2015). Peroxy nitrates (PNs, RO₂NO₂) and alkyl nitrates (ANs, RONO₂) are two
27 important kinds of organic nitrates. They are closely related to the distribution of oxidants in the atmosphere by
28 terminating the HO_x cycle. ONs are also important precursors of secondary organic aerosols (SOAs) (Berkemeier et
29 al., 2016; Lee et al., 2016; Ng et al., 2017; Rollins et al., 2012). Volatile organic compounds (VOCs) are oxidized by
30 OH or O₃ to produce peroxy radicals (RO₂), and then RO₂ reacts with NO₂ to produce PNs (R1). In addition, the
31 aldehydes formed during the process of NO₃ oxidizing isoprene at night react with NO₃ to form ANs. PNs can be
32 divided into two categories depending on the nature of the RO₂ group. One is peroxy acyl nitrates (PANs) when RO₂
33 is R'C(O)OO, among which PPN (peroxypropionyl nitrate) and PAN (peroxyacetyl nitrate) dominate PNs with
34 percentages of 75-90% due to their relatively high thermal stability. The other is some peroxy nitrates without acyl
35 groups, which are only abundant in cold regions (Roberts, 1990; Roberts et al., 1998b; Thieser et al., 2016;
36 Wooldridge et al., 2010). The sink pathways of PNs include deposition, thermal decomposition, photolysis, and OH
37 oxidation, and thermal decomposition dominates in the troposphere with a temperature dependence (R2). Therefore,
38 the lifetime of PAN varies from less than one hour to several months, depending on the environmental conditions.

41 In the high NO_x region, RO₂ reacts primarily with NO to produce ANs. ANs can also be emitted directly from
42 biomass combustion and the ocean. Ocean emissions are regarded as the main source of short-chain ANs (C₁-C₃),
43 and up to tens of pptv of the species above have been measured in marine areas (Atlas et al., 1993; Chuck et al., 2002;
44 Talbot et al., 2000). NO₃-initiated ANs during the night are generally considered to be important and have a higher
45 organic nitrate yield than OH-initiated ANs (Horowitz et al., 2007; Perring et al., 2013). During the daytime, there is
46 a branching reaction between RO₂ and NO to form ANs (R3a) with a small branch ratio (1-30%) (Arey et al., 2001;
47 Reisen et al., 2005; Russell and Allen, 2005; Wennberg et al., 2018). Ambient ANs are removed by photolysis or
48 oxidation to produce NO_x or HNO₃; deposition or transportation as NO_x reservoirs. ANs play a significant role in
49 SOA formation (Lee et al., 2016; Zare et al., 2018). Monofunctional ANs are stable and account for a small proportion
50 of ANs, among which those formed from alkanes can be tracers of human activities in remote areas (Simpson et al.,
51 2006; Wang et al., 2003). Polyfunctional ANs are hard to detect since they are more reactive than monofunctional
52 ANs.

55 The various sources and sinks of ONs complicate their atmospheric distribution. The measurement of ANs and
56 PNs has been developed by gas chromatography (GC). GC is used for the separation of species, and then the separated
57 substances are quantified by electron capture detectors (ECD), luminol chemiluminescence (CL), or mass
58 spectrometry (MS) (Atlas, 1988; Blanchard et al., 1993; Flocke et al., 2005; Gaffney et al., 1998; Hao et al., 1994;
59 Luxenhofer et al., 1994; Tanimoto et al., 1999). These methods measure individual species accurately (Roberts et al.,
60 2003), but the individual standards are incomplete. Furthermore, the methods suffer from relatively low time
61 resolution (Blanchard et al., 1993). The strength of the bond between the NO₂ group and the organic group determines
62 the temperature to pyrolyze the organic nitrates. The cleavage of the NO₂ group in PNs requires approximately 85-
63 115 kJ/mol (Kirchner et al., 1999), while for ANs, the pyrolytic process requires approximately 160-170 kJ/mol
64 (Roberts, 1990); therefore, PNs are more prone to dissociate thermally. Based on the feature of gradient pyrolysis of
65 reactive nitrogen compounds, TD-LIF (thermal-dissociation laser-induced fluorescence) was developed to measure
66 PNs, ANs, and gaseous HNO₃ indirectly by quantifying the NO₂ product (Day et al., 2002). Afterwards, chemical

67 ionization mass spectrometry (CIMS), cavity ring-down spectroscopy (CRDS) and cavity attenuated phase-shift
68 spectroscopy (CAPS) are used to quantify the pyrolytic products (Paul and Osthoff, 2010; Slusher et al., 2004; Thieser
69 et al., 2016; Wild et al., 2014). The detection limits and response times of TD-CIMS are excellent, but ^{13}C -labeled
70 PAN is required as an internal standard. TD-CRDS and TD-CAPS show high spatial and temporal resolution and
71 good measurement capability (Sadanaga et al., 2016; Sobanski et al., 2016). CEAS (cavity-enhanced absorption
72 spectroscopy) is a powerful technology that can monitor several compounds or species simultaneously with broad
73 absorption bands being detected (Fiedler et al., 2003) and has been applied to measure many species in field studies,
74 such as NO_2 , HONO , NO_3 , N_2O_5 , IO , glyoxal, and methylglyoxal (Ball et al., 2004; Barbero et al., 2020; Duan et al.,
75 2018; Gherman et al., 2008; Jordan and Osthoff, 2020; Kahan et al., 2012; Langridge et al., 2006; Lechevallier et al.,
76 2019; Liu et al., 2019; Min et al., 2016; Thalman and Volkamer, 2010; Vaughan et al., 2008; Venables et al., 2006;
77 Ventrillard-Courtillot et al., 2010; Ventrillard et al., 2017; Wang et al., 2017a; Washenfelder et al., 2016; Washenfelder
78 et al., 2008; Watt et al., 2009).

79 Organic nitrates have a large range of mixing ratios in the atmosphere that vary from several pptv in warm and
80 remote regions to several ppbv in polluted regions. Field measurements of organic nitrates have been extensively
81 conducted in the United States and Europe (Fischer et al., 2000; Glavas and Moschonas, 2001; Kastler and
82 Ballschmiter, 1999; Perring et al., 2009; Roberts et al., 1998a; Sobanski et al., 2017), but related studies are sparse in
83 China (Chen et al., 2017; Song et al., 2018; Sun et al., 2018; Zhang et al., 2018). Ozone pollution in China has
84 occurred frequently in recent years (Ma et al., 2019; Shu et al., 2019; Wang et al., 2009; Wang et al., 2017b; Yin et
85 al., 2019). Although many studies have examined the effect of PNs and ANs on regulating ozone formation (Chen et
86 al., 2018; Ling et al., 2016; Liu et al., 2018; Liu et al., 2012; Liu et al., 2010; Zeng et al., 2019; Zhang et al., 2014),
87 the issue has not been well studied. Here, we developed a pyrolytic measurement system based on CEAS to detect
88 NO_2 , PNs, and ANs in the atmosphere. In this study, the detailed setup of the instrument, laboratory characterizations,
89 and its first field application in China are presented.

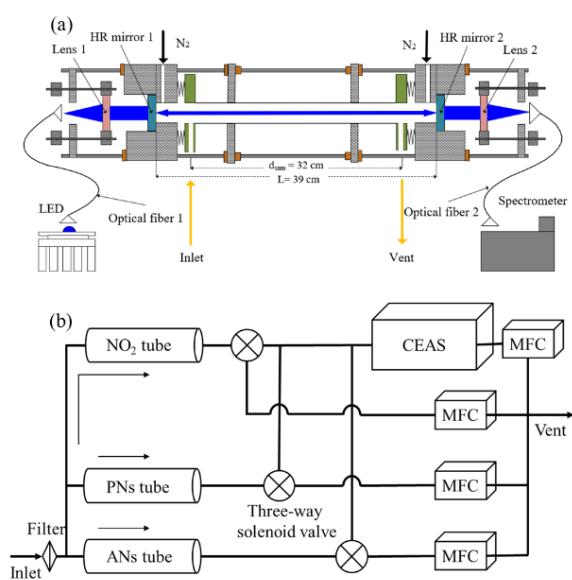
90 2. Methods

91 2.1 Instrumentation of TD-CEAS

92 Our instrument is designed to measure NO_2 , ANs and PNs in the atmosphere, and has the characteristics of good
93 stability, low energy consumption and portability. The total weight of the instrument is less than 30 kg, the overall
94 size is $110 \times 60 \times 50$ cm, and power consumption is less than 300 W. The measurement of NO_2 is achieved by CEAS.
95 Due to the feature of gradient pyrolysis of ANs and PNs, the sample gas flowing out from three different channels
96 contains the total amount of NO_2 at different temperatures. The gradient of NO_2 concentration absorption at different
97 pyrolytic temperatures is used to retrieve the mixing ratio of NO_2 , PNs, and ANs. The time resolution of the
98 instrument measurement is 6 s, measurement time of each channel is 1 min, and each cycle is 3 min.

99 The CEAS system has been described in detail in previous literature (Duan et al., 2018; Fiedler et al., 2003;
100 Gherman et al., 2008; Jordan and Osthoff, 2020; Jordan et al., 2019; Langridge et al., 2006; Liang et al., 2019; Liu
101 et al., 2019; Min et al., 2016; Tang et al., 2020; Ventrillard-Courtillot et al., 2010; Wang et al., 2017a; Yi et al., 2016),
102 thus there is a brief introduction to the principle of the instrument here. NO_2 molecules have a specific absorption
103 structure in the wavelength range of 430–460 nm (Fig. S1). Based on Lambert-Beer's law, the extinction coefficient
104 (α) is proportional to the absorber's concentration and optical path. Here, α is mainly contributed by molecular
105 absorption, Rayleigh scattering and Mie scattering. In addition, it can also be obtained by comprehensive calculations
106 through the intensity of the sampling spectrum, reference spectrum, mirror reflectivity, and effective cavity length.

107 In Eq. 1, λ is the wavelength of light, $I_0(\lambda)$ is the intensity of the reference spectrum, $I(\lambda)$ is the sample spectrum,
108 d_{eff} is the effective cavity length (see Sec. 3.2 in detail), $R(\lambda)$ is the mirror reflectivity, $\alpha_{\text{Mie}}(\lambda)$ is the extinction


109 due to Mie scattering, $\alpha_{Rayl}(\lambda)$ is the extinction due to Rayleigh scattering, and n_i and $\sigma_i(\lambda)$ are the number
 110 density and absorption cross-section of i th gas compounds, respectively. According to Eq. 1, it is necessary to quantify
 111 the mirror reflectivity, effective cavity length, and NO₂ absorption cross-section.

$$112 \quad \alpha(\lambda) = \left(\frac{I_0(\lambda)}{I(\lambda)} - 1 \right) \left(\frac{1-R(\lambda)}{d_{eff}} \right)$$

$$113 \quad = \sum_i n_i \times \sigma_i(\lambda) + \alpha_{Mie}(\lambda) + \alpha_{Rayl}(\lambda) \quad (1)$$

114 As shown in Fig. 1a, the optical layout of the CEAS consists of a light source, collimating optics, cage system,
 115 high-finesse cavity and a commercial spectrograph with a charge-coupled device (CCD) detector. The core of the
 116 light source module is a single-color LED (M450D3, Thorlabs, Newton, NJ, USA), which emits approximately
 117 1850 mW optical power at approximately 450 nm with a full width at half maximum (FWHM) of 18 nm. To obtain
 118 a stable output of the light source, the input current and operating temperature of the light source are stabilized to
 119 reduce the intensity and wavelength drift. The switching power supply is 12 VDC with a current of 1.00 ± 0.01 A.
 120 Constant current control is achieved through a stable current source. The temperature of the light source is controlled
 121 by the proportion integration differentiation (PID) algorithm and stabilized at 24.0 ± 0.1 °C.

122 Four stainless steel columns are used to collimate two opposing high-mirror mounting bases. The two endplates in
 123 the middle of the cage structure further enhance the stability of the system. The light source is introduced into the
 124 system through a fiber connected to a two-dimensional adjustment frame (CXY1, Thorlabs, Newton, NJ, USA)
 125 through a connector. The plano-convex lens ($f = 30$ mm) is installed in another adjustment frame, and the two
 126 adjustment frames are connected by a customized X-shaped adapter, which is fixed at the end with the light source.
 127 The center alignment of the light source, lens, and high-reflectivity module is achieved by adjusting the adjustment
 128 frame in the vertical and horizontal directions. Then, blue light is introduced into an optical cavity composed of a
 129 pair of high-reflectivity (HR) mirrors. The reflectivity of HR mirrors (CRD450-1025-100, Advanced thin films, CO,
 130 USA) is reported by the manufacturer to be greater than 0.9999 (440-460 nm) with a radius curvature of 1.0 m and a
 131 diameter of 25.4 mm. The high-reflectivity mirrors are installed in the groove of the special customized base and
 132 sealed by an O-ring, and then the three-dimensional microadjustment is achieved by squeezing the lens and O-ring
 133 to finely adjust their pitch and yaw. The distance between mirrors is 39.0 cm and high-purity nitrogen (> 99.999%),
 134 which passes through the small hole before the mirror base, is used as a purge gas to protect the mirror surface.
 135

137 Figure 1. The overall schematic of the CEAS (a) and the instrument (b). The CEAS is mainly composed of LEDs, collimating optics, a
138 cage structure, a high-finesse cavity and a spectrometer. After filtering the PM, the gas passes through three quartz tubes, and then the
139 alternate measurements of NO₂, NO₂+PNs and NO₂+PNs+ANs are achieved by three-way solenoid valves.

140
141 The cavity system is sealed by two welded bellows, two polytetrafluoroethylenes (PTFE) connecting pieces, and
142 a stainless-steel sampling cell that is internally polished. The PTFE connecting piece connects the sampling cell and
143 bellows and acts as a sample inlet and outlet. As shown in Fig. 1(a), the distance between the inlet and outlet (d_{sam})
144 is 32.0 cm. After passing through the sampling cavity, the blue light converges through another plano-convex mirror
145 ($f= 50$ mm). It enters the detector spectrometer (QE65PRO, Ocean Optics, Dunedin, FL, USA) for signal acquisition
146 through an optical fiber. The dark current in the CCD of the spectrometer is reduced by controlling the temperature
147 of the CCD at -20.0 °C; the width of the entrance slit is 100 μm, the corresponding wavelength resolution is 0.39 nm,
148 and the detection wavelength range is 413.48–485.48 nm.

149 The schematic of the TD-CEAS is shown in Fig. 1(b). The flow system mainly includes the particulate matter filter
150 in the front end of the sampling line, quartz tubes for species pyrolytic conversion, three-way system switching
151 module, detection module (CEAS) and flow control module. The sample gas first passes through a PTFE filter
152 membrane (25 μm thickness, 4.6 cm diameter, and 2.5 μm pore size, Typris, China) to remove ambient aerosols. The
153 sample gas enters the system through a 1/4' inch PFA (polytetrafluoroethylene) tube and is then divided into three
154 channels (NO₂ channel, ANs channel, and PNs channel) by using two T-shaped PFA three-way connections. The gas
155 flow at the end of each channel is controlled at 0.8 L/min, and the total flow rate (sample flow gas and purge gas) is
156 2.6 L/min maintained by mass flow controllers and a diaphragm pump.

157 The quartz tubes have a length of 35 cm, which have an inner diameter of 5 mm and an outer diameter of 10 mm
158 and are connected to the system through a 10 mm to 1/4' inch PTFE connection. The quartz tubes of the ANs channel
159 and the PNs channel are heated by resistance wires, and temperature is controlled by the PID algorithm. An asbestos
160 sleeve on the quartz tube surface is used to insulate heat exchange with the external environment. The heating powers
161 of the PNs channel and ANs channel are approximately 20 W and 50 W, respectively. The length of the heating
162 module is 15 cm. According to the pyrolytic efficiency experiment (see Sec. 3.4 for details), the heating temperatures
163 for the ANs and PNs channels are controlled at 380 °C and 180 °C, respectively. One CEAS is used to detect the NO₂
164 absorption of different channels to reduce the cross-interference due to the difference of multidetectors. A solenoid
165 valve is connected behind the quartz tube of each channel. At the same time, a time relay is used to periodically
166 control the three T-shaped solenoid valves (71335SN2KVJ1, Parker Hannfin, USA), and the internal surface of the
167 T-shaped solenoid valves is stainless steel. Each channel has the same constant flow rate regardless of whether the
168 sampling air draws into the CEAS or vent. At the end of the channels, mass flow controllers are used to restrict the
169 flow rate.

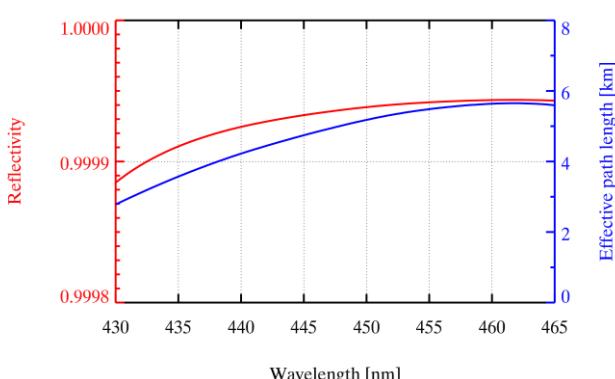
170 **2.2 Laboratory experimental setup**

171 To characterize the performance and potential interferences of this instrument, we used a photochemical PAN source
172 in the laboratory experiments. Acetone undergoes photolysis at 285 nm from a Hg lamp and then generates excess
173 PA radicals (peroxyacetyl radicals) in zero air. A small amount of NO reacts with PAs to form NO₂, and then NO₂
174 further reacts with PAs to form PAN. We obtained a standard PAN source in this way, which generated a source at a
175 level of 1–10 ppbv. The source was used for the laboratory experiments after the temperature of the Hg lamp stabilized
176 at 39.0 °C, and the source level and stability were double-checked by a GC-ECD instrument. To investigate the
177 potential interferences caused by the pyrolysis of organic radical products reacting with ambient NO and NO₂ in the
178 TD-CEAS, a multigas calibrator (146i, Thermo Fisher Scientific, Inc., USA) was used to generate O₃ gas by
179 photolysis of oxygen and outputted well-mixed gases by diluting NO or NO₂ with zero air according to the

180 requirement of studying the potential inferences caused by ambient NO and NO₂. NO (1 ppmv) and NO₂ (10 ppmv)
 181 bottle gases were connected to the multigas calibrator. An ozone monitor was used to detect O₃ levels in these
 182 experiments (49i, Thermo Fisher Scientific, Inc., USA). A NO_x monitor was used to detect NO and NO₂ levels in
 183 these experiments (42i, Thermo Fisher Scientific, Inc., USA). Pure N₂ (>99.9999%) and He (>99.9999%) bottle gases
 184 were used to calibrate the mirror reflectivity of the CEAS and to purge the mirrors.

185 **2.3 Box model**

186 A box model was established to mimic the experimental results and study the potential interferences of NO and NO₂
 187 in the PN and ANs measurements. The chemical mechanism is based on previous work (Thieser et al., 2016). These
 188 reactions during the pyrolytic process in the box model are listed in Text S1, and the reaction rate of these reactions
 189 is mainly taken from the Master Chemical Mechanism, MCM v3.3 (website: <http://mcm.leeds.ac.uk/MCM>) (Jenkin
 190 et al., 1997; Saunders et al., 2003). As the wall loss has an important effect on the lifetime of free radicals, we set the
 191 wall loss constant (k_{wall}) of RO₂ to 0.3/s (Thieser et al., 2016; Wooldridge et al., 2010). The wall loss rate coefficients
 192 of HO₂ and OH are selected as the values of 0.5 and 5.4/s, respectively (Fuchs et al., 2008). The residence time of
 193 the sampling gas in each channel is calculated by considering the temperature distribution. The time step of the model
 194 is set to 0.001 s.

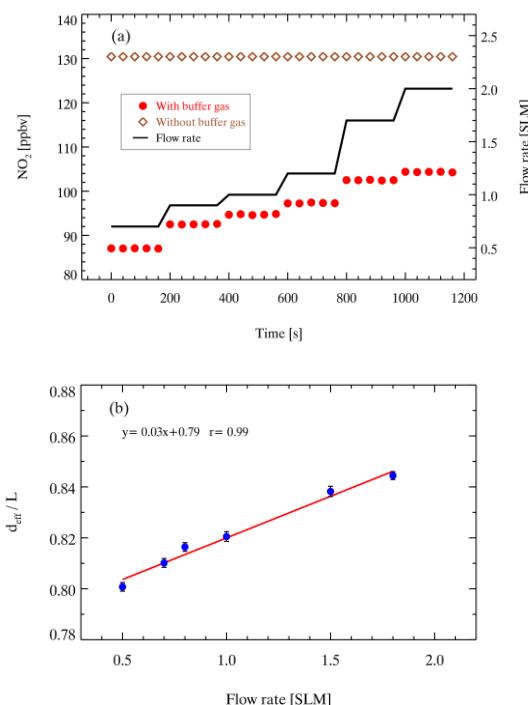

195 **3. Instrument characterization**

196 **3.1 Mirror reflectivity**

197 The spectra of pure N₂ (>0.99999) or He (>0.99999) filling the cavity through the purge lines are collected to calibrate
 198 the mirror reflectivity, as the Rayleigh scattering section of the two is significantly distinct; therefore, $R(\lambda)$ can be
 199 calibrated according to Eq. 2 (Chen and Venables, 2011; Min et al., 2016).

$$200 R(\lambda) = 1 - d \times \left(\frac{I_{N_2}(\lambda) \times n_{N_2} \times \sigma_{Rayl,N_2}(\lambda) - I_{He}(\lambda) \times n_{He} \times \sigma_{Rayl,He}(\lambda)}{I_{He}(\lambda) - I_{N_2}(\lambda)} \right) \quad (2)$$

201 where d is the distance between two high-reflectivity mirrors, λ is the wavelength, $I_{N_2}(\lambda)$ and $I_{He}(\lambda)$ are spectra
 202 obtained when the cavity is filled with pure N₂ and He, respectively, n_{N_2} and n_{He} are the number densities calculated
 203 at the measurement temperature and pressure in the cavity, respectively, and $\sigma_{Rayl,N_2}(\lambda)$ and $\sigma_{Rayl,He}(\lambda)$ are the
 204 Rayleigh scattering sections of N₂ and He, respectively (Shardanand, 1977; Sneep and Ubachs, 2005). Fig. 2 shows
 205 the average of the mirror reflectivity calibration results. $R(\lambda)$ is above 0.9999 at 435–465 nm and up to 0.99992 at 450
 206 nm. The total uncertainty of the mirror reflectivity is 5%, which comes from the uncertainty in the scattering section
 207 of N₂. The blue line is the average optical path length when the sampling flow rate in the cavity is 0.8 L/min, which
 208 is equal to $d_{\text{eff}}/(1-R)$ (d_{eff} is 31.84 cm), with a value up to 5.2 km at 450 nm.

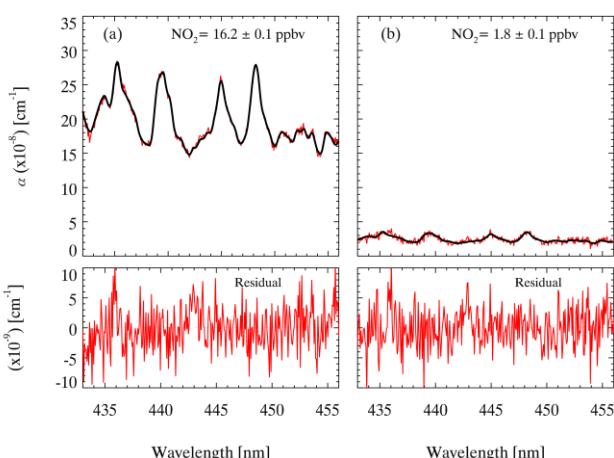


210

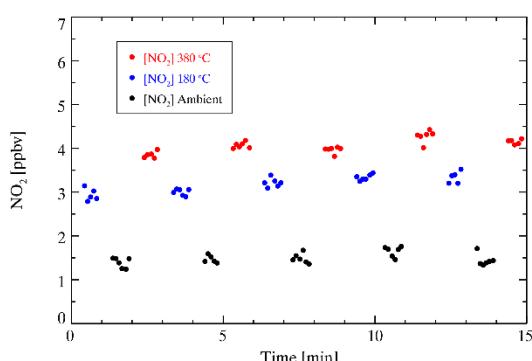
211 Figure 2. Mirror reflectivity and optical path length calibrated by He (>0.99999) and N₂ (>0.99999). The red line is the average $R(\lambda)$ and
212 the blue line is the optical path length.

213 3.2 Effective cavity length

214 The effective length of the absorbers (named effective cavity length, d_{eff}) in the detection cell is shorter than the
215 physical distance of the cavity with purge; thus, it needs to be calibrated. We performed concentration determination
216 on the NO₂ standard source (130 ppbv) under two experimental settings with or without purging and then used Eq. 1
217 to calculate d_{eff} . The ratio of NO₂ absorption with and without purging is equal to the ratio of the effective cavity
218 length to the physical distance L between the mirrors (d_{eff}/L). A NO₂ stand was prepared from a bottled standard (5
219 ppmv NO₂) and diluted with high-purity N₂ in a multigas calibrator (146i, Thermo Fisher Scientific, Inc., Waltham,
220 MA, USA). As shown in Fig. 3a, the retrieved concentration of NO₂ shows a general positive correlation trend with
221 the flow rate with N₂ purging; the concentration of NO₂ is 130 ppbv without a purge. The d_{eff}/L at different sampling
222 flow rates is shown in Fig. 3b. The ratio of the effective cavity length increases as the flow rate increases, suggesting
223 the importance of airflow rate stability during sampling. The uncertainty of the prepared NO₂ standard source is
224 estimated to be 2.0%, while the uncertainty of the NO₂ absorption cross-section is 4.0%, according to Voigt et al.
225 (2002). As a result, the total uncertainty of d_{eff} calibration is 4.5% (Voigt et al., 2002).
226



227
228 Figure 3. The results of the effective cavity length. Panel (a) The black line represents the flow rate and the red points and brown
229 diamonds represent the retrieved NO₂ concentration with and without nitrogen purge (100 sccm×2), respectively. Panel (b) The
230 relationship between the ratio of the effective cavity length (d_{eff}) to cavity physical distance (L) and the sampling flow rate.


231 3.3 Spectral fitting

232 The absorption cross-section of NO₂ measured by Voigt et al. (2002) is used to retrieve the NO₂ concentration in this
233 study. The absorption cross-section of NO₂ between 435-455 nm is selected to perform the spectral fitting. It has been
234 reported that the NO₂ cross-section is not sensitive to temperature changes (Vandaele et al., 2002; Voigt et al., 2002);
235 therefore, convolution is only performed for our instrument setup at ambient temperature. The peak at 436.2 nm of

236 the Hg spectrum measured by the spectrometer is used to generate a wavelength-dependent instrument slit function
 237 that accounts for the change in spectral resolution over the CCD pixels. The convoluted cross-section of NO_2 is shown
 238 in Fig. S1. The measured absorption coefficient (α) is processed by the DOASIS (Differential Optical Absorption
 239 Spectroscopy Intelligent System). The fitting shift is constrained within ± 0.2 nm. Glyoxal has strong absorption in
 240 the same optical window (Liu et al., 2019; Min et al., 2016; Thalman et al., 2015; Thalman and Volkamer, 2010;
 241 Washenfelder et al., 2008), but here, we do not take glyoxal absorption into consideration in the spectral fitting. The
 242 inclusion of glyoxal in the spectral fitting would enlarge the fitting residual. Our field measurements showed that the
 243 uncertainty caused by excluding glyoxal fitting was approximately 4% (Fig. S2). Fig. 4 shows two examples of the
 244 spectral fitting of the measured absorption of high and low NO_2 at a 6 s integration time during the ambient
 245 measurement. The retrieved mixing ratios of NO_2 were 16.2 ± 0.1 ppbv and 1.8 ± 0.1 ppbv, respectively. The
 246 corresponding fitting residual, which is the difference between the measured and fitting results, is in the range of 10
 247 $\times 10^{-9}$ at 435–455 nm. A typical measurement sequence during the ambient measurement is illustrated in Fig. 5, which
 248 displays NO_2 mixing ratios of three channels alternatively. The mixing ratio of NO_2 in different channels is detected
 249 periodically, and there are several transitional points due to switching measurement phases. Therefore, we excluded
 250 the transition point of each phase and the two data points before and after the transition point to avoid measurement
 251 error. As we discuss later, the mixing ratio of ANs and PNs can be calculated by subtracting the NO_2 mixing ratio
 252 measured from different channels.
 253

254
 255 Figure 4. An example of the spectral fit for an extinction spectrum measured (6 s average) during field measurements. The fitted results
 256 of NO_2 are shown, and the total fit result and the residual at high concentrations (a) and low concentrations (b) are shown.
 257

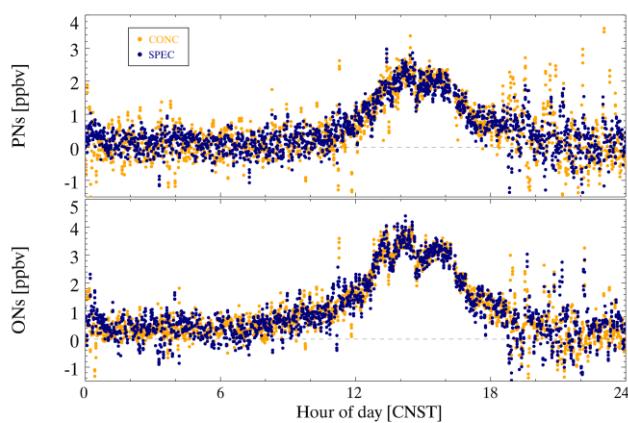
258

259 Figure 5. An example of typical measurements performed in a field study with a 6 s spectrum integral time. A measurement cycle includes
 260 three phases whose duration is 60 s. The red points denote the NO₂ mixing ratio measured in the ANs channel ([NO₂] 380°C), the blue
 261 points denote the NO₂ mixing ratio measured in the PNs channel ([NO₂] 180°C), and the black points denote the NO₂ mixing ratio
 262 measured in the reference channel ([NO₂] ambient temperature).

263 There are two methods to determine the mixing ratio of ONs and PNs. One is the differential concentration method
 264 ('CONC'). As shown in Eqs. 3-6, the I_0 is fixed during data analysis by using the N₂ spectrum: I_{TD380} and I_{TD180} are
 265 the spectra obtained when the CEAS detects the ANs channel and PNs channel, respectively; I_{N_2} is the N₂ spectrum
 266 obtained when the cavity is filled with N₂ (>0.99999); α_{TD380} and α_{TD180} are absorption coefficients when setting
 267 I_{N_2} as I_0 , and setting I_{TD380} or I_{TD180} as I , respectively; and after deleting the abnormal points caused by phase
 268 switching, [ONs] is obtained by subtracting [NO₂]_{TD380} from the average of [NO₂]_{REF}, and [PNs] is obtained by
 269 subtracting [NO₂]_{TD180} from the average of [NO₂]_{REF}. The other method is the differential absorption method ('SPEC'),
 270 by using the dynamic background spectrum method for spectral fitting (Eqs. 7-8): I_{REF} is the spectrum obtained at
 271 the reference channel; ONs can be retrieved based on I_{TD380} and I_{REF} ; and PNs can be retrieved by I_{TD180} and I_{REF} .
 272 An intercomparison of field measurements shows that the 'SPEC' method results in fewer outliers (Fig. 6). For the
 273 'SPEC' method, the shift and squeeze of the spectrum is performed only once during the spectral fitting, which reduces
 274 the uncertainty caused by the second spectral fitting. Therefore, we selected the 'SPEC' method to retrieve the
 275 concentrations of NO₂, PNs, and ANs in the following data processes.

$$276 \alpha_{TD380} = \left(\frac{I_{TD380}}{I_{N_2}} - 1 \right) \left(\frac{1-R(\lambda)}{d_{eff}} \right) \quad (3)$$

$$277 \alpha_{TD180} = \left(\frac{I_{TD180}}{I_{N_2}} - 1 \right) \left(\frac{1-R(\lambda)}{d_{eff}} \right) \quad (4)$$


$$278 [\text{ONs}] = [\text{NO}_2]_{\text{TD380}} - [\text{NO}_2]_{\text{REF}} \quad (5)$$

$$279 [\text{PNs}] = [\text{NO}_2]_{\text{TD180}} - [\text{NO}_2]_{\text{REF}} \quad (6)$$

$$280 \alpha_{[\text{ONs}]} = \left(\frac{I_{TD380}}{I_{REF}} - 1 \right) \left(\frac{1-R(\lambda)}{d_{eff}} \right) \quad (7)$$

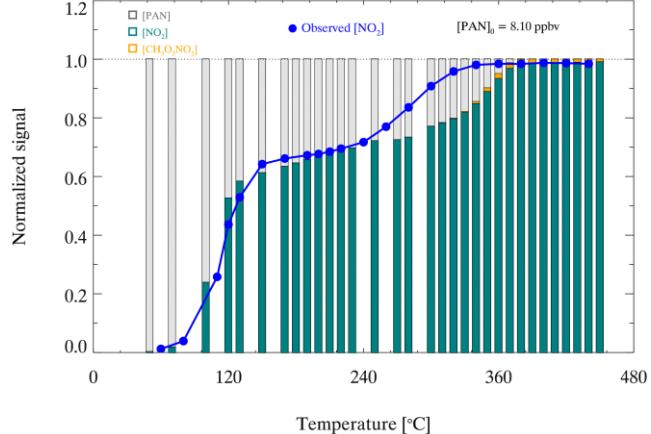
$$281 \alpha_{[\text{PNs}]} = \left(\frac{I_{TD180}}{I_{REF}} - 1 \right) \left(\frac{1-R(\lambda)}{d_{eff}} \right) \quad (8)$$

282

283
 284 Figure 6. An example of the calculation results of the fixed I_0 ('CONC') and dynamic I_0 ('SPEC') methods performed in the field
 285 measurements. Orange points represent the results of the 'CONC' method, and dark blue points represent the calculation results of the
 286 'SPEC' method.

287 **3.4 The efficiency of thermal dissociation**

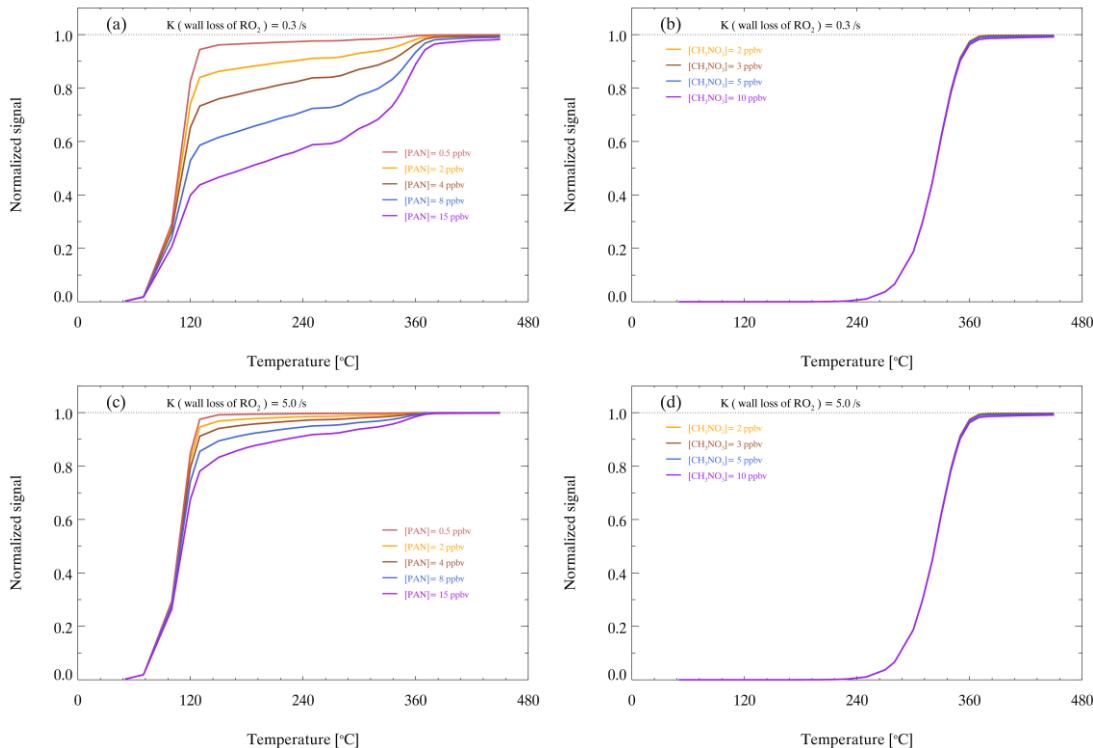
288 For the pyrolytic measurement of organic nitrates, the exact temperature setting for complete pyrolysis varies, mainly
289 due to the many factors that affect the efficiency of thermal dissociation, such as the specificity of the quartz tube,
290 the heating residence time, and the temperature distribution of the heating part (Womack et al., 2017). The thermal
291 dissociation of PAN was tested separately in the PNs channel and ANs channel, and the efficiency curves were the
292 same. The heating temperature is the temperature of the quartz tube surface rather than the airflow temperature in the
293 quartz tube. The experiments were performed under normal sampling conditions, and the heating temperature was
294 evaluated from room temperature to 440 °C to determine the appropriate heating temperature. Fig. 7 shows that the
295 pyrolysis of PAN starts when the heating temperature is approximately 50 °C. The curve seems to reach a plateau
296 when the heating temperature is approximately 180 °C. However, the normalized signal of thermal dissociation of
297 PAN reaches the final plateau once the temperature is above 360 °C. Similarly, PAN is reported to be thermally
298 dissociated completely at approximately 400 °C (Friedrich et al., 2020). The presence of alkyl nitrates in the PAN
299 source has been reported before by previous studies and was regarded as the reason for the dual-plateau profile of
300 PNs dissociation (Paul et al., 2009). Here, we cannot rule out the possibility of alkyl nitrate impurities. However, the
301 source level of PAN is equal to $92 \pm 3\%$ of NO_x input, suggesting only a very small percentage ($\leq 8\%$ on average),
302 if any, of ANs. If the PAN source is equal to 4 ppbv in the PNs channel at 180 °C, as Fig. S3 shows, PAN will first
303 dissociate completely, and then PAs will recombine with NO₂ to form PAN when the air flow passes through the
304 cooling lines.


305 To further study the thermal dissociation of organic nitrates in the heated channels, box model simulations were
306 conducted to reproduce the response relationship between heating temperature and NO₂ generated by pyrolysis. If
307 the PAN source is equal to 4 ppbv in the PNs channel at 180 °C, as Fig. S3 shows, PAN will first dissociate completely,
308 and then PAs will recombine with NO₂ to form PAN when the air flow passes through the cooling lines. As shown in
309 Fig. 7, PAN gradually transforms into NO₂ and CH₃O₂NO₂ as the setting temperature increases. The simulated signals
310 of thermal dissociation of PAN show two plateaus, which is generally consistent with the experimental results.
311 However, there are some differences from 260 °C to 360 °C, which may come from simulation uncertainties such as
312 the temperature profile in the heated channel, the follow-up reactions of PA radicals and their reaction rates. The first
313 plateau at 180 °C is caused by the recombination of PAs and NO₂ after the pyrolysis of PAN, and the time for
314 recombination from the end of the tube to the inlet is 297 ms. Therefore, recombination cannot be ignored when the
315 heating temper plateau period indicates that almost all PAN is transformed into NO₂, which is due to the increase in
316 the pyrolytic loss of PAs, and the pyrolysis of PAN is enhanced with increasing temperature.

317 The occurrence of the dual-plateau phenomenon is due to the competition of pyrolysis and recombination reactions.
318 PAN will produce NO₂ and PAs after thermal dissociation, but PAs will recombine with NO₂ if PAs are not lost on
319 the wall surface in time (R7-R8). Therefore, the thermal curve shows two plateaus as the heating temperature
320 increases. The concentration of PAN source and wall loss rate of RO₂ influence the fraction of related species. Fig.
321 8(a) and (c) show that the gap between the two plateaus increases with PAN concentration and decreases as the wall
322 loss rate coefficients of RO₂ increase. The wall loss of RO₂ competes with the recombination of PA radicals and NO₂.
323 Therefore, a high wall loss rate coefficient of RO₂ reduces the recombination for PAN.

324 The consistency between the observed and simulated thermal efficiencies of PAN suggests that the model
325 simulation is reliable. Without the ANs source to quantify the thermal efficiency of ANs, we try to use the model
326 simulation to determine the heating temperature of the ANs channel. Based on the same parameter settings of the
327 model, MeN (methyl nitrate, CH₃NO₃) is selected as the representative ANs to simulate the pyrolytic efficiency curve.
328 Fig. 8(b) and (d) show that MeN can be totally thermally dissociated when the temperature is over 380 °C, indicating
329 that a temperature set to 380 °C for the ANs channel is reasonable. The simulation also showed that the two factors
330 have almost no effect on the pyrolysis of MeN, which is completely pyrolyzed to produce NO₂ when the temperature
331 is 380 °C. The simulation results agree with previous reports about the temperature setting of thermal dissociation of

332 ANs, with a range from 350 °C to 450 °C (Day et al., 2002; Sadanaga et al., 2016; Sobanski et al., 2016; Thieser et
333 al., 2016). Therefore, 180 °C and 380 °C are selected as the heating temperatures of the PNs channel and ANs channel,
334 respectively. In addition, the interference of incomplete dissociation for PAN in the PNs channel at 180 °C is
335 considered in the look-up table for correction, which is detailed in Sect. 4.1.


336

337

338 Figure 7. Normalized signals of thermal dissociation of PAN. The blue points represent the normalized signal of the observed NO₂
339 mixing ratio during thermal dissociation. The histogram represents the simulated distribution of thermal dissociation products at different
340 temperatures, in which the gray, green and orange columns represent PAN, NO₂ and CH₃O₂NO₂, respectively.

341

342

343 Figure 8. Model-simulated thermal decomposition profiles of PAN and MeN with different amounts of PAN or MeN under different wall
344 loss rate coefficients of RO₂. Panels (a) and (b) show the NO₂ signals of PAN and MeN when the wall loss rate coefficient of RO₂ is
345 0.3/s. Panels (c) and (d) show the NO₂ signals of PAN and MeN when the wall loss rate coefficient of RO₂ is 5/s.

346 4. Results and discussion

347 **4.1 Measurement interference**

348 Previous studies have shown that the filter losses and wall losses of NO₂, PNs and ANs are small when using Teflon
349 tubes and Teflon filters (Paul et al., 2009; Thieser et al., 2016). As shown in Fig. S4, the response to concentration
350 changes of PAN was nearly instantaneous under normal sampling, suggesting that the memory effects on the inlet
351 and cavity tubing were insignificant. As shown in Figs. S5 and S6, the filter loss and sampling tube are negligible.
352 The transmission efficiency for PAN is > 97% if there is a fresh filter membrane in the holder. We propose that
353 changing the filter once a day can ensure a high transmission efficiency of the species to be detected. However,
354 isoprene nitrates are prone to hydrolysis (Vasquez et al., 2020), which is more likely to be lost during sampling. We
355 have no evaluation of the sampling loss of isoprene nitrates, and the wall loss of isoprene nitrates is likely to be
356 reduced by increasing the frequency of filter changes. In the heated channels, organic nitrates will be thermally
357 dissociated to produce NO₂, but some simultaneous reactions will affect the NO₂ mixing ratio. The potential
358 interferences mainly come from the following reactions: formation of NO₂ via NO and O₃, pyrolysis of O₃, reactions
359 of organic radicals with NO and NO₂, and pyrolysis of other reactive nitrogen oxides.

360 The formation of NO₂ in a dark reaction between NO and O₃ should be considered in NO₂ measurements. If the
361 reaction has continued for a certain time (*t*) during sampling, the amount of NO₂ formed [NO₂]*t* can be calculated:
362 [NO₂]*t* = *k* × [NO] × [O₃] × *t*, where *k* is the rate coefficient for reaction (R4) and is given as 2.07×10⁻¹² exp (-1400/T)
363 cm³/molecule/s (Atkinson et al., 2004). According to the temperature distribution and airflow temperature
364 measurements changing with the distance after the heating quartz tube, the heated channel temperature profiles under
365 normal sampling are shown in Fig. S7. Based on the temperature profile, the reaction of NO and O₃ in the three
366 channels can be calculated. As the residence time of airflow in the three channels is short and similar (0.806 s in the
367 reference channel; 0.697 s in the ANs channel; and 0.730 s in the PNs channel), the simulation results show that the
368 inference is small. For example, during an ozone pollution day with O₃ = 100 ppbv, NO = 2 ppbv and NO₂ = 5 ppbv,
369 the NO₂ produced by the reaction of NO and O₃ in the reference channel is 0.07 ppbv, corresponding to 1.3% of
370 atmospheric NO₂. Similarly, the interferences in the ANs channel and PNs channel are 0.14 ppbv (2.7% of NO₂) and
371 0.10 ppbv (2.0% of NO₂), respectively. The interferences are within 3% in the typical case, which is smaller than the
372 uncertainty of the NO₂ measurement. Therefore, the interference is ignored in the measurement correction.

373 The thermal degradation of O₃ occurs at high temperatures, which reduces NO₂ to NO via O(³P) (R5-R7).
374 Interference has been ignored before in the process of PNs and ANs pyrolysis (Day et al., 2002). However, subsequent
375 studies have shown that the reaction can cause significant negative deviations in the measurements of NO₂ at higher
376 temperatures, and the degree of interference is closely related to the temperature change of the pyrolytic module (Lee
377 et al., 2014; Thieser et al., 2016). To determine the reduction reaction effect, we performed experiments in which
378 NO₂ was detected in three different channels when various amounts of NO₂ and O₃ were added. The experimental
379 results are shown in Table 1 with various amounts of NO₂ and O₃ added. No significant NO₂ mixing ratio difference
380 was observed between the reference and ANs channels. We showed negligible interference here, which is different
381 from previous reports (Lee et al., 2014; Thieser et al., 2016). This is likely caused by the much lower temperature
382 setting of our ANs measurement channel. Since the pyrolytic rate constant of O₃ is highly temperature-dependent,
383 the lower temperature would largely reduce the level of O atoms as well as this interference.

391

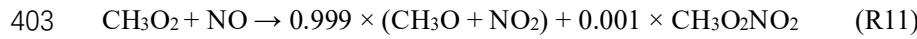
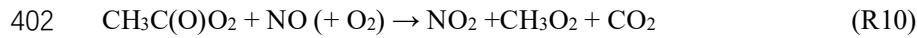
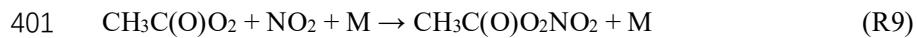
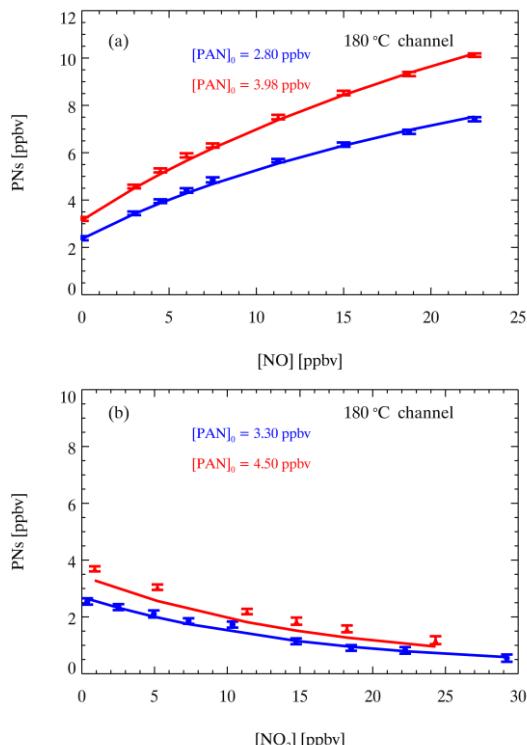



392

Table 1. Measurements of the NO₂ mixing ratio in three channels of the TD-CEAS with different added amounts of NO₂ and O₃.

Order	[NO ₂] [ppbv]	[O ₃] [ppbv]	[O ₃]×[NO ₂] [ppbv×ppbv]	[NO ₂] _{TD380} [ppbv]	[NO ₂]-[NO ₂] _{TD380} [ppbv]
0	7.45±0.27	48.19	359	7.79±0.27	-0.34
1	7.89±0.27	67.47	532	8.17±0.28	-0.28
2	15.58±0.29	48.19	751	15.84±0.28	-0.26
3	8.23±0.27	96.38	793	8.22±0.28	0.01
4	15.77±0.25	67.47	1064	15.94±0.27	-0.17
5	8.43±0.27	144.57	1218	8.64±0.28	-0.21
6	16.18±0.28	96.38	1559	16.20±0.28	-0.02
7	16.28±0.30	144.57	2354	16.26±0.31	0.02

393

394 The RO₂ recombines with NO₂ or reacts with NO to interfere with the measurement of ANs and PN_s. Taking PAN
 395 as an example, organic radicals may trigger interference, as described below (R8-R15). The PAs produced after
 396 thermal dissociation of PAN (R8) can recombine with NO₂ (R9). PAs can oxidize NO to produce NO₂ while
 397 generating another organic radical (R10). CH₃O₂ can further initiate a series of reactions that affect the distribution
 398 of NO₂ (R11-R15). Therefore, the lifetime and fate of PAs generated by PAN pyrolysis will cause interference, and
 399 atmospheric NO and NO₂ will affect the degree of measurement interference.


409 A set of laboratory experiments was conducted to measure the interference in PN_s channels with different NO,
 410 NO₂ and PAN levels. Fig. 9(a) shows the measured and simulated results of different PAN concentrations mixed
 411 with different concentrations of NO. With the increase in NO added, the detected PN mixing ratio (the signal
 412 difference between the PN_s channel and REF channel) also gradually increased. More NO reacted with PA radicals
 413 generated during thermal dissociation to produce additional NO₂ within the residence time in the PN_s channel, which
 414 led to measurements higher than the PAN source level. In contrast, as shown in Fig. 9(b), the measured PN_s were
 415 lower than the PAN source level when NO₂ was added to the source, and the bias increased with the increase in NO₂
 416 added. The addition of NO₂ to the system improves the overall concentration of NO₂ in the PN_s channel, promoting
 417 regeneration to PAN.

418 We conducted numerical simulations by a box model to mimic observations and to check the chemical reactions
 419 in the PN channel. Fig. 9(a) shows that the simulations have good consistency with the experimental results under
 420 different NO levels. Fig. 9(b) shows that the model can capture the trend of experimental results on NO₂ interferences,
 421 except in the case of a PAN source of 4.5 ppbv, which may be due to the reaction of small excess RO₂ in the PAN
 422 source line and extra NO₂ added to the instrument to generate additional PAN before sampling. Overall, these
 423 experiments proved that NO and NO₂ interfere with the measurement of PN_s. However, the agreement of the
 424 experimental and model results indicates that the interference of NO and NO₂ for PN_s measurements can be corrected.

425 In the field measurements, the correction factor refers to the ratio between the real value and the measured value of
 426 PNs. For example, in a typical case during field measurements where $\text{PNs} = 3 \text{ ppbv}$, $\text{NO} = 8 \text{ ppbv}$ and $\text{NO}_2 = 5 \text{ ppbv}$,
 427 the difference between the PNs channel and reference channel is equal to 4.54 ppbv (equivalent to the measured PNs),
 428 which requires a correction factor of 0.66. Here, nearly 40000 simulations are performed under various initial
 429 concentrations of NO (0-70 ppbv), NO_2 (0-60 ppbv) and PAN (0-10 ppbv) to obtain the correction factor look-up
 430 table for our first field measurement (detailed in Sect. 4.3). The correction factor ($C1$) for PNs measurements in the
 431 PNs channel can be determined from the look-up table according to atmospheric NO and NO_2 and the raw data of
 432 PNs measurements using linear interpolation. According to Eq. 9, the corrected PNs mixing ratios are derived by the
 433 raw PNs measurements ($[\text{NO}_2\text{-180}]$) and $C1$.

434 $[\text{PNs_real}] = [\text{NO}_2\text{-180}] \times C1$ (9)

435

436

437 Figure 9. Simulated (lines) and measured (points) differences between the NO₂ signal in the PNs channel and reference channel for
 438 different PAN samples with different added amounts of NO (a) and NO₂ (b). The error bars show one standard deviation.

439 In the ANs channel, the thermal dissociation of PA radicals is rapid, and the regeneration of PAN is also suppressed
 440 at higher temperatures. Therefore, there is a different relationship between PANs and ambient NOx in the ANs
 441 channel. Similar to PNs, the measurement of ANs could be affected by NOx. We derived the PNs corrected by $C1$
 442 and $[\text{NO}_2\text{-180}]$ as mentioned above. To determine the corrected concentrations of ANs as Eqs. 10-11 show, we need
 443 to apply another correction factor ($C2$) to determine the contribution of PNs to ONs, in which this is subtracted from
 444 the raw ONs measurement ($[\text{NO}_2\text{-380}]$) and finally the third correction factor ($C3$) is applied to obtain corrected ANs
 445 measurements. Fig. 10 displays the interference of NO and NO₂ with the PAN measurements in the ANs channel.
 446 The laboratory experiments showed that the measured signal difference increased with NO (Fig. 10(a)). Hence, the
 447 presence of NO still led to higher measurement results of ONs compared with the source value. However, the
 448 interference was weakened compared with the measured results in the PNs channel at the same NO and PAN source
 449 levels (Fig. 9(a)). Similarly, the experiments with added NO₂ showed underestimated measurements of ONs, and the

interference was significantly weakened compared with that in the PNs channel. We used the same box model except for updating the temperature distribution and the corresponding residence time in the ANs channel to simulate the interference of NO or NO₂ under different PAN source levels. However, there are still some uncertainties about the reaction mechanism and reaction rate for the thermal dissociation of PAN at these high temperatures. We performed sensitivity tests on the follow-up reactions of PAs, similar to the simulation results of Thieser et al. (2016), and found that the isomerization of PAs to CH₂C(O)OOH has a great effect on the consistency of the experiments and simulation results. If the reaction rate of the branching reaction is set to zero, as shown in Fig. 10, the simulation results capture the trend well when NO₂ or NO is added. Many factors affect the NO₂ signal produced by the thermal dissociation of PAN; therefore, the mechanism scheme mentioned above provides a reasonable assumption for the interference process. Overall, the box model predicts the interference of PAN measurement caused by NO and NO₂ in the ANs channel. Next, the correction factors (C_2) of different cases under various amounts of NO, NO₂ and PAN added in the ANs channel are simulated to form the second look-up table.

$$[NO_2\text{-}380] = \frac{[PNs\text{ real}]}{C_2} + \frac{[ANs\text{ real}]}{C_3} \quad (10)$$

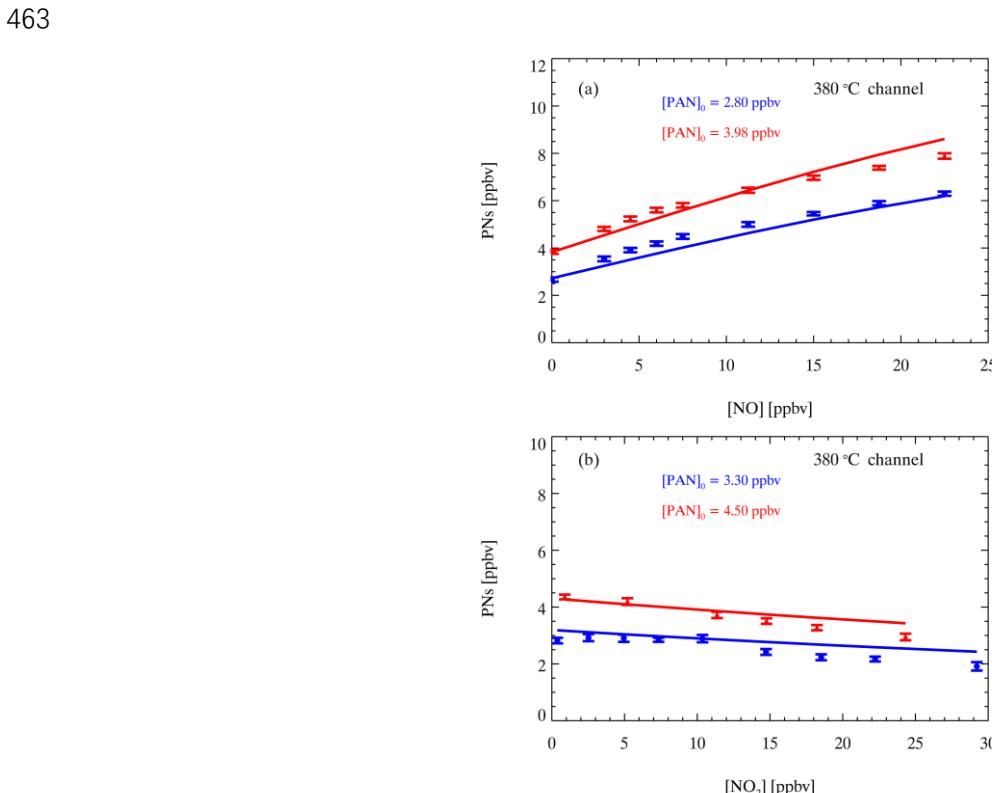
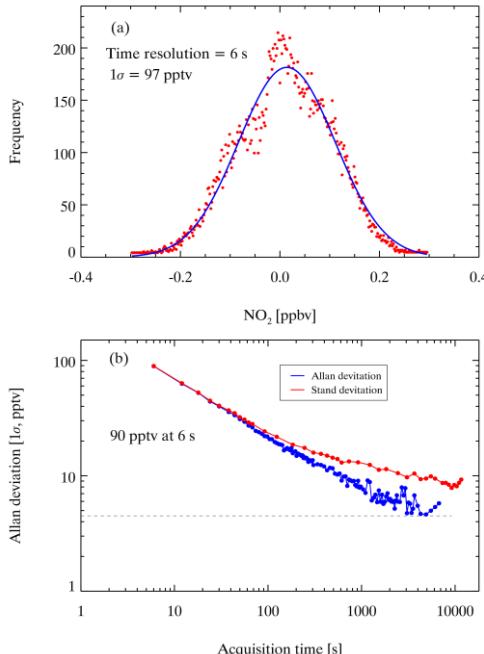


Figure 10. Simulated (lines) and measured (points) differences between the NO₂ signal in the ANs channel and reference channel for different PAN sources with different amounts of NO (a) and NO₂ (b). The error bars show one standard deviation.

The raw ONs mixing ratio ([NO₂_380]) is determined by the difference between the ANs channel and reference channel based on the 'SPEC' method. According to Eq. 10, it is necessary to quantify the interference caused by ambient NO/NO₂ for ANs measurements. Due to the lack of ANs sources, we use box models to study the interferences by setting MeN as the representative ANs. Methyl nitrate is pyrolyzed to produce NO₂ and CH₃O in the ANs channel (R16), and CH₃O is an important intermediate product of the reactions of PAs (R10-R12). Therefore, the mechanism scheme regarding PAN applies to interference simulations of NOx for ANs measurements. Similarly, the different cases under various NO, NO₂ and MeN additions were simulated to form the third look-up table for the corrections of ANs measurements in the ANs channel. According to Eq. 10, the raw concentration of ANs is the

475 difference between the raw ONs measurements ($[\text{NO}_2\text{-380}]$) and the signal contribution of PNs ($[\text{PNs_real}]/C2$) in
476 the ANs channel. The correction factor ($C3$) is determined by the third look-up table, and then the result is multiplied
477 [ANs] to obtain the corrected ANs mixing ratio ($[\text{ANs}_C]$) by Eq. 11.


478 $[\text{ANs_real}] = \left([\text{NO}_2\text{-380}] - \frac{[\text{PNs_real}]}{C2} \right) \times C3 \quad (11)$

479 In addition to the interference mentioned above, other nitrogen compounds may undergo pyrolysis to generate NO_2
480 in the heated channels, such as N_2O_5 and ClNO_2 (Li et al., 2018; Thaler et al., 2011; Wang et al., 2017a; Womack et
481 al., 2017), which may be a source of uncertainty for measurements of organic nitrates at night and early morning.
482 Interferences can be extracted if the simultaneous measurements of N_2O_5 and ClNO_2 are available.
483

484 **4.2 Uncertainty and detection limit**

485 The uncertainty of the CEAS measurement of NO_2 is contributed by the absorption cross-section, mirror reflectivity,
486 effective cavity length, and spectral fitting. The absorption cross-section of NO_2 is taken from Voigt et al. (2002),
487 whose uncertainty is approximately 4% (Voigt et al., 2002); the uncertainty of mirror reflectivity is approximately
488 5%, determined by the error of the scattering cross-section of N_2 ; the uncertainty of effective cavity length is
489 approximately 4.5%; and the uncertainty of spectral fitting when omitting the cross-section of glyoxal is 4%.
490 According to Gaussian error propagation, the associated uncertainty of the ambient NO_2 measurement is $\pm 9\%$ based
491 on the above parameters. The precision of the CEAS can be assessed by the Allan deviation and standard deviation
492 (Duan et al., 2018; Langridge et al., 2008; Wang et al., 2017a). Fig. 11 shows the variance analysis of 21077
493 continuously measured N_2 spectra when the cavity was filled with N_2 under purge. The integration time was 3 s, and
494 the sampling time was 6 s, as every two spectra were averaged before saving. The first 100 N_2 spectra collected were
495 averaged as I_0 , and all spectra were analyzed based on I_0 . The data set was divided into 300 gradients for Gaussian
496 fitting, and 1σ was 97 pptv, as shown in Fig. 11(a). The 21077 N_2 spectra mentioned above were averaged at different
497 time intervals (from 6 s to 11400 s), and then the Allan deviations at different time intervals were calculated. As
498 shown in Fig. 11(b), the Allan deviation decreases as the sampling time increases when the sampling time is smaller
499 than 1300 s, and the minimum is 5 pptv. When the sampling time is 6 s, the Allan variance can reach 90 pptv, close
500 to 1σ . ANs and PNs are detected by the same CEAS system and calculated by the dynamic I_0 ('SPEC') method;
501 therefore, their precision is identical to the NO_2 measurement. The uncertainty of [ANs] and [PNs] mainly comes
502 from spectral fitting to derive the concentration of NO_2 and the interference correction in heated channels, which
503 should be larger than 9%.

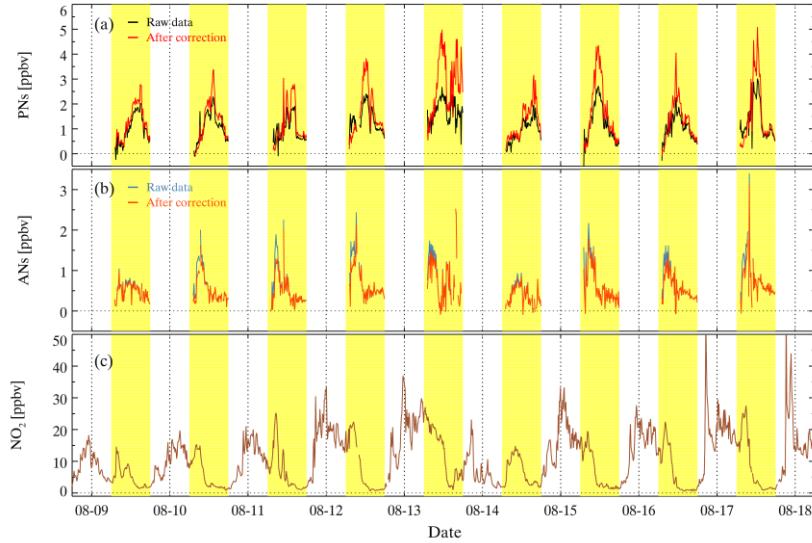
504

505

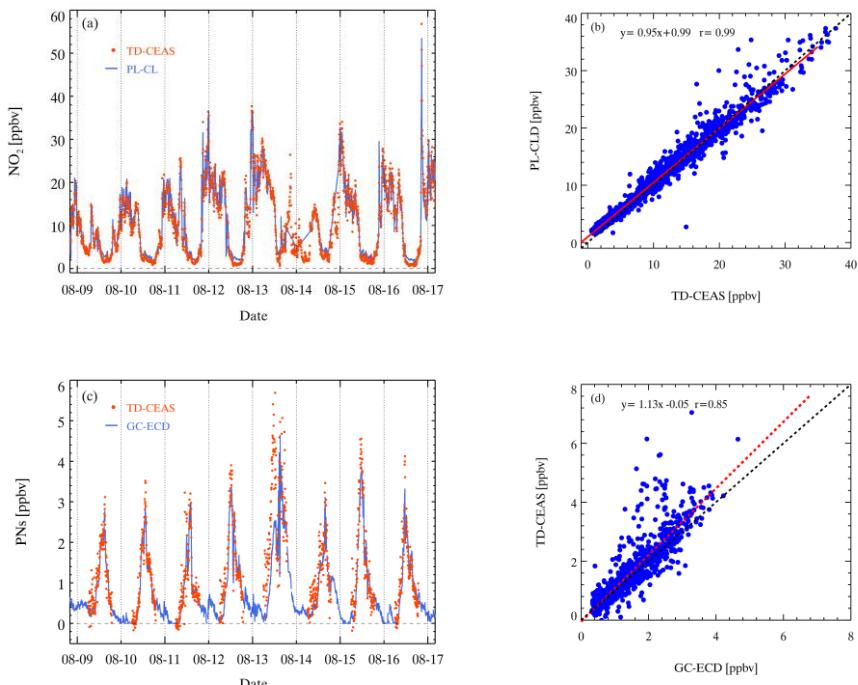
506 Figure 11. Instrument performance with different integration times. Panel (a) The standard deviation of the measurements of NO₂ with
 507 a 6 s integration time. Panel (b) Allan deviation plots for measurements of NO₂ with a 6 s integration time.

508 As summarized in Table 2, there are several typical technologies to measure organic nitrates based on the thermal
 509 dissociation method. TD-LIF is the pioneer to determine organic nitrates by measuring NO₂ produced through
 510 pyrolysis (Day et al., 2002), and the technology has been developed well and deployed in considerable campaigns
 511 (Di Carlo et al., 2013; Farmer et al., 2006). TD-LIF has a high time resolution and low detection limit, but the
 512 determination of NO₂ has to rely on extra calibration. TD-CIMS has a similar limitation as TD-LIF, and the method
 513 can measure some individual species of PNs, which need corresponding standards to be calibrated one by one
 514 (Slusher et al., 2004). CRDS, CAPS and CEAS are all cavity-enhanced techniques with high sensitivity and time
 515 resolution, of which CRDS and CAPS have been applied to detect NO₂ after ON pyrolysis. Specifically, in this study,
 516 the ONs and PNs are determined directly through broadband absorption measurement by CEAS, which can avoid the
 517 uncertainty caused by multiple spectral fitting and subsequent differential calculations. Overall, TD-CEAS has a
 518 detection capacity similar to that of TD-LIF and others. Recently, PERCA-CRDS was developed to indirectly
 519 determine PNs by measuring NO₂ through chemical amplification, which also showed high sensitivity, but the
 520 technology for atmospheric measurements needs to be studied further.

521 Table 2. Typical thermal dissociation methods to measure organic nitrates.


Method	Targets	Time resolution	Detection limit	Accuracy	Reference
TD-LIF	ANs, PNs	10 s	90 pptv	10-15%	Day et al., 2002
TD-LIF	ANs, PNs	1 s	18.4, 28.1 pptv	22%, 34%	Di Carlo et al., 2013
TD-CIMS	PAN, PPN	1 s	7, 4 pptv	20%	Slusher et al., 2004
TD-CRDS	ANs, PNs	1 s	100 pptv	6%	Paul et al., 2009
TD-CAPS	PNs, ONs	2 min	7 pptv	N.A.	Sadanaga et al., 2016
TD-CRDS	ANs, PNs	1 s	28 pptv	6%+20 pptv	Thieser et al., 2016
TD-CRDS	ANs, PNs	1 s	59, 94 pptv	8%+10 pptv	Sobanski et al., 2016
PERCA-CRDS	PNs, PAN	1 s	6.8, 2.6 pptv	13%	Taha et al., 2018
TD-CEAS	ANs, PNs	6 s	90 pptv	9%	This work

522


523 **4.3 Performance in field observations**

524 TD-CEAS deployed the first field observations in Xinjin County, Chengdu, China, in 2019, referred to as the
525 CHOOSE campaign (Yang et al., 2020). As shown in Fig. S8, there is a residential area 5 km northwest of the site;
526 the surrounding area is lush with trees and is close to a forest park and a national wetland park; and there is an
527 industrial park approximately 12 km to the west and 8 km to the south. During the CHOOSE campaign, TD-CEAS
528 was deployed in a container. The sampling inlet protruded from the container top and was supported by a bracket
529 with a height of 4 m above the ground. We determined the raw data of PNs and ONs during the observation period,
530 and then the raw data were corrected as mentioned above. Fig. 12(a) shows the time series of raw data and the
531 corrected data of PNs from August 9th to August 18th during the CHOOSE campaign, and Fig. 12(b) shows the time
532 series of ANs measurements before and after correction. The correction factors are shown in Fig. S9. The value of
533 $C1$ was generally greater than 1.0 (except during the morning), suggesting that the role of NO_2 was more significant
534 than that of NO at this site. The tendency of $C2$ and $C3$ was consistent with $C1$ during measurements, but the daily
535 changes of $C2$ and $C3$ were relatively smaller as the sensitivity of interferences in the ANs channel decreased, as
536 mentioned above. Fig. 12(c) shows that NO_2 constantly increased at night, reaching a peak near the early morning
537 and maintaining a high value to approximately 11 a.m. High mixing ratios of PNs were observed during the
538 measurement, and the diurnal variation of PNs was clear. The peak of ANs appeared in the noontime and several
539 hours before that of PNs. However, when the ambient NO_2 changed drastically at night during the campaign, the
540 difference in NO_2 between adjacent measurement phases in a cycle was great, resulting in unfeasible measurements
541 (Fig. S10). Simultaneous measurements showed that the N_2O_5 mixing ratio during nighttime was low and zero during
542 the daytime. Therefore, the interferences of N_2O_5 were negligible for the ONs measurements during the daytime
543 during the CHOOSE campaign. Nevertheless, the observed ANs may have been subject to the interference from
544 CINO_2 .

545 A photolytic conversion chemiluminescence detector (PC-CLD) was used to measure NO and NO_2 during the
546 campaign. The time series of NO_2 measured by the TD-CEAS and PL-CLD with a 5 min average is shown in Fig.
547 13(a), which were from August 9th to August 16th. The trend of NO_2 measured by the two instruments agrees well,
548 but the results of the PL-CLD are higher when the mixing ratio of NO_2 was low at noon. Fig. 13(b) shows that the
549 correlation coefficient of the NO_2 concentration measured by the two instruments is 0.99. The results of the TD-
550 CEAS are slightly higher than the results of the PL-CLD, as the slope is 0.95, which is reasonable when considering
551 instrument uncertainties. The time series of PNs (TD-CEAS) and PAN (GC-ECD) is shown in Fig. 13(c), and the
552 trends are relatively consistent, but the results of PNs are higher than the results of PANs measured by the GC-ECD,
553 especially at noon. This result is reasonable since PAN concentration is the highest but is not equal to the total
554 concentration of PNs. The correlation between the two instruments is good, as the correction coefficient is up to 0.85
555 (Fig. 13(d)), suggesting our instrument's feasibility in PNs measurement.

557
558 Figure 12. Time series of the observed mixing ratios of PN, AN and NO₂ during ozone pollution from the CHOOSE campaign in 2019.
559 The yellow regions indicate the daytime period. (a) The black lines represent the raw measurements of PN, and the red lines are the
560 corrected measurements of PN according to the look-up table. (b) The blue lines represent the raw measurements of AN, and the orange
561 lines are the corrected measurements of AN according to the look-up tables. (c) Measurements of NO₂ in the reference channel.
562

563
564 Figure 13. Comparison of the TD-CEAS and PL-CLD in the CHOOSE campaign. Panel (a) shows the time series of NO₂ measurements.
565 Orange points represent the results from the TD-CEAS, and the blue line represents the results from the PL-CLD. Panel (b) shows the
566 NO₂ correlation between the two instruments. Comparison of the PN measured by the TD-CEAS and the PAN measured by the GC-
567 ECD. Panel (c) shows the time series of PN and PAN, orange points represent the results from the TD-CEAS, and blue line represents
568 the results from the GC-ECD. Panel (d) shows the PN correlation of the two instruments.

569

5. Conclusions and outlook

570 We developed a new and robust TD-CEAS instrument to measure PNs, ANs, and NO₂ in the atmosphere with high
 571 accuracy and sensitivity. The advantage of this equipment is that only one detector is used for measuring NO₂ at 435
 572 - 455 nm, which reduces the potential for cross-interference caused by multiple detectors and has a lower cost and
 573 simpler operation. One measurement cycle of the instrument is 3 min, with an LOD of 97 pptv (1 σ) at 6 s. The short
 574 cycle period meets the atmospheric lifetime requirements of organic nitrates and NO₂ in general. The measurement
 575 interferences are characterized under different NO, NO₂, and organic nitrates (PAN or MeN) by laboratory
 576 experiments and model simulations. A look-up table method was established to correct the PNs and ANs
 577 concentrations.

578 The instrument was first deployed for field measurements in Chengdu, China, and the PNs measured by the TD-
 579 CEAS showed good consistency with PAN measured by a GC-ECD during the daytime. However, when the ambient
 580 NO₂ in the sampled air masses changes drastically, there will be great errors for the measurement of ANs and PNs,
 581 as the NO₂ mixing ratio between adjacent measurement phases in a cycle will be definitely different. Adding another
 582 NO₂-CEAS in parallel in the instrument for continuous NO₂ measurement will avoid this limitation. In addition, the
 583 observed PNs and ANs may be subject to interference from other reactive nitrogen species, such as N₂O₅ and ClNO₂,
 584 which can be corrected with simultaneous measurements in the future. Overall, this instrument is suitable for
 585 measuring NO₂, PNs, and ANs in chamber studies or ambient measurements with relatively stable air masses free of
 586 intensive NO_x emissions. We highlight the impact of interference reactions in heated channels for accurately
 587 measuring PNs and ANs. Although the look-up table can correct the interferences, the best way to reduce them is to
 588 quench RO₂ during the sampling process by improving the instrument design, such as by increasing the wall loss of
 589 RO₂ in the heated channel.

590

591 **Data availability.** The datasets used in this study are available from the corresponding author upon request
 592 (k.lu@pku.edu.cn).
 593

594 **Author contributions.** K.D.L. and H.C.W. designed the study. C.M. L and H.C.W. set up and characterized the
 595 instrument, analyzed the data and wrote the paper with input from K.D.L. All authors contributed to the field
 596 measurements and discussed and improved the paper.

597

598 **Competing interests.** The authors declare that they have no conflicts of interest.
 599

600 **Acknowledgments.** This project is supported by the Beijing Municipal Natural Science Foundation for Distinguished
 601 Young Scholars (JQ19031); the special fund of the State Key Joint Laboratory of Environment Simulation and
 602 Pollution Control (21K02ESPCP); the National Natural Science Foundation of China (21976006) and the National
 603 Research Program for Key Issue in Air Pollution Control (DQGG0103-01).
 604

605 References.

606 Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from
 607 the NO_x-air photooxidations of C-5-C-8 n-alkanes, *J. Phys. Chem. A*, 105, 1020-1027, 2001.
 608 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated
 609 kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O-x, HOx, NOx and SOx species, *Atmos.*
 610 *Chem. Phys.*, 4, 1461-1738, 2004.
 611 Atlas, E.: Evidence for greater-than-or-equal-to-C-3 alkyl nitrates in rural and remote atmospheres, *Nature*, 331, 426-428, 1988.

612 Atlas, E., Pollock, W., Greenberg, J., Heidt, L., and Thompson, A. M.: Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases
613 over the equatorial pacific-ocean during SAGA-3, *J. Geophys. Res.-Atmos.*, 98, 16933-16947, 1993.

614 Ball, S. M., Langridge, J. M., and Jones, R. L.: Broadband cavity enhanced absorption spectroscopy using light emitting diodes, *Chem*
615 *Phys Lett*, 398, 68-74, 2004.

616 Barbero, A., Blouzon, C., Savarino, J., Caillon, N., Dommergue, A., and Grilli, R.: A compact incoherent broadband cavity-enhanced
617 absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field
618 applications, *Atmos. Meas. Tech.*, 13, 4317-4331, 2020.

619 Berkemeier, T., Ammann, M., Mentel, T. F., Poschl, U., and Shiraiwa, M.: Organic Nitrate Contribution to New Particle Formation and
620 Growth in Secondary Organic Aerosols from alpha-Pinene Ozonolysis, *Environ. Sci. Technol.*, 50, 6334-6342, 2016.

621 Blanchard, P., Shepson, P. B., Schiff, H. I., and Drummond, J. W.: Development of a gas chromatograph for trace level measurement of
622 peroxyacetyl nitrate using chemical amplification, *Anal. Chem.*, 65, 2472-2477, 1993.

623 Chen, J. and Venables, D. S.: A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases,
624 *Atmos. Meas. Tech.*, 4, 425-436, 2011.

625 Chen, J., Wu, H., Liu, A. W., Hu, S. M., and Zhang, J.: Field Measurement of NO₂ and RNO₂ by Two-Channel Thermal Dissociation
626 Cavity Ring Down Spectrometer, *Chinese J Chem Phys*, 30, 493-498, 2017.

627 Chen, X., Wang, H., and Lu, K.: Simulation of organic nitrates in Pearl River Delta in 2006 and the chemical impact on ozone production,
628 *Sci. China-Earth Sci.*, 61, 228-238, 2018.

629 Chuck, A. L., Turner, S. M., and Liss, P. S.: Direct evidence for a marine source of C-1 and C-2 alkyl nitrates, *Science*, 297, 1151-1154,
630 2002.

631 Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence
632 instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, *J. Geophys. Res.-Atmos.*, 107, 2002.

633 Di Carlo, P., Aruffo, E., Busilacchio, M., Giammaria, F., Dari-Salisburgo, C., Biancofiore, F., Visconti, G., Lee, J., Moller, S., Reeves,
634 C. E., Bauguitte, S., Forster, G., Jones, R. L., and Ouyang, B.: Aircraft based four-channel thermal dissociation laser induced fluorescence
635 instrument for simultaneous measurements of NO₂, total peroxy nitrate, total alkyl nitrate, and HNO₃, *Atmos. Meas. Tech.*, 6, 971-980,
636 2013.

637 Duan, J., Qin, M., Ouyang, B., Fang, W., Li, X., Lu, K. D., Tang, K., Liang, S. X., Meng, F. H., Hu, Z. K., Xie, P. H., Liu, W. Q., and
638 Hasler, R.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and
639 NO₂, *Atmos. Meas. Tech.*, 11, 4531-4543, 2018.

640 Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band cavity-enhanced absorption spectroscopy, *Chem Phys Lett*, 371, 284-
641 294, 2003.

642 Fischer, R. G., Kastler, J., and Ballschmiter, K.: Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in
643 the air over the Atlantic Ocean, *J. Geophys. Res.-Atmos.*, 105, 14473-14494, 2000.

644 Flocke, F. M., Weinheimer, A. J., Swanson, A. L., Roberts, J. M., Schmitt, R., and Shertz, S.: On the measurement of PANs by gas
645 chromatography and electron capture detection, *J. Atmos. Chem.*, 52, 19-43, 2005.

646 Friedrich, N., Tadic, I., Schuladen, J., Brooks, J., Darbyshire, E., Drewnick, F., Fischer, H., Lelieveld, J., and Crowley, J. N.:
647 Measurement of NO_x and NO_y with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and
648 first deployment, *Atmos. Meas. Tech.*, 13, 5739-5761, 2020.

649 Fuchs, H., Holland, F., and Hofzumahaus, A.: Measurement of tropospheric RO₂ and HO₂ radicals by a laser-induced fluorescence
650 instrument, *Rev. Sci. Instrum.*, 79, 12, 2008.

651 Gaffney, J. S., Bornick, R. M., Chen, Y. H., and Marley, N. A.: Capillary gas chromatographic analysis of nitrogen dioxide and PANs
652 with luminol chemiluminescent detection, *Atmos. Environ.*, 32, 1445-1454, 1998.

653 Gherman, T., Venables, D. S., Vaughan, S., Orphal, J., and Ruth, A. A.: Incoherent broadband cavity-enhanced absorption spectroscopy
654 in the near-ultraviolet: Application to HONO and NO₂, *Environ. Sci. Technol.*, 42, 890-895, 2008.

655 Glavas, S. and Moschonas, N.: Determination of PAN, PPN, PnBN and selected pentyl nitrates in Athens, Greece, *Atmos. Environ.*, 35,

656 5467-5475, 2001.

657 Hao, C. S., Shepson, P. B., Drummond, J. W., and Muthuramu, K.: Gas-chromatographic detector for selective and sensitive detection
658 of atmospheric organic nitrates, *Anal. Chem.*, 66, 3737-3743, 1994.

659 Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P. G., Emmons, L. K., and Lamarque, J.
660 F.: Observational constraints on the chemistry of isoprene nitrates over the eastern United States, *J. Geophys. Res.-Atmos.*, 112, 13,
661 2007.

662 Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism
663 development, *Atmos. Environ.*, 31, 81-104, 1997.

664 Jordan, N. and Osthoff, H. D.: Quantification of nitrous acid (HONO) and nitrogen dioxide (NO₂) in ambient air by broadband cavity-
665 enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm, *Atmos. Meas. Tech.*, 13, 273-285, 2020.

666 Jordan, N., Ye, C. Z., Ghosh, S., Washenfelder, R. A., Brown, S. S., and Osthoff, H. D.: A broadband cavity-enhanced spectrometer for
667 atmospheric trace gas measurements and Rayleigh scattering cross sections in the cyan region (470-540 nm), *Atmos. Meas. Tech.*, 12,
668 1277-1293, 2019.

669 Kahan, T. F., Washenfelder, R. A., Vaida, V., and Brown, S. S.: Cavity-Enhanced Measurements of Hydrogen Peroxide Absorption Cross
670 Sections from 353 to 410 nm, *J. Phys. Chem. A*, 116, 5941-5947, 2012.

671 Kastler, J. and Ballschmiter, K.: Identification of alkyl dinitrates in ambient air of Central Europe, *Fresenius J. Anal. Chem.*, 363, 1-4,
672 1999.

673 Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of peroxy nitrates, *Int. J. Chem. Kinet.*, 31, 127-144, 1999.

674 Langridge, J. M., Ball, S. M., and Jones, R. L.: A compact broadband cavity enhanced absorption spectrometer for detection of
675 atmospheric NO₂ using light emitting diodes, *Analyst*, 131, 916-922, 2006.

676 Langridge, J. M., Ball, S. M., Shillings, A. J. L., and Jones, R. L.: A broadband absorption spectrometer using light emitting diodes for
677 ultrasensitive, in situ trace gas detection, *Rev. Sci. Instrum.*, 79, 2008.

678 Lechevallier, L., Grilli, R., Kerstel, E., Romanini, D., and Chappellaz, J.: Simultaneous detection of C₂H₆, CH₄, and delta C-13-CH₄
679 using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas
680 measurements, *Atmos. Meas. Tech.*, 12, 3101-3109, 2019.

681 Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., Iyer, S., Kurten, T., Hu, W., Day,
682 D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber, R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J.,
683 Olson, K., Goldstein, A. H., Seco, R., Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu, J., Shilling, J.
684 E., Miller, D. O., Brune, W., Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly functionalized organic nitrates in the
685 southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets, *Proc. Natl. Acad. Sci. U. S. A.*, 113,
686 1516-1521, 2016.

687 Lee, L., Wooldridge, P. J., Gilman, J. B., Warneke, C., de Gouw, J., and Cohen, R. C.: Low temperatures enhance organic nitrate formation:
688 evidence from observations in the 2012 Uintah Basin Winter Ozone Study, *Atmos. Chem. Phys.*, 14, 12441-12454, 2014.

689 Li, Z., Hu, R., Xie, P., Chen, H., Wu, S., Wang, F., Wang, Y., Ling, L., Liu, J., and Liu, W.: Development of a portable cavity ring down
690 spectroscopy instrument for simultaneous, in situ measurement of NO₃ and N₂O₅, *Opt. Express*, 26, A433-A449, 2018.

691 Liang, S., Qin, M., Xie, P., Duan, J., Fang, W., He, Y., Xu, J., Liu, J., Li, X., Tang, K., Meng, F., Ye, K., Liu, J., and Liu, W.: Development
692 of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO₂ in a polluted urban
693 environment, *Atmos. Meas. Tech.*, 12, 2499-2512, 2019.

694 Ling, Z. H., Guo, H., Simpson, I. J., Saunders, S. M., Lam, S. H. M., Lyu, X. P., and Blake, D. R.: New insight into the spatiotemporal
695 variability and source apportionments of C-1-C-4 alkyl nitrates in Hong Kong, *Atmos. Chem. Phys.*, 16, 8141-8156, 2016.

696 Liu, J., Li, X., Yang, Y., Wang, H., Wu, Y., Lu, X., Chen, M., Hu, J., Fan, X., Zeng, L., and Zhang, Y.: An IBBCEAS system for
697 atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO₂ concentrations, *Atmos. Meas. Tech.*, 12, 4439-
698 4453, 2019.

699 Liu, L., Wang, X., Chen, J., Xue, L., Wang, W., Wen, L., Li, D., and Chen, T.: Understanding unusually high levels of peroxyacetyl

700 nitrate (PAN) in winter in Urban Jinan, China, *J. Environ. Sci.*, 71, 249-260, 2018.

701 Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A., Costabile, F., Chang, C.
702 C., and Liu, S. C.: Summertime photochemistry during CAREBeijing-2007: ROx budgets and O-3 formation, *Atmos. Chem. Phys.*, 12,
703 7737-7752, 2012.

704 Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Liu, S.-C., Chang, C.-C., Amoroso,
705 A., and Costabile, F.: Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China, *Environ. Sci. Technol.*,
706 44, 7017-7022, 2010.

707 Luxenhofer, O., Schneider, E., and Ballschmiter, K.: Separation, detextion and occurrence of (C2-C8)-alkyl nitrates and phenyl-alkyl
708 nitrates as trace compounds in clean and polluted air, *Fresenius J. Anal. Chem.*, 350, 384-394, 1994.

709 Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., Wang, S., Zhao, B., Chang, X., Su, H., Zhang, T., Sheng, L., Yao, X., and
710 Gao, H.: Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover
711 in summer 2017, *Atmos. Chem. Phys.*, 19, 12195-12207, 2019.

712 Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air
713 Quality and Climate, *Chemical Reviews*, 115, 3984-4014, 2015.

714 Min, K. E., Washenfelder, R. A., Dube, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K., Rohrer, F., Zhang, Y.,
715 and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous
716 acid, nitrogen dioxide, and water vapor, *Atmos Meas Tech*, 9, 423-440, 2016.

717 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H.,
718 Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao,
719 J. Q., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H.,
720 Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic
721 compounds: oxidation, mechanisms, and organic aerosol, *Atmos Chem Phys*, 17, 2103-2162, 2017.

722 Paul, D., Furgeson, A., and Osthoff, H. D.: Measurements of total peroxy and alkyl nitrate abundances in laboratory-generated gas
723 samples by thermal dissociation cavity ring-down spectroscopy, *Rev. Sci. Instrum.*, 80, 2009.

724 Paul, D. and Osthoff, H. D.: Absolute Measurements of Total Peroxy Nitrate Mixing Ratios by Thermal Dissociation Blue Diode Laser
725 Cavity Ring-Down Spectroscopy, *Anal Chem*, 82, 6695-6703, 2010.

726 Perring, A. E., Bertram, T. H., Wooldridge, P. J., Fried, A., Heikes, B. G., Dibb, J., Crounse, J. D., Wennberg, P. O., Blake, N. J., Blake,
727 D. R., Brune, W. H., Singh, H. B., and Cohen, R. C.: Airborne observations of total RONO₂: new constraints on the yield and lifetime
728 of isoprene nitrates, *Atmos. Chem. Phys.*, 9, 1451-1463, 2009.

729 Perring, A. E., Pusede, S. E., and Cohen, R. C.: An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional
730 Nitrates on Ozone and Secondary Organic Aerosol, *Chemical Reviews*, 113, 5848-5870, 2013.

731 Reisen, F., Aschmann, S. M., Atkinson, R., and Arey, J.: 1,4-hydroxycarbonyl products of the OH radical initiated reactions of C-5-C-8
732 n-alkanes in the presence of NO, *Environ. Sci. Technol.*, 39, 4447-4453, 2005.

733 Roberts, J. M.: THE ATMOSPHERIC CHEMISTRY OF ORGANIC NITRATES, *Atmospheric Environment Part a-General Topics*, 24,
734 243-287, 1990.

735 Roberts, J. M., Bertman, S. B., Parrish, D. D., Fehsenfeld, F. C., Jobson, B. T., and Niki, H.: Measurement of alkyl nitrates at Chebogue
736 Point, Nova Scotia during the 1993 North Atlantic Regional Experiment (NARE) intensive, *J. Geophys. Res.-Atmos.*, 103, 13569-13580,
737 1998a.

738 Roberts, J. M., Jobson, B. T., Kuster, W., Goldan, P., Murphy, P., Williams, E., Frost, G., Riemer, D., Apel, E., Stroud, C., Wiedinmyer,
739 C., and Fehsenfeld, F.: An examination of the chemistry of peroxy carboxylic nitric anhydrides and related volatile organic compounds
740 during Texas Air Quality Study 2000 using ground-based measurements, *J. Geophys. Res.-Atmos.*, 108, 2003.

741 Roberts, J. M., Williams, J., Baumann, K., Buhr, M. P., Goldan, P. D., Holloway, J., Hubler, G., Kuster, W. C., McKeen, S. A., Ryerson,
742 T. B., Trainer, M., Williams, E. J., Fehsenfeld, F. C., Bertman, S. B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M., and Young,
743 V. L.: Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study:

744 Implications for regional ozone production from biogenic hydrocarbons, *J. Geophys. Res.-Atmos.*, 103, 22473-22490, 1998b.
745 Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell,
746 L. M., and Cohen, R. C.: Evidence for NO_x Control over Nighttime SOA Formation, *Science*, 337, 1210-1212, 2012.
747 Russell, M. and Allen, D. T.: Predicting secondary organic aerosol formation rates in southeast Texas, *J Geophys Res-Atmos*, 110, 2005.
748 Sadanaga, Y., Takaji, R., Ishiyama, A., Nakajima, K., Matsuki, A., and Bandow, H.: Thermal dissociation cavity attenuated phase shift
749 spectroscopy for continuous measurement of total peroxy and organic nitrates in the clean atmosphere, *Rev. Sci. Instrum.*, 87, 2016.
750 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism,
751 MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, *Atmos. Chem. Phys.*, 3, 161-180, 2003.
752 Shardanand, S. a. R., A. D. P.: Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and
753 ultraviolet regions, *NASA Technical Note*, 1977. 1977.
754 Shu, L., Wang, T., Han, H., Xie, M., Chen, P., Li, M., and Wu, H.: Summertime ozone pollution in the Yangtze River Delta of eastern
755 China during 2013-2017: Synoptic impacts and source apportionment, *Environmental pollution* (Barking, Essex : 1987), doi:
756 10.1016/j.envpol.2019.113631, 2019. 113631-113631, 2019.
757 Simpson, I. J., Wang, T., Guo, H., Kwok, Y. H., Flocke, F., Atlas, E., Meinardi, S., Rowland, F. S., and Blake, D. R.: Long-term
758 atmospheric measurements of C-1-C-5 alkyl nitrates in the pearl river delta region of southeast China, *Atmos Environ*, 40, 1619-1632,
759 2006.
760 Slusher, D. L., Huey, L. G., Tanner, D. J., Flocke, F. M., and Roberts, J. M.: A thermal dissociation-chemical ionization mass spectrometry
761 (TD-CIMS) technique for the simultaneous measurement of peroxyacetyl nitrates and dinitrogen pentoxide, *J Geophys Res-Atmos*, 109,
762 2004.
763 Sneep, M. and Ubachs, W.: Direct measurement of the Rayleigh scattering cross section in various gases, *J. Quant. Spectrosc. Radiat.
764 Transf.*, 92, 293-310, 2005.
765 Sobanski, N., Schuladen, J., Schuster, G., Lelieveld, J., and Crowley, J. N.: A five-channel cavity ring-down spectrometer for the
766 detection of NO₂, NO₃, N₂O₅, total peroxy nitrates and total alkyl nitrates, *Atmos. Meas. Tech.*, 9, 5103-5118, 2016.
767 Sobanski, N., Thieser, J., Schuladen, J., Sauvage, C., Song, W., Williams, J., Lelieveld, J., and Crowley, J. N.: Day and night- time
768 formation of organic nitrates at a forested mountain site in south-west Germany, *Atmos Chem Phys*, 17, 4115-4130, 2017.
769 Song, J., Zhang, Y., Huang, Y., Ho, K. F., Yuan, Z., Ling, Z., Niu, X., Gao, Y., Cui, L., Louie, P. K. K., Lee, S.-c., and Lai, S.: Seasonal
770 variations of C-1-C-4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions,
771 *Chemosphere*, 194, 275-284, 2018.
772 Sun, J., Li, Z., Xue, L., Wang, T., Wang, X., Gao, J., Nie, W., Simpson, I. J., Gao, R., Blake, D. R., Chai, F., and Wang, W.: Summertime
773 C-1-C-5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms, *Atmos. Res.*,
774 204, 102-109, 2018.
775 Taha, Y. M., Saowapon, M. T., Assad, F. V., Ye, C. Z., Chen, X. N., Garner, N. M., and Osthoff, H. D.: Quantification of peroxy nitric
776 acid and peroxyacetyl nitrates using an ethane-based thermal dissociation peroxy radical chemical amplification cavity ring-down
777 spectrometer, *Atmos. Meas. Tech.*, 11, 4109-4127, 2018.
778 Talbot, R. W., Dibb, J. E., Scheuer, E. M., Bradshaw, J. D., Sandholm, S. T., Singh, H. B., Blake, D. R., Blake, N. J., Atlas, E., and
779 Flocke, F.: Tropospheric reactive odd nitrogen over the South Pacific in austral springtime, *J. Geophys. Res.-Atmos.*, 105, 6681-6694,
780 2000.
781 Tang, K., Qin, M., Fang, W., Duan, J., Meng, F., Ye, K., Zhang, H., Xie, P., He, Y., Xu, W., Liu, J., and Liu, W.: Simultaneous detection
782 of atmospheric HONO and NO₂ utilising an IBBCEAS system based on an iterative algorithm, *Atmos. Meas. Tech.*, 13, 6487-6499,
783 2020.
784 Tanimoto, H., Hirokawa, J., Kajii, Y., and Akimoto, H.: A new measurement technique of peroxyacetyl nitrate at parts per trillion by
785 volume levels: Gas chromatography/negative ion chemical ionization mass spectrometry, *J. Geophys. Res.-Atmos.*, 104, 21343-21354,
786 1999.
787 Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per Trillion Mixing Ratios by Thermal

788 Dissociation Cavity Ring-Down Spectroscopy, *Anal. Chem.*, 83, 2761-2766, 2011.

789 Thalman, R., Baeza-Romero, M. T., Ball, S. M., Borras, E., Daniels, M. J. S., Goodall, I. C. A., Henry, S. B., Karl, T., Keutsch, F. N.,
790 Kim, S., Mak, J., Monks, P. S., Munoz, A., Orlando, J., Peppe, S., Rickard, A. R., Rodenas, M., Sanchez, P., Seco, R., Su, L., Tyndall,
791 G., Vazquez, M., Vera, T., Waxman, E., and Volkamer, R.: Instrument intercomparison of glyoxal, methyl glyoxal and NO₂ under
792 simulated atmospheric conditions, *Atmos. Meas. Tech.*, 8, 1835-1862, 2015.

793 Thalman, R. and Volkamer, R.: Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl
794 glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode, *Atmos. Meas. Tech.*, 3, 1797-1814, 2010.

795 Thieser, J., Schuster, G., Schuladen, J., Phillips, G. J., Reiffs, A., Pachatka, U., Pohler, D., Lelieveld, J., and Crowley, J. N.: A two-
796 channel thermal dissociation cavity ring-down spectrometer for the detection of ambient NO₂, RO₂NO₂ and RONO₂, *Atmos. Meas. Tech.*,
797 9, 553-576, 2016.

798 Vandaele, A. C., Hermans, C., Fally, S., Carleer, M., Colin, R., Merienne, M. F., Jenouvrier, A., and Coquart, B.: High-resolution Fourier
799 transform measurement of the NO₂ visible and near-infrared absorption cross sections: Temperature and pressure effects, *J. Geophys.
800 Res.-Atmos.*, 107, 13, 2002.

801 Vasquez, K. T., Crounse, J. D., Schulze, B. C., Bates, K. H., Teng, A. P., Xu, L., Allen, H. M., and Wennberg, P. O.: Rapid hydrolysis of
802 tertiary isoprene nitrate efficiently removes NO_x from the atmosphere, *Proc. Natl. Acad. Sci. U. S. A.*, 117, 33011-33016, 2020.

803 Vaughan, S., Gherman, T., Ruth, A. A., and Orphal, J.: Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine
804 boundary layer species I-2, IO and OIO, *Phys. Chem. Chem. Phys.*, 10, 4471-4477, 2008.

805 Venables, D. S., Gherman, T., Orphal, J., Wenger, J. C., and Ruth, A. A.: High sensitivity in situ monitoring of NO₃ in an atmospheric
806 simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy, *Environ. Sci. Technol.*, 40, 6758-6763, 2006.

807 Ventrillard-Courtillot, I., O'Brien, E. S., Kassi, S., Mejean, G., and Romanini, D.: Incoherent broad-band cavity-enhanced absorption
808 spectroscopy for simultaneous trace measurements of NO₂ and NO₃ with a LED source, *Appl. Phys. B-Lasers Opt.*, 101, 661-669, 2010.

809 Ventrillard, I., Xueref-Remy, I., Schmidt, M., Kwok, C. Y., Fain, X., and Romanini, D.: Comparison of optical-feedback cavity-enhanced
810 absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration, *Atmos.
811 Meas. Tech.*, 10, 1803-1812, 2017.

812 Voigt, S., Orphal, J., and Burrows, J. P.: The temperature and pressure dependence of the absorption cross-sections of NO₂ in the 250-
813 800 nm region measured by Fourier-transform spectroscopy, *J. Photoch. Photobio. A*, 149, 1-7, 2002.

814 Wang, H., Chen, J., and Lu, K.: Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient
815 NO₃ and N₂O₅: experimental setup, lab characterizations, and field applications in a polluted urban environment, *Atmos. Meas. Tech.*,
816 10, 1465-1479, 2017a.

817 Wang, T., Poon, C. N., Kwok, Y. H., and Li, Y. S.: Characterizing the temporal variability and emission patterns of pollution plumes in
818 the Pearl River Delta of China, *Atmos. Environ.*, 37, 3539-3550, 2003.

819 Wang, T., Wei, X. L., Ding, A. J., Poon, C. N., Lam, K. S., Li, Y. S., Chan, L. Y., and Anson, M.: Increasing surface ozone concentrations
820 in the background atmosphere of Southern China, 1994-2007, *Atmos. Chem. Phys.*, 9, 6217-6227, 2009.

821 Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations,
822 meteorological influences, chemical precursors, and effects, *Sci. Total Environ.*, 575, 1582-1596, 2017b.

823 Washenfelder, R. A., Attwood, A. R., Flores, J. M., Zarzana, K. J., Rudich, Y., and Brown, S. S.: Broadband cavity-enhanced absorption
824 spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde, *Atmos. Meas. Tech.*, 9, 41-52,
825 2016.

826 Washenfelder, R. A., Langford, A. O., Fuchs, H., and Brown, S. S.: Measurement of glyoxal using an incoherent broadband cavity
827 enhanced absorption spectrometer, *Atmos. Chem. Phys.*, 8, 7779-7793, 2008.

828 Watt, R. S., Laurila, T., Kaminski, C. F., and Hult, J.: Cavity Enhanced Spectroscopy of High-Temperature H₂O in the Near-Infrared
829 Using a Supercontinuum Light Source, *Appl. Spectrosc.*, 63, 1389-1395, 2009.

830 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R.
831 H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-Phase Reactions of Isoprene and Its Major Oxidation

832 Products, Chemical Reviews, 118, 3337-3390, 2018.

833 Wild, R. J., Edwards, P. M., Dube, W. P., Baumann, K., Edgerton, E. S., Quinn, P. K., Roberts, J. M., Rollins, A. W., Veres, P. R., Warneke, C., Williams, E. J., Yuan, B., and Brown, S. S.: A Measurement of Total Reactive Nitrogen, NOy, together with NO₂, NO, and O₃ via Cavity Ring-down Spectroscopy, Environ. Sci. Technol., 48, 9609-9615, 2014.

835 Womack, C. C., Neuman, J. A., Veres, P. R., Eilerman, S. J., Brock, C. A., Decker, Z. C. J., Zarzana, K. J., Dube, W. P., Wild, R. J., Wooldridge, P. J., Cohen, R. C., and Brown, S. S.: Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species, Atmos. Meas. Tech., 10, 1911-1926, 2017.

836 Wooldridge, P. J., Perring, A. E., Bertram, T. H., Flocke, F. M., Roberts, J. M., Singh, H. B., Huey, L. G., Thornton, J. A., Wolfe, G. M., Murphy, J. G., Fry, J. L., Rollins, A. W., LaFranchi, B. W., and Cohen, R. C.: Total Peroxy Nitrates (Sigma PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements, Atmos. Meas. Tech., 3, 593-607, 2010.

837 Yang, Y., Li, X., Zu, K., Lian, C., Chen, S., Dong, H., Feng, M., Liu, H., Liu, J., Lu, K., Lu, S., Ma, X., Song, D., Wang, W., Yang, S., Yang, X., Yu, X., Zhu, Y., Zeng, L., Tan, Q., and Zhang, Y.: Elucidating the effect of HONO on O₃ pollution by a case study in southwest China, The Science of the total environment, doi: 10.1016/j.scitotenv.2020.144127, 2020. 144127-144127, 2020.

838 Yi, H. M., Wu, T., Wang, G. S., Zhao, W. X., Fertein, E., Coeur, C., Gao, X. M., Zhang, W. J., and Chen, W. D.: Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy, Opt. Express, 24, 10, 2016.

839 Yin, C., Deng, X., Zou, Y., Solmon, F., Li, F., and Deng, T.: Trend analysis of surface ozone at suburban Guangzhou, China, Sci. Total Environ., 695, 2019.

840 Zare, A., Romer, P. S., Tran, N., Keutsch, F. N., Skog, K., and Cohen, R. C.: A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates, Atmos. Chem. Phys., 18, 15419-15436, 2018.

841 Zeng, L., Fan, G.-J., Lyu, X., Guo, H., Wang, J.-L., and Yao, D.: Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution, Environ. Pollut., 252, 1910-1919, 2019.

842 Zhang, H., Xu, X., Lin, W., and Wang, Y.: Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: Role of photochemical and meteorological processes, J. Environ. Sci., 26, 83-96, 2014.

843 Zhang, Y., Sun, J., Zheng, P., Chen, T., Liu, Y., Han, G., Simpson, I. J., Wang, X., Blake, D. R., Li, Z., Yang, X., Qi, Y., Wang, Q., Wang, W., and Xue, L.: Observations of C1-C5 alkyl nitrates in the Yellow River Delta, northern China: Effects of biomass burning and oil field emissions, The Science of the total environment, 656, 129-139, 2018.

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859