1 Support Information:

2

Thermal dissociation cavity enhanced absorption spectrometer for detecting RO₂NO₂ and RONO₂ in the atmosphere

- 5 Chunmeng Li¹, Haichao Wang^{1, 2, 3*}, Xiaorui Chen¹, Tianyu Zhai¹, Shiyi Chen¹, Xin Li¹, Limin
 6 Zeng¹, Keding Lu^{1,*}
- 7 ¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 8 Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
- ⁹ ² School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, 510275, China.
- 10 ³Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality
- 11 Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System,
- 12 Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
- 13 Zhuhai, 519082, China.
- 14 * Corresponding author: wanghch27@mail.sysu.edu.cn; k.lu@pku.edu.cn

17 Figure S1. The cross section of NO₂ and the normalized intensity distribution of light source at 430-460 nm. Green

- 18 line and dark green line are the absorption cross section before and after convolution. The blue line is the distribution
- 19 of the relative light intensity when pure N_2 filled the optical cavity.

20

21

22 Figure S2. The raw time series of difference in NO₂ mixing ratio between the ANs channel and the reference channel

23 when change the concentration of the PAN source. The measurements were done under the normal sampling and the

24 time resolution is 6 seconds.

Figure S3. Measurements of difference in NO₂ mixing ratio between the PNs channel and the reference channel when putting the different filters in filter holder under normal sampling. The measurements are divided into 4 groups (NO.1 - 4). The first 3 groups (NO.1 - 3) are set to measure the difference between the fresh and the used conditions, and the last one is to measure the influence of filter use. Blue points represent the results when using the fresh filters and the green points represents the situation when no filters are used. The triangles represent the results when using the used filters.

33

34

Figure S4. Measurements of the different signal of NO₂ mixing ratio in PNs channel when using the different length
 sampling tubes to measure the same PAN source. The normalized signal was calculated based on the signal of NO₂
 mixing ratio when the lengthen of sampling tube equal to zero. The error bars represent one standard deviation.

- 39
- 40 Figure S5. The simulated temperature profiles of the heated channels. Purple and red points are the temperature
- 41 distribution from the inlet of quartz tube to the end of the channel in ANs channel and PNs channel, respectively.
- 42
- 43

- 45 Figure S6. The map of the observation site in Xinjin, Chengdu during CHOOSE campaign according to Baidu
- 46 Maps. The red pentagram is the site location (Hubazi).
- 47

Figure S7. Time series of the correction factors for ONs measurements during the CHOOSE campaign as shown in Fig. 12. The yellow boxes indicate the period for the daytime. (a) the red points represent the correction factors (C1) to correct the raw concentrations of PNs in PNs channel. (b) the blue points represent the correction factors (C2) to get the raw concentrations of PNs in ANs channel. (c) the blue points represent the correction factors (C3) to correct the raw concentrations of ANs in ANs channel.

54

55

Figure S8. An example of the effect of sharp changes in NO₂ mixing ratio on the measurement of PNs and ANs.
Panels show the case on August 15, 2019. The yellow region indicates the time span for day-time. The blue, green,
and brown points represent PNs mixing ratio, ANs mixing ratio, and NO₂ mixing ratio, respectively.

59

61	Text S1 List of the chemical mechanism of the box model	
62	K1:	PAN>CH3CO3+NO2
63	K2:	CH3CO3+NO2>PAN
64	K3:	CH3CO3+NO>NO2+CH3O2
65	K4:	CH3CO3+NO3>NO2+CH3O2
66	K5:	CH3O2+NO>0.001*CH3O2NO2+0.999*CH3O+0.999*NO2
67	K6:	CH3O2+NO2>CH3O2NO2
68	K7:	CH3O2+NO3>CH3O+NO2
69	K8:	CH3O2NO2>CH3O2+NO2
70	K9:	HO2+NO>HO+NO2
71	K10:	HO2+NO2>HNO4
72	K11:	HNO4>HO2+NO2
73	K12:	HO+NO2>HNO3
74	K13:	HO+NO>HONO
75	K14:	CH3CO3>CH3CO
76	K15:	NO2+O3>NO3
77	K16:	NO3+NO>2*NO2
78	K17:	NO3+HO>HO2+NO2
79	K18:	NO3+HO2>0.7*HO+0.7*NO2+0.3*HNO3
80	K19:	NO3+NO2>NO+NO2+O2
81	K20:	NO3+NO3>2*NO2+O2
82	K21:	NO3+NO2>N2O5
83	K22:	N2O5>NO2+NO3
84	K23:	N2O5+H2O>2*HNO3
85	K24:	CH3CO3+HO2 ->0.15*CH3CO2H+0.15*O3+
86		0.41*CH3CO3H+0.44*CH3O2+0.44*HO
87	K25:	CH3O2+HO2>CH3OOH
88	K26:	CH3O2+HO2>HCHO
89	K27:	CH3OOH+HO>0.6*CH3O2+0.4*HCHO
90	K28:	HO2+HO2>H2O2+O2
91	K29:	HO2+HO2+H2O>H2O2+H2O+O2
92	K30:	HO+HO2>H2O+O2
93	K31:	CH3CO3H+HO>CH3CO3
94	K32:	CH3NO3>CH3O+NO2
95	K33:	CH3NO3+HO>HCHO+NO2
96	K34:	CH3O>HCHO+HO2
97	K35:	HO+HCHO>HO2+CO
98	K36:	CH3CO+M>CH3O2+M
99	K37:	CH3CO+O2+M>CH3CO3+M
100	K38:	CH3CO+O2>HO+CH2CO2
101	K39:	HO+CH3O2>HO2+HO2
102	K40:	HO+CH3CO3>HO2+CH3O2+CO2