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Abstract: 13 
 14 
Marine low clouds display rich mesoscale morphological types, distinct spatial patterns of cloud 15 
fields. Being able to differentiate low cloud morphology offers a tool for the research 16 
community to go one step beyond bulk cloud statistics such as cloud fraction and advance the 17 
understanding of low clouds. Here we report the progress of our project that aims to create an 18 
observational record of low cloud mesoscale morphology at a near-global (60S-60N) scale. First, 19 
a training set is created by our team members manually labeling thousands of mesoscale 20 
(128x128) MODIS scenes into six different categories: stratus, closed cellular convection, 21 
disorganized convection, open cellular convection, clustered cumulus convection, and 22 
suppressed cumulus convection. Then we train a deep convolutional neural network model 23 
using this training set to classify individual MODIS scenes at 128x128 resolution, and test it on a 24 
test set. The trained model achieves a cross-type average precision of about 93%. We apply the 25 
trained model to 16 years of data over the Southeast Pacific. The resulting climatological 26 
distribution of low cloud morphology types shows both expected and unexpected features and 27 
suggests promising potential for low cloud studies as a data product. 28 
 29 
1. Introduction 30 
Marine low clouds are important for the mass, heat, and momentum transport in the planetary 31 
boundary layer (PBL) and between the PBL and free troposphere, the radiative energy balance 32 
of the climate, and the magnitude of feedback strength under climate change. Observations of 33 
marine low clouds are indispensable for advancing our understanding of these clouds for 34 
deriving new theories and insights and for model validation and constraining. Modern satellite 35 
observations have the advantage of providing global and long-term coverage. Current satellite 36 
products offer detailed pixel-level retrievals of cloud properties such as cloud optical depth, 37 
cloud droplet effective radius, and cloud phase. Most cloud classification schemes are based on 38 
either single pixel measurements or joint-histograms of two cloud properties.  39 
 40 
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However, marine low clouds are known to have various mesoscale morphology types since first 41 
satellite observations of clouds became available (Agee and Dowell, 1974). These mesoscale 42 
morphology types are created by the characteristic patterns into which clouds are organized 43 
(Figure 1). Cloud mesoscale morphology types are not only phenological classifications of 44 
satellite images, but also manifestation of complex mixture of underlying physical processes 45 
(Atkinson and Zhang, 1996; Stevens et al., 2005; Wang and Feingold, 2009; Wood, 2012; Wood 46 
and Hartmann, 2006). These physical processes are critical for fundamental understanding and 47 
better modeling of marine low clouds because of their impact on mass, heat, and momentum 48 
transport, on radiative energy balance, and their feedbacks to climate change. Wood and 49 
Hartmann (2006) trained a two-layer neural network on probability distribution functions and 50 
2-d power spectra of liquid water path to classify cloud morphology into four categories for 51 
256x256 scenes. The method has been successfully used to analyze morphology types and 52 
associated cloud properties (McCoy et al., 2017; Muhlbauer et al., 2014).  53 
 54 
Here we introduce a NASA funded project to classify marine low cloud observations into six 55 
different mesoscale morphology types based directly on full images without engineering 56 
features. The goal is to produce a community data record that spans about two decades at 57 
near-global scales that will enable the research community to go beyond bulk cloud statistics 58 
and will advance our understanding of low-level mesoscale convective clouds through 59 
exploiting the rich spatial information content of observations. Section 2 describes the data and 60 
methodology; section 3 introduces preliminary results and section 4 gives discussions of future 61 
plans and outlook of the data product; section 5 concludes.  62 
 63 
2. Data and methods 64 
 65 
a. Data source  66 
The primary observational data for this study are from the MODerate resolution Imaging 67 
Spectrometer (MODIS) onboard the Aqua satellite. We use reflectance from channels 1 68 
(0.65µm) , 3 (0.47µm), and 4 (0.55µm) and cloud optical depth, cloud droplet effective radius, 69 
cloud mask, and cloud top height from the MODIS cloud product (Platnick et al., 2017) in 70 
building up the training set. The spatial resolution of these parameters is 1km at nadir. The 71 
cloud optical depth and effective radius retrievals are combined to produce cloud liquid water 72 
path (Platnick et al., 2017). Reflectance from channel 4 is used for deep neural network model 73 
training and inference, while the other MODIS observations and products are used for data 74 
quality control, filtering, and contextual information, as explained below. 75 
 76 
We first break MODIS images into 128x128 pixels scenes. The selection of 128x128 results from 77 
a balance because larger sizes suffer from too much mixing of different types in a scene while 78 
smaller sizes contain not enough contextual information for classification. We filter out scenes 79 
that contain significant fraction of high clouds (no more than 10%), defined as pixels with cloud 80 
top height above 6km, or whose low cloud fraction is lower than 5%. We also exclude scenes 81 
whose viewing zenith angle is greater than 45 degrees. Scenes with more than 10% land 82 
coverage are also excluded. The resulting scenes are treated as dominated by marine low 83 
clouds.  84 
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 85 
For training purpose, we create auxiliary images that contain the broad context of the scene of 86 
interest and distributions of the liquid water path and cloud top height for the scene (Figure 2). 87 
The scene image together with the auxiliary images are presented to a panel of human experts 88 
on the Zooniverse platform (www.zooniverse.org)  for manual labeling. We intend to use the 89 
same platform in the future to crowdsource the labeling task. 90 
 91 
Spatiotemporally collocated Modern-Era Retrospective analysis for Research and Applications, 92 
version 2 (MERRA-2) (Gelaro et al., 2017) data is used to provide meteorological variables for 93 
each scene.   94 
 95 
b. Morphology types  96 
Marine low cloud mesoscale morphology patterns are extremely diverse. In order to keep the 97 
task manageable, we settle on six representative types. They are stratus, closed cellular 98 
convection, disorganized cellular convection, open cellular convection, clustered cumulus, and 99 
suppressed cumulus (Figure 3). These types are by no means exhaustive given the diversity of 100 
observable patterns. However, these six types are the most common and largely representative 101 
of the data when we inspect a large collection of scenes. In the current version, each low cloud 102 
scene will be assigned one of these six types. We also believe that these types have distinct 103 
underlying physical processes. Stratus is mostly created by relatively uniform radiative cooling 104 
or driven by synoptic weather systems such as fronts while closed cellular convection is driven 105 
by radiative cooling and organized into distinctive honeycomb mesoscale patterns. 106 
Disorganized cellular convection is characterized by a combination of elements of convection 107 
and large portion of stratiform clouds that tend to have large droplet sizes and small cloud 108 
optical depths, creating their characteristic appearance. Their cellular sizes are typically larger, 109 
on the order of 100km, compared to closed cellular convection, on the order of 10km. Open 110 
cellular convection is characterized by cells that are clear in the center and exhibit vigorous 111 
shallow convection around it. These convective clouds are often precipitating based on satellite 112 
and ship-based observations, which is a likely driving force that creates and maintains this 113 
mesoscale morphology type (Wang and Feingold, 2009). Clustered cumulus convection is made 114 
up of shallow, vigorous convective elements that aggregate together, accompanied by 115 
scattered shallower and optically thinner cumulus clouds nearby. The suppressed cumulus type 116 
is dominated by individual, scattered cumulus clouds that can sometimes have patterns like 117 
lines and branches.  118 
 119 
c. Method   120 
To illustrate the difficulty of classifying morphology types using one-point statistics such as 121 
histograms, we show the mean probability density functions (PDFs) of cloud optical depth and 122 
droplet effective radius for each type in Figure 4. We randomly select 1000 scenes for each 123 
cloud type from 2006 data in the Southeast Pacific region. The significant overlap between PDFs 124 
of different types makes it quite hard to classify the scenes based on these PDFs. On the other 125 
hand, deep convolutional neural network (DCNN) models have been shown to separate 126 
complex patterns into different categories at a human level (LeCun et al., 2015). We apply a 127 
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transfer learning approach to our classification task in a supervised fashion although separate 128 
efforts of unsupervised training also seem promising (Yuan, 2019).  129 
 130 
Specifically, we use a pretrained model (Simonyan & Zisserman, 2015) as a feature extractor 131 
and fine-tune it with our training set. The pretrained model is a 16-layer DCNN that is trained 132 
on the large-scale ImageNet dataset (Deng et al., 2009). Its weights are fixed. We add three 133 
additional layers to the pretrained model, called VGG-16 and train the resulting full model on 134 
our training set, the fine-turning step. The output of the full DCNN model is a six-element 135 
vector whose elements sum up to 1 and are interpreted as the probability that the model 136 
assigns to one of the corresponding types. We assign every scene to the type that has the 137 
highest probability and therefore effectively we have a metric to measure how confident the 138 
model is for each classification, which provides useful information for users who may apply 139 
filters to the data.  140 
 141 
To build the training set, our team together with several expert level volunteers first manually 142 
labeled thousands of scenes using the Zooniverse online tool. We retain only those scenes that 143 
are unambiguously belonging to a certain type to present the best possible training set, which 144 
includes hundreds of samples for each type. We augment the training set by rotating each 145 
scene by 90 and 180 degrees and also flipping the open cellular scenes to increase their sample 146 
size. The flipping operation is achieved by mirroring the original image across a horizontal axis.  147 
 148 
3. Results 149 
Here we report results for the training, show the classification at work at a granule level and for 150 
two typical low marine low cloud regimes: winter time mid-latitude region downwind of the 151 
East Coast of US and Canada and sub-tropical Southeast Pacific region.  152 
 153 
a. Training performance 154 
The training asymptotically converges to a plateau in terms of accuracy pretty quickly, within 155 
about 30 epochs (Figure 5). Around epoch 30, the validation accuracy reaches a maximum. The 156 
training and validation accuracies are at around 98% and 93%. We save the model configuration 157 
with the best validation accuracy. After training, the model is applied to a test set that it has 158 
never seen before. The resulting confusion matrix is shown in Figure 6. The confusion matrix 159 
summarizes the classification prediction results. For each cloud type, or row, it shows the 160 
percentage of correct predictions on the diagonal and percentages of incorrect predictions off 161 
the diagonal. The trained model achieves an average precision of about 93% across different 162 
types. Open cellular and disorganized cellular convection, are the two morphology types with 163 
the lowest accuracy mainly because they had the lowest number of training samples. With 164 
further increase in training samples in the future, we are confident that corresponding 165 
accuracies can be further improved. The biggest challenge for the model comes from separating 166 
disorganized cellular, open cellular, and clustered cumulus types. It is also worth noting that 167 
there is inherent uncertainty with the classification since even expert labelers sometimes 168 
disagree on the same scenes.  169 
 170 
b. An example granule 171 
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An example of a classified MODIS granule is shown in Figure 7. The classification results are 172 
overlaid on the visible MODIS image as colored circles whose position represents the center of 173 
corresponding 128x128 scene. This is a low cloud dominated granule with a complex mix of 174 
different morphology types. The few missing scenes within the viewing zenith angle limits are 175 
due to subvisible high clouds overlapping the visible low clouds, which is not rare even for these 176 
low cloud dominated regions (Yuan and Oreopoulos, 2013), as well as a couple of scenes with 177 
too little low clouds. One can visually confirm that the model performs quite well in picking up 178 
morphology types and their transitions corroborating the results in Figure 5. It is worth noting 179 
that a scene does not have to be fully occupied by a cloud type to be classified into this 180 
particular type. For example, the scene centered around 14S and 78W is partially occupied by 181 
stratus and nonetheless classified as stratus.  182 
 183 
c. Test run over the wintertime Northwest Atlantic  184 
During the winter, there can be many cold air outbreak events over the Northwest Atlantic 185 
region. They create maritime low cloud systems with various mesoscale morphology types. We 186 
apply our model to data in winter of 2011. We first filter the raw data to include only marine 187 
low cloud scenes using the criteria discussed in section 2. The 128x128 pixel scenes are fed into 188 
the trained DCNN model for classification. For each scene, we record its morphology type, 189 
geolocation, time and save the 2-D MODIS cloud retrieval parameters such as cloud optical 190 
depth, cloud droplet effective radius, and cloud top pressure. In this run, we do not oversample 191 
the data and therefore scenes do not overlap with each other. 192 
 193 
Figure 8 shows frequency of occurrence maps for each cloud type along with surface wind 194 
vectors. Stratus clouds dominate in the Hudson Bay and Labrador Sea. They also frequently 195 
appear over waters around Newfoundland and, to a lesser degree, along the east coast of US 196 
and Canada. There is also a local maximum in the western part of the Gulf of Mexico. Closed 197 
cellular type dominates the warm water of the Gulf Stream where cold continental air meets 198 
the warm water, which induces large flux of moisture and heat from the ocean into the 199 
boundary layer and gives rise to formation of low clouds. These low clouds mostly appear as the 200 
closed cellular type according to MODIS. The disorganized type only appears in significant 201 
quantity in the subtropics away from the coast. Open cellular clouds peak in the area south of 202 
the Greenland and in the Labrador Sea and have a local maximum that is centered around 203 
60oW and 35oN. Both are downwind of the closed cellular cloud peaks. The clustered and 204 
suppressed cumulus clouds mostly occur in the subtropics and tropics.  205 
 206 
d. Results over the Southeast Pacific region 207 
We obtained all relevant Aqua MODIS level-1b and level-2 files for the Southeast Pacific region 208 
(5oS-45oS, 70oW-125oW) between 2003 and 2018. The total volume of data is about 30 Tb. This 209 
region is well known for the semi-permanent stratocumulus clouds. 210 
 211 
Figure 9 shows the 16-year climatology of sea surface temperature (SST), estimated inversion 212 
strength (EIS) (Wood and Bretherton, 2006), and frequency of occurrence maps for each 213 
morphology type in the Southeast Pacific region. The frequency is normalized by the number of 214 
total MODIS scenes, including both low cloud and non-low cloud ones.  215 
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 216 
Stratus clouds predominantly occur near coastal upwelling regions in the subtropics as well as 217 
in the mid-latitude regions south of 40 degrees. Both features agree with our expectations. 218 
Stratus can still occur in other parts of the domain, but with frequencies generally below 10%. 219 
Their frequency significantly drops away from the local maxima in the mid-latitudes and along 220 
the coast. The local maxima of stratus occurrence frequency coincide spatially with cold SST. 221 
 222 
The closed cellular type occurs most frequently about five hundred kilometers away from the 223 
coastlines. The absolute maximum is located around 27oS and 75oW, which is also where EIS 224 
peaks. Indeed, the frequency of closed cellular type roughly correlates with the EIS pattern. The 225 
frequency of this type drops off from its peak location more gradually compared to that of the 226 
stratus. Its frequency is nevertheless below 10% west of 90oW and the direction of the 227 
frequency of occurrence gradient is almost east to west. The location of peak frequency for the 228 
disorganized type is further away from the coast and occurs around 21oS and 89oW. The 229 
frequency map of this type also has an overall correlation with the EIS west of 90oW.  230 
 231 
The frequency map for the open cellular type is the most distinct. Its peak features a bullseye 232 
pattern and occurs further downwind of the peak of the disorganized type, with a peak 233 
frequency of only about 10%. This type also appears relatively frequently in the mid-latitudes 234 
associated with mid-latitude cyclones. Its spatial pattern has no direct correlation with either 235 
EIS or SST patterns, possibly implying internal mechanisms that are responsible for their 236 
appearances. Both the closed and open cellular locations agree qualitatively with the findings 237 
from Wood and Hartmann (2006), although the addition of other cloud types resulted in lower 238 
frequencies of these types in our dataset. It is also worth mentioning that the disorganized 239 
cellular type has a different geographic occurrence when compared to Wood and Hartmann 240 
(2006). This is because under that classification scheme, ‘disorganized’ includes the bulk of 241 
scenes which we classify as suppressed and clustered; the more narrowly-defined disorganized 242 
cellular type in our classification is geographically more closely associated with the other 243 
cellular cloud types. The clustered cumulus type occurrence appears to have a general 244 
anticorrelation with the EIS map. The suppressed cumulus type occurs most frequently in the 245 
tropics where the SST is the warmest.  246 
 247 
4. Discussions and future work 248 
a. Notable new insights 249 
Open cellular clouds are less prevalent than previously thought (Atkinson and Zhang, 1996; 250 
McCoy et al., 2017; Muhlbauer et al., 2014), especially in subtropical regions. We attribute this 251 
to the combination of advanced quantitative observation techniques developed here and the 252 
delineation of clustered cumulus and open cellular types. The early studies did not have 253 
comprehensive observations to rely on. The more recent results may have included the two 254 
types together into the open cellular type, which overestimated the occurrence frequency of 255 
the open cellular type in the subtropics. However, given the relatively minor presence of 256 
clustered cumulus type in the midlatitudes, the open cellular type may indeed be quite 257 
prevalent there, which agrees with previous studies. 258 
 259 
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There is a strong spatial correlation between both EIS and SST and the frequency of stratus in 260 
two regions analyzed, especially north of 35oN, suggesting a strong control of atmospheric 261 
stability and cold SST on this cloud type in higher latitude regions. Their control on other cloud 262 
types may not be as tight given the loose spatial correspondence between both EIS and SST and 263 
frequency of other cloud types, implying either other large-scale variables are in control or 264 
internal cloud processes are more important. We will leave such explorations for future studies. 265 
 266 
b. Expanding the scale of test runs and further analysis 267 
We plan to expand the test run to near-global scales for about two years. These runs will 268 
include time periods that overlap those of several field campaigns that have rich in-situ and 269 
ground and airborne remote sensing data. Together with these datasets, the satellite product 270 
will help to advance the understanding of low cloud mesoscale morphology. The global scale 271 
will also allow us to examine the general distributions of morphology types and intercompare 272 
the characteristics of low cloud morphology in different ocean basins. Further data analysis of 273 
the current test run and future runs will target questions related to the variability of low cloud 274 
morphology and its driving forces. We plan to release part or all of the test run results to beta 275 
testers for feedback and test use from the community.  276 
 277 
c. Collocating with other satellite sensors and meteorology  278 
We plan to collocate each classified low cloud scene with data from sensors like CloudSat cloud 279 
profiling radar, CALIOP lidar, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E 280 
and AMSR-2), and Atmospheric InfraRed Sounder (AIRS) as well as the MERRA-2 reanalysis 281 
products. Such collocated set of variables will be useful to the research community for studying 282 
the behavior of low cloud morphology under different environmental conditions 283 
 284 
d. Further improvement of the model 285 
The current model works pretty well overall, particularly for closed cellular, suppressed 286 
cumulus and clustered cumulus types. However, there is room to improve for other types. We 287 
target two fronts for improvement: improving the model itself and increasing the quality and 288 
quantity of training data. For the former goal, we plan to test different pre-trained models and 289 
what features to keep and how to best set up the classifier on top of these extracted feature 290 
vectors. For the latter goal, we have developed analysis tools to help us understand the 291 
agreement among human experts in the training set. This helps us to target types that need the 292 
improvement. We will use the Zooniverse tool to achieve this. Further increase in training data 293 
also allows us to better characterize the uncertainty in expert labeling of each category. We are 294 
looking for expert level volunteers to join us to increase the training sample size.   295 
 296 
e. Increasing the number of types 297 
Some of the mesoscale types can be further divided into subtypes. For example, the frequency 298 
of suppressed cumulus type is quite high in the low latitudes and based on the manual labeling 299 
they could be further divided into multiple subtypes. We will explore the feasibility of this by 300 
assessing resource constraints and the feedback from the community.  301 
 302 
 303 
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5. Conclusions 304 
We have developed a working deep neural network model to automatically classify cloudy 305 
scenes into six mesoscale morphology types. Initial test run results showed promising results 306 
for the Southeast Pacific and Northwest Atlantic. Using the tool, we plan to extend the dataset 307 
and create a community mesoscale morphology type product for low marine clouds observed 308 
by MODIS. We will further develop the product and actively look forward to community 309 
involvement such as beta testing, volunteering, and user feedback.  310 
 311 
 312 

 313 
Figure 1: A full disk image of GOES-16 on Aug 6, 2018 and six scenes of MODIS images at smaller 314 
scales representing different morphology types at corresponding locations in the GOES image. 315 
Except scene 1, all scenes are from the same day. Scene 1 is from a different day because there 316 
was no representative stratus scenes on this day in the Southeast Pacific region.   317 
 318 
 319 
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 320 
Figure 2: the Zooniverse interface for manual labelling. The center image is made up of five 321 
panels. Panel a shows the full granule (usually 2030x1350 pixels) true color image for large 322 
context. Panel b shows a portion of the granule immediately surrounding the scene to be 323 
labelled, outlined by the red square. Panel c shows the visible scene image while panels d and e 324 
show the cloud top height and LWP fields in the scene to be labelled. The panels to the right of 325 
the center image show labelling choices. The tutorial document is available by clicking on the 326 
‘FIELD GUIDE’ tab on the right side. Additional options for scenes with heavily mixed types, 327 
scenes with sea ice, or scenes with other issues are found in the ‘other’ menu. The image is a 328 
screenshot of our Zooniverse project. 329 
 330 
 331 

 332 
 333 
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Figure 3: Example scenes of MODIS single channel images for the six different types. From left 334 
to right: stratus, closed cellular, disorganized cellular, open cellular, clustered cumulus, and 335 
suppressed cumulus types. Images taken by the NASA MODIS. 336 
 337 

 338 
 339 
Figure 4: PDFs of cloud optical depth and cloud effective radius for six morphology types. We 340 
randomly selected 1000 samples for each type and mean distributions are shown here. 341 
Significant overlaps are observed for PDFs of both variables among different morphology types.  342 
 343 
 344 

 345 
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Figure 5: Training (upper two panels) and validation (lower ones) accuracy and loss trajectories. 346 
By around epoch 30, the validation accuracy peaks while validation loss bottoms out and the 347 
training loss and accuracy asymptotically reach their minimum and maximum, respectively, 348 
which indicates further training may be overfitting the model.  349 
 350 

 351 
Figure 6: Confusion matrix of the model predictions on test data.  352 
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 353 
Figure 7: An example granule illustrating the results of the classification algorithm. This is quite 354 
a complex granule with different morphology types mixed together. The left and right margins 355 
are not classified because current algorithm filters out scenes whose sensor viewing zenith 356 
angles are greater than 45 degrees. The image is taken by NASA MODIS. 357 
 358 
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 359 
 360 
Figure 8: Frequency distributions of six morphology types obtained from the classification 361 
algorithm in the Northwest Atlantic region off the east coasts of US and Canada in the winter of 362 
2011. The top two panels show the SST and EIS distributions using MERRA-2. Seasonal mean 363 
wind vectors at 850hPa are plotted to illustrate the flow. We double the values for frequency of 364 
the open-cellular type to make them numerically comparable with other types. 365 
 366 
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 367 
Figure 9: Frequency distributions of various morphology types obtained from the classification 368 
algorithm in the subtropical eastern Pacific off the coast of South America for the period 2003-369 
2018. The top two panels show the SST and EIS climatology from MERRA-2 for the same period. 370 
Note the doubling of scale on the stratus and open-cellular types. 371 
 372 
6. Author Contribution 373 



 15 

T. Y. implemented the method to train the network model. H. S., J. M., and T.Y. prepared the 374 
training data. All co-authors contributed to compiling the training dataset. T. Y. wrote the 375 
manuscript with contributions from all co-authors.  376 
 377 

7. Reference 378 
Agee, E. M., & Dowell, K. E. (1974). Observational Studies of Mesoscale Cellular Convection. 379 

Journal of Applied Meteorology, 13(1), 46–53. https://doi.org/10.1175/1520-380 

0450(1974)013<0046:OSOMCC>2.0.CO;2 381 

Atkinson, B. W., & Zhang, W. J. (1996). Mesoscale shallow convection in the atmosphere. 382 

Reviews Of Geophysics, 34(4), 403–431. https://doi.org/10.1029/96RG02623 383 

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale 384 

hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern 385 

Recognition (pp. 248–255). https://doi.org/10.1109/CVPR.2009.5206848 386 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The 387 

Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). 388 

Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 389 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 390 

https://doi.org/10.1038/nature14539 391 

McCoy, I. L., Wood, R., & Fletcher, J. K. (2017). Identifying Meteorological Controls on Open and 392 

Closed Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks. 393 

Journal of Geophysical Research: Atmospheres, 122(21), 11,678-11,702. 394 

https://doi.org/10.1002/2017JD027031 395 



 16 

Muhlbauer, A., McCoy, I. L., & Wood, R. (2014). Climatology of stratocumulus cloud 396 

morphologies: microphysical properties and radiative effects. Atmospheric Chemistry 397 

And Physics, 14(13), 6695–6716. https://doi.org/10.5194/acp-14-6695-2014 398 

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., et al. (2017). The 399 

MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples 400 

From Terra and Aqua. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 502–401 

525. https://doi.org/10.1109/TGRS.2016.2610522 402 

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image 403 

Recognition. ArXiv:1409.1556 [Cs]. Retrieved from http://arxiv.org/abs/1409.1556 404 

Stevens, B., Vali, G., Comstock, K., Wood, R., van Zanten, M. C., Austin, P. H., et al. (2005). 405 

Pockets of open cells and drizzle in marine stratocumulus. Bulletin Of The American 406 

Meteorological Society, 86(1), 51—-. https://doi.org/10.1175/BAMS-86-1-51 407 

Wang, H., & Feingold, G. (2009). Modeling mesoscale cellular structures and drizzle in marine 408 

stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. 409 

Journal Of The Atmospheric Sciences, 66(11), 3237–3256. 410 

https://doi.org/10.1175/2009JAS3022.1 411 

Wood, R, & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover 412 

and lower-tropospheric stability. Journal Of Climate. Retrieved from 413 

http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3988.1 414 

Wood, Robert. (2012). Stratocumulus Clouds. Monthly Weather Review, 140(8), 2373–2423. 415 

https://doi.org/10.1175/MWR-D-11-00121.1 416 



 17 

Wood, Robert, & Hartmann, D. L. (2006). Spatial variability of liquid water path in marine low 417 

cloud: The importance of mesoscale cellular convection. Journal Of Climate, 19(9), 418 

1748–1764. 419 

Yuan, T. (2019). Understanding Low Cloud Mesoscale Morphology with an Information 420 

Maximizing Generative Adversarial Network. https://doi.org/10.31223/osf.io/gvebt 421 

Yuan, T., & Oreopoulos, L. (2013). On the global character of overlap between low and high 422 

clouds. Geophysical Research Letters, 40(19), 5320–5326. 423 

https://doi.org/10.1002/grl.50871 424 

 425 

 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 




