
The authors thank the reviewers for their helpful comments. Reviewer comments are reproduced here in 

red, while our responses are indicated in blue. Where applicable, passages from the manuscript have been 

reproduced.  

We would also like to note a slight change in methodology compared with the initial version of this paper. 

In the revision, we use AOD at either 470nm or 550nm as independent variables in the regression, whereas 

before both were used. Because of the high correlation of these two variables, there was little added 

value to including both, and in fact this led to worse performance for certain datasets with minimal 

initialization data. By instead using only one of the two variables, the results are generally more robust. 

Reviewer 1 

The goal of this paper is to assess the conversion of satellite AOD values (not measurements)… 

References to satellite AOD “measurements” have been modified throughout the paper; we refer to these 

instead as AOD data or AOD retrievals. 

Most of my comments are for PA since the paper focuses on this region. 

The study region is very small 0.7 degrees by 0.7 degrees. The paper definitely needs a map of some sort 

showing the location of the regulation grade monitors and the location of the low cost sensors since I have 

no idea how close are far away these sensors are! 

Additional maps for the ground calibration sites have been included in the supplemental information as 

Figures S4 through S9, with background maps including local landmark and scale information. 

The paper never discusses as to how space-time collocation was done for the ground versus satellite data. 

The results vary depending upon the width of the time and space windows. The paper also does not 

provide the slope/intercept values for these linear correlations. 

This discussion has been included in Section 2.4 (lines 216-218): 

“Satellite AOD data are considered to be collocated in space with data from a ground site when 

the center of the AOD pixel is within 1 km of the ground site. Data are considered concurrent if 

the satellite overpass occurs within the hour interval over which ground site data have been 

averaged to arrive at the hourly-average PM2.5 concentration value used.”   

Slope and intercept values have been included in the supplemental information, Section S3.1. 

The range of annual values in PA was low and the satellite data and the low cost sensors have larger 

uncertainties in this range and therefore the results may not be robust. Given this backdrop I am not sure 

how meaningful the PA results are. This is probably the main reason that the correlations are low – Page 

11 (Line 325+). Not sure about the usefulness of an offline approach where only a single conversion factor 

is used. Why report these values when we know that this is not relevant? 

In the Pittsburgh area, we are able to analyze the effect of ground monitoring network density, which is 

not possible with the currently sparsely-monitored African locations. Section 3.2 shows that the satellite 

AOD to surface PM conversion uncertainty reduces meaningfully for up to about ten low-cost sensors over 

the 600 square kilometer area, which is useful guidance for future low-cost sensor deployments, including 

those planned for African cities. Further, the results for Pittsburgh are presented to provide a baseline 



and contrast for the results obtained for Sub-Saharan Africa, where the low-cost sensor and satellite data 

combination is thus seen to be quite valuable. A single conversion factor is used as it represents the 

simplest and most robust calibration method, while more sophisticated calibrations might be subject to 

over-fitting to the calibration data sets. Results are presented for the offline approach as a baseline to 

compare with an online approach, to assess what benefit if any the online approach provides.  

Page 11, Line 319. What is the cloud cover for each site and how does it affect annual average AOD? Given 

some of the issues mentioned above I am not sure that page 12 (line 24-244) conclusion is acceptable. 

Also given that the linear correlation has so many problems, using satellite data and ground monitors to 

assess the linear relationship is fraught with uncertainties. 

Information on satellite data coverage is included in the supplemental information, Tables S2 and S3. 

However, since we do not consider long-term average values in this work, we only compare cloud-free 

AOD to surface PM measurements taken at approximately the same time (i.e. as the hourly average value 

for the period in which the satellite overpass occurs). Therefore, there will be no issues related to sampling 

bias for only using data from cloud-free days in these comparisons, as would be the case if we were looking 

at longer averaging periods. 

Although we agree that the methods presented have numerous inherent uncertainties, a major goal of 

this paper is to assess whether, even with such uncertainties, useful results can be obtained by combining 

low-cost sensor and satellite data. We find that this is the case, at least in the context of Sub-Saharan 

Africa where signal-to-noise ratios can be higher and there is very little ground-based monitoring. 

In summary, I believe that low cost sensors play an important role for PM2.5 research but unless calibration 

issues and comparisons with ground monitors of regulation grade are made carefully as a function of 

space, time, meteorology we cannot be sure how useful the data can be for quantitative monitoring, 

assessment, and research (e.g. epidemiology). It is also not fair to state that (Page 16, line 482) that using 

the nearest monitor is better than using satellite data because none of the meteorological factors have 

been taken into account for estimating PM2.5 from satellite data. 

Careful corrections by collocation-based comparison of low-cost PM sensors with regulatory-grade 

monitors and different methodological approaches in the Pittsburgh context have been the subject of a 

previous paper (Malings et al. 2019b as cited in the paper, DOI 10.1080/02786826.2019.1623863). We 

have included, where possible, performance assessments for the low-cost monitors in other contexts, but 

this is a subject of ongoing work and beyond the scope of this paper. Rather, this paper represents a 

preliminary attempt to quantify the usefulness of simple linear relationships between AOD and ground 

PM from low-cost sensors, even taking into account any inherent uncertainties these instruments may 

have. 

We did not mean to assert that the use of nearby sensors was always better than using satellite data in 

all contexts, but merely within the current high-spatial-density monitoring network in Pittsburgh and the 

confines of the linear conversion method applied. This statement has been clarified in the text (lines 501-

504): 

“However, it was found that for Pittsburgh, with a relatively dense low-cost sensor network 

(median inter-site distance of about 1 km) and low PM2.5 concentrations, use of the nearest 



ground measurement sites outperformed the use of satellite AOD data to estimate surface PM2.5 

using linear conversions.” 

Minor comments  

Wang and Christopher, 2003 – Not Wang, 2003  

We apologize for the oversight. This has been corrected. 

Some of the references are outdated. E.g. Zhang et al 2009 for correlation coefficients.  

This particular reference has been removed in Section 3.1, but has been retained in the Introduction for 

its value in providing general background information on AOD to surface PM correlations. 

Page 3 : What spatial/temporal scales did Murray et al used  

This paper made use of 12-km spatial scale data at daily temporal resolution. This has been noted in the 

text (lines 86-88): 

“Methods incorporating the outputs of chemical transport models (in this case at lower spatial 

resolutions of 12 km compared to the 1 km AOD resolution, and at daily temporal resolution) can 

further improve these results (e.g. Murray et al., 2019).” 

Page 3 : Not all studies find ‘anti-correlation’ in India.  

Thank you for pointing this out. Since our present work does not cover India, this information is not strictly 

relevant, and so we no longer reference it in the paper. 

Page 3: Last sentence needs a reference  

Low-cost sensor and reference monitor typical prices are based on manufacturer prices in our experience 

from the past several years. This has been stated (lines 103-107): 

“Low-cost air quality monitors have much lower purchase and operational costs in contrast to 

traditional or regulatory-grade monitors (Snyder et al., 2013; Mead et al., 2013). For example, a 

lower-cost multi-pollutant monitor (measuring gases and PM) costs a few thousand US dollars; 

single-pollutant PM sensors can cost just a few hundred US dollars. A comparable multi-pollutant 

suite of traditional air quality monitoring instruments would cost a hundred thousand US dollars 

or more; a regulatory-grade PM monitor can cost tens of thousands of US dollar (based on recent 

manufacturer quotations).” 

Page 3: The cloud cover problems needs to be addressed and referenced. Christopher & Gupta (2010) 

Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem, Journal of the Air & 

Waste Management Association, 60:5, 596-602, DOI: 10.3155/1047-3289.60.5.596  

This reference has been added to the introduction section (lines 67-70): 

“Cloud cover also makes AOD retrievals impossible; the frequency of cloudy days in an area can 

therefore make it difficult to establish reliable relationships between AOD and surface PM, 

although this is not likely to be a concern for the continental US (Christopher and Gupta, 2010; 

Belle et al., 2017).” 



The cloud cover problem can be important for long-term averages. As noted previously, cloud cover is not 

an issue in our comparisons because we focus on hourly data during cloud-free periods (lines 218-223): 

“As we compare data from individual satellite passes directly to temporally collocated ground site 

data, we do not need to consider (as would be essential for long-term averages) the potential 

impact of the fraction of time where satellite measures are missing (due to cloud cover or other 

factors). Likewise, we do not consider the biases associated with the fact that satellite passes 

occur at certain times of day (required when comparing with daily-averaged ground monitoring 

data) since here we only compare AOD to surface PM2.5 during the same hour when the satellite 

pass occurs.” 

Page 4: Errors cannot average out and it depends on the range of PM2.5 values and a host of other factors.  

This was a conjecture as to possible future applications of satellite and low-cost sensor data. The sentence 

has been removed. 

Section 2.1.1 to 2.1.3 belongs in a Table rather than a few sentences of text  

We thank the reviewer for this suggestion. The information presented in these sections, as well as basic 

details of the study areas, have been presented in Tables 1 and 2. 

Page 5: Line 1 : Here not hare  

This has been corrected. 

Page 7 says ‘as summarized in 2.1.4’ but 2.1.4 does not describe calibration in any detail. Erroneous data 

screening for negative values is easy but doing this manually for the entire low cost network is not 

possible.  

A full presentation of the calibration methods is beyond the scope of this work, and is more fully covered 

in the cited publication (Malings et al., 2019b). While it is true that manual error detection and elimination 

for a large network of sensors is difficult, it can be aided through the use of certain automatic processes. 

While we seek to present data that has been calibrated and validated to the best of our abilities, we 

acknowledge that fool-proof error detection and correction is not possible. Such errors are a source of 

uncertainty in the present work, and one of our major goals with this paper is to demonstrate and quantify 

the extent to which low-cost sensor data, even with these uncertainties, can provide additional 

information to support the conversion of AOD to surface PM2.5. 

Additional details have been provided in the text (Section 2.1, lines 160-170): 

“Collected data are down-averaged from their device-specific collection frequencies to a common 

hourly timescale. Erroneous data identified either automatically (e.g. negative concentration 

values or unrealistically high or low values) or manually (e.g. devices exhibiting abnormal 

performance characteristics identified during periodic inspections) are removed. To correct for 

particle hygroscopic growth effects (i.e. the impact of ambient humidity on the PM mass as 

measured by the low-cost sensors), previously developed calibration methods (Malings et al., 

2019b) were implemented for the NPM and PA-II sensors. Briefly, first, a hygroscopic growth 

factor is computed using the local humidity and temperature as measured by the low-cost 

monitor itself, along with an average or typical particle composition. Then, a linear correction is 



applied to the data based on past collocations with regulatory-grade monitoring instruments. 

Utilizing these methods, the uncertainties on hourly average PM2.5 concentration are about 4 

µg/m3 (Malings et al., 2019b). For the Alphasense OPC sensors, raw bin count numbers were 

integrated to produce a new concentration estimate for PM2.5, and a similar relative humidity 

correction was applied (Di Antonio et al., 2018).” 

Page 6: Line 180-183 says the data are scaled for workdays and non work days. This type of scaling may 

work for this study but how about other regions?  

Indeed, different scaling factors may be necessary in other regions, and this is the subject of ongoing 

research on the generalizability of low-cost sensor calibration approaches across the vast continent of 

Africa. For the purposes of this paper, we seek to use data from low-cost sensors which represent the best 

available practices in each instance. Therefore, we have included scaling factors in Rwanda based on 

applicable local comparisons and calibration. Since we are using linear methods, the presence or absence 

of linear scaling factors that are equally applied to both training and testing sets of low-cost sensor data 

should not influence the assessment of the methodology.  

Page 8: The satellite data needs some description with a proper journal reference. Briefly, how was AOD 

retrieved, what are the uncertainties, how much cloud cover for the analysis, what quality flags were used, 

etc. 

A more complete description of the satellite data has been provided in Section 2.4 (lines 205-223): 

“The satellite data product used in this paper is the MODIS MCD19A2v006 dataset (Lyapustin and 

Wang, 2018) available through NASA’s Earth Data Portal (earthdata.nasa.gov). This dataset 

consists of AOD information for the 470nm and 550nm wavelengths from the MODIS system, 

processed using the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, 

and presented at 1 km pixel resolution for every overpass of either the Aqua or Terra satellites 

(Lyapustin et al., 2011a, 2011b, 2012, 2018). This represents a Level 2 data product, meaning that 

it includes geophysical variables derived from raw satellite data, but has not yet been transformed 

to a new temporal or spatial resolution, as is the case for data derived from multiple satellite 

passes, e.g. monthly average AOD data. Data from identified cloudy pixels are masked as part of 

the data product; possible misidentification of cloudy pixels is one source of error in relating 

surface PM2.5 and AOD. As per recommendations in the User Guide for this dataset, only data 

matching “best quality” quality assurance criteria are used. This dataset was chosen as it 

represents the highest possible spatial and temporal resolution for AOD, thus providing the most 

points for comparison with the high spatio-temporal resolution low-cost monitor data.  

Satellite AOD data are considered to be collocated in space with data from a ground site when 

the center of the AOD pixel is within 1 km of the ground site. Data are considered concurrent if 

the satellite overpass occurs within the hour interval over which ground site data have been 

averaged to arrive at the hourly-average PM2.5 concentration value used. As we compare data 

from individual satellite passes directly to temporally collocated ground site data, we do not need 

to consider (as would be essential for long-term averages) the potential impact of the fraction of 

time where satellite measures are missing (due to cloud cover or other factors). Likewise, we do 

not consider the biases associated with the fact that satellite passes occur at certain times of day 



(required when comparing with daily-averaged ground monitoring data) since here we only 

compare AOD to surface PM2.5 during the same hour when the satellite pass occurs.” 

Additional details on the cloud cover and uncertainty analysis are included in the supplemental 

information, Tables S2 and S3. 

Reviewer 2 

General Comments 

The majority of the results section focuses on the analysis for the Pittsburgh region. The goal of the paper 

is to assess the utility of low-cost sensors in deriving satellite AOD conversion factors, however, the results 

for Pittsburgh seem to suggest that ground monitor data overall performs poorly as a data source for the 

conversions over the region, at least in terms of correlations. As the authors note, this is likely due to the 

low concentrations being within the range of signal-to-noise in the sensors. This makes the results less 

meaningful, because it is difficult to determine whether the results are reflecting the ability of the low-

cost sensors to be data sources for the satellite AOD conversion, or whether the results are just 

overwhelmed by the uncertainties in the measurements, and undermines the authors’ conclusions that 

low-cost sensors perform just as well if not slightly better than the regulatory grade monitors in this 

region. 

One of the major motivations for including the results from Pittsburgh is to present a baseline case for a 

densely monitored (with both regulatory and low-cost monitors) region in order to contrast with results 

from more sparsely monitored locations in Rwanda and elsewhere. In particular, although we agree that 

overall performance of the satellite AOD to ground PM2.5 conversion is rather poor in the conditions of 

Pittsburgh, it is at least consistent for both ground data sources (regulatory reference instruments and 

low-cost monitors). Note that the typical PM2.5 concentrations in Pittsburgh (an inter-quartile range of 6 

to 12 µg/m3) are still above the hourly-average measurement uncertainty (3 to 4 µg/m3) of the low-cost 

sensors. Considering the reasonable agreement between low-cost and regulatory-grade monitors 

identified in previous work, together with the observation from this work that performance is not 

noticeably disadvantaged by the substitution of regulatory-grade for low-cost monitors, we believe it is 

reasonable to assume that most of the poor performance of the satellite AOD to ground PM2.5 conversion 

is due to the inherent difficulties of this problem and the low-concentration regime of Pittsburgh, rather 

than the data quality of the ground source. We have restated the conclusion based on our comparative 

analysis of low-cost and regulatory-grade instruments in Pittsburgh to better emphasize this (lines 389-

396): 

“In all cases, performances using low-cost sensor data are comparable to that of the same 

conversion approaches utilizing the regulatory-grade instruments. Note that the low-cost 

monitors used here have been carefully corrected by collocation with regulatory-grade monitors 

(Malings et al., 2019b) which accounts for known artefacts with low-cost sensors. Thus, there is 

no evidence from this analysis of any inherent disadvantage to the use of carefully corrected low-

cost sensors to provide ground data as compared to more traditional instruments. Rather, based 

on these results, any additional uncertainty due to data quality differences between low-cost 

sensors and regulatory-grade instruments are seen to be negligible compared to the difficulties 

associated with relating satellite AOD to surface-level PM2.5, and therefore have had no systematic 

impact on the performance of the assessed linear conversion method, at least for this study area.” 



The analysis over Africa appears to be more promising, but much less time is spent discussing those 

results. The authors may be better suited by more prominently presenting the analysis over Africa. Low-

cost sensor data would provide more benefit over regions such as Africa where the regulatory grade 

monitors are sparse; there already exist dense regulatory grade monitors over North America, so focusing 

more on the analysis over Africa would be of greater interest. Describing in detail the comparison of low-

cost sensors and regulatory grade monitors in Pittsburgh would make sense if the results were 

meaningful, as they would provide a meaningful evaluation of the ability of the low-cost sensors to be 

used to convert satellite AOD in general, but in this case the results seem to suggest the method just 

doesn’t work over Pittsburgh, and does little to provide confidence in the low-cost sensor only analysis 

over Africa. 

We thank the reviewer for recognizing the potential benefit of low-cost sensors for Africa. This is a point 

we seek to make and support quantitatively through the results presented in this paper. We have 

expanded our discussion of results in Africa to increase the relative emphasis placed on these results. We 

have also reorganized the paper somewhat and restructured the discussion of the results, including a new 

figure related to this discussion (Figure 6) to better emphasize the relative significance and importance of 

the results for Africa. However, we feel it is also important to present the “weaker” results for Pittsburgh 

as a basis of comparison for the more promising results for sub-Saharan Africa. Furthermore, the analysis 

of the potential benefits of high spatial density low-cost sensor networks (the “how many sensors are 

needed” question) can only be performed using the Pittsburgh data, where such a network has been 

operational since 2016.  

Specific Comments 

- Several of the figures are difficult to decipher. Figure 2 is difficult to read because the labels on the y-

axis are clustered so close together. Figure 7 is extremely difficult to interpret, because it is hard to see 

the shades of red. Supplemental figures S6-S9 are very hard to follow and do not help to clarify the 

methods. 

The vertical spacing of Figure 2 has been increased. The color scale of Figure 7 has been changed to 

improve interpretability. Numerical values corresponding to these colors have also been provided in the 

supplemental information (Table S8). Supplemental Figures S6 to S9 were augmented with a more 

detailed narrative description of the methods (including new figures, with all figures now numbered S11 

to S18), which we believe makes these points more clearly. 

- In addition to Figure S5, the authors should have map plots for each region with the monitor locations 

over-laid, with a better indicator for the distance between monitors than just latitude and longitude. It is 

very difficult from Fig S5 to discern where the monitors are positioned throughout the cities, which would 

provide insight into the results. It is very difficult to tell which monitors are low-cost and which are 

regulatory without looking extremely closely. 

Map plots depicting the locations of the monitors have been included in the supplemental information as 

Figures S4 through S9. The markers are much larger and are overlaid on geographical maps which should 

help better illustrate the monitor locations. 

- It is unclear how the satellite AOD and ground monitor data are being sampled; are the authors using 

pixels co-located to the ground monitor sites, or are they comparing a broader area of AOD to the ground 



monitor points? Also at which time-scales are the data points being sampled? At satellite-overpass time? 

This information would have important implications for the results. 

A more complete description of the sampling method has been provided in Section 2.4 (lines 205-223): 

“The satellite data product used in this paper is the MODIS MCD19A2v006 dataset (Lyapustin and 

Wang, 2018) available through NASA’s Earth Data Portal (earthdata.nasa.gov). This dataset 

consists of AOD information for the 470nm and 550nm wavelengths from the MODIS system, 

processed using the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, 

and presented at 1 km pixel resolution for every overpass of either the Aqua or Terra satellites 

(Lyapustin et al., 2011a, 2011b, 2012, 2018). This represents a Level 2 data product, meaning that 

it includes geophysical variables derived from raw satellite data, but has not yet been transformed 

to a new temporal or spatial resolution, as is the case for data derived from multiple satellite 

passes, e.g. monthly average AOD data. Data from identified cloudy pixels are masked as part of 

the data product; possible misidentification of cloudy pixels is one source of error in relating 

surface PM2.5 and AOD. As per recommendations in the User Guide for this dataset, only data 

matching “best quality” quality assurance criteria are used. This dataset was chosen as it 

represents the highest possible spatial and temporal resolution for AOD, thus providing the most 

points for comparison with the high spatio-temporal resolution low-cost monitor data.  

Satellite AOD data are considered to be collocated in space with data from a ground site when 

the center of the AOD pixel is within 1 km of the ground site. Data are considered concurrent if 

the satellite overpass occurs within the hour interval over which ground site data have been 

averaged to arrive at the hourly-average PM2.5 concentration value used. As we compare data 

from individual satellite passes directly to temporally collocated ground site data, we do not need 

to consider (as would be essential for long-term averages) the potential impact of the fraction of 

time where satellite measures are missing (due to cloud cover or other factors). Likewise, we do 

not consider the biases associated with the fact that satellite passes occur at certain times of day 

(required when comparing with daily-averaged ground monitoring data) since here we only 

compare AOD to surface PM2.5 during the same hour when the satellite pass occurs.” 

- In several instances more “methods” type descriptions are mixed in with the results. Having all methods 

descriptions in the methods section would make the presentation of the results clearer. 

We thank the reviewer for this suggestion. These descriptions have been moved into their own subsection 

(2.6) within the “Methods” section. 

Minor comments: 

- Line 70: what is a “good” correlation? No range of values from the studies is given. 

A representative value from the reference has been provided (lines 72-75): 

“Nevertheless, early examinations of AOD data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument, launched aboard the Terra and Aqua satellites in 1999 

and 2002, showed good correlation (e.g. correlation coefficient r about 0.7 for Jefferson County, 

Alabama in 2002) with surface PM2.5 concentrations in the United States, although these 

relationships varied from region to region (Wang and Christopher, 2003; Engel-Cox et al., 2004).” 



- Throughout the manuscript the authors refer to “satellite AOD measurements”, when technically they 

are retrievals and not direct measurements. 

References to satellite AOD “measurements” have been modified throughout the paper. We now refer to 

these as AOD data or AOD retrievals. 

- In the introduction the second paragraph on page 3 is confusing. It is structured as though they are 

discussing studies that use models combing satellite AOD with CTMs to estimate PM2.5, but then all of a 

sudden they are discussing satellite AOD and ground monitor PM2.5 agreement over Africa. 

This paragraph has been split into two to better present these different topics. 

- When discussing the yearly/monthly conversion factors on page 11, it is unclear whether the monthly 

conversion factors are applied on a monthly basis, or if they are calculated on a monthly basis then applied 

on an annual basis: “the ‘monthly’ case, data from the previous month are used to develop conversion 

factors used in the current month; the median performance across months is presented”. 

These factors are applied on a monthly basis. This has been clarified in the text (lines 295-299): 

“For a “yearly” conversion, data from the entire calendar year are used to develop the conversion 

factors, while in the “monthly” case, data from the previous month are used to develop 

conversion factors that are then assessed in the current month (e.g. January data are used to 

develop conversion factors that are applied in February, then the February data are used to 

develop conversion factors that are applied in March, etc.). For the “monthly” case, the median 

performance across months is presented.” 
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Abstract. Low-cost particulate mass sensors provide opportunities to assess air quality at unprecedented spatial and 

temporal resolutions. Established traditional monitoring networks have limited spatial resolution and are frequently simply 

absent in less-developed countries (e.g.many major cities across in sub-Saharan Africa (SSA)). Satellites provide snapshots 20 

of regional air pollution, but require ground-truthing. Low-cost monitors can supplement and extend data coverage from 

these sources worldwide, providing a better overall air quality picture. We demonstrate investigate such the utility of such a 

multi-source data integration approach using two case studies. First, in Pittsburgh, Pennsylvania, both traditional monitoring 

and dense low-cost sensor networks are present, and are compared with satellite aerosol optical depth (AOD) data from 

NASA’s MODIS system and a linear conversion factor is developed to convert AOD to surface fine particulate matter mass 25 

concentration (as PM2.5). We assess the performance of linear conversion factors for AOD to surface PM2.5 using both 

networks, and identify relative benefits provided by the denser low-cost sensor network. In particular,With with 10 or more 

ground monitors in the cityPittsburgh,, there is a two-fold reduction in worst-case surface PM2.5 estimation mean absolute 

error compared to using only a single ground monitor. Second, in Rwanda, Malawi, and the Democratic Republic of the 

Congo, traditional ground-based monitoring is lacking and must be substituted with low-cost sensor data. Here, wwe assess 30 

the ability of combined regional-scale satellite retrievals and local-scale low-cost sensor measurements to complement each 

other. improve surface PM2.5 estimation at several urban sites in SSA. In Rwanda, we find that combining local ground 

monitoring information with satellite data provides a 40% improvement (in  terms of surface PM2.5 estimation accuracy) with 

respect to using low-cost ground monitoring data alone. A linear AOD to surface PM2.5 conversion factor developed in 
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Kigali, Rwanda did not generalize well to other parts of SSA, and varied seasonally for the same location, emphasizing the 35 

need for ongoing and localized ground-based monitoring, which can be facilitated by low-cost sensors.  Overall, we find that 

combining ground-based low-cost sensor and satellite data, even without including additional meteorological or land use 

information, can improve and expand spatio-temporal air quality data coverage especially in in both well-monitored and 

data-sparse regions. 

1 Introduction 40 

Air quality is the single largest environmental risk factor for human health; o. Outdoor air pollution exposure is estimated to 

have caused about four million premature deaths annually in recent years (WHO, 2016, 2018a). Particulate matter (PM), 

which represents a mixture of solid and liquid substances suspended in the air, is one of the most commonly tracked and 

regulated atmospheric pollutants globally (WHO, 2006). Not only does it have aExposure to fine PM is known to have major 

adverse health impacts by itself (e.g. Schwartz et al., 1996; Pope et al., 2002; Brook et al., 2010). In addition, PM mass 45 

concentration , but its concentration is also often used as a proxy for overall air quality (WHO, 2018a). PM mass 

concentration is typically tracked as PM10 (total PM mass with diameter below 10 micrometers) and/or PM2.5 (total PM mass 

with diameter below 2.5 micrometers). Even at low concentrations, PM can have significant health impacts (Bell et al., 2007; 

Apte et al., 2015). These health impacts are especially notable in low-income communities and countries, where they can 

interact with other socio-economic risk factors (Di et al., 2017; Ren et al., 2018). 50 

Sub-Saharan Africa (SSA) in particular is affected by poor air quality, with less than 10% of communities assessed by the 

WHO meeting recommended air quality guidelines, compared with 18% globally, and 40 to 80% in Europe and North 

America (WHO, 2018b). This poor air quality manifests in terms of high infant mortality (Heft-Neal et al., 2018), increased 

risk of chronic respiratory and cardiovascular diseases (Matshidiso Moeti, 2018), and reduced gross domestic product 

(World Bank, 2016). Industrial development and climate trends will likely only exacerbate this problem in the future 55 

(Liousse et al., 2014; UNEP, 2016; Silva et al., 2017; Abel et al., 2018).  

Many African countries have among the highest estimated annual average PM10 and PM2.5 concentrations, yet are also 

among those with the lowest number of in situ referenceregulatory-grade PM monitoring sites per capita. Fig. 1 Figure 1 

shows estimated average annual PM2.5 concentrations for various regions of the world versus the density of 

referenceregulatory-grade monitoring sites in these regions (note that low-cost monitors are not considered), based on 60 

information from the Global Health Observatory (GHO). The GHO, which combines data from multiple sources, including 

data collected in during different years and by from sporadic field monitoring from field campaigns, and so doesit is not 

necessarily reflective of continuous routine monitoring for all regions (WHO, 2017). This lack of continuous surface 

monitoring data makes it difficult to answer basic scientific and policy questions related to air quality assessment and 

mitigation (Petkova et al., 2013; Martin et al., 2019). A major reason for this gap is the high capital and operational costs of 65 
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traditional ground-based air quality monitoring equipment. Two emerging technologies have the capacity to close this gap: 

satellite-based air quality monitoring and ground-based low-cost sensor systems.  

Satellites are much more expensive than traditional ground-based monitors, but their mobility and unique vantage point 

allow them to provide near-global coverage. Data from earth-observing satellites can be used to assess air quality in a variety 

of ways. In particular, aerosol optical depth (AOD) represents a measurementretrievals quantify the of the absorption and 70 

scattering (extinction) of light by the atmosphere, and can be related to the concentration of light-absorbing or light-

scattering pollutants in the atmosphere. Several factors complicate the relationship between AOD and surface-level 

particulate matter mass concentrations (Paciorek and Liu, 2009). As a vertically-integrated quantity, AOD is related to total 

light extinction by a column of atmosphere. The spatial distribution of particulate matter, especially vertical stratification, the 

presence or absence of plumes aloft, humidity, and the size and optical properties of particles drive affect the relationship 75 

between AOD and surface concentrations (Kaufman and Fraser, 1983; Liu et al., 2005; Paciorek et al., 2008; Superczynski et 

al., 2017; Zeng et al., 2018). Cloud cover also makes AOD retrievals impossible; the frequency of cloudy days in an area can 

therefore make it difficult to establish reliable relationships between AOD and surface PM, although this is not likely to be a 

concern for the continental US (Christopher and Gupta, 2010; Belle et al., 2017)(Belle et al., 2017). Changes in surface 

brightness can also confound this relationship, although this may be less of an issue in developing countries with higher 80 

aerosol levels (Paciorek et al., 2012).  

Nevertheless, early examinations of AOD data from the mModerate rResolution Iimaging Sspectroradiometer (MODIS) 

instrument, launched aboard the Terra and Aqua satellites in 1999 and 2002, showed good correlation (e.g. correlation 

coefficient r about 0.7 for Jefferson County, Alabama in 2002) with long-term average surface PM2.5 concentrations in the 

United States, although these relationships varied from region to region (Wang and Christopher, 2003; Engel-Cox et al., 85 

2004)(Wang, 2003; Engel-Cox et al., 2004). For shorter timescalesinstance, correlations between AOD and hourly surface 

PM2.5 were found to vary from an r2 of 0.36 6 in the southeastern United States to an r2 of 0.204 in the southwestern United 

States during 2005-2006, with root-mean-square errors (RMSE) of about 9 µg/m3 for surface PM2.5 reconstructed from AOD 

using linear relationships, with worse results over urban areas (Zhang et al., 2009). Additional studies show broadly similar 

relationships, with r ranging between about 0.5 and 0.8 in the northeastern United States (e.g. Paciorek and Liu, 2009), with 90 

changes in agreement depending on season (Chudnovsky et al., 2013a) and with better agreement at higher spatial AOD 

resolution (Chudnovsky et al., 2013b). Using additional covariates, such as land cover, land usage, and meteorological 

information, can further improve these relationships. In particular, surface PM2.5 estimation models combining daily-

averaged, 1- kmilometer- resolution AOD data with meteorological and land use regression variables can achieved an 

agreement (quantified as r2) with EPA ground-based monitors of up to about 0.95 in the northeastern and 0.8 9 in the 95 

southeastern United States, with a mean absolute error of about 3 µg/m3 (Chang et al., 2014; Chudnovsky et al., 2014; Kloog 

et al., 2014). Methods incorporating the outputs of chemical transport models (in this case at lower spatial resolutions of 12 

km compared to the 1 km AOD resolution, and at daily temporal resolution) can further improve these results (e.g. Murray et 

al., 2019). 
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Models combining satellite AOD data with vertical profiles derived from chemical transport models tend to underestimate 100 

surface-level PM2.5 outside of Europe and North America, mainly in India and China where ground-based comparison data 

are available (van Donkelaar et al., 2010, 2015). In China, the r2 between surface PM2.5 estimates derived from satellite 

AOD, meteorological, and land use information and measured surface PM2.5 was found to be about 0.78, corresponding to a 

root mean square error (RMSE) of about 30 µg/m3 (roughly half the mean concentration) in resulting satellite-derived 

surface concentration estimates (Ma et al., 2014). A method that updates the relationships between AOD and surface PM2.5 105 

on a daily basis (Lee et al., 2011) was able to improve these results, increasing r2 above 0.8 9 while reducing RMSE to about 

20 µg/m3 (Han et al., 2018). This method, however, relies on local ground-based measurements to provide the data necessary 

to perform this daily updating.  

Satellites have the potential to provide broad data coverage to previously unmonitored areas such as in SSA. In Africa, 

although sSatellite-based AOD and ground-based AOD measurements agreed well during a recent assessment in West 110 

Africa (Ogunjobi and Awoleye, 2019), but an assessment in South Africa found a poor relationship between satellite AOD 

and surface PM2.5, with maxima in the surface concentrations coinciding with minima in the AOD (Hersey et al., 2015). 

Similar results were found in India, with anticorrelation observed between satellite AOD and surface PM2.5 for some 

locations (see supplemental information, Fig. S1). Overall, while satellites have the potential to provide broad data coverage 

to previously unmonitored areas such as in SSA, rRelationships between AOD and surface PM2.5 developed using ground 115 

monitoring data elsewhere in the world may not transfer well to SSA, leading to inaccurate quantification of surface air 

quality quantification.  

Low-cost air quality monitors, defined in contrast to traditional or regulatory-grade monitors, have much lower purchase and 

operational costs in contrast to traditional or regulatory-grade monitors (Snyder et al., 2013; Mead et al., 2013)., e.g. For 

example, a lower-cost  multi-pollutant monitor (measuring gases and PM) costs a few thousand US dollars; single-pollutant 120 

PM sensors can cost just a few hundred US dollars. A on the order of five thousand US dollars per multi-pollutant monitor 

(measuring gases and PM), while a comparable multi-pollutant suite of traditional air quality monitoring instruments would 

cost a hundred of thousand US dollars or more; a regulatory-grade PM monitor can cost tens of thousands of US dollar 

(based on recent manufacturer quotations).. This cost reduction is made possible by a combination of lower-cost 

measurement technologies (such as electrochemical sensors for gases and optical particle detectors for PM) and recent 125 

decreasing costs of battery, data storage, and communications technologies. Much recent research interest has been focused 

on assessing the performance of these technologies (e.g. AQ-SPEC, 2015, 2017), developing methods for accounting for 

cross-interference effects in gas sensors (e.g. Cross et al., 2017; Zikova et al., 2017; Kelly et al., 2017; Zimmerman et al., 

2018; Crilley et al., 2018; Malings et al., 2019a) and humidity dependence in optical PM measurement methods (e.g. 

Malings et al., 2019b) to improve data quality, and demonstrating the utility of these low-cost monitors in various use cases 130 

(e.g. Subramanian et al., 2018; Tanzer et al., 2019; Bi et al., 2020). Because of their relatively low cost, these instruments 

can be deployed more widely than traditional monitoring technologies, enabling measurements in previously unmonitored 

areas. The A trade-off for this increased affordability is can be a decrease inreduced accuracy compared to traditional air 
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quality monitoring instruments. While there are currently no agreed-upon criteria for assessing low-cost monitor 

performance (Williams et al., 2019), several schemes suggest tiered rankings ranging from, for example, 20% relative 135 

uncertainty for reasonable quantitative measurements to 100% uncertainty for indicative measurements (Allen, 2018); this 

gives a general sense of the expected performance characteristics of such instruments. In particular, recent testing of two 

types of such low-cost monitors (which are the types used in this paper) found relative uncertainties on the order of 40% and 

correlation coefficient r of 0.7 (r2 of 0.5) with regulatory-grade instruments for hourly PM2.5 measurements (Malings et al., 

2019b). These results are generally consistent with similar studies conducted in a variety of environments and concentration 140 

regimes, although relative performance tends to improve at higher concentrations (Kelly et al., 2017; Zheng et al., 2018).  

The potential exists to use both satellite and low-cost sensor data together in order to address the shortcomings of each data 

source individually and thereby to fill existing data gaps globally. Satellite data provides near-global coverage, but 

relationships between AOD and surface PM2.5 do not generalize well across regions, and so local ground-based data are 

needed for establishing conversion factors. Low-cost sensors can provide these local data in areas where existing monitoring 145 

networks are sparse or data are if reference-grade data are only sporadically available. Although individual low-cost sensors 

are subject to noise and drift, if a large number of such sensors is covered with a single satellite pass these errors may be 

averaged out. This paperThe current work examines the use of low-cost PM sensors as ground data sources for converting 

estimating surface concentrations from satellite AOD retrievals measurements into surface information forvia two case 

studies. Specifically, we seek to quantify to what extent, even with the inherent uncertainties of low-cost sensors, their data 150 

might still be useful in estimating surface PM2.5 from AOD. 

First, using a dense network of low-cost monitors in Pittsburgh, Pennsylvania, USA, where a regulatory-grade monitoring 

network already exists, we assess the utility of low-cost sensors as compared to these traditional instruments. Second, using 

low-cost monitors deployed in SSA in various locations in Rwanda, Malawi, and the Democratic Republic of the Congo, we 

explore the utility of these low-cost sensors in previously unmonitored areas. Although we have no overlapped networks of 155 

regulatory-grade and low-cost monitors in SSA to refer to, wWe use US State Department data (freely publicly available 

from US government websites as well as various sources, including the US State Department and the OpenAQ Platform at 

openaq.orgopenaq.org) from regulatory monitors at the US Embassies in Kampala, Uganda and Addis Ababa, Ethiopia to 

supplement our analysis of the relationship between converted satellite AOD data and surface-level PM2.5 across SSA. In this 

work, we focus on high spatial and temporal resolution satellite data, which best aligns with the capacity of low-cost sensors 160 

to provide local air quality information in near-real-time. We do not incorporate meteorological or land use information, as 

such additional information may not be available in sparsely monitored areas. Further, keeping the model as simple as 

possible avoids over-fitting a more sophisticated model to its calibration data set, which can limit its generalizability. 

Instead, we use simple linear AOD to surface PM2.5 conversion factors to indicate how low-cost sensors alone may provide 

additional information to inform conversion of AOD to surface PM2.5, particularly in data-sparse domains. The techniques 165 

presented hare here are likely to translate to other data sources (e.g. new referenceregeulatory-grade monitors, new 

geostationary satellites) as they become available in the future. 
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2 Methods 

2.1 Low-cost PM2.5 sensor data 

Surface PM2.5 data were collected with three types of low-cost sensors systems(MetOne NPM, PurpleAir PA-II, and 170 

Alphasense OPC), as described belowin Table 1.  

2.1.1 MetOne Neighborhood Particulate Monitor (NPM) 

The Met-One Neighborhood Particulate Monitor (NPM) sensor uses a forward light scattering laser to provide estimates of 

PM mass. It is equipped with an inlet heater and PM2.5 cyclone. The performance of these instruments has been assessed in 

previous studies (AQ-SPEC, 2015; Malings et al., 2019b) and they have been shown to have moderate correlation to 175 

regulatory-grade instruments. The cost of an NPM unit is about $2000, or about one-tenth that of a regulatory-grade 

instrument. It is recommended that these units be cleaned and re-calibrated regularly between field deployments; such 

maintenance activities are not always possible in certain remote deployment locations, however, and so long-term calibration 

drift and accumulation of debris in the cyclone is a potential source of error for these devices. 

2.1.2 PurpleAir II (PA-II) 180 

The PurpleAir PA-II monitor uses a pair of Plantower PMS 5003 laser sensors to detect particles. Estimates of PM1, PM2.5, 

and PM10 mass concentrations are provided by these sensors. The units also have internal temperature and humidity sensors 

and wireless communications capability, allowing them to transmit data over local networks. Several units were also 

modified to interface with an external device for data collection (see Sect. 2.1.4). Previous tests have shown high correlation 

between these units and regulatory instruments, although this can vary, especially at high humidity (AQ-SPEC, 2017; 185 

Malings et al., 2019b). Individual Plantower sensors are also subject to malfunctions and performance degradation; a 

comparison between the Plantower sensors within the PA-II can be useful in detecting when these errors occur. These 

sensors are sold for about $250, or roughly one hundredth of the price of a regulatory-grade monitor. 

2.1.3 Alphasense Optical Particle Counter (OPC) 

The Alphasense OPC-N2 optical particle counter measures particles in the 0.38 to 17 µm range, and converts particle counts 190 

to PM1, PM2.5, and PM10 mass concentrations using proprietary internal calibrations. Previous tests of these sensors showed 

moderate correlation with regulatory-grade instruments in field conditions (AQ-SPEC, 2016; Crilley et al., 2018). The 

Alphasense OPC sensors used in this paper were integrated into ARISense low-cost monitor nodes (see Sect. 2.1.4), which 

provided temperature and humidity information along with data collection and transmission services. The sensors themselves 

cost about $350, but this does not include the cost of the necessary electronics for logging and transmitting data nor of a 195 

weatherproof housing. 

2.1.4 Data collection and processing 

For data collection, all NPM and most PA-II units were paired with RAMP lower-cost monitoring packages. The RAMP 

(Real-time Affordable Multi-Pollutant) monitor is produced by SENSIT Technologies (Valparaiso, IN; formerly Sensevere), 

and has internal gas, temperature, and humidity sensors, along with the capability to interface with external PM monitors 200 
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(newer models also have internal PM sensors). This allows data collected by these PM monitors to be stored and transmitted 

over cellular networks by the RAMP. The characteristics and operation of the RAMP are described elsewhere (Zimmerman 

et al., 2018; Malings et al., 2019a). The ARISense node, manufactured by Quant-AQ (Somerville, MA; formerly 

manufactured by Aerodyne Research), is a lower-cost sensor package which that combines internal gas, humidity, 

temperature, wind, and noise sensors, together with the Alphasense OPC-N2 PM sensor, and provides internet connectivity 205 

for data transmission (Cross et al., 2017). Most low-cost PM2.5 data are collected via one of these two systems; the exception 

is a single independently-deployed PA-II unit in Kinshasa, DRC (see Sect. 1.1.12.2.4). 

Collected data are down-averaged from their device-specific collection frequencies to a common hourly timescale. 

Erroneous data identified either automatically (e.g. negative concentration values or unrealistically high or low values) or 

manually (e.g. devices exhibiting abnormal performance characteristics identified during periodic inspections) are removed. 210 

To correct for particle hygroscopic growth effects (i.e. the impact of ambient humidity on the PM mass as measured by the 

low-cost sensors), previously developed calibration methods (Malings et al., 2019b) were implemented for the NPM and PA-

II sensors. Briefly, first, a hygroscopic growth factor is computed using the local humidity and temperature as measured by 

the low-cost monitor itself, along with an average or typical particle composition. Then, a linear correction is applied to the 

data based on past collocations with regulatory-grade monitoring instruments. (these are described in detail by Malings et al., 215 

2019b). Utilizing these methods, the uncertainties on, based on previous assessments (Malings et al., 2019b), hourly average 

PM2.5 concentration measures from both sensors (after calibration) differed from those of co-located regulatory-grade 

instruments byare about 4 µg/m3, on average, with low long-term biases(Malings et al., 2019b). (on the order of 1 µg/m3 for 

annual averages). For the Alphasense OPC sensors, raw bin count numbers were integrated to produce a new concentration 

estimate for PM2.5, and a similar relative humidity correction was applied (Di Antonio et al., 2018). Finally, aAn additional 220 

correction factor of 1.69 (for workdays) or 1.39 (for non-work-days) was applied to data collected by NPM sensors in 

Rwanda, based on previous results showing that current calibration methods tended to underestimate PM2.5 there (R 

Subramanian et al., under review)(R Subramanian et al., in preparation). While we seek to use low-cost sensor data that have 

been calibrated and validated in accordance with best practices, there remain uncertainties associated with these instruments 

and inaccuracies compared to regulatory-grade instruments. A major goal of this paper is to assess to what extent, even with 225 

these uncertainties, low-cost sensor data might still be useful in the context of conversion of AOD to surface PM2.5. 

2.2 Ground-based sampling locations 

Surface PM2.5 data analyzed in this paper are were collected in six seven different areas, as described listed in Table 2, where 

approximate locations, number of sites in each area, and durations of data collection are also listedbelow. Maps of these sites 

are also provided in the supplemental information (Fig. S4-S9). The Pittsburgh area includes sites in the surrounding 230 

Allegheny county, although most sites are concentrated within the city. Similarly, the Rwanda area has most sites located in 

the capital city of Kigali, with one rural monitoring site collocated with the Mount Mugogo Climate Observatory in 

Musanze. In the Pittsburgh and Rwanda areas, low-cost sensors are connected with RAMP low-cost monitors. In Malawi, 
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data are collected by three ARISense monitors using Alphasense OPC sensors, deployed to three locations in the vicinities of 

Lilongwe and Mulanje. The two locations in the vicinity of Mulanje are village-center sites, and so may be influenced by 235 

nearby combustion activities. In Kinshasa, a single PurpleAir PA-II was deployed independently (i.e. without an associated 

RAMP unit, as was the case in Pittsburgh) at the US Embassy. Temperature and humidity data were therefore obtained from 

the internal sensors within the devices itselfthemselves, and data connectivity was achieved using the local wireless internet 

network. At Kampala and Addis Ababa, regulatory-grade monitoring data collected at US Embassies are used to provide 

ground comparison data for concentration estimates derived from satellite AOD data. Additional information about all of 240 

these areas are also provided in the supplemental information (Sect. S1). 

 

2.4.0 Pittsburgh, United States of America 

This area represents the city of Pittsburgh, Pennsylvania, USA, as well as the surrounding Allegheny County. Data from this 

area were collected during the calendar year of 2018 (i.e. January 1, 2018 to December 31, 2018). All ground measurement 245 

locations for this area were contained within a rectangular region ranging from 40.1ºN, 80.5ºW to 40.8 ºN, 79.7ºW. Low-cost 

monitoring data for this area were collected by a mixture of NPM and PA-II sensors, all of which were connected to RAMP 

monitors. During the data collection period, the number of active instruments in this area at any given time varied from 10 to 

46. Calibration of these measures are performed according to the methods described by Malings et al. (2019b) as 

summarized in Sect. 2.1.4. 250 

In the Pittsburgh area, ground-level PM2.5 data were also available from a local regulatory-grade monitoring network 

operated by the Allegheny County Health Department (ACHD). These data are collected at five sites in Allegheny county, 

with Beta Attenuation Monitors (BAMs), a federal equivalent monitoring method, providing hourly concentration 

measurements for air quality index calculation purposes (Hacker, 2017; McDonnell, 2017). Nominally, such federal 

equivalent methods are required to be accurate within 10% of federal reference methods (Watson et al., 1998; US EPA, 255 

2016). Since BAM data have been used to establish the calibration methods for low-cost PM sensor data, the data from the 

BAM instruments are used as provided for uniformity, without any additional corrections being applied. 

2.7.0 Rwanda 

Data collection in Rwanda occurred mainly in the capital city of Kigali, along with a single rural monitoring site co-located 

with the Mount Mugogo Climate Observatory in Musanze. Data in this area were collected between April 1, 2017 and May 260 

27, 2018. The sites were located in a rectangle ranging from 2.2ºS, 29.4ºE to 1.4ºS, 30.5ºE. In this area, NPM sensors paired 

with RAMP monitors were used exclusively. A total of four ground sites were active in this area, with a maximum of three 

sites being active simultaneously. 

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Strikethrough

Formatted:  No bullets or numbering



9 

 

2.9.0 Malawi 

Data in Malawi were collected by three ARISense monitors using Alphasense OPC sensors, deployed to three locations in 265 

the vicinities of Lilongwe and Mulanje between June 25, 2017 and July 30, 2018. These sites were contained within a 

rectangular region spanning from 16.2ºS, 33.6ºE to 14.0ºS, 35.7ºE. The two locations in the vicinity of Mulanje are village 

center sites, and so may be influenced by nearby combustion activities.  

2.11.0 Kinshasa, Democratic Republic of the Congo 

Data in Kinshasa, Democratic Republic of the Congo were collected by a single PurpleAir PA-II sensor deployed at the US 270 

Embassy, at approximately 4.3ºS, 15.3ºE. This sensor was deployed independently, i.e. without an associated RAMP unit as 

in Pittsburgh. Temperature and humidity data were therefore obtained from the internal sensors within the device itself, and 

data connectivity was achieved using the local wireless internet network. Data from this device collected between March 20, 

2018 and October 31, 2019 are used in this paper. 

2.13.0 Kampala, Uganda 275 

In Kampala, Uganda, regulatory-grade monitoring data collected at the US Embassy are used to provide ground comparison 

data for concentration estimates derived from satellite AOD data. The embassy is located at approximately 0.3ºN, 32.6ºE, 

and hourly data collected from January 1, 2019 to December 31, 2019 are used in this paper. These data are collected by 

BAM monitors, and no additional corrections have been applied.  

2.15.0 Addis Ababa, Ethiopia 280 

2.3 In Addis Ababa, Ethiopia, a regulatory-grade monitor deployed at the US Embassy is also used as a ground 

comparison data source, with data collected from January 1, 2019 to December 31, 2019 being used in this paper. The 

embassy is located at approximately 9.0ºN, 38.8ºE. These data are also collected by BAM monitors, and no additional 

corrections have been applied. Regulatory-grade instrument data 

At several locations in the Pittsburgh area, as well as at the US Embassy locations in Kampala and Addis Ababa, hourly-285 

averaged ground-level PM2.5 data are also available from regulatory-grade monitoring instruments. In Pittsburgh, these 

monitors are operated by the Allegheny County Health Department (ACHD). At the US Embassies, these instruments are 

operated by the US State Department and US EPA and data are made available by these agencies 

(https://www.airnow.gov/international/us-embassies-and-consulates), as well as by the OpenAQ Platform (openaq.org). In 

all cases, regulatory-grade monitoring data are collected with Beta Attenuation Monitors (BAMs), a federal equivalent 290 

monitoring method, that provide hourly PM2.5 concentration measurements for air quality index calculation purposes 

(Hacker, 2017; McDonnell, 2017). Nominally, such federal equivalent methods are required to be accurate within 10% of 

federal reference methods (Watson et al., 1998; US EPA, 2016). Since BAM data have been used to establish the calibration 

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Subscript



10 

 

methods for low-cost PM sensor data (Malings et al., 2019b), the data from the BAM instruments are used as provided for 

uniformity, without any additional corrections being applied.  295 

 

2.172.4 Satellite data 

The satellite data product used in this paper is the MODIS MCD19A2v006 dataset (Lyapustin and Wang, 2018) available 

through NASA’s Earth Data Portal (earthdata.nasa.gov). This dataset consists of AOD information for the 470nm and 

550nm wavelengths from the MODIS system, processed using the Multi-angle Implementation of Atmospheric Correction 300 

(MAIAC) algorithm, and presented at 1 km-kilometer pixel resolution for every overpass of either the Aqua or Terra 

satellites (Lyapustin et al., 2011a, 2011b, 2012, 2018). This represents a Level 2 data product, meaning that it includes 

geophysical variables derived from raw satellite data, but has not yet been transformed to a new temporal or spatial 

resolution, as is the case for data derived from multiple satellite passes, e.g. monthly average AOD data. Data from identified 

cloudy pixels is are masked as part of the data product; possible misidentification of cloudy pixels is one source of error in 305 

relating surface PM2.5 and AOD. As per recommendations in the User Guide for this dataset, only data matching “best 

quality” quality assurance criteria are used. This dataset was chosen as it represents the highest possible spatial and temporal 

resolution for AOD, thus providing the most points for comparison with the high spatio-temporal resolution low-cost 

monitor data.  

Satellite AOD data are considered to be collocated in space with data from a ground site when the center of the AOD pixel is 310 

within 1 km of the ground site. Data are considered concurrent if the satellite overpass occurs within the hour interval over 

which ground site data have been averaged to arrive at the hourly-average PM2.5 concentration value used. As we compare 

data from individual satellite passes directly to temporally collocated ground site data, we do not need to consider (as would 

be essential for long-term averages) the potential impact of the fraction of time where satellite measures are missing (due to 

cloud cover or other factors). Likewise, we do not consider the biases associated with the fact that satellite passes occur at 315 

certain times of day (required when comparing with daily-averaged ground monitoring data) since here we only compare 

AOD to surface PM2.5 during the same hour when the satellite pass occurs. 

2.182.5 Conversion Methods for satellite AOD data 

A linear regression approach is used to establish relationships between satellite AOD and surface-level PM2.5. Let 𝑦𝑖,𝑡 denote 

the ground-level PM2.5 measurement at location 𝑖 and time 𝑡, and let 𝑥𝑖,𝑡 represent the vector of satellite AOD measurements 320 

(i.e., a vector combining the AOD measurements at 470nm and or 550nm wavelengths, together with a “placeholder” 

constant of one to allow fitting of affine functions) corresponding to location 𝑖 and time 𝑡. For this paper we present results 

using AOD at 550nm; results for AOD at 470nm are similar and are included in the supplemental information  (Sect. S3.2). 

The total set of ground measurement sites in an area, 𝑆, is partitioned into two disjoint sub-sets. Subset 𝑆in represents the 
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sites used to establish the linear relationship between AOD and surface PM2.5 concentrations. The remainder of sites, in the 325 

subset 𝑆ap , are used for the application, i.e., to serve as an independent set to evaluate the performance of the linear 

relationship established from the 𝑆in sites. Likewise, the time domain 𝑇 is partitioned into initialization phase 𝑇in, during 

which linear relationships are established, and application phase 𝑇ap , during which these relationships are applied and 

evaluated.  

Linear relationships are determined as follows. First, satellite AOD data and surface PM2.5 monitor data from the 𝑆in sites 330 

during the 𝑇in phase were are collected together: 

𝑋in = {𝑥𝑖,𝑡} 𝑌in = {𝑦𝑖,𝑡} ∀  𝑖 ∈ 𝑆in , 𝑡 ∈ 𝑇in,         (1) 

A linear relationship is established between these, defined by parameters 𝛽in, using classical least-squares linear regression 

(e.g., Goldberger, 1980): 

𝛽in = (𝑋in
T 𝑋in)

−1
𝑋in

T 𝑌in,           (2) 335 

The covariance matrix of the parameters, Σ𝛽in
, is also obtained: 

Σ𝛽in
=

(𝑌in−𝑋in𝛽in)T(𝑌in−𝑋in𝛽in)

length(𝑌in)−length(𝛽in)
(𝑋in

T 𝑋in)
−1

,         (3) 

where length(∙)  is a function returning the number of elements in the input. During the application phase, the linear 

relationship can be used to estimate the surface PM2.5 concentration at location 𝑖 and time 𝑡, �̂�𝑖,𝑡,prior, from the satellite AOD 

data corresponding to that location and time: 340 

�̂�𝑖,𝑡,prior = 𝑥𝑖,𝑡  𝛽in,            (4) 

The above procedure constitutes an offline or (in Bayesian terminology) prior conversion, i.e., it uses data collected during 

the initialization phase to define a single conversion factor which that is applied throughout the application phase. An online, 

dynamic, or (in Bayesian terminology) posterior approach can also be adopted, in which this relationship is modified as 

additional data are available. This approach has been proposed by Lee et al. (2011) and evaluated by Han et al. (2018), and 345 

allows for the potentially time-varying relationship between satellite AOD and surface PM2.5 concentration to be accounted 

for. In the online approach, for a time 𝑡 during the application phase, a new data set consisting of 𝑌in,𝑡 and 𝑋in,𝑡 is created by 

combining all data available from the 𝑆in ground sites together with satellite AOD data for that time: 

𝑋in,𝑡 = {𝑥𝑖,𝑡} 𝑌in,𝑡 = {𝑦𝑖,𝑡} ∀  𝑖 ∈ 𝑆in,         (5) 

Based on these new data, a linear relationship is established for that time, as above: 350 

𝛽𝑡 = (𝑋in,𝑡
T 𝑋in,𝑡)

−1
𝑋in,𝑡

T 𝑌in,𝑡,          (6) 
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This relationship is combined with the prior relationship established during the initialization phase (using a Bayesian 

approach and assuming normally-distributed parameter values) to establish a new posterior relationship specific to that time, 

𝛽𝑡,post: 

𝛽𝑡,post = 𝛽in + Σ𝛽in (Σ𝛽in
+ 𝜂2diag(Σ𝛽in))

−1

(𝛽𝑡 − 𝛽in) ≈
1

1+𝜂2 (𝜂2𝛽in + 𝛽𝑡),     (7) 355 

where diag(∙) denotes a matrix diagonalization and 𝜂 is a relative error scale parameter, used to define how much “weight” 

is given to the time-specific relationship parameters 𝛽𝑡 versus the prior relationship parameters 𝛽in in the updating process 

(with values of 𝜂 near zero placing more weight on the time-specific relationships, while high values of 𝜂 place more weight 

on the prior). The posterior relationship is then used to estimate surface PM2.5 concentrations from the satellite AOD data for 

that time: 360 

ŷ𝑖,𝑡,post =  𝑥𝑖,𝑡  𝛽𝑡,post,           (8) 

Both the offline and online approaches are used in this paper, and their performance is compared (see Sect. 3.1). 

This simple linear correction factor method does not explicitly account for vertical distribution profiles, cloud cover, or any 

other variables which that affect the relationship of AOD to surface PM2.5. Instead, the aggregate affecteffect of these 

variables is accounted for implicitly in an empirical relationship. The offline approach uses fixed relationships, which cannot 365 

account for time-varying effects such as changes in vertical distribution profiles. The online approach can account for these 

time-varying effects to some degree,by assuming their observed impact on the AOD to surface PM2.5 relationship at the 𝑆in 

sites is representative of their short-term impact throughout the region where the corresponding correction factors are 

applied. Finally, note that all parameters described above can be solved for analytically using the equations presented in this 

section (i.e. no iterative or approximate solution methods are necessary). 370 

2.6 Analyses conducted in this paper 

This section provides details of how the various analyses and comparisons to be discussed in Sect. 3 are performed. 

Additional details are also provided in the supplemental information (Sect. S2.2 to S2.4). 

2.6.1 Comparison of regulatory and low-cost monitors as ground stations to develop conversion factors for AOD 

Here, we seek to compare the performance of AOD conversion to surface PM2.5 using either low-cost or regulatory-grade 375 

monitors as the ground-level data source for initialization. As only Pittsburgh has networks of both types of sensors in place, 

we focus our analysis in this area. The surface PM2.5 data collected at the five ACHD regulatory monitoring locations are 

used to assess the performance of the satellite AOD conversion, regardless of how the conversion factors are initialized. 

First, we use four of five ACHD locations to develop a conversion factor and apply it to the fifth. All ACHD sites are rotated 

through in this manner, providing a performance metric assessed for AOD conversion applied to each site. Second, we use 380 
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low-cost sensors for developing the conversion factor; in this case, we select a subset of four locations in Pittsburgh where 

RAMP low-cost monitors are deployed, so that the number of ground sites used matches the number of ACHD sites used in 

the first case. These low-cost monitor locations are chosen to provide a similar spatial coverage over Allegheny county as the 

ACHD sites. Low-cost monitors collocated with ACHD sites were specifically not chosen to allow for a fairer comparison 

when performance is assessed against these ACHD site (since, if this were not done, it would be possible to have 385 

initialization sites which are collocated with the application sites, which was not possible when the ACHD sites alone were 

used). In this case, a conversion factor developed using the four low-cost sensor sites is applied at all five ACHD sites, with 

performance assessed at each site. 

Different application cases of the satellite AOD conversion method are also tested. Note that in either case, we use all the 

collocated ground and satellite data across the entire time period without averaging these data in time. For a “yearly” 390 

conversion, data from the entire calendar year are used to develop the conversion factors, while in the “monthly” case, data 

from the previous month are used to develop conversion factors that are then assessed in the current month (e.g. January data 

are used to develop conversion factors that are applied in February, then the February data are used to develop conversion 

factors that are applied in March, etc.). For the “monthly” case, the median performance across months is presented. 

Although the “yearly” case would technically require having access to data that have not yet been collected (assuming this 395 

method is being applied for data collected in the current year), we use this to represent a case where data from a previous 

year are used to develop conversions applied in the current year, as we assume that the annual average AOD to surface PM2.5 

concentration relationship for a given area will not significantly change from one year to the next. In addition, we also assess 

the relative performance of the offline (prior) conversion factors, where the same relationship parameters determined during 

the initialization period are applied to the entire application period, and the online (posterior, dynamic) conversion, where 400 

these initial parameters are modified based on the AOD to surface PM2.5 relationships specific to each individual satellite 

pass. The results of this analysis are discussed in Sect. 3.1. 

2.6.2 Analysis of AOD conversion factor performance versus number of ground sites 

A significant advantage of low-cost monitors compared to traditional instruments is the ability tothat we can deploy dense 

networks of the former for the same cost as a sparse network of the lattertens to hundreds of low-cost sensors for the price of 405 

a single regulatory-grade monitor. To assess the potential benefits of this in terms of conversion of satellite AOD data to 

surface PM2.5, we analyze the effectinfluence of the number of surface sites used on the performance of the surface PM2.5 

estimates from AOD conversion. We again examine the Pittsburgh region, vary the number of ground sites used for 

initialization to generate the AOD conversion factor, and  takeevaluate the performance using the ACHD regulatory 

monitoring network as the “ground truth. ” against which performance is assessed. Here, the number of ground sites is 410 

varied, with sites being chosen from the set of possible sites. For the ACHD network, the possible sites are the ACHD sites 

minus the one site against which performance is assessed (all ACHD sites are rotated through); this is schematically shown 

in Fig. S7. For the low-cost sensors, the possible sites are all RAMP deployment locations in the area, excluding RAMPs that 
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are collocated with ACHD sites, and performance is assessed against all ACHD sites. . Subsets of varying size are randomly 

selected (10 different random set selections are used in this example); the mean of the performance metric across these 10 415 

randomly selected sets is used as the assessed performance (as depicted in Fig. S8). In this case, a monthly offlineyearly 

online conversion factor is used (based on the performance of that method as described in Sect. 3.1) (with the factor 

developed in one month being applied in the following month without modification). Figure 3 shows results of this 

assessment in terms of the CvMAE metric. 

The results of this analysis are discussed in Sect. 3.2. 420 

2.6.3 Comparison of converted AOD and nearest ground monitors as proxies for surface PM2.5 

In this section, wHere, we seek to assess the benefits of combining satellite AOD and ground-based sensor data, as compared 

to using ground-based sensor data alone. For this assessment, we compare estimates of surface PM2.5 derived from satellite 

AOD data, using the methods presented previously in this paper, with estimates based on the surface PM2.5 measurements 

alone, which we denote as “nearest monitor” estimates. For this estimation, we make use of a locally constant or naïve 425 

interpolation, in which the surface PM2.5 estimate for a given time and location is the same as the measurement of the nearest 

available ground monitor (i.e., one of the ground monitors used for establishing conversion factors for the satellite AOD 

data) at that time: 

ŷ𝑖,𝑡,nearest = 𝑦𝑗,𝑡   s. t.  𝑗 = argmin𝑘∈𝑆cal
dist(𝑖, 𝑘),         (9) 

where dist(𝑖, 𝑘) indicates the distance between locations 𝑖 and k, and argmin denotes the input whichthat minimizes this 430 

objective.  

Performance of both this nearest monitor method and the satellite AOD conversion method are assessed for Pittsburgh in 

Fig. 4. In this case, the low-cost sensor data are used to represent the “ground truth” against which performance is assessed; 

this is done so that a comparable analysis can be made in Pittsburgh and Rwanda, since no regulatory-grade instruments 

were present in the latter area. Prior Again, cconversion factors are developed for the entire time period and are 435 

appliedupdated to posterior factors with time-specific data for their application on a monthly basis. All but one low-cost 

sensor sites in a given area are used for development of these factors, with application and assessment on the final site.; it 

should be noted that this represents a greater number of ground sites than was evaluated in Sect. 3.1, leading to improved 

performance following the trend noted in Sect. 3.2. These sites are then cycled through, to provide performance metrics 

across all sites. To allow for comparability between the nearest monitor approach and surface PM2.5 estimation from satellite 440 

AOD, we make use of the same set of ground sites for both, i.e., for each site, data from the closest available sites are used as 

inputs to the nearest monitor method, and all sites are cycled through in this manner, providing performance metrics for each 

site as above. A diagram of this procedure is provided in the supplemental information, Fig. S9. 

 The results of this analysis are discussed in Sect. 3.3 (for Pittsburgh) and 3.4 (for Rwanda). 
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2.6.4 Analysis of inter-seasonal generalization of AOD conversion factors 445 

Changing seasons can affect the relationship between satellite AOD and surface PM2.5 due to changes in confounding factors 

like surface reflectance, aerosol vertical profiles, and particle composition. Many of these seasonally varying factors are not 

accounted for in current AOD retrievals (Lyapustin et al., 2018). Here, we assess the utility of developing seasonal AOD 

conversion factors for Pittsburgh and Rwanda. For this assessment, conversions are developed and applied in specific 

seasons (information on these seasons are presented in the supplemental information, Table S1 and Fig. S1). For Pittsburgh, 450 

these approximately correspond to a winter, spring, summer, and fall season, while in Rwanda, these represent alternating 

wet and dry seasons. For Pittsburgh, the major differences between seasons are related to temperature, with humidity varying 

to a lesser degree, as depicted in Fig. S2. In Rwanda, temperatures are relatively stable year-round, with seasons mainly 

differentiated by humidity changes (although the second dry season appears to have been unusually wet, comparable to the 

previous wet season).  455 

RAMP data are used to represent “ground truth” concentrations for both areas. An offline or “prior” approach is used here, 

i.e., calibrations are not modified based on data collected within the application period, in order to investigate the effect of 

generalizing a calibration developed in one season to a different season. Metrics are assessed for each individual site in each 

area, with all other sites being used to establish AOD conversion factors as in the previous section. The median results across 

all sites are presented in Fig. 6 for each combination of initialization and application season. 460 

The results of this analysis are discussed in Sect. 3.5. 

2.6.5 Analysis of inter-regional generalization of AOD conversion factors 

Finally, given the lack of ground-based monitoring in many parts of SSA, we assess whether a conversion factor developed 

in one city of this region can be generalized to other cities and townsor locations across SSA. Here, a single AOD conversion 

factor is developed using one site in Kigali, Rwanda and this factor is applied without modification to other sites across SSA. 465 

These include a second site in Kigali, a site in Musanze in rural Rwanda, a site in Kinshasa (DR Congo), and three sites in 

Malawi (one near the urban area of Lilongwe and two other sites in more rural areas to the south, near Mulanje) where low-

cost sensor systems are deployed. There are also two sites (Kampala, Uganda and Addis Ababa, Ethiopia) where hourly-

resolution long-term regulatory-grade monitoring data are available; data from these sites are included for comparative 

purposes. An offline approach is used here, with a single factor being initialized over the entire study period. The results of 470 

this analysis are discussed in Sect. 3.6. 

3 Results 

In this section, we apply the proposed method for satellite AOD to surface PM2.5 concentration conversion in several use 

cases. In Sect. 3.1, 3.2, and 3.3, we assess the performance in Pittsburgh, comparing the use of regulatory-grade monitors 

and low-cost monitors as ground sites for establishing conversion factors. In Sect. 3.4 and 3.5, we extend the comparison to 475 
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Rwanda, examining the impact of using the relatively sparser low-cost sensor network there, and examining seasonal 

variations in the conversions. Finally, in Sect. 3.6, we examine the generalization of a Rwanda-based conversion factors to 

other locations across SSA. Assessment metrics used in this section, including correlation (r2), coefficient of variation of the 

mean absolute error (CvMAE), and mean-normalized bias (MNB) are described in the supplemental information (Sect. 

S2.1). 480 

3.1 Comparing the use of regulatory and low-cost monitors as ground stations to develop conversion factors for AOD 

We first evaluate the utility of low-cost sensors as substitutes for regulatory-grade monitors when developing factors to 

convert satellite AOD data to surface PM2.5 estimates, using the Pittsburgh area as our case study. The five ACHD regulatory 

monitoring locations are used to assess the performance of the satellite AOD conversion in all cases. First, we use these same 

locations to develop the conversion factors; in this case, we use four of five locations to develop a conversion factor, and 485 

apply it to the fifth. All sites are rotated through in this manner, providing a performance metric assessed for each site. 

Second, we use low-cost sensors for developing the conversion factor; in this case, we select a subset of four locations where 

RAMP low-cost monitors are deployed, so that the number of ground sites used matches the number of ACHD sites used in 

the other case. These low-cost monitor locations are chosen to provide a similar spatial coverage over Allegheny county as 

the ACHD sites, although monitors co-located with ACHD sites were specifically not chosen, to allow for a fairer 490 

comparison when performance is assessed against the ACHD network (as a measurement will never be available at the exact 

location where the concentration is to be estimated, as was the case when the ACHD sites alone were used). In this case, a 

conversion factor developed using the four low-cost sensor sites is applied across all five ACHD sites, with performance 

assessed at each site. A diagram of this procedure is provided in the supplemental information Fig. S6. 

Different application cases of the satellite AOD conversion method were also tested. For a “yearly” conversion, data from 495 

the entire calendar year were used to develop the conversion factors, while in the “monthly” case, data from the previous 

month are used to develop conversion factors used in the current month; the median performance across months is presented. 

Although the “yearly” case would technically require having access to data which have not yet been collected (assuming  this 

method is being applied for data collected in the current year), we use this to represent a case where data from a previous 

year are used to develop conversions applied on the current year, as we assume that the annual average AOD to surface 500 

PM2.5 concentration relationship for a given area will not significantly change from one year to the next. In addition, we also 

assess the relative performance of the offline (prior) conversion factors, where the same relationship parameters determined 

during the initialization period are applied to the entire application period, and the online (posterior) conversion, where these 

initial parameters are modified based on the AOD to surface PM2.5 relationships specific to each individual satellite pass. 

Results for all eight combinations of ground initialization site monitor type (“ACHD” v. “RAMP”), initialization period 505 

length (“yearly” vs. “monthly”), and processing methodapplication mode (“prior” vs. “post.”) are presented in Fig. 2. 

 Overall, these results indicate relatively weak relationships between satellite AOD and surface PM2.5 for Pittsburgh, 

regardless of the method used. Correlations are weak (r2 < 0.35), and mean absolute errors are on the order of half to three-
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quarters the concentration values (annual average concentrations range fromare about 10 to 12 µg/m3 across most of 

Pittsburgh). However, these results are consistent with similar comparisons conducted between hourly AOD and surface 510 

PM2.5 in the eastern United States, which found r2 between 0.04 and 0.36 depending on season and location (Zhang et al., 

2009). Biases are low on averagee, but can vary across locations. In comparing the different application modes, it seems that 

the “posteriorposterior” method provides slightly worsebetter performance, especially  on ACHD datain terms of correlation, 

than the “priorprior” method. This suggests that variability in AOD to surface PM2.5 relationships between satellite passes 

(e.g., due for example to differences in the vertical profile of PM2.5 over the area, and/or to differences between “point” 515 

measurements of the ground monitors and “area” AOD measurements) is not being well captured through the “posterior” 

method, i.e., that the additional uncertainty incurred by calibrating relationships using satellite data from a single pass 

(versus relying only on the more robust calibration from multiple passes as in the “prior” method) tends to degrade 

performancebetter captured by updating prior relationships with new information from each new satellite pass. In terms of 

other performance metrics, there is little difference between these application modes, with slight improvements observed in 520 

the “posterior” method for the RAMP data, but slight decreases for the ACHD data. Comparing the use of annual to monthly 

initializations, performance metrics are slightly worse in the monthly case, indicating that the additional initialization data 

used in the yearly case generally leads to a more robust conversion. This may be due to theIt should be noted, however, that 

these conclusions may be specific to relatively low PM2.5 concentrations as found in conditions of Pittsburgh, however; the 

comparatively low PM2.5 concentrations in this area (averaging less than 10 µg/m3 during the study period) may reduce the 525 

signal-to-noise ratio to the point where the noise is dominant.  

In all cases, performances using low-cost sensor data are comparable or superior to that of the same conversion approaches 

utilizing the regulatory-grade instruments. Note that the low-cost monitors used here have been carefully corrected by 

collocation with regulatory-grade monitors (Malings et al., 2019b) which accounts for known artefacts with low-cost 

sensors. Thus, there is no evidence from this analysis of any inherent disadvantage to the use of carefully corrected low-cost 530 

sensors to provide ground data as compared to more traditional instruments. Rather, based on these results, any additional 

uncertainty due to Ddata quality differences between low-cost sensors and regulatory-grade instruments seem are seen to be 

negligible compared to the difficulties associated with relating satellite AOD to surface-level PM2.5, and therefore have had 

little to no systematic impact on the performance of the assessed linear conversion methods, at least for this study area. 

3.2 How many ground stations are needed to improve surface PM2.5 estimates from AOD dataretrievals? 535 

Fig. 3 shA significant advantage of low-cost monitors compared to traditional instruments is the ability to deploy dense 

networks of the former for the same cost as a sparse network of the latter. To assess the potential benefits of this in terms of 

conversion of satellite AOD data to surface PM2.5, we analyze the effect of the number of surface sites used on the 

performance of the surface PM2.5 estimates from AOD conversion. We again examine the Pittsburgh region, and take the 

ACHD regulatory monitoring network as the “ground truth” against which performance is assessed. Here, the number of 540 

ground sites is varied, with sites being chosen from the set of possible sites. For the ACHD network, the possible sites are 
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the ACHD sites minus the one site against which performance is assessed (all ACHD sites are rotated through); this is 

schematically shown in Fig. S7. For the low-cost sensors, the possible sites are all RAMP deployment locations in the area. 

Subsets of varying size are randomly selected (10 different random set selections are used in this example); the mean of the 

performance metric across these 10 randomly selected sets is used as the assessed performance (as depicted in Fig. S8). In 545 

this case, a monthly offline conversion factor is used (with the factor developed in one month being applied in the following 

month without modification). Figure 3 shows results of this assessment in terms of the CvMAE metric.ows results of the 

assessment conducted as described in Sect. 2.6.2 in terms of the CvMAE metric. 

 For small numbers of ground sites, results for the ACHD network and the low-cost sensor network are similar in terms of 

mean performance across different randomly selected subsets of the network, with slightly better performance using the 550 

RAMP network sites. The spread in performance across selected sites is lower for the ACHD network; thisThis may be is 

related to the smaller number of possible combinations of ACHD sites to be randomly selected compared to the RAMP sites; 

with more RAMP sites to choose from, the likelihood of selecting more generally representative (rather than more source-

impacted) sites is higher, whereas with the ACHD network there is a high likelihood of choosing a heavily source-impacted 

site (especially since several ACHD locations are specifically chosen to monitor such local sources; see supplemental 555 

information Fig. S4). s, which would lead to lower variability in the results. The limited number of ACHD sites prevents this 

analysis to be carried forward from being expanded to larger numbers of locations; at four chosen locations, there is only one 

possible combination to be selected, and so the spread in performance collapses to match the mean. With the low-cost sensor 

network, as more ground sites are included, mean performance CvMAE decreases until about 10 sites are chosen, but 

afterwards remains relatively constant as more sites are included. stays roughly constant, but pPerformance variability 560 

decreases as more site are added, indicating that by adding additional ground sites, even sites positioned at random 

throughout the domain, the conversion relationship becomes increasingly robust. In particular, while While for a single 

ground monitor, worst-case CvMAE is on the order of 1.5 to 2, with 10 or more monitors, worst-case performance is 

improved below 0.86, a more than two-fold improvement in worst-case performance. This performance increase slows 

beyond about 15 ground stations, indicating that this may be an optimal density (at least in the Pittsburgh area) for ground 565 

sites for establishing conversion relationships to satellite AOD data. Overall, this demonstrates the potential benefits of dense 

low-cost sensor networks for conversion of satellite AOD data, even over a limited spatial domain (covering about 600 

square kilometerskm2). Furthermore, it shows that even with quasi-random placement of the ground sites, such as might be 

achieved by citizens making personal decisions to deploy low-cost monitors on their own properties, increasingly robust 

conversion results can be achieved as more sensors are included, although these benefits diminish beyond (at least in theis 570 

case of Pittsburgh) about 15 1 monitors across per 600 square kilometerskm2.  

3.3 Comparison of AOD-based surface PM2.5 to measurements from a dense ground network 

Performance of both the nearest monitor method and the satellite AOD conversion method are assessed for Pittsburgh in Fig. 

4. It should be noted that all available ground sites have been used for conversion factor initialization in this section, versus a 
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limited subset of these in Sect. 3.1, leading to improved performance of this method following the trend noted in Sect. 3.2. In 575 

this section, we assess the benefits of combining satellite AOD and ground-based sensor data, as compared to using ground-

based sensor data alone. For this assessment, we compare estimates of surface PM2.5 derived from satellite AOD data, using 

the methods presented previously in this paper, with estimates based on the surface PM2.5 measurements alone, which we 

denote as “nearest monitor” estimates. For this estimation, we make use of a locally constant or naïve interpolation, in which 

the surface PM2.5 estimate for a given time and location is the same as the measurement of the nearest available ground 580 

monitor (i.e., one of the ground monitors used for establishing conversion factors for the satellite AOD data) at that time: 

ŷ𝑖,𝑡,nearest = 𝑦𝑗,𝑡   s. t.  𝑗 = argmin𝑘∈𝑆cal
dist(𝑖, 𝑘),         (9) 

where dist(𝑖, 𝑘)  indicates the distance between locations 𝑖  and k, and argmin  denotes the input which minimizes this 

objective.  

Performance of both this nearest monitor method and the satellite AOD conversion method are assessed for Pittsburgh in 585 

Fig. 4. In this case, the low-cost sensor data are used to represent the “ground truth” against which performance is assessed. 

Again, conversion factors are developed and applied on a monthly basis. All but one low-cost sensor sites are used for 

development of these factors, with application and assessment on the final site; it should be noted that this represents a 

greater number of ground sites than was evaluated in Sect. 3.1, leading to improved performance following the trend noted in 

Sect. 3.2. These sites are then cycled through, to provide performance metrics across all sites. To allow for comparability 590 

between the nearest monitor approach and surface PM2.5 estimation from satellite AOD, we make use of the same set of 

ground sites for both, i.e., for each site, data from the closest available sites are used as inputs to the nearest monitor method, 

and all sites are cycled through in this manner, providing performance metrics for each site as above. A diagram of this 

procedure is provided in the supplemental information, Fig. S9. 

InIn Pittsburgh, we see reduced performance (lower correlation, larger CvMAE, larger spread in the bias) when using 595 

converted satellite data as compared to nearest monitor data. This is likely a result of the quite dense network of low-cost 

sensors present in Pittsburgh, where the median distance between sensors in the network is about 1 km. With this dense 

network, there is a good chance that the nearest ground monitor will be quite close to the location at which concentrations 

are to be estimated, and the resulting “nearest monitor” estimate is therefore likely to be quite good, as PM concentrations 

tend to be homogenous at this spatial scale have in Pittsburgh (Li et al., 2019). When PM2.5 is instead estimated from satellite 600 

data using a simple linear relationship, spatial and temporal variability in surface PM2.5 to AOD relationships is introduced, 

which can confound the assessment. This is especially important considering the relatively low levels of surface PM2.5 

concentration and AOD in and above Pittsburgh, meaning that any introduced noise will be relatively large in proportion to 

the signal being assessed. These results indicate that dense ground-based monitoring (if available) will likely outperform 

AOD-derived surface PM2.5 at least for the simple conversion method used here. 605 
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3.53.4 The utility of AOD-based surface PM2.5 in regions with a sparse ground monitoring network 

Performance of the nearest monitor method and the satellite AOD conversion method are assessed for Rwanda in Fig. 5, in a 

similar manner as was done for Pittsburgh in Fig. 4. In Rwanda, we see an improvement across all metrics (slightly higher 

and more consistent correlation, much smaller and more consistent CvMAE, and less spread in the bias) as satellite data are 610 

combined with surface PM2.5 monitor data. In particular, mMedian CvMAE is reduced from about 0.5 to 0.3, a 40% 

improvement. Because of the relative sparsity of the low-cost monitor network in Rwanda (4 measurement sites, not all of 

which were simultaneously operational) compared to that in Pittsburgh, the assumption of spatial homogeneity of 

concentrations between monitoring sites is less valid, and so the inclusion of satellite data is beneficial in resolving these 

spatial differences. Furthermore, the relatively high levels of PM2.5 concentration in Rwanda (average of about 40 µg/m3 615 

over the study period) allows for a higher signal-to-noise ratio relative to Pittsburgh. Together, these results indicate the high 

utility of low-cost sensors, used in conjunction with satellite data, when these are deployed even in relatively sparse 

networks to previously unmonitored areas with high surface PM2.5 concentrations. 

This point is further explored in Fig. 6, which compares the correlations between ground measurements in Pittsburgh and 

Rwanda with the AOD-to-surface-PM correlations in these areas. In Pittsburgh, the high density of available monitors leads 620 

to relatively high inter-site correlations, above the typical range of the AOD-to-surface-PM correlations. It is therefore 

difficult to extract meaningful patterns from the AOD information that would not also be present in available surface-level 

measurements, suggesting that AOD data provide little additional value in this densely monitored area (at least in terms of 

what can be derived without including additional information sources like atmospheric modelling and land use 

characteristics). Meanwhile, in sparsely monitored Rwanda, inter-site correlations are lower, overlapping the typical range of 625 

AOD-to-surface-PM correlations. This means that AOD data can still provide useful information for spatial heterogeneities 

in this region. 

Together, these results indicate the high utility of low-cost sensors, used in conjunction with satellite data, when these are 

deployed even in relatively sparse networks to previously unmonitored areas with high surface PM2.5 concentrations. 

3.73.5 Seasonal effects on satellite AOD conversion to surface PM2.5 630 

Fig. 7 presents the median performance metrics across all sites in either Pittsburgh or Rwanda for each combination of 

initialization and application season. Changing seasons can affect the relationship between satellite AOD and surface PM2.5 

due to changes in confounding factors like surface reflectance, aerosol vertical profiles, and particle composition. Many of 

these seasonally varying factors are not accounted for in current AOD retrievals (Lyapustin et al., 2018). Here, we assess the 

utility of developing seasonal AOD conversion factors for Pittsburgh and Rwanda. For this assessment, conversions are 635 

developed and applied in specific seasons (information on these seasons are presented in the supplemental information). For 

Pittsburgh, these approximately correspond to a winter, spring, summer, and fall season, while in Rwanda, these represent 

alternating wet and dry seasons. For Pittsburgh, the major differences between seasons are related to temperature, with 
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humidity varying to a lesser degree, as depicted in Fig. S2. In Rwanda, temperatures are relatively stable year-round, with 

seasons mainly differentiated by humidity changes (although the second dry season appears to have been unusually wet, 640 

comparable to the previous wet season).  

RAMP data are used to represent “ground truth” concentrations for both areas. An offline or “prior” approach is used here, 

i.e., calibrations are not modified based on data collected within the application period, in order to investigate the effect of 

generalizing a calibration developed in one season to a different season. Metrics are assessed for each individual site in each 

area, with all other sites being used to establish AOD conversion factors as in the previous section. The median results across 645 

all sites are presented in Fig. 6 for each combination of initialization and application season. 

For Pittsburgh, spring conversion factors seem to generalize best when applied to other seasons, with the lowest biases and 

highest precisions. Low correlations are observed in the summer and winter regardless of initialization period, and clear 

seasonality is observed with summer initializations being biased high in winter and winter initializations being biased low in 

summer.the summertime conversion factors perform best across all seasons, while the wintertime conversion factor performs 650 

worst (except when applied to winter). Thus, while there are some seasonal differences, a conversion factor developed 

during summer (or a conversion factor developed over the course of spring through fall) might generalize reasonably well to 

the entire year.   

In Rwanda, an alternating pattern is revealed, with wet season conversion factors applying well to other wet seasons, and dry 

season conversion factors applying to other dry seasons. Many factors could contribute to this pattern, including changes in 655 

humidity and the resulting impact on extinction, as well as seasonal burning patterns affecting particle sizes and 

compositions. Conversion factors appear to generalize better between wet seasons than between dry seasons. Correlations 

are highest during the first dry season (DS1), regardless of when whether the conversion factor is developed during this 

season or during the surrounding wet seasons; this was also the driest season and the season with the highest PM2.5 

concentrations of the seasons measured. Applications of conversion factors developed in other seasons to DS1 underestimate 660 

PM2.5 in this season, especially applications of factors developed during the wet seasons (when PM2.5 levels were much 

lower). This indicates that there is seasonality to PM2.5 concentrations which that is not being reflected in the AOD data 

alone, and would requires local monitoring to identify. Overall, these results indicate that conversion factors should be 

developed or updated at least on a seasonal basis, especially in Rwanda; a conversion factor developed during a limited 

monitoring campaign occurring in one specific season may fail to generalize well to other seasons.  665 

3.83.6 Regional generalization of AOD conversion factors developed in Rwanda 

Finally, given the lack of ground-based monitoring in many parts of SSA, we assess whether a conversion factor developed 

in one city can be generalized to other cities and towns across SSA. Here, a single AOD conversion factor is developed using 

one site in Kigali, Rwanda and this factor is applied without modification to other sites across SSA. These include a second 

site in Kigali, a site in Musanze in rural Rwanda, a site in Kinshasa (DR Congo), and three sites in Malawi (one near the 670 

urban area of Lilongwe and two other sites in more rural areas to the south, near Mulanje) where low-cost sensor systems are 
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deployed. There are also two sites (Kampala, Uganda and Addis Ababa, Ethiopia) where hourly-resolution long-term 

regulatory-grade monitoring data are available; data from these sites are included for comparative purposes. An offline 

approach is used here, with a single factor being initialized over the entire study period. Results of the analysis discussed in 

Sect. 2.6.5 are presented in Fig. 87. 675 

 Correlation is relatively low across all most application areas, with a weak trend of decreasing correlation trend as distance 

from the initialization site increases (the exception to this is found at the rural Mugogo site). Best performance in terms of 

CvMAE and normalized bias is found in Kigali, Kampala, and Kinshasa; these urban zones are likely most similar to the 

initialization site in terms of land use and resulting source mix.; Rrelatively best performance is found at the spatially closest 

Kigali site which is much closer spatially. The Kampala site, with data collected via a traditional monitoring instrument, 680 

shows similar results as obtained at these other urban sites where with low-cost monitors are used. The other, more rural 

locations show poorer performance regardless of distance from the initialization site. However, the Addis Ababa site also 

shows much poorer performance, despite also being an urban area, although the Embassy is located on the outskirts of the 

city. This may be due to climate differences between Addis Ababa and the other cities considered, as well as differences in 

particle composition and size distributions, especially higher contribution to AOD from coarse (larger than PM2.5) Saharan 685 

dust (De Longueville et al., 2010) which that would not be accounted for in the Kigali-based AOD conversion factor.  

These results indicate that, while conversion factors may generalize to sites with similar land use and climate characteristics, 

physical distance alone is not as significant in determining AOD-PM relationship generalizability. Also, the overall low 

correlation values indicate the importance of local data, as spatial heterogeneity in satellite AOD to surface PM2.5 

relationships can be a concern even for nearby sites. Finally, it should be noted that a single annual conversion factor, as is 690 

assessed here, could fail to take into account seasonal variabilities (Sect. 3.5) and so can correlate poorly with surface PM2.5 

even in or near the area where it is developed (as seen for the Kigali site here). A conversion factor which that varies on at 

least a seasonal basis is therefore preferred; however, determining how to generalize such a time-varying conversion factor 

to other regions where seasonal definitions and characteristics can be quite different is a challenging problem. Overall, it 

does not appear from this analysis that AOD to surface PM2.5 conversion factors can be broadly generalized across global 695 

regions with consistent results. Therefore, continuous localized monitoring, such as might be facilitated with local low-cost 

monitor networks, seems to be the most robust way to establish applicable AOD to surface PM2.5 conversion factors. 

4 Discussion 

We have examined the feasibility of using low-cost sensors as a data source in developing relationships between surface 

PM2.5 concentrations and satellite AOD measurements. In a case study in Pittsburgh, there was no decrease in performance 700 

associated with the use of low-cost sensors for this purpose rather than more traditional regulatory-grade monitors, although 

performance was rather poor in both cases. Furthermore, tThe increased higher density of ground sites networks possible 

usingwith low-cost sensors did provided benefits in terms of more robust conversion factors compared to the more sparsely 
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deployed traditional monitoring network. However, it was found that for Pittsburgh, with a relatively dense low-cost sensor 

network (median inter-site distance of about 1 km) and low PM2.5 concentrations, use of the nearest ground measurement 705 

sites outperformed the use of satellite AOD data to estimate surface PM2.5. using linear conversions. Partly, this could be 

because AOD is rather low over this area (average of about 0.2) leading to lower signal-to-noise ratios whichthat reduce 

AOD to surface PM correlation. Conversely, in Rwanda, a relatively sparse low-cost sensor network combined with satellite 

data with in an environment with higher and more variable PM2.5 concentrations provided better estimates of surface PM2.5 

concentrations than was available using only the nearest surface monitor alone. This result is highly relevant to SSA, as 710 

sparse local monitoring and high average PM2.5 concentrations (as measured by the few available ground-based monitors) 

are common features. DDifferences in seasonal characteristics (especially at the Rwanda locations) show the added value of 

season-specific conversion factors (which are facilitated by continuous local monitoring), while differences in characteristics 

between areas, especially urban and rural locations with highly variable particle types, limit the generalizability of 

conversion factors across regions (again emphasizing the importance of local monitoring). 715 

It should be noted that the results of this paper pertain to local and instantaneous relationships, using the highest spatial and 

temporal resolution of satellite data currently available. Results may differ for spatially or temporally aggregated satellite 

and ground site data. In particular, such spatial and temporal aggregation is likely to reduce the impact of noise (but not b ias) 

both from low-cost instruments and from satellite retrievals. However, such aggregate information does not take advantage 

of the potential inherent in low-cost sensors to provide near-real-time information on local air pollution. On a related point, 720 

satellite data (at least, for most of the world using current platforms) cannot provide diurnal concentration profiles, instead 

presenting a “snapshot” of concentrations for a wide spatial domain but only for a specific time of day. Ground-based 

monitoring, including monitoring with low-cost sensors, will still be essential for this function, at least until new 

geostationary platforms with truly global coverage are available (Judd et al., 2018; She et al., 2020). Such satellites are 

planned for coverage of North America (the TEMPO satellite mission), Europe (Sentinel 4), and East Asia (GEMS); 725 

unfortunately, there are no current plans for coverage of Africa by similar satellites. 

The results presented here continue to highlight the need for ground-based PM2.5 monitoring in previously unmonitored areas 

such as SSA, especially in light of the benefits observed in Rwanda from having even a sparse ground monitoring network 

combined with satellite data on local spatial heterogeneity. Efforts to expand ground-based monitoring These efforts should 

make use of traditional regulatory-grade instruments wherever possible, supplemented with low-cost monitors to increase 730 

network density and extend expand spatial coverage. Findings in Pittsburgh indicate that denser monitoring networks, such 

as those made possible by low-cost sensors, improve accuracy and robustness of surface PM2.5 estimates from satellites (up 

to a certain point of diminishing returns). Verification that the same trend will hold in other regions, especially in SSA, 

requires further dense deployments of low-cost sensors, and is the subject of ongoing work. 

It should be noted that the results of this paper pertain to local and instantaneous relationships, using the highest spatial and 735 

temporal resolution of satellite data currently available. Results may differ for spatially or temporally aggregated satellite 

and ground site data. In particularfact, such spatial and temporal aggregation is likely to reduce the impact of noise (but not 
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bias) both from low-cost instruments and from satellite retrievals. However, such aggregate information does not take full 

advantage of the potential inherent in low-cost sensors to provide near-real-time information on local air pollution. On a 

related point, satellite data (at least, for most of the world using current platforms) cannot provide diurnal concentration 740 

profiles, instead presenting a “snapshot” of concentrations for a wide spatial domain but only for a specific time of day. 

Ground-based continuous monitoring, including monitoringeven with low-cost sensors, will still be essential for this 

function, at least until new geostationary platforms with truly global coverage are available (Judd et al., 2018; She et al., 

2020). Such satellites are planned for coverage of North America (the TEMPO satellite mission), Europe (Sentinel 4), and 

East Asia (GEMS); unfortunately, there are no current plans for coverage of Africa by similar satellites. 745 

Further technical and research developments in this area have enormous promise for improving the our understanding of 

local air quality worldwide. A functioning system for converting satellite to ground-level air pollution data, relying on a 

group of “trusted” ground data sources, could potentially be a valuable resource for assessing and correcting low-cost sensor 

data, allowing for in-field recalibration of drifting instruments, and better identification of malfunctioning sensors. Low-cost 

systems combining PM mass measurement and ground-up AOD data can help to establish AOD to surface PM relationships 750 

at finer spatio-temporal resolution (Ford et al., 2019). Open questions related to this research area include finding appropriate 

timescales over which conversion factors can be considered constant within regions as well as continuing to examine the 

question of conversion factor generalizability between regions separated by spatial distances and across different climates 

and land use characteristics. More sophisticated conversion methods incorporating meteorological and land use information 

and outputs of chemical transport models can also be considered, albeit with the recognition that some of these inputs may 755 

not yet be readily available or well validated for SSA. 
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Figure 1: Estimated annual average PM2.5 concentration versus density of referenceregulatory-grade monitoring stations across 

several global regions. Colors correspond to continents, and sizes roughly correspond to total regional population. This graphic is 1255 
based on information available from the Global Health Observatory (WHO, 2017). 
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Figure 2: Comparison of performance metrics (a: correlation, b: CvMAE, and c: MNB) for surface PM2.5 estimated from satellite 1260 
AOD data in the Pittsburgh area. Performance is assessed at the ACHD regulatory-grade monitoring sites. Ground sites used for 

factor development are either four of the ACHD monitors (ACHD) or four low-cost sensors associated with RAMP monitors 

(RAMP). Conversion factors are established either on a Yearly or Monthly basis. Finally, either an offline (Prior) or online (Post.) 

approach is used. 
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Figure 3: Performance (assessed in terms of CvMAE) for surface PM2.5 estimated from satellite AOD data in the Pittsburgh area, 

plotted as a function of the number of ground sites used. Performance is assessed against the ACHD regulatory-grade monitors. 

Solid lines indicate mean performance across sites using either ACHD or low-cost sensor (RAMP) sites to establish conversion 1270 
factors. Shaded regions indicate the range of variability for different selected groups ofacross application sites. 
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Figure 4: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for either surface PM2.5 estimated from 1275 
satellite AOD data (Satellite) or from the nearest ground-level PM2.5 monitor (Nearest Monitor) in the Pittsburgh area. Note that 

these performance metrics are not directly comparable to those presented in Fig. 2, as in this case a larger number of ground 

initialization sites (9 to 45, depending on the number of active sites in Pittsburgh at any particular time) is are considered. Further, 

, and performance is nowt being assessed against the RAMP rather than the ACHD network (i.e., performance is assessed at the 

held-out active RAMP site); this is done to allow for comparability with the results from Rwanda, presented in Fig. 5, where only 1280 
RAMP data are available.. 
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Figure 5: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for either surface PM2.5 estimated from 1285 
satellite AOD data (Satellite) or from the nearest ground-level PM2.5 monitor (Nearest Monitor) in the Rwanda area. 
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Figure 6: Comparison of inter-site correlations versus AOD-to-surface-PM2.5 correlations in Pittsburgh and Rwanda 1290 
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 1295 

Figure 76: Comparison of seasonal performance metrics (a, d: correlation; b, e: CvMAE; c, f: MNBbias) for surface PM2.5 

estimated from satellite AOD data across different seasons in the Pittsburgh (a, b, c) and Rwanda (d, e, f) areas. The horizontal 

axis differentiates the seasons during which initialization was performed, while the vertical axis denotes the seasons when the 

conversion was applied. Note that, in Rwanda, only one sensor was operational during Dry Season 2 (DS2) and Wet Season 3 

(WS3), and so application of these conversions to an independent site was impossible; therefore, performance metrics are blacked 1300 
out. In each figure diagonal (from top left to bottom right) elements correspond to the same season. Values are also listed in the 

supplemental information, Table S8. 
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 1305 

Figure 87: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for surface PM2.5 estimated from satellite 

AOD data across multiple sites in SSA. The conversion factor is developed at a central site in Kigali, Rwanda; the distances of each 

testing site to this central site are given. Performances are assessed for all data collected at the given sites, using the prior 

conversion factor only. Note that performance in Kampala and Addis Ababa is assessed using traditional reference monitors 

(indicated by ⁕), while performance at the other sites reflects low-cost sensor data (indicated by ●).  1310 
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Table 1: Summary information for low-cost sensor systems utilized for this paper. 

Manufacturer MetOne PurpleAir Alphasense 

Product Neighborhood Particulate 

Monitor 

PurpleAir II OPC-N2 

Abbreviation NPM PA-II OPC 

Measurement Method forward light scattering laser laser particle sensor optical particle counting 

Other Features Includes PM2.5 cyclone and 

inlet heater. Provides 

estimates of PM2.5 mass 

concentrations using 

calibrations that are user-

modifiable. Interfaced with 

RAMP low-cost monitor 

nodes. 

Includes a pair of Plantower 

PMS 5003 units, along with 

temperature and humidity 

sensors. Provides estimates 

of PM1, PM2.5, and PM10 

mass concentrations via 

proprietary calibrations. 

Interfaced with RAMP low-

cost monitor nodes. 

Detects particles in the 0.38 

to 17 µm range, converts 

particle counts to PM1, 

PM2.5, and PM10 mass 

concentrations via 

proprietary calibrations. 

Integrated with ARISense 

low-cost monitor nodes. 

Unit Cost (approx.) $2000 $250 $350 (not including housing) 

Performance Notes Moderate correlation to 

regulatory-grade instruments 

in laboratory and field 

testing. Requires cleaning 

and re-calibration between 

deployments. 

High correlation to 

regulatory-grade 

instruments, except at high 

humidity. Individual 

Plantower sensor 

malfunctions detectable via 

comparison between the two 

internal units.  

Moderate correlation to 

regulatory-grade instruments 

in field conditions. 

References (AQ-SPEC, 2015; Malings 

et al., 2019b) 

(AQ-SPEC, 2017; Malings 

et al., 2019b) 

(AQ-SPEC, 2016; Crilley et 

al., 2018) 
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Table 2: Summary information for the ground sites presented in this paper. 

Area Name Pittsburgh Rwanda Malawi Kinshasa Kampala Addis Ababa 

Country United States of 

America 

Rwanda Malawi Democratic 

Republic of 

the Congo 

Uganda Ethiopia 

Location (Approx.) Between 

40.1ºN, 80.5ºW 

and  

40.8ºN, 79.7ºW 

Between 

2.2ºS, 29.4ºE 

and  

1.4ºS, 30.5ºE 

Between 

16.2ºS, 33.6ºE 

and  

14.0ºS, 35.7ºE 

4.3ºS, 15.3ºE 0.3ºN, 32.6ºE 9.0ºN, 38.8ºE 

Start Jan. 1, 2018 April 1, 2017 June 25, 2017 Mar. 20, 2018 Jan. 1, 2019 Jan. 1, 2019 

End Dec. 31, 2018 May 27, 2018 July 30, 2018 Oct. 31, 2019 Dec. 31, 2019 Dec. 31, 2019 

Low-Cost Sensors 

Total Sites 62 4 3 1   

Simultaneously 

Active Sites 

10 to 46 1 to 3 1 to 3 1   

Sensor Type NPM, PA-II NPM OPC PA-II   

Regulatory-Grade Monitors 

Total Sites 5    1 1 

Type BAM    BAM BAM 
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