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Abstract. Low-cost particulate mass sensors provide opportunities to assess air quality at unprecedented spatial and temporal 15 

resolutions. Established traditional monitoring networks have limited spatial resolution and are simply absent in many major 

cities across sub-Saharan Africa (SSA). Satellites provide snapshots of regional air pollution but require ground-truthing. Low-

cost monitors can supplement and extend data coverage from these sources worldwide, providing a better overall air quality 

picture. We investigate the utility of such a multi-source data integration approach using two case studies. First, in Pittsburgh, 

Pennsylvania, both traditional monitoring and dense low-cost sensor networks are compared with satellite aerosol optical depth 20 

(AOD) data from NASA’s MODIS system and a linear conversion factor is developed to convert AOD to surface fine 

particulate matter mass concentration (as PM2.5). With 10 or more ground monitors in Pittsburgh, there is a two-fold reduction 

in surface PM2.5 estimation mean absolute error compared to using only a single ground monitor. Second, we assess the ability 

of combined regional-scale satellite retrievals and local-scale low-cost sensor measurements to improve surface PM2.5 

estimation at several urban sites in SSA. In Rwanda, we find that combining local ground monitoring information with satellite 25 

data provides a 40% improvement in surface PM2.5 estimation accuracy with respect to using low-cost ground monitoring data 

alone. A linear AOD to surface PM2.5 conversion factor developed in Kigali, Rwanda did not generalize well to other parts of 

SSA, and varied seasonally for the same location, emphasizing the need for ongoing and localized ground-based monitoring, 

which can be facilitated by low-cost sensors.  Overall, we find that combining ground-based low-cost sensor and satellite data, 

even without including additional meteorological or land use information, can improve and expand spatio-temporal air quality 30 

data coverage especially in data-sparse regions. 
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1 Introduction 

Air quality is the single largest environmental risk factor for human health; outdoor air pollution exposure is estimated to have 

caused about four million premature deaths annually in recent years (WHO, 2016, 2018a). Particulate matter (PM), which 

represents a mixture of solid and liquid substances suspended in the air, is one of the most commonly tracked and regulated 35 

atmospheric pollutants globally (WHO, 2006). Exposure to fine PM is known to have major adverse health impacts (e.g. 

Schwartz et al., 1996; Pope et al., 2002; Brook et al., 2010). In addition, PM mass concentration  is often used as a proxy for 

overall air quality (WHO, 2018a). PM mass concentration is typically tracked as PM10 (total PM mass with diameter below 10 

micrometers) and/or PM2.5 (total PM mass with diameter below 2.5 micrometers). Even at low concentrations, PM can have 

significant health impacts (Bell et al., 2007; Apte et al., 2015). These health impacts are especially notable in low-income 40 

communities and countries, where they can interact with other socio-economic risk factors (Di et al., 2017; Ren et al., 2018). 

Sub-Saharan Africa (SSA) in particular is affected by poor air quality, with less than 10% of communities assessed by the 

WHO meeting recommended air quality guidelines, compared with 18% globally, and 40 to 80% in Europe and North America 

(WHO, 2018b). This poor air quality manifests in terms of high infant mortality (Heft-Neal et al., 2018), increased risk of 

chronic respiratory and cardiovascular diseases (Matshidiso Moeti, 2018), and reduced gross domestic product (World Bank, 45 

2016). Industrial development and climate trends will likely only exacerbate this problem in the future (Liousse et al., 2014; 

UNEP, 2016; Silva et al., 2017; Abel et al., 2018).  

Many African countries have among the highest estimated annual average PM10 and PM2.5 concentrations, yet are also among 

those with the lowest number of in situ regulatory-grade PM monitoring sites per capita. Fig. 1 shows estimated average annual 

PM2.5 concentrations for various regions of the world versus the density of regulatory-grade monitoring sites in these regions 50 

(note that low-cost monitors are not considered), based on information from the Global Health Observatory (GHO). The GHO 

combines data from multiple sources, including data collected during different years and from sporadic field monitoring 

campaigns, and it is not necessarily reflective of continuous routine monitoring for all regions (WHO, 2017). This lack of 

continuous surface monitoring data makes it difficult to answer basic scientific and policy questions related to air quality 

assessment and mitigation (Petkova et al., 2013; Martin et al., 2019). A major reason for this gap is the high capital and 55 

operational costs of traditional ground-based air quality monitoring equipment. Two emerging technologies have the capacity 

to close this gap: satellite-based air quality monitoring and ground-based low-cost sensor systems.  

Satellites are much more expensive than traditional ground-based monitors, but their mobility and unique vantage point allow 

them to provide near-global coverage. Data from earth-observing satellites can be used to assess air quality in a variety of 

ways. In particular, aerosol optical depth (AOD) retrievals quantify the absorption and scattering (extinction) of light by the 60 

atmosphere and can be related to the concentration of light-absorbing or light-scattering pollutants in the atmosphere. Several 

factors complicate the relationship between AOD and surface-level particulate matter mass concentrations (Paciorek and Liu, 

2009). As a vertically-integrated quantity, AOD is related to total light extinction by a column of atmosphere. The spatial 

distribution of particulate matter, especially vertical stratification, the presence or absence of plumes aloft, humidity, and the 
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size and optical properties of particles affect the relationship between AOD and surface concentrations (Kaufman and Fraser, 65 

1983; Liu et al., 2005; Paciorek et al., 2008; Superczynski et al., 2017; Zeng et al., 2018). Cloud cover also makes AOD 

retrievals impossible; the frequency of cloudy days in an area can therefore make it difficult to establish reliable relationships 

between AOD and surface PM, although this is not likely to be a concern for the continental US (Christopher and Gupta, 2010; 

Belle et al., 2017). Changes in surface brightness can also confound this relationship, although this may be less of an issue in 

developing countries with higher aerosol levels (Paciorek et al., 2012).  70 

Nevertheless, early examinations of AOD data from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument, launched aboard the Terra and Aqua satellites in 1999 and 2002, showed good correlation (e.g. correlation 

coefficient r about 0.7 for Jefferson County, Alabama in 2002) with surface PM2.5 concentrations in the United States, although 

these relationships varied from region to region (Wang and Christopher, 2003; Engel-Cox et al., 2004). For instance, 

correlations between AOD and hourly surface PM2.5 were found to vary from an r of 0.6 in the southeastern United States to 75 

an r of 0.2 in the southwestern United States during 2005-2006, with root-mean-square errors (RMSE) of about 9 µg/m3 for 

surface PM2.5 reconstructed from AOD using linear relationships, with worse results over urban areas (Zhang et al., 2009). 

Additional studies show broadly similar relationships, with r ranging between about 0.5 and 0.8 in the northeastern United 

States (e.g. Paciorek and Liu, 2009), with changes in agreement depending on season (Chudnovsky et al., 2013a) and with 

better agreement at higher spatial AOD resolution (Chudnovsky et al., 2013b). Using additional covariates, such as land cover, 80 

land usage, and meteorological information, can further improve these relationships. In particular, surface PM2.5 estimation 

models combining daily-averaged, 1 km resolution AOD data with meteorological and land use regression variables achieved 

an agreement (r) with EPA ground-based monitors of up to about 0.95 in the northeastern and 0.9 in the southeastern United 

States, with a mean absolute error of about 3 µg/m3 (Chang et al., 2014; Chudnovsky et al., 2014; Kloog et al., 2014). Methods 

incorporating the outputs of chemical transport models (in this case at lower spatial resolutions of 12 km compared to the 1 85 

km AOD resolution, and at daily temporal resolution) can further improve these results (e.g. Murray et al., 2019). 

Models combining satellite AOD data with vertical profiles derived from chemical transport models tend to underestimate 

surface-level PM2.5 outside of Europe and North America, mainly in India and China where ground-based comparison data are 

available (van Donkelaar et al., 2010, 2015). In China, the r between surface PM2.5 estimates derived from satellite AOD, 

meteorological, and land use information and measured surface PM2.5 was found to be about 0.8, corresponding to a RMSE of 90 

about 30 µg/m3 (roughly half the mean concentration) in resulting satellite-derived surface concentration estimates (Ma et al., 

2014). A method that updates the relationships between AOD and surface PM2.5 on a daily basis (Lee et al., 2011) was able to 

improve these results, increasing r above 0.9 while reducing RMSE to about 20 µg/m3 (Han et al., 2018). This method, 

however, relies on local ground-based measurements to provide the data necessary to perform this daily updating.  

Satellites have the potential to provide broad data coverage to previously unmonitored areas such as in SSA. Satellite-based 95 

AOD and ground-based AOD agreed well during a recent assessment in West Africa (Ogunjobi and Awoleye, 2019), but an 

assessment in South Africa found a poor relationship between satellite AOD and surface PM2.5, with maxima in the surface 

concentrations coinciding with minima in the AOD (Hersey et al., 2015). Relationships between AOD and surface PM2.5 
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developed using ground monitoring data elsewhere in the world may not transfer well to SSA, leading to inaccurate 

quantification of surface air quality.  100 

Low-cost air quality monitors have much lower purchase and operational costs in contrast to traditional or regulatory-grade 

monitors (Snyder et al., 2013; Mead et al., 2013). For example, a lower-cost multi-pollutant monitor (measuring gases and 

PM) costs a few thousand US dollars; single-pollutant PM sensors can cost just a few hundred US dollars. A comparable multi-

pollutant suite of traditional air quality monitoring instruments would cost a hundred thousand US dollars or more; a 

regulatory-grade PM monitor can cost tens of thousands of US dollar (based on recent manufacturer quotations). This cost 105 

reduction is made possible by a combination of lower-cost measurement technologies (such as electrochemical sensors for 

gases and optical particle detectors for PM) and decreasing costs of battery, data storage, and communications technologies. 

Much recent research interest has been focused on assessing the performance of these technologies (e.g. AQ-SPEC, 2015, 

2017), developing methods for accounting for cross-interference effects in gas sensors (e.g. Cross et al., 2017; Zikova et al., 

2017; Kelly et al., 2017; Zimmerman et al., 2018; Crilley et al., 2018; Malings et al., 2019a) and humidity dependence in 110 

optical PM measurement methods (e.g. Malings et al., 2019b) to improve data quality, and demonstrating the utility of these 

low-cost monitors in various use cases (e.g. Subramanian et al., 2018; Tanzer et al., 2019; Bi et al., 2020). Because of their 

relatively low cost, these instruments can be deployed more widely than traditional monitoring technologies, enabling 

measurements in previously unmonitored areas. A trade-off for this increased affordability can be reduced accuracy compared 

to traditional air quality monitoring instruments. While there are currently no agreed-upon criteria for assessing low-cost 115 

monitor performance (Williams et al., 2019), several schemes suggest tiered rankings ranging from, for example, 20% relative 

uncertainty for reasonable quantitative measurements to 100% uncertainty for indicative measurements (Allen, 2018); this 

gives a general sense of the expected performance characteristics of such instruments. In particular, recent testing of two types 

of such low-cost monitors (which are the types used in this paper) found relative uncertainties on the order of 40% and 

correlation coefficient r of 0.7 with regulatory-grade instruments for hourly PM2.5 measurements (Malings et al., 2019b). These 120 

results are generally consistent with similar studies conducted in a variety of environments and concentration regimes, although 

relative performance tends to improve at higher concentrations (Kelly et al., 2017; Zheng et al., 2018).  

The potential exists to use both satellite and low-cost sensor data together to address the shortcomings of each data source 

individually and to fill existing data gaps globally. Satellite data provides near-global coverage, but relationships between 

AOD and surface PM2.5 do not generalize well across regions, and so local ground-based data are needed for establishing 125 

conversion factors. Low-cost sensors can provide these local data in areas where existing monitoring networks are sparse or 

data are sporadically available. The current work examines the use of low-cost PM sensors as ground data sources for 

estimating surface concentrations from satellite AOD retrievals via two case studies. Specifically, we seek to quantify to what 

extent, even with the inherent uncertainties of low-cost sensors, their data might still be useful in estimating surface PM2.5 

from AOD. 130 

First, using a dense network of low-cost monitors in Pittsburgh, Pennsylvania, USA, where a regulatory-grade monitoring 

network already exists, we assess the utility of low-cost sensors as compared to these traditional instruments. Second, using 
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low-cost monitors deployed in Rwanda, Malawi, and the Democratic Republic of the Congo, we explore the utility of these 

low-cost sensors in previously unmonitored areas. We use US State Department data (publicly available from US government 

websites as well as the OpenAQ Platform at openaq.org) from regulatory monitors at the US Embassies in Kampala, Uganda 135 

and Addis Ababa, Ethiopia to supplement our analysis of the relationship between converted satellite AOD data and surface-

level PM2.5 across SSA. In this work, we focus on high spatial and temporal resolution satellite data, which best aligns with 

the capacity of low-cost sensors to provide local air quality information in near-real-time. We do not incorporate 

meteorological or land use information, as such additional information may not be available in sparsely monitored areas. 

Further, keeping the model as simple as possible avoids over-fitting a more sophisticated model to its calibration data set, 140 

which can limit its generalizability. Instead, we use simple linear AOD to surface PM2.5 conversion factors to indicate how 

low-cost sensors alone may provide additional information to inform conversion of AOD to surface PM2.5, particularly in data-

sparse domains. The techniques presented here are likely to translate to other data sources (e.g. new regeulatory-grade 

monitors, new geostationary satellites) as they become available in the future. 

2 Methods 145 

2.1 Low-cost PM2.5 sensor data 

Surface PM2.5 data were collected with three types of low-cost sensors (MetOne NPM, PurpleAir PA-II, and Alphasense OPC), 

as described in Table 1. For data collection, all NPM and most PA-II units were paired with RAMP lower-cost monitoring 

packages. The RAMP (Real-time Affordable Multi-Pollutant) monitor is produced by SENSIT Technologies (Valparaiso, IN; 

formerly Sensevere), and has internal gas, temperature, and humidity sensors, along with the capability to interface with 150 

external PM monitors (newer models also have internal PM sensors). This allows data collected by these PM monitors to be 

stored and transmitted over cellular networks by the RAMP. The characteristics and operation of the RAMP are described 

elsewhere (Zimmerman et al., 2018; Malings et al., 2019a). The ARISense node, manufactured by Quant-AQ (Somerville, 

MA; formerly manufactured by Aerodyne Research), is a lower-cost sensor package that combines internal gas, humidity, 

temperature, wind, and noise sensors, together with the Alphasense OPC-N2 PM sensor, and provides internet connectivity 155 

for data transmission (Cross et al., 2017). Most low-cost PM2.5 data are collected via one of these two systems; the exception 

is a single independently-deployed PA-II unit in Kinshasa, DRC (see Table 2). 

Collected data are down-averaged from their device-specific collection frequencies to a common hourly timescale. Erroneous 

data identified either automatically (e.g. negative concentration values or unrealistically high or low values) or manually (e.g. 

devices exhibiting abnormal performance characteristics identified during periodic inspections) are removed. To correct for 160 

particle hygroscopic growth effects (i.e. the impact of ambient humidity on the PM mass as measured by the low-cost sensors), 

previously developed calibration methods (Malings et al., 2019b) were implemented for the NPM and PA-II sensors. Briefly, 

first, a hygroscopic growth factor is computed using the local humidity and temperature as measured by the low-cost monitor 

itself, along with an average or typical particle composition. Then, a linear correction is applied to the data based on past 
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collocations with regulatory-grade monitoring instruments. Utilizing these methods, the uncertainties on hourly average PM2.5 165 

concentration are about 4 µg/m3 (Malings et al., 2019b). For the Alphasense OPC sensors, raw bin count numbers were 

integrated to produce a new concentration estimate for PM2.5, and a similar relative humidity correction was applied (Di 

Antonio et al., 2018). An additional correction factor of 1.69 (for workdays) or 1.39 (for non-work-days) was applied to data 

collected by NPM sensors in Rwanda, based on previous results showing that current calibration methods tended to 

underestimate PM2.5 there (R Subramanian et al., under review). While we seek to use low-cost sensor data that have been 170 

calibrated and validated in accordance with best practices, there remain uncertainties associated with these instruments and 

inaccuracies compared to regulatory-grade instruments. A major goal of this paper is to assess to what extent, even with these 

uncertainties, low-cost sensor data might still be useful in the context of conversion of AOD to surface PM2.5. 

2.2 Ground-based sampling locations 

Surface PM2.5 data analyzed in this paper were collected in seven different areas, as listed in Table 2, where approximate 175 

locations, number of sites in each area, and durations of data collection are also listed. The Pittsburgh area includes sites in the 

surrounding Allegheny county, although most sites are concentrated within the city, as shown in Fig. 2. Similarly, the Rwanda 

area has most sites located in the capital city of Kigali, with one rural monitoring site collocated with the Mount Mugogo 

Climate Observatory in Musanze. In the Pittsburgh and Rwanda areas, low-cost sensors are connected with RAMP low-cost 

monitors. In Malawi, data are collected by three ARISense monitors using Alphasense OPC sensors, deployed to three 180 

locations in the vicinities of Lilongwe and Mulanje. The two locations in the vicinity of Mulanje are village-center sites, and 

so may be influenced by nearby combustion activities. In Kinshasa, a single PurpleAir PA-II was deployed independently (i.e. 

without an associated RAMP unit, as was the case in Pittsburgh) at the US Embassy. Temperature and humidity data were 

therefore obtained from the internal sensors within the devices themselves, and data connectivity was achieved using the local 

wireless internet network. At Kampala and Addis Ababa, regulatory-grade monitoring data collected at US Embassies are used 185 

to provide ground comparison data for concentration estimates derived from satellite AOD data. Additional information about 

all of these areas are also provided in the supplemental information (Sect. S1), and maps of the SSA sites are provided in the 

supplemental information (Fig. S4-S8). 

2.3 Regulatory-grade instrument data 

At several locations in the Pittsburgh area, as well as at the US Embassy locations in Kampala and Addis Ababa, hourly-190 

averaged ground-level PM2.5 data are also available from regulatory-grade monitoring instruments. In Pittsburgh, these 

monitors are operated by the Allegheny County Health Department (ACHD). At the US Embassies, these instruments are 

operated by the US State Department and US EPA and data are made available by these agencies 

(https://www.airnow.gov/international/us-embassies-and-consulates), as well as by the OpenAQ Platform (openaq.org). In all 

cases, regulatory-grade monitoring data are collected with Beta Attenuation Monitors (BAMs), a federal equivalent monitoring 195 

method, that provide hourly PM2.5 concentration measurements for air quality index calculation purposes (Hacker, 2017; 
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McDonnell, 2017). Nominally, such federal equivalent methods are required to be accurate within 10% of federal reference 

methods (Watson et al., 1998; US EPA, 2016). Since BAM data have been used to establish the calibration methods for low-

cost PM sensor data (Malings et al., 2019b), the data from the BAM instruments are used as provided for uniformity, without 

any additional corrections being applied.  200 

2.4 Satellite data 

The satellite data product used in this paper is the MODIS MCD19A2v006 dataset (Lyapustin and Wang, 2018) available 

through NASA’s Earth Data Portal (earthdata.nasa.gov). This dataset consists of AOD information for the 470nm and 550nm 

wavelengths from the MODIS system, processed using the Multi-angle Implementation of Atmospheric Correction (MAIAC) 

algorithm, and presented at 1 km pixel resolution for every overpass of either the Aqua or Terra satellites (Lyapustin et al., 205 

2011a, 2011b, 2012, 2018). This represents a Level 2 data product, meaning that it includes geophysical variables derived 

from raw satellite data at each overpass time and has not been aggregated to a coarser (e.g. monthly) temporal resolution. Data 

from identified cloudy pixels are masked as part of the data product; possible misidentification of cloudy pixels is one source 

of error in relating surface PM2.5 and AOD. As per recommendations in the User Guide for this dataset, only data matching 

“best quality” quality assurance criteria are used. This dataset was chosen as it represents the highest possible spatial and 210 

temporal resolution for AOD, thus providing the most points for comparison with the high spatio-temporal resolution low-cost 

monitor data.  

Satellite AOD data are considered to be collocated in space with data from a ground site when the center of the AOD pixel is 

within 1 km of the ground site. Data are considered concurrent if the satellite overpass occurs within the hour interval over 

which ground site data have been averaged to arrive at the hourly-average PM2.5 concentration value used. As we compare 215 

data from individual satellite passes directly to temporally collocated ground site data, we do not need to consider (as would 

be essential for long-term averages) the potential impact of the fraction of time where satellite measures are missing (due to 

cloud cover or other factors). Likewise, we do not consider the biases associated with the fact that satellite passes occur at 

certain times of day (required when comparing with daily-averaged ground monitoring data) since here we only compare AOD 

to surface PM2.5 during the same hour when the satellite pass occurs. 220 

2.5 Conversion Methods for satellite AOD 

A linear regression approach is used to establish relationships between satellite AOD and surface-level PM2.5. Let 𝑦𝑖,𝑡 denote 

the ground-level PM2.5 measurement at location 𝑖 and time 𝑡, and let 𝑥𝑖,𝑡 represent the satellite AOD (i.e., a vector combining 

the AOD at 470nm or 550nm wavelength with a “placeholder” constant of one to allow fitting of affine functions) 

corresponding to location 𝑖 and time 𝑡. For this paper we present results using AOD at 550nm; results for AOD at 470nm are 225 

similar and are included in the supplemental information (Sect. S3.2). The total set of ground measurement sites in an area, 𝑆, 

is partitioned into two disjoint sub-sets. Subset 𝑆in represents the sites used to establish the linear relationship between AOD 



8 

 

and surface PM2.5 concentrations. The remainder of sites, in the subset 𝑆ap, are used for the application, i.e., to serve as an 

independent set to evaluate the performance of the linear relationship established from the 𝑆in sites. Likewise, the time domain 

𝑇 is partitioned into initialization phase 𝑇in, during which linear relationships are established, and application phase 𝑇ap, during 230 

which these relationships are applied and evaluated.  

Linear relationships are determined as follows. First, satellite AOD data and surface PM2.5 monitor data from the 𝑆in sites 

during the 𝑇in phase are collected together: 

𝑋in = {𝑥𝑖,𝑡} 𝑌in = {𝑦𝑖,𝑡} ∀  𝑖 ∈ 𝑆in , 𝑡 ∈ 𝑇in,         (1) 

A linear relationship is established between these, defined by parameters 𝛽in, using classical least-squares linear regression 235 

(e.g., Goldberger, 1980): 

𝛽in = (𝑋in
T 𝑋in)

−1
𝑋in

T 𝑌in,           (2) 

The covariance matrix of the parameters, Σ𝛽in
, is also obtained: 

Σ𝛽in
=

(𝑌in−𝑋in𝛽in)T(𝑌in−𝑋in𝛽in)

length(𝑌in)−length(𝛽in)
(𝑋in

T 𝑋in)
−1

,         (3) 

where length(∙)  is a function returning the number of elements in the input. During the application phase, the linear 240 

relationship can be used to estimate the surface PM2.5 concentration at location 𝑖 and time 𝑡, �̂�𝑖,𝑡,prior, from the satellite AOD 

data corresponding to that location and time: 

�̂�𝑖,𝑡,prior = 𝑥𝑖,𝑡  𝛽in,            (4) 

The above procedure constitutes an offline or (in Bayesian terminology) prior conversion, i.e., it uses data collected during the 

initialization phase to define a single conversion factor that is applied throughout the application phase. An online, dynamic, 245 

or (in Bayesian terminology) posterior approach can also be adopted, in which this relationship is modified as additional data 

are available. This approach has been proposed by Lee et al. (2011) and evaluated by Han et al. (2018), and allows for the 

potentially time-varying relationship between satellite AOD and surface PM2.5 concentration to be accounted for. In the online 

approach, for a time 𝑡 during the application phase, a new data set consisting of 𝑌in,𝑡 and 𝑋in,𝑡 is created by combining all data 

available from the 𝑆in ground sites together with satellite AOD data for that time: 250 

𝑋in,𝑡 = {𝑥𝑖,𝑡} 𝑌in,𝑡 = {𝑦𝑖,𝑡} ∀  𝑖 ∈ 𝑆in,         (5) 

Based on these new data, a linear relationship is established for that time, as above: 

𝛽𝑡 = (𝑋in,𝑡
T 𝑋in,𝑡)

−1
𝑋in,𝑡

T 𝑌in,𝑡,          (6) 

This relationship is combined with the prior relationship established during the initialization phase (using a Bayesian approach 

and assuming normally-distributed parameter values) to establish a new posterior relationship specific to that time, 𝛽𝑡,post: 255 
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𝛽𝑡,post = 𝛽in + Σ𝛽in
(Σ𝛽in

+ 𝜂2diag(Σ𝛽in
))

−1

(𝛽𝑡 − 𝛽in) ≈
1

1+𝜂2
(𝜂2𝛽in + 𝛽𝑡),     (7) 

where diag(∙) denotes a matrix diagonalization and 𝜂 is a relative error scale parameter, used to define how much “weight” is 

given to the time-specific relationship parameters 𝛽𝑡 versus the prior relationship parameters 𝛽in in the updating process (with 

values of 𝜂 near zero placing more weight on the time-specific relationships, while high values of 𝜂 place more weight on the 

prior). The posterior relationship is then used to estimate surface PM2.5 concentrations from the satellite AOD data for that 260 

time: 

ŷ𝑖,𝑡,post =  𝑥𝑖,𝑡  𝛽𝑡,post,           (8) 

Both the offline and online approaches are used in this paper, and their performance is compared (see Sect. 3.1). 

This simple linear correction factor method does not explicitly account for vertical distribution profiles, cloud cover, or any 

other variables that affect the relationship of AOD to surface PM2.5. Instead, the aggregate effect of these variables is accounted 265 

for implicitly in an empirical relationship. The offline approach uses fixed relationships, which cannot account for time-varying 

effects such as changes in vertical distribution profiles. The online approach can account for these time-varying effects by 

assuming their observed impact on the AOD to surface PM2.5 relationship at the 𝑆in sites is representative of their short-term 

impact throughout the region where the corresponding correction factors are applied. Finally, note that all parameters described 

above can be solved for analytically using the equations presented in this section (i.e. no iterative or approximate solution 270 

methods are necessary). 

2.6 Analyses conducted in this paper 

This section provides details of how the various analyses and comparisons to be discussed in Sect. 3 are performed. Additional 

details are also provided in the supplemental information (Sect. S2.2 to S2.4). 

2.6.1 Comparison of regulatory and low-cost monitors as ground stations to develop conversion factors for AOD 275 

Here, we seek to compare the performance of AOD conversion to surface PM2.5 using either low-cost or regulatory-grade 

monitors as the ground-level data source for initialization. As only Pittsburgh has networks of both types of sensors in place, 

we focus our analysis in this area. The surface PM2.5 data collected at the five ACHD regulatory monitoring locations are used 

to assess the performance of the satellite AOD conversion, regardless of how the conversion factors are initialized. First, we 

use four of five ACHD locations to develop a conversion factor and apply it to the fifth. All ACHD sites are rotated through 280 

in this manner, providing a performance metric assessed for AOD conversion applied to each site. Second, we use low-cost 

sensors for developing the conversion factor; in this case, we select a subset of four locations in Pittsburgh where RAMP low-

cost monitors are deployed, so that the number of ground sites used matches the number of ACHD sites used in the first case. 

These low-cost monitor locations are chosen to provide a similar spatial coverage over Allegheny county as the ACHD sites. 

Low-cost monitors collocated with ACHD sites were specifically not chosen to allow for a fairer comparison when 285 
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performance is assessed against these ACHD site (since, if this were not done, it would be possible to have initialization sites 

which are collocated with the application sites, which was not possible when the ACHD sites alone were used). In this case, a 

conversion factor developed using the four low-cost sensor sites is applied at all five ACHD sites, with performance assessed 

at each site. 

Different application cases of the satellite AOD conversion method are also tested. Note that in either case, we use all the 290 

collocated ground and satellite data across the entire time period without averaging these data in time. For a “yearly” 

conversion, data from the entire calendar year are used to develop the conversion factors, while in the “monthly” case, data 

from the previous month are used to develop conversion factors that are then assessed in the current month (e.g. January data 

are used to develop conversion factors that are applied in February, then the February data are used to develop conversion 

factors that are applied in March, etc.). For the “monthly” case, the median performance across months is presented. Although 295 

the “yearly” case would technically require having access to data that have not yet been collected (assuming this method is 

being applied for data collected in the current year), we use this to represent a case where data from a previous year are used 

to develop conversions applied in the current year, as we assume that the annual average AOD to surface PM2.5 concentration 

relationship for a given area will not significantly change from one year to the next. In addition, we also assess the relative 

performance of the offline (prior) conversion factors, where the same relationship parameters determined during the 300 

initialization period are applied to the entire application period, and the online (posterior, dynamic) conversion, where these 

initial parameters are modified based on the AOD to surface PM2.5 relationships specific to each individual satellite pass. The 

results of this analysis are discussed in Sect. 3.1. 

2.6.2 Analysis of AOD conversion factor performance versus number of ground sites 

A significant advantage of low-cost monitors compared to traditional instruments is that we can deploy tens to hundreds of 305 

low-cost sensors for the price of a single regulatory-grade monitor. To assess the potential benefits of this in terms of 

conversion of satellite AOD data to surface PM2.5, we analyze the influence of the number of surface sites used on the 

performance of the surface PM2.5 estimates from AOD conversion. We again examine the Pittsburgh region, vary the number 

of ground sites used for initialization to generate the AOD conversion factor, and evaluate the performance using the ACHD 

regulatory monitoring network as the “ground truth. For the ACHD network, the possible sites are the ACHD sites minus the 310 

one site against which performance is assessed (all ACHD sites are rotated through). For the low-cost sensors, the possible 

sites are all RAMP deployment locations in the area, excluding RAMPs that are collocated with ACHD sites, and performance 

is assessed against all ACHD sites. Subsets of varying size are randomly selected (10 different random set selections are used 

in this example); the mean of the performance metric across these 10 randomly selected sets is used as the assessed 

performance. In this case, a yearly online conversion factor is used (based on the performance of that method as described in 315 

Sect. 3.1). The results of this analysis are discussed in Sect. 3.2. 
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2.6.3 Comparison of converted AOD and nearest ground monitors as proxies for surface PM2.5 

Here, we seek to assess the benefits of combining satellite AOD and ground-based sensor data, as compared to using ground-

based sensor data alone. For this assessment, we compare estimates of surface PM2.5 derived from satellite AOD data, using 

the methods presented previously in this paper, with estimates based on the surface PM2.5 measurements alone, which we 320 

denote as “nearest monitor” estimates. For this estimation, we make use of a locally constant or naïve interpolation, in which 

the surface PM2.5 estimate for a given time and location is the same as the measurement of the nearest available ground monitor 

(i.e., one of the ground monitors used for establishing conversion factors for the satellite AOD data) at that time: 

ŷ𝑖,𝑡,nearest = 𝑦𝑗,𝑡   s. t.  𝑗 = argmin𝑘∈𝑆cal
dist(𝑖, 𝑘),         (9) 

where dist(𝑖, 𝑘) indicates the distance between locations 𝑖 and k, and argmin denotes the input that minimizes this objective.  325 

In this case, low-cost sensor data are used to represent the “ground truth” against which performance is assessed; this is done 

so that a comparable analysis can be made in Pittsburgh and Rwanda, since no regulatory-grade instruments were present in 

the latter area. Prior conversion factors are developed for the entire time period and are updated to posterior factors with time-

specific data for their application. All but one low-cost sensor sites in a given area are used for development of these factors, 

with application and assessment on the final site. These sites are then cycled through, to provide performance metrics across 330 

all sites. To allow for comparability between the nearest monitor approach and surface PM2.5 estimation from satellite AOD, 

we make use of the same set of ground sites for both, i.e., for each site, data from the closest available sites are used as inputs 

to the nearest monitor method, and all sites are cycled through in this manner, providing performance metrics for each site as 

above. The results of this analysis are discussed in Sect. 3.3 (for Pittsburgh) and 3.4 (for Rwanda). 

2.6.4 Analysis of inter-seasonal generalization of AOD conversion factors 335 

Changing seasons can affect the relationship between satellite AOD and surface PM2.5 due to changes in confounding factors 

like surface reflectance, aerosol vertical profiles, and particle composition. Here, we assess the utility of developing seasonal 

AOD conversion factors for Pittsburgh and Rwanda. For this assessment, conversions are developed and applied in specific 

seasons (information on these seasons are presented in the supplemental information, Table S1 and Fig. S1). For Pittsburgh, 

these approximately correspond to a winter, spring, summer, and fall season, while in Rwanda, these represent alternating wet 340 

and dry seasons. For Pittsburgh, the major differences between seasons are related to temperature, with humidity varying to a 

lesser degree. In Rwanda, temperatures are relatively stable year-round, with seasons mainly differentiated by humidity 

changes (although the second dry season appears to have been unusually wet, comparable to the previous wet season).  

RAMP data are used to represent “ground truth” concentrations for both areas. An offline or “prior” approach is used here, 

i.e., calibrations are not modified based on data collected within the application period, in order to investigate the effect of 345 

generalizing a calibration developed in one season to a different season. Metrics are assessed for each individual site in each 

area, with all other sites being used to establish AOD conversion factors as in the previous section. The results of this analysis 

are discussed in Sect. 3.5. 
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2.6.5 Analysis of inter-regional generalization of AOD conversion factors 

Finally, given the lack of ground-based monitoring in many parts of SSA, we assess whether a conversion factor developed in 350 

one city of this region can be generalized to other cities or locations across SSA. Here, a single AOD conversion factor is 

developed using one site in Kigali, Rwanda and this factor is applied without modification to other sites across SSA. These 

include a second site in Kigali, a site in Musanze in rural Rwanda, a site in Kinshasa (DR Congo), and three sites in Malawi 

(one near the urban area of Lilongwe and two other sites in more rural areas to the south, near Mulanje) where low-cost sensor 

systems are deployed. There are also two sites (Kampala, Uganda and Addis Ababa, Ethiopia) where hourly-resolution long-355 

term regulatory-grade monitoring data are available; data from these sites are included for comparative purposes. An offline 

approach is used here, with a single factor being initialized over the entire study period. Uncertainty estimates for the 

performance of this approach at each site are obtained via bootstrap resampling of the times with valid coincident satellite and 

ground data, with 100 random bootstrap samples being used to obtain the uncertainty estimates. The results of this analysis are 

discussed in Sect. 3.6. 360 

3 Results 

In this section, we apply the proposed method for satellite AOD to surface PM2.5 concentration conversion in several use cases. 

In Sect. 3.1, 3.2, and 3.3, we assess the performance in Pittsburgh, comparing the use of regulatory-grade monitors and low-

cost monitors as ground sites for establishing conversion factors. In Sect. 3.4 and 3.5, we extend the comparison to Rwanda, 

examining the impact of using the relatively sparser low-cost sensor network there, and examining seasonal variations in the 365 

conversions. Finally, in Sect. 3.6, we examine the generalization of Rwanda-based conversion factors to other locations across 

SSA. Assessment metrics used in this section, including correlation (r), coefficient of variation of the mean absolute error 

(CvMAE), and mean-normalized bias (MNB) are described in the supplemental information (Sect. S2.1). 

3.1 Comparing the use of regulatory and low-cost monitors as ground stations to develop conversion factors for AOD 

We first evaluate the utility of low-cost sensors as substitutes for regulatory-grade monitors when developing factors to convert 370 

satellite AOD data to surface PM2.5 estimates, using the Pittsburgh area as our case study. Results for all eight combinations 

of ground initialization site monitor type (“ACHD” v. “RAMP”), initialization period length (“yearly” vs. “monthly”), and 

application mode (“prior” vs. “post.”) are presented in Fig. 3. Overall, these results indicate relatively weak relationships 

between satellite AOD and surface PM2.5 for Pittsburgh, regardless of the method used. Correlations are weak (r < 0.5) and 

mean absolute errors are on the order of half to three-quarters the concentration values (annual average concentrations are 375 

about 10 µg/m3 across most of Pittsburgh). Biases are low on average but can vary across locations. In comparing the different 

application modes, the “posterior” method provides better performance in terms of correlation than the “prior” method. This 

suggests that variability in AOD to surface PM2.5 relationships between satellite passes (e.g., due to differences in the vertical 

profile of PM2.5 over the area, and/or to differences between “point” measurements of the ground monitors and “area” AOD) 
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is better captured by updating prior relationships with new information from each new satellite pass. In terms of other 380 

performance metrics, there is little difference between these application modes, with slight improvements observed in the 

“posterior” method for the RAMP data, but slight decreases for the ACHD data. Comparing the use of annual to monthly 

initializations, performance metrics are slightly worse in the monthly case, indicating that the additional initialization data used 

in the yearly case generally leads to a more robust conversion. It should be noted, however, that these conclusions may be 

specific to relatively low PM2.5 concentrations as found in Pittsburgh.  385 

In all cases, performances using low-cost sensor data are comparable to that of the same conversion approaches utilizing the 

regulatory-grade instruments. Note that the low-cost monitors used here have been carefully corrected by collocation with 

regulatory-grade monitors (Malings et al., 2019b) which accounts for known artefacts with low-cost sensors. Thus, there is no 

evidence from this analysis of any inherent disadvantage to the use of carefully corrected low-cost sensors to provide ground 

data as compared to more traditional instruments. Rather, based on these results, any additional uncertainty due to data quality 390 

differences between low-cost sensors and regulatory-grade instruments are seen to be negligible compared to the difficulties 

associated with relating satellite AOD to surface-level PM2.5, and therefore have had no systematic impact on the performance 

of the assessed linear conversion method, at least for this study area. 

3.2 How many ground stations are needed to improve surface PM2.5 estimates from AOD retrievals? 

Fig. 4 shows results of the assessment conducted as described in Sect. 2.6.2 in terms of the CvMAE metric. For small numbers 395 

of ground sites, results for the ACHD network and the low-cost sensor network are similar in terms of mean performance 

across different randomly selected subsets of the network, with slightly better performance using the RAMP network sites. 

This may be related to the smaller number of possible combinations of ACHD sites to be randomly selected compared to the 

RAMP sites; with more RAMP sites to choose from, the likelihood of selecting more generally representative (rather than 

more source-impacted) sites is higher, whereas with the ACHD network there is a high likelihood of choosing a heavily source-400 

impacted site (especially since several ACHD locations are specifically chosen to monitor such local sources; see Fig. 2). The 

limited number of ACHD sites prevents this analysis from being expanded to larger numbers of locations; at four chosen 

locations, there is only one possible combination to be selected, and so the spread in performance collapses to match the mean. 

With the low-cost sensor network, as more ground sites are included, mean CvMAE decreases until about 10 sites are chosen, 

but afterwards remains relatively constant as more sites are included. Performance variability decreases as more site are added, 405 

indicating that by adding additional ground sites, even sites positioned at random throughout the domain, the conversion 

relationship becomes increasingly robust. While for a single ground monitor, worst-case CvMAE is on the order of 1.5 to 2, 

with 10 or more monitors, worst-case performance is improved below 0.6, a more than two-fold improvement in worst-case 

performance. Overall, this demonstrates the potential benefits of dense low-cost sensor networks for conversion of satellite 

AOD data, even over a limited spatial domain (covering about 600 km2). Furthermore, it shows that even with quasi-random 410 

placement of the ground sites, such as might be achieved by citizens making personal decisions to deploy low-cost monitors 
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on their own properties, increasingly robust conversion results can be achieved as more sensors are included, although these 

benefits diminish beyond (at least in the case of Pittsburgh) about 1 monitor per 60 km2.  

3.3 Comparison of AOD-based surface PM2.5 to measurements from a dense ground network 

Performance of both the nearest monitor method and the satellite AOD conversion method are assessed for Pittsburgh in Fig. 415 

5. It should be noted that all available ground sites have been used for conversion factor initialization in this section, versus a 

limited subset of these in Sect. 3.1, leading to improved performance of this method following the trend noted in Sect. 3.2. In 

Pittsburgh, we see reduced performance (lower correlation, larger CvMAE) when using converted satellite data as compared 

to nearest monitor data. This is likely a result of the quite dense network of low-cost sensors present in Pittsburgh, where the 

median distance between sensors in the network is about 1 km. With this dense network, there is a good chance that the nearest 420 

ground monitor will be quite close to the location at which concentrations are to be estimated, and the resulting “nearest 

monitor” estimate is therefore likely to be quite good, as PM concentrations tend to be homogenous at this spatial scale in 

Pittsburgh (Li et al., 2019). When PM2.5 is instead estimated from satellite data using a simple linear relationship, spatial and 

temporal variability in surface PM2.5 to AOD relationships can confound the assessment. This is especially important 

considering the relatively low levels of surface PM2.5 concentration and AOD in and above Pittsburgh, meaning that any 425 

introduced noise will be relatively large in proportion to the signal being assessed. These results indicate that dense ground-

based monitoring (if available) will likely outperform AOD-derived surface PM2.5 at least for the simple conversion method 

used here. 

3.4 The utility of AOD-based surface PM2.5 in regions with a sparse ground monitoring network 

Performance of the nearest monitor method and the satellite AOD conversion method are assessed for Rwanda in Fig. 6, in a 430 

similar manner as was done for Pittsburgh in Fig. 5. In Rwanda, we see an improvement across all metrics (higher and more 

consistent correlation, smaller and more consistent CvMAE, and less spread in the bias) as satellite data are combined with 

surface PM2.5 monitor data. Median CvMAE is reduced from about 0.5 to 0.3, a 40% improvement. Because of the relative 

sparsity of the low-cost monitor network in Rwanda (4 measurement sites, not all of which were simultaneously operational) 

compared to that in Pittsburgh, the assumption of spatial homogeneity of concentrations between monitoring sites is less valid, 435 

and so the inclusion of satellite data is beneficial in resolving these spatial differences. Furthermore, the relatively high levels 

of PM2.5 concentration in Rwanda (average of about 40 µg/m3 over the study period) allows for a higher signal-to-noise ratio 

relative to Pittsburgh. Together, these results indicate the high utility of low-cost sensors, used in conjunction with satellite 

data, when these are deployed even in relatively sparse networks to previously unmonitored areas with high surface PM2.5 

concentrations. 440 

This point is further explored in Fig. 7, which compares the correlations between ground measurements in Pittsburgh and 

Rwanda with the AOD-to-surface-PM correlations in these areas. In Pittsburgh, the high density of available monitors leads 

to relatively high inter-site correlations, above the typical range of the AOD-to-surface-PM correlations. It is therefore difficult 
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to extract meaningful patterns from the AOD information that would not also be present in available surface-level 

measurements, suggesting that AOD data provide little additional value in this densely monitored area (at least in terms of 445 

what can be derived without including additional information sources like atmospheric modelling and land use characteristics). 

Meanwhile, in sparsely monitored Rwanda, inter-site correlations are lower, overlapping the typical range of AOD-to-surface-

PM correlations. This means that AOD data can still provide useful information for spatial heterogeneities in this region. 

3.5 Seasonal effects on satellite AOD conversion to surface PM2.5 

Fig. 8 presents the median performance metrics across all sites in either Pittsburgh or Rwanda for each combination of 450 

initialization and application season. Seasonal definitions are provided in the supplemental information, Table S1. For 

Pittsburgh, spring conversion factors seem to generalize best when applied to other seasons, with the lowest biases and highest 

precisions. Low correlations are observed in the summer and winter regardless of initialization period, and clear seasonality is 

observed with summer initializations being biased high in winter and winter initializations being biased low in summer.  

In Rwanda, an alternating pattern is revealed, with wet season conversion factors applying well to other wet seasons, and dry 455 

season conversion factors applying to other dry seasons. Many factors could contribute to this pattern, including changes in 

humidity and the resulting impact on extinction, as well as seasonal burning patterns affecting particle sizes and compositions. 

Conversion factors appear to generalize better between wet seasons than between dry seasons. Correlations are highest during 

the first dry season (DS1), regardless of whether the conversion factor is developed during this season or during the surrounding 

wet seasons; this was also the driest season and the season with the highest PM2.5 concentrations. Applications of conversion 460 

factors developed in other seasons to DS1 underestimate PM2.5 in this season, especially applications of factors developed 

during the wet seasons (when PM2.5 levels were much lower). This indicates that there is seasonality to PM2.5 concentrations 

that is not being reflected in the AOD data, and requires local monitoring to identify. Overall, these results indicate that 

conversion factors should be developed or updated at least on a seasonal basis, especially in Rwanda; a conversion factor 

developed during a limited monitoring campaign occurring in one specific season may fail to generalize well to other seasons.  465 

3.6 Regional generalization of AOD conversion factors developed in Rwanda 

Results of the analysis discussed in Sect. 2.6.5 are presented in Fig. 9. Correlation is relatively low across most application 

areas, with a weak trend of decreasing correlation as distance from the initialization site increases (the exception to this is 

found at the rural Mugogo site). Best performance in terms of CvMAE and normalized bias is found in Kigali, Kampala, and 

Kinshasa; these urban zones are likely most similar to the initialization site in terms of land use and resulting source mix. 470 

Relatively best performance is found at the spatially closest Kigali site. The Kampala site, with data collected via a traditional 

monitoring instrument, shows similar results as obtained at these other urban sites with low-cost monitors. The other, more 

rural locations show poorer performance regardless of distance from the initialization site. However, the Addis Ababa site also 

shows much poorer performance, despite also being an urban area, although the Embassy is located on the outskirts of the city. 

This may be due to climate differences between Addis Ababa and the other cities considered, as well as differences in particle 475 
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composition and size distributions, especially higher contribution to AOD from coarse (larger than PM2.5) Saharan dust (De 

Longueville et al., 2010) that would not be accounted for in the Kigali-based AOD conversion factor.  

These results indicate that, while conversion factors may generalize to sites with similar land use and climate characteristics, 

physical distance alone is not as significant in determining AOD-PM relationship generalizability. Also, the overall low 

correlation values indicate the importance of local data, as spatial heterogeneity in satellite AOD to surface PM2.5 relationships 480 

can be a concern even for nearby sites. Finally, it should be noted that a single annual conversion factor, as is assessed here, 

could fail to take into account seasonal variabilities (Sect. 3.5) and so can correlate poorly with surface PM2.5 even in or near 

the area where it is developed (as seen for the Kigali site here). A conversion factor that varies on at least a seasonal basis is 

therefore preferred; however, determining how to generalize such a time-varying conversion factor to other regions where 

seasonal definitions and characteristics can be quite different is a challenging problem. Overall, it does not appear from this 485 

analysis that AOD to surface PM2.5 conversion factors can be broadly generalized across global regions with consistent results. 

Therefore, continuous localized monitoring, such as might be facilitated with local low-cost monitor networks, seems to be 

the most robust way to establish applicable AOD to surface PM2.5 conversion factors. 

4 Discussion 

We have examined the feasibility of using low-cost sensors as a data source in developing relationships between surface PM2.5 490 

concentrations and satellite AOD. In a case study in Pittsburgh, there was no decrease in performance associated with the use 

of low-cost sensors for this purpose rather than more traditional regulatory-grade monitors, although performance was rather 

poor in both cases. The higher density ground networks possible with low-cost sensors did provide benefits in terms of more 

robust conversion factors compared to the more sparsely deployed traditional monitoring network. However, it was found that 

for Pittsburgh, with a relatively dense low-cost sensor network (median inter-site distance of about 1 km) and low PM2.5 495 

concentrations, use of the nearest ground measurement sites outperformed the use of satellite AOD data to estimate surface 

PM2.5 using linear conversions. Partly, this could be because AOD is rather low over this area (average of about 0.2) leading 

to lower signal-to-noise ratios that reduce AOD to surface PM correlation. Conversely, in Rwanda, a relatively sparse low-

cost sensor network combined with satellite data in an environment with higher and more variable PM2.5 concentrations 

provided better estimates of surface PM2.5 concentrations than was available using only the nearest surface monitor alone. This 500 

result is highly relevant to SSA, as sparse local monitoring and high average PM2.5 concentrations (as measured by the few 

available ground-based monitors) are common features. Differences in seasonal characteristics (especially at the Rwanda 

locations) show the added value of season-specific conversion factors (which are facilitated by continuous local monitoring), 

while differences in characteristics between areas, especially urban and rural locations with highly variable particle types, limit 

the generalizability of conversion factors across regions (again emphasizing the importance of local monitoring). 505 

The results presented here continue to highlight the need for ground-based PM2.5 monitoring in previously unmonitored areas 

such as SSA, especially in light of the benefits observed in Rwanda from having even a sparse ground monitoring network 
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combined with satellite data on local spatial heterogeneity. Efforts to expand ground-based monitoring should make use of 

traditional regulatory-grade instruments wherever possible, supplemented with low-cost monitors to increase network density 

and expand spatial coverage. Findings in Pittsburgh indicate that denser monitoring networks, such as those made possible by 510 

low-cost sensors, improve accuracy and robustness of surface PM2.5 estimates from satellites. Verification that the same trend 

will hold in other regions, especially in SSA, requires further dense deployments of low-cost sensors, and is the subject of 

ongoing work. 

It should be noted that the results of this paper pertain to local and instantaneous relationships, using the highest spatial and 

temporal resolution of satellite data currently available. Results may differ for spatially or temporally aggregated satellite and 515 

ground site data. In fact, such spatial and temporal aggregation is likely to reduce the impact of noise (but not bias) both from 

low-cost instruments and from satellite retrievals. However, such aggregate information does not take full advantage of the 

potential inherent in low-cost sensors to provide near-real-time information on local air pollution. On a related point, satellite 

data (at least, for most of the world using current polar-orbiting platforms) cannot provide diurnal concentration profiles, 

instead presenting a “snapshot” of concentrations for a wide spatial domain but only for a specific time of day. Ground-based 520 

continuous monitoring, even with low-cost sensors, will still be essential where there is no coverage with geostationary 

platforms which provide continuous (for daytime only) retrievals (Judd et al., 2018; She et al., 2020). Past work has made use 

of AOD retrievals from GOES geostationary satellites for North America (Zhang et al., 2011, 2013). New geostationary 

satellites are planned for coverage of North America (the TEMPO satellite mission), Europe (Sentinel 4), and East Asia 

(GEMS); unfortunately, there are no current plans for coverage of Africa by similar satellites. 525 

Further technical and research developments in this area have enormous promise for improving our understanding of local air 

quality worldwide. A functioning system for converting satellite to ground-level air pollution data, relying on a group of 

“trusted” ground data sources, could potentially be a valuable resource for assessing and correcting low-cost sensor data, 

allowing for in-field recalibration of drifting instruments, and better identification of malfunctioning sensors. Low-cost systems 

combining PM mass measurement and ground-up AOD data can help to establish AOD to surface PM relationships at finer 530 

spatio-temporal resolution (Ford et al., 2019). Open questions related to this research area include finding appropriate 

timescales over which conversion factors can be considered constant within regions as well as continuing to examine the 

question of conversion factor generalizability between regions separated by spatial distances and across different climates and 

land use characteristics. More sophisticated conversion methods incorporating meteorological and land use information and 

outputs of chemical transport models can also be considered, albeit with the recognition that some of these inputs may not yet 535 

be readily available or well validated for SSA. 
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 790 

Figure 1: Estimated annual average PM2.5 concentration versus density of regulatory-grade monitoring stations across several global 

regions. Colors correspond to continents, and sizes roughly correspond to total regional population. This graphic is based on 

information available from the Global Health Observatory (WHO, 2017). 
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 795 
Figure 2: Map of ground sites in the Pittsburgh area. Blue dots represent sites of regulatory-grade monitors used in the analysis, 

while red dots represent sites of low-cost sensor deployments. Background map obtained from maps.google.com, map data ©2020 

Google. Note scale in the lower left corner. Also note that the pair of regulatory sites in the south-east of the map are located adjacent 

to a major industrial source (a coking plant for steel production) while the regulatory site to the north-west of the map is located 

adjacent to another industrial source (a chemical plant). 800 
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Figure 3: Comparison of performance metrics (a: correlation, b: CvMAE, and c: MNB) for surface PM2.5 estimated from satellite 

AOD data in the Pittsburgh area. Performance is assessed at the ACHD regulatory-grade monitoring sites. Ground sites used for 

factor development are either four of the ACHD monitors (ACHD) or four low-cost sensors associated with RAMP monitors 805 
(RAMP). Conversion factors are established either on a Yearly or Monthly basis. Finally, either an offline (Prior) or online (Post.) 

approach is used. 
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Figure 4: Performance (assessed in terms of CvMAE) for surface PM2.5 estimated from satellite AOD data in the Pittsburgh area, 810 
plotted as a function of the number of ground sites used. Performance is assessed against the ACHD regulatory-grade monitors. 

Solid lines indicate mean performance across sites using either ACHD or low-cost sensor (RAMP) sites to establish conversion 

factors. Shaded regions indicate the range of variability across application sites. 
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 815 

Figure 5: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for either surface PM2.5 estimated from satellite 

AOD data (Satellite) or from the nearest ground-level PM2.5 monitor (Nearest Monitor) in the Pittsburgh area. Note that these 

performance metrics are not directly comparable to those presented in Fig. 3, as in this case a larger number of ground initialization 

sites (9 to 45, depending on the number of active sites in Pittsburgh at any particular time) are considered. Further,  performance is 

now being assessed against the RAMP rather than the ACHD network (i.e., performance is assessed at the held-out active RAMP 820 
site); this is done to allow for comparability with the results from Rwanda, presented in Fig. 6, where only RAMP data are available. 
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Figure 6: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for either surface PM2.5 estimated from satellite 

AOD data (Satellite) or from the nearest ground-level PM2.5 monitor (Nearest Monitor) in the Rwanda area. 825 
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Figure 7: Comparison of inter-site correlations versus AOD-to-surface-PM2.5 correlations in Pittsburgh and Rwanda 
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Figure 8: Comparison of seasonal performance metrics (a, d: correlation; b, e: CvMAE; c, f: MNB) for surface PM2.5 estimated from 

satellite AOD data across different seasons in the Pittsburgh (a, b, c) and Rwanda (d, e, f) areas. The horizontal axis differentiates 835 
the seasons during which initialization was performed, while the vertical axis denotes the seasons when the conversion was applied. 

Note that, in Rwanda, only one sensor was operational during Dry Season 2 (DS2) and Wet Season 3 (WS3), and so application of 

these conversions to an independent site was impossible; therefore, performance metrics are blacked out. In each figure diagonal 

(from top left to bottom right) elements correspond to the same season. Values are also listed in the supplemental information, Table 

S8. 840 
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Figure 9: Comparison of performance metrics (a: correlation, b: CvMAE, c: MNB) for surface PM2.5 estimated from satellite AOD 

data across multiple sites in SSA. The conversion factor is developed at a central site in Kigali, Rwanda; the distances of each testing 

site to this central site are given. Performances are assessed for all data collected at the given sites, using the prior conversion factor 845 
only. Note that performance in Kampala and Addis Ababa is assessed using traditional reference monitors (indicated by ⁕), while 

performance at the other sites reflects low-cost sensor data (indicated by ●). Error bars denote the interquartile range of metric 

estimates obtained via bootstrap resampling (for most cases of the mean-normalized bias, this range is smaller than the marker size).  
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Table 1: Summary information for low-cost sensor systems utilized for this paper. 

Manufacturer MetOne PurpleAir Alphasense 

Product Neighborhood Particulate 

Monitor 

PurpleAir II OPC-N2 

Abbreviation NPM PA-II OPC 

Measurement Method forward light scattering laser laser particle sensor optical particle counting 

Other Features Includes PM2.5 cyclone and 

inlet heater. Provides 

estimates of PM2.5 mass 

concentrations using 

calibrations that are user-

modifiable. Interfaced with 

RAMP low-cost monitor 

nodes. 

Includes a pair of Plantower 

PMS 5003 units, along with 

temperature and humidity 

sensors. Provides estimates 

of PM1, PM2.5, and PM10 

mass concentrations via 

proprietary calibrations. 

Interfaced with RAMP low-

cost monitor nodes. 

Detects particles in the 0.38 

to 17 µm range, converts 

particle counts to PM1, 

PM2.5, and PM10 mass 

concentrations via 

proprietary calibrations. 

Integrated with ARISense 

low-cost monitor nodes. 

Unit Cost (approx.) $2000 $250 $350 (not including housing) 

Performance Notes Moderate correlation to 

regulatory-grade 

instruments in laboratory 

and field testing. Requires 

cleaning and re-calibration 

between deployments. 

High correlation to 

regulatory-grade 

instruments, except at high 

humidity. Individual 

Plantower sensor 

malfunctions detectable via 

comparison between the two 

internal units.  

Moderate correlation to 

regulatory-grade 

instruments in field 

conditions. 

References (AQ-SPEC, 2015; Malings 

et al., 2019b) 

(AQ-SPEC, 2017; Malings 

et al., 2019b) 

(AQ-SPEC, 2016; Crilley et 

al., 2018) 
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Table 2: Summary information for the ground sites presented in this paper. 

Area Name Pittsburgh Rwanda Malawi Kinshasa Kampala Addis Ababa 

Country United States of 

America 

Rwanda Malawi Democratic 

Republic of 

the Congo 

Uganda Ethiopia 

Location (Approx.) Between 

40.1ºN, 80.5ºW 

and  

40.8ºN, 79.7ºW 

Between 

2.2ºS, 29.4ºE 

and  

1.4ºS, 30.5ºE 

Between 

16.2ºS, 33.6ºE 

and  

14.0ºS, 35.7ºE 

4.3ºS, 15.3ºE 0.3ºN, 32.6ºE 9.0ºN, 38.8ºE 

Start Jan. 1, 2018 April 1, 2017 June 25, 2017 Mar. 20, 2018 Jan. 1, 2019 Jan. 1, 2019 

End Dec. 31, 2018 May 27, 2018 July 30, 2018 Oct. 31, 2019 Dec. 31, 2019 Dec. 31, 2019 

Low-Cost Sensors 

Total Sites 62 4 3 1   

Simultaneously 

Active Sites 

10 to 46 1 to 3 1 to 3 1   

Sensor Type NPM, PA-II NPM OPC PA-II   

Regulatory-Grade Monitors 

Total Sites 5    1 1 

Type BAM    BAM BAM 

 

 


