
5 July 2020 
 
We would like to thank AMT and our Editor for a good peer-review process and this opportunity 
to submit our final copy.  
 
Changes made to this manuscript: 
 

- The two edits to Figure 2 caption as requested by Reviewer 2. 
 

- Small grammatical changes for the sake of consistency as well as corrections to minor 
errors we detected during the final proof read. 
 

Sincerely,  
Nadia Smith 
 
 



1 
 

CLIMCAPS Observing Capability for Temperature, Moisture and 
Trace Gases from AIRS/AMSU and CrIS/ATMS  
Nadia Smith1 and Christopher D. Barnet1 
1Science and Technology Corporation, Columbia, Maryland, 212046, USA 

Correspondence to: Nadia Smith (nadias@stcnet.com) 5 

Abstract. The Community Long-term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS) retrieves 

vertical profiles of temperature, water vapor, greenhouse- and pollutant gases as well as cloud properties from measurements 

made by infrared and microwave instruments on polar-orbiting satellites. These are AIRS/AMSU on Aqua and CrIS/ATMS 

on Suomi-NPP as well as NOAA20; together they span nearly two decades of daily observations (2002 to present) that can 

help characterize diurnal and seasonal atmospheric processes from different time periods or regions across the globe. While 10 

the measurements are consistent, their information content varies due to uncertainty stemming from (i) the observing system 

(e.g., instrument type and noise, choice of inversion method, algorithmic implementation and assumptions) and (ii) localized 

conditions (e.g., presence of clouds, rate of temperature change with pressure, amount of water vapor and surface type). 

CLIMCAPS quantify, propagate and report all known sources of uncertainty as thoroughly as possible so that its retrieval 

products have value in climate science and applications. In this paper we characterize the CLIMCAPS Version 2.0 system and 15 

diagnose its observing capability (ability to retrieve information accurately and consistently over time and space) for seven 

atmospheric variables – temperature, H2O, CO, O3, CO2, HNO3 and CH4 – from two satellite platforms, Aqua and NOAA20. 

We illustrate how CLIMCAPS observing capability varies spatially, from scene to scene and latitudinally across the globe. 

We conclude with a discussion of how CLIMCAPS uncertainty metrics can be used in diagnosing its retrievals to promote 

understanding of the observing system as well as the atmosphere it measures.  20 

1 Introduction 

Instruments onboard satellites observe the global Earth atmosphere with unprecedented regularity in space and time. For any 

given scene on Earth today there are multiple observations from a range of different instruments measuring any number of 

atmospheric variables. While the record of hyperspectral infrared measurements span nearly two decades, differences in 

technology and instrumentation pose a significant challenge to data continuity (Smith et al., 2013). Two space-based systems 25 

may observe the same atmospheric variable but at different view angles, different times of day, at different spatial or spectral 

resolutions measuring different aspects of the Earth’s atmosphere. The challenge in inter-comparing different sources of remote 

observations is well documented (Stubenrauch et al., 1999; Rodgers and Connor, 2003; Wylie et al., 2005; von Clarmann and 

Grabowski, 2007; Smith et al., 2013, 2015; Hearty et al., 2014; Gaudel et al., 2018). Straightforward side-by-side comparisons 
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of disparate data sets can fail to yield meaningful insights because their differences cannot be explained by natural variability 30 

or instrument capability alone. Uncertainty masks the measured signal. Only with rigorous quantification and deliberate 

propagation of uncertainty through all data processing steps can a degree of transparency in space-based observations be 

achieved so that the measured signal can be distinguished, uncertainty can be characterized and data set differences be 

understood (Pougatchev et al., 1996; Ceccherini et al., 2003; Pougatchev, 2008; Ceccherini and Ridolfi, 2010; Hulley et al., 

2012; Xiong et al., 2013; Merchant et al., 2017, 2019).  35 

Pougatchev (2008) classified uncertainty in remote observations into two primary sources; namely (i) “state 

noncoincidence”, or scene-dependent, effects such as spatial heterogeneity and temporal variation as well as, (ii) “characteristic 

differences”, or observing system effects such as spectral resolution, footprint size and retrieval algorithm design. Uncertainty, 

irrespective of its source, can be random (unreproducible) or systematic (reproducible). Random uncertainty can average out 

when data is aggregated, but systematic uncertainty propagates through analysis steps and obscures the measured signal in 40 

final results (Smith et al., 2015). It is, therefore, imperative to characterize systematic uncertainty as rigorously as possible.  

In this paper we focus on satellite sounding systems that retrieve atmospheric variables as vertical profiles from top of 

atmosphere radiance measurements, and more specifically on the Community Long-term Infrared Microwave Combined 

Atmospheric Product System (CLIMCAPS; Smith and Barnet, 2019). CLIMCAPS is the National Aeronautics and Space 

Administration’s (NASA) system for sounder instruments on the polar-orbiting satellites, Aqua (2002–present), Suomi-NPP 45 

(2012–present) and NOAA20 (2017–present), the first of the Joint Polar Satellite System (JPSS) series of four satellites 

scheduled to maintain operational orbit throughout 2040. CLIMCAPS implements Bayesian Optimal Estimation (OE) 

(Rodgers, 2000) as inversion technique and employs explicit background error quantification with uncertainty propagation. 

Other sounding systems offer variations of the OE approach in practice, depending on their respective data product 

requirements (Susskind et al., 2003, 2014; Fu et al., 2016; DeSouza-Machado et al., 2018; Irion et al., 2018). We designed 50 

CLIMCAPS to achieve and maintain consistent observing capability across different satellite platforms so that we can generate 

a long-term, continuous record of satellite soundings for a nearly two-decade period of hyperspectral infrared (IR) observations 

from space.  

Smith and Barnet (2019) described how CLIMCAPS quantifies and propagates scene-dependent uncertainty using error 

covariance matrices (ECM) in a sequential retrieval approach that starts with retrieving clouds, followed by temperature, water 55 

vapor and trace gas species, O3, CO, CH4, CO2, N2O, SO2 and HNO3. Averaging kernel matrices (AKMs) characterize the 

degree to which each of the retrieved variables depends on information contributed by the measurements about the true state 

of that variable. Averaging kernels have value in data inter-comparison studies (Rodgers and Connor, 2003; Maddy and Barnet, 

2008; Maddy et al., 2009; Gaudel et al., 2018; Iturbide-Sanchez et al., 2017) and form a critical component of data assimilation 

models (Levelt et al., 1998; Clerbaux et al., 2001; Yudin, 2004; Segers et al., 2005; Pierce et al., 2009; Liu et al., 2012). 60 

We present CLIMCAPS version 2.0 AKMs for a range of different retrieval variables, different scenes across time and 

space as well as multiple satellite platforms and instrument types with the goal to characterize CLIMCAPS observing capability 

and promote a better understanding of its retrieved soundings and their value in applications.  
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1.1 Terminology and notation 

We define an observing system, such as CLIMCAPS, as the space-based instrument along with its inversion algorithm. 65 

Observing system characteristics that affect product quality include spectral resolution, spatial footprint (‘pixel’ or ‘field of 

view’) size, shape and arrangement, the instrument noise, view angles across satellite swath, which for CrIS is 2,200 km 

(± 50 degrees), as well as effects due to the regularization and stabilization of its retrieval algorithm. With observing system 

capability, we mean the potential a space-based system has for measuring the atmospheric state at a specific scene, given the 

instrument type, retrieval system design and prevailing conditions. Observing capability is akin to signal to noise ratio (SNR) 70 

and should ideally be high enough to add independent, new information to background knowledge about the atmospheric state 

at any given point in time and space. CLIMCAPS employs Bayesian inversion as retrieval scheme and generate AKMs to 

quantify the sensitivity of retrieved variables to the true state of those variables (Rodgers, 2000) as a metric of uncertainty. 

CLIMCAPS product files available through the NASA Earth Observing System Data Information System (EOSDIS; 

Ramapriyan et al., 2010) contain AKMs for seven retrieval variables – temperature (T), water vapor (H2O), ozone (O3), carbon 75 

monoxide (CO), methane (CH4), carbon dioxide (CO2) and Nitric Acid (HNO3). – at every scene. We define a CLIMCAPS 

retrieval scene (or ‘field of regard’) as the spatial and spectral aggregate of radiance measurements that results from performing 

cloud clearing (Chahine, 1982; Susskind et al., 1998; Smith and Barnet, 2019). Cloud clearing removes the radiative effect of 

clouds from IR measurements by aggregating cloud sensitive channels from nine neighbouring CrIS (or AIRS) instrument 

footprints. Cloud clearing requires no prior knowledge of scene-specific cloud properties nor does it depend on radiative 80 

transfer calculations through clouds. Instead, cloud clearing is a robust linear method that uses the 3 x 3 spatial cluster of 

instrument footprints as spectrally-independent information about scene cloudiness, and together with knowledge of the cloud-

free state retrieved from coincident microwave measurements (ATMS or AMSU), derives a set of cloud-cleared spectral 

channels for use in subsequent retrievals. In the case where no clouds are detected, the relevant channels are simply averaged 

across the 3 x 3 array (9 footprints in total) with the assumption that it is a uniformly clear scene. While CLIMCAPS aggregates 85 

spectral radiance before retrieval (known as an ‘average-then-retrieve’ approach), the retrieved soundings are still considered 

instantaneous observations because CLIMCAPS limits its radiance aggregation to small spatial clusters (an aggregate scene 

of 3 x 3 CrIS footprints has ~50 km diameter at nadir and ~150 km at edge of scan) and performs no temporal averaging ahead 

of inversion. We use the term measurement to refer to the measured spectrum (i.e., top of atmosphere radiance either for a 

single footprint or cloud-cleared scene) and distinguish it from retrieval that is the inverse measurement, or retrieved pressure-90 

dependent atmospheric variable at every scene (e.g. water vapor). We maintain consistency with the mathematical notations 

adopted by Rodgers (2000) for the sake of simplicity and relevance to other OE systems (Bowman et al., 2006; Ceccherini et 

al., 2009; Ceccherini and Ridolfi, 2010; Fu et al., 2016; DeSouza-Machado et al., 2018; Irion et al., 2018); a measured spectrum 

is represented by the vector y with m spectral channels and retrieved parameter by vector x with n vertical pressure layers (for 

trace gases) or n pressure levels (for temperature).  95 
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This paper starts with Section 2 as an overview of the CLIMCAPS version 2.0 (V2) observing system and a discussion of 

how its OE implementation deviates from the Rodgers (2000) theoretical OE approach. We give a detailed explanation of 

CLIMCAPS AKMs and how they can be employed as uncertainty metrics and indicators of observing capability. In Section 3 

we present CLIMCAPS AKMs for its seven retrieval variables, T, H2O, O3, CO, CH4, CO2 and HNO3. We diagnose and 

interpret these AKMs to conclude in Section 4 with a preliminary assessment of the CLIMCAPS observing capability and the 100 

degree of continuity in its sounding observations across satellite platforms. 

2 Data and methods 

2.1 CLIMCAPS observing system 

CLIMCAPS is NASA’s sounding observing system for the Atmospheric Infrared Sounder (AIRS; Aumann et al., 2003; 

Chahine et al., 2006) and the Cross-track Infrared Sounder (CrIS; Han et al., 2013; Strow et al., 2013). AIRS has been on Aqua 105 

since 2002 together with the Advanced Microwave Sounding Unit (AMSU). CrIS and the Advanced Technology Microwave 

Sounder (ATMS) have been on Suomi-National Polar-orbiting Partnership (SNPP) since 2011 and the National Oceanic and 

Atmospheric Administration (NOAA20) since 2017. We gave a detailed tabulation of the main instrument characteristics in 

Table 1 from Smith and Barnet (2009). Hereafter we respectively refer to these various systems as CLIMCAPS-Aqua, 

CLIMCAPS-SNPP and CLIMCAPS-NOAA20. Traditionally, observing systems were optimized for a specific instrument 110 

suite on a target satellite platform (Susskind et al., 2003). With CLIMCAPS, we instead focus our efforts on promoting 

continuity in observing capability across different instrument suites and satellite platforms so that a long-term record of satellite 

soundings can be generated. This means we optimize our algorithm design for consistency.  

AIRS and CrIS are both new-generation hyperspectral infrared sounders that measure energy emitted at the top of Earth’s 

atmosphere in hundreds of narrow spectral channels. With such a high spectral resolution, these instruments can measure 115 

atmospheric conditions at multiple pressure layers so that vertical structure (e.g., temperature inversions and dry layers) and 

atmospheric composition (e.g., stratospheric O3 or mid-tropospheric CO) can be retrieved and characterized. Using the 

principles of information theory (Shannon, 1948), Rodgers (2000) developed a method for quantifying the information content 

of a spectral measurement either as the number of significant eigenvectors (k) from a radiance decomposition, or as degrees of 

freedom for signal (DOF) calculated as the trace of the AKM diagonal vector. These information content metrics, DOF and 120 

magnitude of k, reflect the number of independent pieces of information about the vertical atmospheric state. We can calculate 

these metrics for simulated spectra to quantify instrument observing capability in general, given certain design criteria like 

spectral resolution and noise. Or we can calculate them for real spectral measurements to quantify satellite system observing 

capability for specific atmospheric conditions.  

In Figure 1a below, we depict the total information content for all spectral channels from a global ensemble of simulated 125 

AIRS and CrIS measurements, respectively. We contrast their information content with that from the European IASI 

instrument (Siméoni et al., 1997; Aires et al., 2002; Chalon et al., 2017), in polar orbit on the MetOp series since 2006. Despite 
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instrument differences such as spectral resolution, number of channels, instrument calibration and noise (Figure 1b), CrIS, 

IASI and AIRS all have a total information content of k =100 significant eigenvectors. This means that on a global scale, all 

three instruments have the ability to distinguish on the order of ~100 individual Earth system variables about the vertical 130 

atmospheric state. These include thermodynamic variables, such as temperature and moisture along multiple layers from 

surface to top of atmosphere, trace gas species, cloud and surface parameters. 

 
Figure 1: Information content analysis of four operational hyperspectral infrared instruments, AIRS (Atmospheric Infrared 
Sounder) in orbit on Aqua since 2002, IASI (Infrared Atmospheric Sounding Interferometer) in orbit on multiple MetOp platforms 135 
since 2006 and lastly CrIS (Cross-track Infrared Sounder) in orbit on SNPP since 2011 and NOAA20 since 2017. We depict here the 
SNPP CrIS in Nominal Spectral Resolution (NSR) mode, with spectral resolution in its mid- and shortwave bands reduced to 
1.25 cm-1 and 2.5 cm-1, respectively. NOAA20 CrIS is in Full Spectral Resolution (FSR) mode with all spectral bands sampled at 
0.625 cm-1. (a) Eigenvector decomposition of the radiance covariance matrix as a measure of information content in each instrument. 
The eigenvalues, 𝝀 , from an eigenvector decomposition of simulated radiances are plotted against index number of each 140 
eigenvector, k. Information content is calculated as all eigenvalues 𝝀 > 0 The total number of channels, Nchl, are listed in the figure 
legend. (b) Instrument noise, measured as the noise equivalent delta temperature, 𝐍𝐄∆𝐓, for a scene with surface temperature equal 
to 250 K. 

CLIMCAPS adopted the AIRS Science Team version 5 (V5) algorithm as its baseline retrieval method, which follows a 

sequential OE approach in solving the non-linear inversion of infrared radiances into multiple distinct atmospheric variables 145 

(Maddy et al., 2009; Susskind et al., 2003). The inversion of top of atmosphere radiances is an ill-conditioned, under-

determined, non-linear problem that requires some form of stabilization to find a solution. In Bayesian (or probabilistic) OE 

systems, this is predominantly achieved with the introduction of an a-priori (or background) estimate of the atmospheric state, 

such that the solution is not an independent observation but instead represents an improvement on the background state given 

the top of atmosphere measurement of the true state (Rodgers, 1976, 1998, 2000).  150 

The AIRS V5 system employed a linear regression as a-priori for T, H2O and O3 in the OE inversion step, which is 

generally referred to as a ‘physical’ retrieval because it requires radiative transfer calculations, not regression correlation 

coefficients, to minimize the cost function at every scene. CLIMCAPS does not calculate a regression a-priori for T, H2O and 

O3 but instead uses a data assimilation product; specifically the Modern-Era Retrospective Analysis for Research and 
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Applications Version 2.0 (MERRA2; Gelaro et al., 2017; Molod et al., 2015). We argued in Smith and Barnet (2019) that a 155 

linear regression a-priori amplifies instrument effects in the OE retrieval and thus hampers data continuity across platforms. 

Regression retrievals typically employ all spectral channels (Blackwell, 2005; Goldberg et al., 2003; Milstein and Blackwell, 

2016; Smith et al., 2012) to retrieve atmospheric state variables simultaneously. If a regression retrieval is ingested as a-priori 

then instrument artefacts can be propagated and even amplified in the retrieval product because OE uses the same spectral 

channels (albeit a subset) a second time. CLIMCAPS deliberately employs an instrument-independent a-priori, i.e., MERRA2, 160 

for its T, H2O and O3 retrievals to minimize instrument artefacts and promote data continuity across platforms. MERRA2 

assimilates a small subset of IR channels (i.e., by selecting channels that are primarily sensitive to T but largely insensitive to 

H2O, clouds and trace gases) only sometimes (i.e., for clear-sky scenes only) and weigh them based on the time of measurement 

within the reanalysis window and with an assumed representation error across all scenes. This gives us confidence to argue 

that the IR channels used in CLIMCAPS rarely duplicates the information content of the IR channels used in MERRA2 at a 165 

specific scene. We argue that the IR information content from AIRS or CrIS in CLIMCAPS is much higher than in MERRA2 

because CLIMCAPS retrieves the atmospheric state along line of sight, from a greater selection of cloud cleared IR channels 

(i.e., all scenes except those with uniform cloud cover) and a full accounting of trace gas absorption. We contrast the 

CLIMCAPS a-priori approach with those systems that employ a regression first guess such as AIRS V6 (Susskind et al., 2014) 

that runs a non-linear regression using all IR channels to derive its a-priori for T, H2O and O3. Unlike AIRS V6, CLIMCAPS 170 

does not use the information content of IR channels twice, because we designed it to minimize systematic instrument 

uncertainty and an aliasing of its retrieval null space error as a result. For the trace gas species, we adopted the same approach 

in CLIMCAPS as that used in AIRS V6 for CO, CO2, HNO3, N2O and SO2 (AIRS Science Team/Joao Texeira, 2013). The CO 

climatology has no intra-annual variation but does vary seasonally and latitudinally, while the CO2 climatology is a static value 

across all latitudes that increases annually according to a linear fit developed by Maddy (2007). The climatologies for the 175 

remaining trace gas species, HNO3, N2O and SO2, are static over time and space. The CLIMCAPS climatology for CH4 is 

derived from a set of coefficients developed by (Xiong et al., 2008, 2013) that is also used in the NOAA-Unique Combined 

Atmospheric Processing System (NUCAPS).  

The CLIMCAPS retrieval algorithm is outlined in Figure 2 and we highlight four major steps here. (1) Local angle 

correction that removes satellite view angle differences among a spatial cluster of 3 x 3 instrument footprints also known as 180 

the “field of regard” or retrieval scene. (2) MW-only retrieval that retrieves vertical profiles of T, H2O and liquid water path 

(LIQ), as well as surface emissivity (ε) using spectral channels from the microwave measurements (AMSU on Aqua, ATMS 

on SNPP and NOAA20). This results in an estimate of cloud-free vertical atmospheric structure in all but precipitating scenes. 

(3) Cloud Clearing that removes the radiative effects of clouds from hyperspectral IR channels in each field of regard using 

MW-only retrievals of LIQ and ε from Step 2, profiles of T, H2O and O3 from MERRA2 as well as climatologies of CO, CH4, 185 

CO2, HNO3, N2O and SO2. Cloud clearing is described in detail elsewhere (Smith, 1968; Chahine, 1974, 1977, 1982; Susskind 

et al., 2003) and remains one of the most robust approaches for the retrieval of atmospheric parameters within complex cloudy 

conditions and up to 90% cloud cover. This step aggregates the cluster of 3 x 3 IR spectra into a single cloud-cleared IR 
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spectrum from which all subsequent retrievals are done. In the case where a scene has no cloud cover or where IR channels 

are insensitive to clouds, the 3 x 3 cluster of IR channels is simply averaged. Note that cloud clearing reduces the spatial 190 

resolution of CrIS or AIRS footprints from ~15 km instrument resolution at nadir to ~50 km at nadir. (4) Step-wise OE retrieval 

that sequentially retrieves surface temperature (Ts), ε, reflectivity (ρ), T, H2O and O3, CO, CH4, CO2, HNO3, N2O and SO2. It 

is important to note that for cloud-cleared scenes, the profile retrievals do not represent conditions within the cloud fields but 

rather around the clouds. This is a subtle distinction, but meaningful in scientific studies and applications. 

 195 
Figure 2: High-level abstraction of the CLIMCAPS retrieval method highlighting its step-wise optimal estimation (OE) retrieval. 
Steps 1 through 4 are discussed in the text below. Boxes in grey indicate steps where the a-priori variables are defined. MERRA2 
(GMAO, 2015) is the a-priori for temperature (T), water vapor (H2O), ozone (O3), skin temperature (Ts) and surface pressure (Ps). 
We use the AIRS V6 climatologies for carbon monoxide (CO), carbon dioxide (CO2), nitric acid (HNO3), nitrous oxide (N2O) and 
sulfur dioxide (SO2) (AIRS Science Team/Joao Texeira, 2013) and for methane (CH4) the linear fit developed by (Xiong et al., 2013). 200 
CLIMCAPS a-priori for surface emissivity over land is based on the CAMEL database (Hook 2019) and for ocean the Masuda 
model (Masuda et al. 1988) as modified by Wu and Smith (1997). The OE retrieval steps are listed in the order in which they appear 
in the code with MW+IR indicating that the retrieval step depends on a subset of channels from both the microwave and infrared 
sounders, and IR infrared only channels. Temperature and cloud cleared radiances are retrieved twice, with the second step 
distinguished by dashed lines. Constituent Detection (CD) flags indicate the presence of isoprene, ethane, propylene and ammonia 205 
as calculated from single field of view IR radiance channels.  
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Each retrieval step (Figure 2) is performed on a subset of channels with maximum sensitivity to the target variable, and 

minimum sensitivity to all other variables. We adopted the channel selection method as described in Gambacorta and Barnet 

(2013). The channel sets for cloud clearing and all trace gases – O3, CO, CH4, CO2, HNO3, N2O and SO2 – are selected from 

the IR measurements only, while the channel sets for surface parameters as well as atmospheric T and H2O are selected from 210 

the IR and microwave measurements (MW+IR). The number of IR channels for each variable and each instrument is listed in 

Table 1 below and represents the size, m, of measurement vector, y, for each retrieval variable. While m varies among 

instruments and retrieval variables, the size, n, of retrieval vector, x, remains constant at 100 vertical pressure levels (for 

temperature) and layers (for trace gas column densities) for the sake of accurate radiative transfer calculations. CLIMCAPS 

employs the Stand Alone Radiative Transfer Algorithm (Strow et al., 2003) originally developed for AIRS and later adopted 215 

for CrIS. Table 1 additionally lists two values; the maximum value (Bmax) for each retrieval damping factor (i.e., a static scalar 

threshold below which spectral channels are damped according to their information content) and the degrees of freedom for 

signal (DOF) as the global average of CLIMCAPS cloud-cleared radiance spectra with m channels. We discuss the damping 

factor in Section 2.2 below, but in short, it determines the degree to which CLIMCAPS retains information from the radiance 

channels in the retrieved product.   220 

 
Table 1: For each CLIMCAPS instrument/platform configuration, we list three parameters, the number of spectral channels (nch) 
used in the retrieval of temperature, H2O, O3, CO, CH4, CO2, HNO3, N2O and SO2, the damping factors applied as regularization 
parameter (Bmax) and degrees of freedom as metric for vertically integrated observing capability. CLIMCAPS version 2.0 is 
configured for retrievals from (i) Atmospheric Infrared Sounder (AIRS) on Aqua, (ii) Cross-track Infrared Sounder in Nominal 225 
Spectral Resolution mode (CrIS-NSR) on Suomi National Polar orbiting Partnership (SNPP), (iii) CrIS in Full Spectral Resolution 
mode (CrIS-FSR) on SNPP, and (iv) CrIS-FSR on NOAA20, the first of four Joint Polar Satellite Systems. The DOF values represent 
the mean from all ascending orbits (~13h30 local overpass time) on 1 July 2018 from retrievals that were flagged as successful, and 
rounded off to one decimal place.  

 

(i) 

Aqua/AIRS 

(ii) 

SNPP/CrIS-NSR 

(iii) 

SNPP/CrIS-FSR 

(iv) 

NOAA20/CrIS FSR 

nch Bmax DOF nch Bmax DOF nch Bmax DOF nch Bmax DOF 

Temperature 134 0.25 6.3 86 0.2 3.5 120  0.2 3.0 120  0.2 3.0 

Water Vapor (H2O) 46 0.4 2.7 62 0.4 2.2 66  0.4 1.7 66  0.4 1.7 

Ozone (O3) 40 1.0 2.0 53 1.0 2.3 77  1.0 1.9 77  1.0 1.9 

Carbon Monoxide (CO) 36 1.85 0.7 27 1.85 0.2 35 1.85 0.8 35 1.85 0.8 

Methane (CH4) 65 1.25 1.0 55 1.25 0.6 84 1.25 0.7 84 1.25 0.7 

Carbon Dioxide (CO2) 61 0.38 0.7 53 0.38 0.9 54 0.38 0.8 54 0.28 0.8 

Nitric Acid (HNO3) 14 1.0 0.3 28 1.0 0.3 30 1.0 0.1 30 1.0 0.1 

Nitrous Oxide (N2O) 58 1.0 1.2 24 1.0 0.8 21 1.0 0.3 21 1.0 0.3 

Sulfur Dioxide (SO2) 60 5.0 0.02 24 5.0 1e-3 31 5.0 6e-4 31 5.0 7e-4 
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2.2 CLIMCAPS averaging kernels 230 

Rodgers (2000) defines averaging kernels as the sensitivity of the retrieved variable, 𝒙), to the true state of the variable, 𝒙, for 

a given moment in time and space. In its most basic form, an n x n AKM can be calculated for each retrieved variable as 

depicted in Eq. (1): 

𝐀𝐊𝐌 = /𝐊𝐓𝐒𝒎−𝟏𝐊+ 𝐒𝒂−𝟏6
−𝟏𝐊𝐓𝐒𝒎−𝟏𝐊          (1) 

where K is the m x n matrix of weighting functions (or Jacobians) that characterizes measurement sensitivity to the a-priori 235 

target variable as 89
8:;

,  𝐒< is a diagonal m x m matrix of instrument noise and 𝐒=>? the regularization term, which in the Rodgers 

(2000) approach is defined by the inverse of an n x n a-priori error covariance matrix, 𝐒=. The value of 𝐒= determines the 

amount of regularization applied to the retrieval step, or the degree to which information content in the spectral measurement 

contributes to the final result. 𝐒= has to be chosen carefully so that the information content of the retrieval (or regularized 

solution) can be optimized given the information content available in the measurement (von Clarmann and Grabowski, 2007).  240 

In a Bayesian OE system, the regularization term determines how much the retrieved variable resembles the a-priori variable. 

If 𝐒= is low, then regularization is high and the measurement information content will be suppressed so that the retrieval more 

closely resembles the a-priori. In most OE observing systems, it is computationally prohibitive to dynamically generate a 

scene-specific matrix, 𝐒=, especially where data latency is a concern. Instead, a common approach is to set 𝐒= to a static value 

that is calculated offline either as a statistical covariance of data ensemble or a simple ad hoc assignment (Fu et al., 2016; Irion 245 

et al., 2018). 	𝐒= is then applied to each retrieval scene irrespective of the measurement information content for that scene. 

While this simplifies calculation, it risks suppressing information content where it is high, or enhancing measurement 

uncertainty where information content is low. The Rodgers (2000) AKM (Eq. 1) can be described as a linear combination of 

measurement sensitivity weighted by uncertainty about the a-priori state variable (𝐒=).  

CLIMCAPS, in contrast, calculates an n x n AKM as in Eq (2):  250 

𝐀𝐊𝐌 = [𝐊𝐓𝐒𝒎>𝟏𝐊 + 𝛌]>𝟏𝐊𝐓𝐒𝒎>𝟏𝐊          (2) 

with K the same as in Eq. (1), but 𝐒< an m x m error covariance matrix that combines instrument noise with uncertainty from 

scene-specific and observing system effects as described by Smith and Barnet (2019). Moreover, the background error term, 

𝐒= in Eq. (1), is replaced here with 𝜆, the damping factor listed in Table 1. This damping factor differs from 𝐒= in two important 

ways; (i) unlike 𝐒=, λ has horizontal variation because it is dynamically calculated for each retrieval scene based on the 255 

measurement information content for a target variable and, (ii) unlike 𝐒=, λ has no vertical variation because it is a scalar value 

that assumes uniform uncertainty about the prior state, which can be an oversimplification in some cases. In contrast to Eq. (1), 

a CLIMCAPS AKM as in Eq. (2) can be described as the linear combination of measurement sensitivity weighted by known 

and propagated sources of uncertainty as well as scene-specific knowledge about measurement information content. While this 
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is different from a traditional OE approach, both Eq. (1) and (2) generate results that are within the observing system null space 260 

and thus part of the solution set of the ill-determined inversion problem.  

CLIMCAPS adopted the AIRS V5 (Susskind et al., 2003, 2014) implementation of Eq. 2 (Maddy et al., 2009; Maddy and 

Barnet, 2008). Instead of an array size of n = 100, CLIMCAPS calculates AKMs on a reduced set of pressure layers as defined 

by a series of overlapping trapezoidal functions. The thickness of each trapezoid layer is empirically determined from 

calculations of the vertical resolution of simulated measurements for each variable, e.g. CLIMAPS has 31 trapezoid state 265 

functions for temperature and 9 for CO. These trapezoid state functions were selected by the AIRS science team, with ~2 

trapezoids per retrievable layer quantity. CLIMCAPS employs these vertical trapezoid functions for a number of reasons; 

(i) they reduce the dimensionality of the Jacobian matrix to speed up algorithm processing time; (ii) compared to the 100 

pressure layers needed for accurate radiative transfer calculation, the trapezoidal layers more closely resemble true instrument 

vertical resolution calculated from simulated spectra for standard atmospheric state climatologies; and (iii) they act as a 270 

smoothing constraint and thus reduce the need for additional a-priori stabilization factors. As mentioned, we use Rodgers’ 

(2000) OE notation in this paper, but in practice the Jacobians in Eq. (2) are linearly transformed to the coarser trapezoidal 

grids using a transformation matrix W as follows: 𝐊G = 𝐊𝐖 making it a 𝑚 × 𝑛L matrix with 𝑛L the number of trapezoid layers 

(see Maddy and Barnet 2008 for more details).  

Averaging kernels are unitless and typically range in value between 0.0 and 1.0, although they can sometimes have 275 

negative values where noise exceeds signal (see Figure 3 in Section 3 below). AKMs quantify CLIMCAPS observing 

capability at any given point in time and space because they account for all known sources of scene-specific as well as 

observing system uncertainty. They characterize a system’s ability to observe a target variable at a specific scene. An 

alternative interpretation is that they quantify the degree to which the a-priori variable compensates for the lack of observing 

capability at any specified scene (1.0 – AKM). While CLIMCAPS AKMs do not measure retrieval accuracy (approximation 280 

to the truth), they do characterize retrieval uncertainty and information content. CLIMCAPS retrievals are not in situ 

measurements of the vertical atmospheric state, but under-determined non-linear inverse measurements with dependence on 

prior knowledge of the atmospheric state. In scientific analyses and operational applications, it is imperative that sounding 

observations are correctly interpreted lest their uncertainty is mistaken for measurement. CLIMCAPS AKMs characterize and 

quantify the weighted contribution from the measurement (0.0 + AKM) and the a-priori (1.0 – AKM). An averaging kernel 285 

value of zero means that the measurement has no observing capability at that pressure layer and the solution will be the a-

priori. An averaging kernel value of unity means the measurement has 100% observing capability and the solution will have 

no dependence on the a-priori. In practice, however, averaging kernels range in value between these two endpoints such that 

0.0 < AKM < 1.0. 

What can we learn about CLIMCAPS observing capability by diagnosing its AKMs? And how should we interpret 290 

differences between its retrievals from different parts of the globe or from different sounding systems? We can address these 

questions with a discussion of how each of the variables in Eq. (2) affect the AKMs. These are the Jacobians (K) that determine 
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the structure of an AKM, and the measurement error covariance matrix (Sm) with regularization parameter (𝜆) that determine 

its magnitude.  

CLIMCAPS Jacobians are finite differencing (or brute force) weighting functions that quantify the sensitivity of the 295 

calculated radiances to the a-priori retrieval variable. They are m x n matrices, with m equal to the number of spectral channels 

in the retrieval subset (Table 1); out of 2211 CrIS channels, CLIMCAPS has m = 120 selected for T and m = 66 for H2O. 

Jacobians are sensitive to the background state variables used in the forward radiative transfer calculation. This is the only 

parameter in Eq. (2) that ingests a-priori information. If an a-priori is biased with respect to the true background state, the same 

bias will propagate into the Jacobians. For example, if the CO a-priori is a climatology of a typical source site, then the Jacobian 300 

will indicate high measurement sensitivity because high concentrations of mid-tropospheric CO result in strong absorption 

lines in the calculated radiance, and thus yield large weighting functions. If such weighting functions are applied to a retrieval 

where the scene-specific CO concentrations are low, then the averaging kernels will mistakenly indicate high observing 

capability to CO at that scene, which risks representing the uncertainty as signal. That is, unless the averaging kernels are 

adjusted according to known sources of uncertainty.  305 

Clouds are one of the primary sources of scene-specific uncertainty. While CLIMCAPS requires no knowledge about the 

a-priori state of clouds, it calculates radiance uncertainty due to clouds in the cloud clearing step (Table 1). Cloud clearing 

uncertainty, together with uncertainty from other state variables, are propagated into the measurement error covariance matrix, 

Sm, according to the method described in Smith and Barnet (2019). If a scene has high uncertainty due to clouds, Sm will 

increase and AKM will decrease to reflect a reduced observing capability. Scene-dependent cloud effects are therefore not 310 

explicitly accounted for in AKMs through radiative transfer calculation, but their scene-dependent uncertainty is derived and 

propagated into one of the error terms.  

CLIMCAPS performs singular value decomposition (SVD) of the matrix 𝐊GM𝐒<>?𝐊G   to derive a set of scene-specific 

eigenvectors for use in the retrieval. We refer to this 𝑛L × 𝑛L eigenvector matrix as 𝐊N , with eigenvalues, 𝜆O, on its diagonal. SVD 

benefits the retrieval in that it minimizes (maximizes) the a-priori contribution when measurement information content is high 315 

(low) such that the retrieval product deviates from its a-priori only when the radiance measurement has information content. 

According to Eq. (2), the regularization term is derived from the eigenvalues and determines the degree to which these 

eigenvectors are damped in the solution according to the critical threshold, 𝜆P, which is derived from Bmax (Table 1) such that 

𝜆P = (𝐵<=:)>T. Bmax is a scalar value, empirically determined offline, and defines the maximum allowable noise that can 

propagate into the retrieval. We illustrate how this works in practice with the example discussed below. 320 

Table 2: Example of eigenvalues and damping factors for a hypothetical temperature retrieval. 

𝐵<=: = 0.5 → 𝜆P = 4.0 

i 𝜆O Δ𝜆 Percent damped  

1 18.719 0.0 0.0 % Not damped 

2 8.321 0.0 0.0 % Not damped 
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3 4.934 0.0 0.0 % Not damped 

4 3.127 0.41 11.58 % Damped 

5 1.312 0.98 42.73 % Damped 

6 0.68 0.97 58.77 % Damped 

7 0.29 0.79 73.07 % Damped 

… … … … … 

22 1.4e-07 4.1e-04 100.0 % Switched off 

23 4.3e-08 2.0d-04 100.0 % Switched off 

 

In Table 2, the 𝐊N-matrix for temperature has five significant eigenvalues (i.e., where 𝜆O ≥ 1.0), which means that the 

observing system has five independent pieces of information and can solve for temperature at five distinct pressure levels. For 

a 𝐵<=: = 0.5, 𝜆P = 4.0. All eigenvectors with 𝜆O > 𝜆P will contribute to the retrieval undamped. In Table 1, we see that the 325 

first three eigenvectors will thus contribute 100% of their information to the retrieval. Those eigenvectors with  𝜆P > 𝜆O >

0.05 will be fractionally damped as follows: 1.0 − ]^
(]^_`])

, where Δ𝜆 = a𝜆Pa𝜆O − 𝜆O. Accordingly, the fourth eigenvector 

(Table 2) will be 11.58% damped, the fifth 42.73% and so on. Those eigenvectors with  𝜆O < 0.05 will be switched off so that 

they make no contribution to the retrieval because they are regarded as sources of noise. An observing system can be over-

damped in which case it does not let enough functions contribute 100% of their information. Such a system would suppress 330 

the amount of information contributed by the measurements and force a strong dependence on the a-priori. Alternatively, a 

system can be under-damped in which case too many functions contribute to the retrieval undamped such that the 

measurements contribute not only information (eigenvectors with 𝜆O ≥ 1.0) but also noise (eigenvectors with 𝜆O < 1.0). 

CLIMCAPS-Aqua has 𝐵<=: = 0.25 and CLIMCAPS-NOAA20 𝐵<=: = 0.20 (Table 1), which translates to 𝜆P = 16.0 and 

𝜆P = 25.0, respectively. In our example given in Table 2, CLIMCAPS-Aqua will leave only the first eigenvector undamped, 335 

while CLIMCAPS-NOAA20 will not let a single eigenvector contribute 100% of its information, but damp all of them.  

We adopt this type of regularization in CLIMCAPS because we do not know with absolute certainty that we fully 

accounted for all sources of uncertainty in the Sm matrix. With this approach, we can account for those sources of uncertainty 

not explicitly characterized in previous retrieval steps (Figure 1). In an ideal system where all sources of uncertainty are fully 

characterized, all eigenvectors with 𝜆O ≥ 1.0 should typically contribute to the retrieval undamped. 340 

3  Results and discussion 

In this section, we use AKMs to diagnose CLIMCAPS observing capability (or sensitivity to the true state) for CLIMCAPS-

Aqua and CLIMCAPS-NOAA20 using two global days of retrievals, 1 July and 15 December 2018. AKMs quantify the 

potential each measurement has to resolve the atmospheric state, given observing system characteristics and prevailing 

conditions at the retrieval scene. So far, we referred to the AKM associated with each retrieval. Here we take a look at the 345 
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individual averaging kernels (or rows) of each AKM and specifically distinguish the diagonal of the AKM (or AKD) as a 

vector representation of the maximum sensitivity at each pressure level. 

3.1 Diagnosing CLIMCAPS observing capability 

Figure 3 below depicts the averaging kernels for T and H2O from CLIMCAPS-NOAA20 for five different retrieval scenes 

within a few hundred miles of each other south of South Africa where the Atlantic and Indian Oceans converge. The peak of 350 

each kernel depicts the atmospheric pressure level where observing capability is strongest. The spread of an averaging kernel, 

quantified as the full-width at half-maximum (FWHM), can be interpreted as the vertical resolution of information content at 

its peak pressure. Accordingly, we see here that CLIMCAPS has higher vertical resolution (smaller FWHM) for T in the lower 

troposphere (Figure 3; top row) compared to the stratosphere, but in turn a stronger observing capability for T in the 

stratosphere (larger peak values). The vertical resolution for H2O (Figure 3; bottom row) is fairly consistent throughout the 355 

troposphere but we see how observing capability varies strongly from scene-to-scene. Note how the kernels fall below zero at 

times. For scene 1 and 3 ([47.8S, 29.4E] and [41.7S, 22.6E], respectively) the kernels for both T and H2O are generally low in 

the troposphere compared to other scenes. This means the observing capability of CLIMCAPS-NOAA20 is weak and only a 

small amount of measured information will be added to the a-priori at those scenes. Scene 4 ([36.6S, 29.9E]), on the other 

hand, has higher kernel peaks and CLIMCAPS-NOAA20 thus has a stronger capability to retrieve atmospheric structure in the 360 

troposphere and add new information to prior state variables at that scene. 
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Figure 3: Scene-dependence of CLIMCAPS-NOAA20 averaging kernels for coincident (top row) temperature (T) and (bottom row) 
water vapor (H2O) retrievals at five scenes (left to right) on 1 July 2018. The latitude/longitude coordinates are listed at the top of 
each figure. Averaging kernels (Eq. 2) quantify and characterize the signal-to-noise ratio of an observing system and are affected by 365 
the scene-dependent effects (e.g., temperature lapse rate, amount of gas molecules, surface emissivity and cloud uncertainty) as much 
as the measurement characteristics (e.g., spectral resolution, instrument calibration and noise). CLIMCAPS retrieves T and H2O 
sequentially each with a unique subset of channels, which means that the variation in these averaging kernels are independent of 
each other. 

Figure 4 presents the averaging kernels for seven CLIMCAPS-NOAA20 retrieval parameters. They are (left to right), 370 

T, H2O, O3, CO, CH4, CO2 and HNO3. These kernels represent the average for all Northern Mid-Latitude scenes (30˚–60˚N, 

180˚W–180˚E) on 1 July 2018, hence their smooth appearance compared to those in Figure 3 for individual scenes. We see 

how retrieval sensitivity to the true state depends strongly on the target variable. CLIMCAPS retrieves each state variable 

using a subset of spectral channels (Table 1) selected to have a high degree of sensitivity for the target variable and low 

sensitivity to all other atmospheric state variables radiatively active in the same spectral region (Gambacorta and Barnet, 2013). 375 

The CLIMCAPS sequential OE approach with channel selection and uncertainty propagation, minimizes spectral correlation 

in the retrieved variables (Smith and Barnet, 2019). This means that any correlation that do exist can mostly be attributed to 

geophysical, not observing system, effects. On average, CLIMCAPS-NOAA20 has distinct stratospheric and tropospheric 
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sensitivity to the true states of T, O3 and CO2. For H2O, CO and CH4, CLIMCAPS-NOAA20 observing capability is limited 

to the mid-troposphere (200–700 hPa). Unlike CO and CH4, the kernels for H2O have peaks at multiple layers and varying 380 

degrees of vertical resolution (FWHM). On average in the summertime Northern Mid-Latitude zone, CLIMCAPS-NOAA20 

has barely any sensitivity to HNO3 and very little to CO2 below 500 hPa. 

 
Figure 4: The mean of a set of averaging kernels for seven CLIMCAPS-NOAA20 ascending orbit retrieval variables across the 
North Mid-Latitude zone (30˚N to 60˚N) for a global day of daytime (ascending orbit) observations from NOAA20 on 1 July 2018. 385 
From left to right is air temperature (T), water vapor (H2O), ozone (O3), carbon monoxide (CO), methane (CH4), carbon 
dioxide (CO2) and nitric acid (HNO3). CLIMCAPS calculates 31 averaging kernels for T, 22 for H2O, 10 for O3, CO and HNO3, 11 
for CH4 and 9 for CO2. The averaging kernels for T, H2O and CO are defined on layers from top of atmosphere to sea surface, with 
those for O3 extending down to 822 hPa, CH4 down to 800 hPa, CO2 down to 700 hPa and HNO3 down to 450 hPa. 

To simplify comparison across multiple latitudinal zones and retrieval systems, we use Averaging Kernel Matrix Diagonal 390 

vectors (in short, AKDs from here on) to summarize the maximum sensitivity at each pressure layer. The trace of the AKM 

(sum of AKD) defines the “degrees of freedom for signal” (DOF), or available information content about the vertical state of 

a target variable. DOF is can be smaller than the number of significant eigenvectors due to damping (Eq. 2) and can be 

interpreted as the SNR of a retrieval system. 

In Figure 5 below, we contrast the AKDs for five latitudinal zones – South Polar (90˚S to 60˚S), Southern Mid-Latitude 395 

(60˚S to 30˚S), Tropics (30˚S to 30˚N), Northern Mid-Latitude (30˚N to 60˚N) and North Polar (60˚N to 90˚N) – on 

15 December 2018 for CLIMCAPS-NOAA20 (top panel) and CLIMCAPS-Aqua (bottom panel). We observe distinct 

latitudinal variation in CLIMCAPS-NOAA20 for H2O, O3 and CO2. In contrast, CLIMCAPS-Aqua information content has 

latitudinal variability for T, H2O, O3 and HNO3. For CO and CH4, CLIMCAPS-NOAA20 and CLIMCAPS-Aqua information 

content is similar in magnitude and structure with mid-tropospheric peaks at 500 hPa and 400 hPa, respectively. Notice the 400 

marked differences in T and H2O AKDs between CLIMCAPS-Aqua and -NOAA20 (Figure 5, two left panels). Compared to 

CLIMCAPS-NOAA20, CLIMCAPS-Aqua has higher observing capability for atmospheric structure in the mid-troposphere; 

its T and H2O retrievals have smaller dependence on the a-priori with a larger contribution of information by the AIRS/AMSU 

spectral channels. Both observing systems use the same a-priori, namely MERRA2, and they measure conditions on the same 

day. While Aqua and NOAA20 both have 13h30 local overpass times their orbits are, however, not aligned and they view the 405 
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same scene at different view angles almost an hour apart. Cloud structure and amount can change significantly in that time. 

But even if the cloud fields remained unchanged over a few hours, measurement uncertainty due to clouds can be different at 

nadir (looking down at clouds) than edge of scan (looking at clouds with an angle). Smith et al. (2015) discussed how observing 

capability changes due to instrument effects – spectrometers (AIRS) versus interferometers (CrIS) – in cloudy scenes. While 

the information content for an ensemble of simulated AIRS and CrIS measurements are similar (Figure 1), differences in their 410 

spectral resolution, detector arrays, and algorithm channel sets introduce variation in the information content of their 

measurements at a specific same scene. CLIMCAPS-Aqua uses 134 and 46 channels for T and H2O, while CLIMCAPS-

NOAA20 uses 120 and 66 for the same variables, respectively. Moreover, the damping factor for CLIMCAPS-Aqua T is lower 

than that for CLIMCAPS-NOAA20. 

We designed and implemented CLIMCAPS to be similar for all instruments and platforms with the goal that its sounding 415 

record can be continuous over decades despite changes in technology. Global ensembles of T and H2O retrievals from both 

systems – CLIMCAPS-NOAA20 and CLIMCAPS-Aqua – display similar root-mean-square statistics (not shown) when 

compared to ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis fields. We have found that 

CLIMCAPS-NOAA20 and CLIMCAPS-Aqua have similar observing capabilities for the trace gases, but compared to 

CLIMCAPS-Aqua, CLIMCAPS-NOAA20 appears over-damped; its T and H2O retrievals have low sensitivity to the true state. 420 

This is reflected in the CLIMCAPS regularization threshold for T from CrIS/ATMS on SNPP and NOAA20 that is lower than 

that for AIRS/AMSU on Aqua (Table 1). This threshold was first developed for nominal spectral resolution CrIS 

(measurements available at launch in 2011) and never updated when full spectral resolution CrIS measurements became 

available two years later. In future, we will experiment with these threshold values to test if we can achieve consistency in 

averaging kernels across CLIMCAPS-Aqua, -NOAA20 and -SNPP. We are interested in addressing the question whether we 425 

can achieve continuity in information content despite instrument differences. The disparity in information content we currently 

observe between CLIMCAPS-Aqua and CLIMCAPS-NOAA20 (Figure 5) tell us that the two systems apply different 

weighting to the radiance measurements and thus vary in their dependence on the a-priori. This can introduce inconsistencies 

in the data record and hamper continuity. In using averaging kernels as metric, we can evaluate information content under 

similar conditions across CLIMCAPS-Aqua, -NOAA20 and -SNPP and thus test for continuity in their observing capability.  430 
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Figure 5: Averaging kernel diagonal vectors for seven retrieval variables – (left to right) T, H2O, O3, CO, CH4, CO2 and HNO3 – 
from (top) CLIMCAPS-NOAA20 and (bottom) CLIMCAPS-Aqua ascending orbits on 15 December 2018. For each observing 
system, the mean of the diagonal vector is calculated across five latitudinal zones – South Polar (90˚S to 60˚S), Southern Mid-Latitude 435 
(60˚S to 30˚S), Tropics (30˚S to 30˚N), Northern Mid-Latitude (30˚N to 60˚N) and North Polar (60˚N to 90˚N). 

Figure 6 maps CLIMCAPS-NOAA20 DOF for T, H2O, CO and O3 on 15 December 2018. CLIMCAPS AKMs are 

independent of the final retrieved variable and thus independent of whether the solution converges or not. We, therefore, do 

not apply a quality control filter that introduces data gaps other than those introduced by orbital tracks at low latitudes. Note 

how the spatial patterns of DOF for the four variables are largely independent of each other. This stems from the fact that 440 

CLIMCAPS uses channel subsets and uncertainty propagation to minimize spectral correlation across retrieval variables 

(Smith and Barnet, 2019). Where DOF patterns do have distinct features, such as the low O3 DOF feature over Canada 

(Figure 6d), we can understand it by evaluating the physical state to determine if it is due to conditions such as low O3 

concentrations, low lapse rates or stratospheric warming. All retrieval variables and their uncertainty metrics are coincident in 

space and time in the CLIMCAPS product files.   445 
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Figure 6: Spatial variation in the degrees of freedom for signal (DOF) for four retrievals from CLIMCAPS-NOAA20 ascending 
orbit on 15 December 2018, (a) temperature (T), (b) water vapor (H2O), (c) carbon monoxide (CO) and (d) ozone (O3). Note how the 
spatial patterns in DOF for each retrieval variable is largely independent of the others.  

While CLIMCAPS observing capability for these variables are largely independent of each other, their spatial patterns do 450 

all display a sensitivity to clouds in the lower latitudes. We see similar patterns in cloud cover from satellite imagery of the 

same day (not shown). AKMs do not directly ingest any information about the background atmospheric state or the a-priori 

retrieval variable. Neither do the AKMs ingest any cloud variables in radiative transfer calculations for deriving the K-matrix. 

Any knowledge about clouds that does exist in the AKMs (and derived DOF) is from the cloud uncertainty that is quantified 

during the cloud clearing step and propagated through to the Sm matrix. If cloud uncertainty is high, Sm will increase and DOF 455 

will decrease according to Eq. (2). This is why we see lower values for DOF in cloudy and overcast scenes.  

Figure 7 illustrates the degree to which AKDs vary across a North Mid-latitude zone (30˚N to 60˚N) for seven retrieval 

variables; from left to right they are T, H2O, O3, CO, CH4, CO2 and HNO3. The solid lines represent their mean AKDs with 

the error bars quantifying their variation about the mean. The degree to which the AKDs vary across space, pressure, variables 

and instruments in Figure 7 is also the degree to which CLIMCAPS observing capability vary. Overall, CLIMCAPS-Aqua 460 

variation for T and H2O is significantly higher than that for CLIMCAPS-NOAA20. Given that T is retrieved from CO2 sensitive 

infrared channels, note how CLIMCAPS-NOAA20 AKD for T has insignificant vertical variation across this latitudinal zone, 

with an absence of a distinct peak in the troposphere, but its AKD for CO2 not only has high variability but also a distinct peak 
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in the upper troposphere. CLIMCAPS-Aqua, on the other hand, has T AKDs with high variability and a distinct tropospheric 

peak but its CO2 AKDs have no distinct peak and low vertical variability. This suggests that observing capability for CO2 is 465 

enhanced (depressed) when observing capability for T is depressed (enhanced). Another set of variables that are spectrally 

correlated is H2O and CH4. The channels sensitive to CH4 absorption are also sensitive to H2O. CLIMCAPS minimizes their 

correlation in the final retrieval products through channel selection for spectral purity coupled with a sequential propagation 

of scene-dependent uncertainty, but a degree of correlation persists as seen in Figure 7. We see this in CLIMCAPS-NOAA20 

observing capability that is lower for both H2O and CH4 while in CLIMCAPS-Aqua it is higher for both variables. 470 

 

 
Figure 7: The mean (blue line) and standard deviation (blue error bars) of averaging kernel matrix diagonals in the Northern Mid-
Latitude zone (30˚N to 60˚N) on 1 July 2018 and from (top) CLIMCAPS-NOAA20 and (bottom) CLIMCAPS-Aqua, both ascending 
orbits. The error bars indicate the degree to which the averaging kernel diagonals vary spatially across the latitudinal zonal. 475 

3.2 Averaging kernels in data inter-comparison studies 

Data assimilation models typically use infrared radiance channels to assimilate T and H2O, but for trace gases they use the 

retrieved profiles (Levelt et al., 1998; Clerbaux et al., 2001; Yudin, 2004; Segers et al., 2005; Pierce et al., 2009; Liu et al., 

2012). Top of atmosphere radiances are highly correlated, highly mixed signals of atmospheric variables. A single channel in 
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the ~2100 cm-1 spectral range may contain information about CO, but it also contains information about N2O, T, surface 480 

emissivity, surface temperature and H2O. If a model wants to assimilate CO spectral channels then it would have to account 

for all interfering species in addition to the uncertainty of CO, lest it introduces bias in its characterization of CO processes. 

This has proven prohibitively difficult in the case of trace gases where the target variable has a weak spectral signal with 

interference from variables with much stronger signals. Instead, modellers rely on retrieval algorithms to decompose the 

infrared channels into distinct trace gas species. Maddy and Barnet (2008) gave a detailed description of how AKDs can be 485 

used together with the retrieved profiles to remove a-priori information from the retrieval and thus facilitate their assimilation 

at a minimum cost to the model. Today, the Maddy-Barnet method is well established and widely used as the standard method 

for data assimilation of retrieved trace gas profiles (Pierce et al., 2009).  

In this section, we turn our attention to the value of AKMs in data inter-comparison studies and specifically the inter-

comparison of different remote sounding products, all with their own sets of AKMs. What can we learn about a retrieval 490 

product from its AKMs and how can this facilitate understanding and interpretation?  

Figure 8 illustrates CLIMCAPS-NOAA20 O3 retrieval diagnostics at three different scenes in the Northern Hemisphere 

on 1 July 2018. For each scene, the diagnostics are, (i) the O3 averaging kernels and, (ii) the departure from the a-priori 

(retrieval minus a-priori). The former characterizes CLIMCAPS observing capability for O3 at that scene, and the latter 

quantifies the changes made to the a-priori, given the measurement information content in the CLIMCAPS channel subset. 495 

Recall that CLIMCAPS employs MERRA2 as a-priori for T, H2O and O3 (Smith and Barnet, 2019). MERRA2 assimilates 

partial column ozone from a series of SBUV instruments between 1980 and September 2004. After September 2004, SBUV 

data are replaced by total ozone retrievals from the Ozone Monitoring Instrument (OMI) and stratospheric ozone profiles from 

MLS (Levelt et al., 1998) on board the NASA Aura satellite. Wargan et al. (2017) validated MERRA2 ozone against 

ozonesondes and found them to give an accurate representation of cross-tropopause gradients and variability on daily and 500 

interannual time scales. MERRA2 does not assimilate any infrared channels or retrievals from CrIS or AIRS for its O3 product. 

Figure 8 illustrates that CLIMCAPS has observing capability for stratospheric as well as tropospheric ozone, which means it 

has the potential to add new information to the MERRA2 a-priori fields in two distinct parts of the atmosphere. While 

CLIMCAPS-NOAA20 observing capability is similar at all three scenes, we see that the retrieval deviation from the a-priori 

(black line) varies significantly from scene to scene. In scene a, CLIMCAPS-NOAA20 increased the stratospheric 505 

concentrations, while decreasing tropospheric O3. In scene b, CLIMCAPS-NOAA20 mainly reproduced MERRA2 

tropospheric O3, while increasing it slightly in the lower stratosphere. In scene c, CLIMCAPS-NOAA20 added no new 

information to MERRA2 stratospheric O3, but it increased its upper tropospheric concentrations. 
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Figure 8: An evaluation of ozone (O3) retrievals from CLIMCAPS-NOAA20 ascending orbit on 1 July 2018 for three scenes at (a) 510 
76.0N, 91.8W, (b) 77.9N, 91.8W and (c) 78.9N, 91.8W. For each scene, the averaging kernels are displayed in the left panel and the 
retrieval departure from a-priori in the right panel. CLIMCAPS uses MERRA2 as a-priori for O3. Scenes with averaging kernels 
similar in structure can have an a-priori departure that varies in structure. All three scenes presented here passed CLIMCAPS 
quality control and are labelled as “successful”. For each scene, CLIMCAPS additionally derives uncertainty metrics about the 
presence of clouds and we list them here. Scene (a) has a cloud fraction (CF) of 1%, cloud top pressure (CTP) of 425 hPa, cloud 515 
clearing uncertainty (CCunc) of 0.29 and cloud clearing error (CCerr) of 0.5. Scene (b) has CF=1%, CTP=273 hPa, CCunc=0.29 and 
CCerr=0.5 and finally scene (c) has CF=3%, CTP=375 hPa, CCunc=0.33 and CCerr=0.76. 

What does it mean when the AKMs show strong observing capability but the retrieval hardly deviates from the a-priori? 

We interpret this as the CLIMCAPS CrIS IR channel set for O3 largely confirming the MERRA2 O3 profile at that scene. 

Aside from water vapor, ozone is the only trace gas variable in CLIMCAPS that uses an a-priori with space-time structure. All 520 

other gases – CO, CO2, CH4, N2O and HNO3 – use climatologies with no or limited spatial variation as discussed in Section 2.1. 

Any space-time structure thus visible in the retrievals of these gas species originate from the information content in the IR 

channels only.  

For the same day, Figure 9 illustrates CLIMCAPS-NOAA20 temperature retrieval diagnostics for three cloudy scenes in 

the Southern Hemisphere. Again, we note how the system has similar observing capabilities at each scene, but the retrieval 525 

departure from MERRA2 varies significantly. Note how CLIMCAPS-NOAA20 increases MERRA2 temperature at all scenes 

in the lower stratosphere and troposphere, but decreases MERRA2 temperature in the upper stratosphere. MERRA2 does 

assimilate CrIS and AIRS IR radiance channels that are sensitive to temperature. We argue, however, that on a scene-by-scene 

basis it is highly improbable that CLIMCAPS uses IR measurements twice (first as assimilated information in MERRA2, 

second as measurement vector in OE retrievals) due to the strong spectral and spatial filters adopted in data assimilation 530 

systems. Even where a MERRA2 grid cell does contain IR information at a target CLIMCAPS footprint, we consider the 

impact of the assimilated IR channels on the OE retrieval to be negligible. CLIMCAPS aggregates an array of 3 x 3 fields of 

view (~14 km) during cloud clearing (step 3 in Figure 2) and retrieves all subsequent variables from the cloud cleared radiance 

that represents the clear portion of partly cloudy atmospheres on a larger field of regard (~50 km). MERRA2, on the other 

hand, assimilates single field of view radiances for clear-sky atmospheres. MERRA2 assimilates measurements from many 535 

sources, so the contribution made by a single source at a target site is low, especially considering that each source is weighed 
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according to a static, pre-determined representation error. CLIMCAPS, on the other hand, uses cloud cleared IR radiances as 

one of its primary sources of information that it weighs based on scene-specific information content analysis.  

 

 540 

Figure 9: An evaluation of temperature (T) retrievals from CLIMCAPS-NOAA20 ascending orbit on 1 July 2018 for three scenes 
at (a) 17.8S, 1.0W, (b) 17.5S, 0.25E and (c) 20.4S, 12.2W. For each scene, the averaging kernels are displayed in the left panel and 
the retrieval departure from a-priori in the right panel. CLIMCAPS uses MERRA2 as its a-priori for T. Scenes with averaging 
kernels similar in structure can have an a-priori departure that varies in structure. Similar to Figure 7, we list the cloud uncertainty 
metrics for each scene: (i) CF=7%, CTP=175 hPa, CCunc=0.18 and CCerr=1.3 (ii) CF=8%, CTP=158 hPa, CCunc=0.15 and CCerr=1.34 545 
and (iii) CF=0%, CCunc=0.12 and CCerr=0.7. 

When we generate these diagnostic metrics – AKMs and a-priori departure – for CLIMCAPS-NOAA20 retrievals for all 

scenes from a global day of retrievals, four scenarios emerge, (1) high observing capability with small a-priori departure, 

(2) high observing capability with large a-priori departure, (3) low observing capability with small a-priori departure, and 

(4) low observing capability with large a-priori departure. We illustrate this in Figure 10 for CLIMCAPS-NOAA20 retrievals 550 

of H2O on 1 July 2018. For the sake of simplicity, we plot only the AKDs (blue line). The empirically derived threshold for 

each metric is 0.1 for AKD and 0.2 for a-priori departure. Scenario 1 (Figure 10, top left quadrant) occurs in ~17% of all 

CLIMCAPS-NOAA20 retrieval cases, scenario 2 (Figure 10, top right) occurs in 79.5% of all cases, scenario 3 (Figure 10, 

bottom left) in 1.2% of all cases and scenario 4 (Figure 10, bottom right) in 2.1% of all cases. We calculated these statistics 

for all retrieval scenes, irrespective of whether the retrievals converged to a solution or not because AKMs are independent of 555 

the retrieved variable. CLIMCAPS-20 retrievals flagged as “failed” occur most often in scenarios 3 and 4, where the observing 

capability is low. These results are summarized in Table 3.  

Table 3: A tabulated summary of the four CLIMCAPS retrieval scenarios.  

Scenarios Small a-priori departure Large a-priori departure 

High observing capability (AKDs) (1) 17% (2) 79.5 

Low observing capability (AKDs) (3) 1.2% (4) 2.1% 

 

 560 
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Figure 10: Towards a generalized diagnostic analysis of CLIMCAPS-NOAA20 retrievals on 1 July 2018. We can broadly identify 
four different scenarios for CLIMCAPS water vapor (H2O) retrievals by pairing the averaging kernel matrix diagonal (AKD; blue 
line) and retrieval departure (black line) calculated as percent difference: (A-priori minus Retrieval)/(A-priori). AKD is a metric for 
observing capability. The CLIMCAPS H2O a-priori is MERRA2 so the retrieval departure signifies a disagreement with measured 565 
radiances at a target scene. CLIMCAPS scenario (a) has strong observing capability and a small retrieval departure. Scenario (b) 
has strong observing capability and large retrieval departure. Scenario (c) has low observing capability and small departure. 
Scenario (d) has low observing capability and large departure. We empirically define the threshold for observing capability as 0.1, 
and for % difference (a-priori departure) as 20%. 

Data validation studies typically compare remote observations against dedicated aircraft and/or in situ measurements to 570 

derive a statistical estimate of overall product accuracy (Nalli et al., 2018a, 2018b). While validation studies are critically 

important to determine mission objectives, they typically do not provide information on the accuracy of individual soundings 

from day to day, or scene to scene. In science and operational applications, researchers regularly query individual soundings 

in their study of atmospheric processes and want to know how well a remote sounding represents the true atmospheric state at 

a specific scene. Radiosondes are launched daily, but from a sparse network of sites and are thus insufficient in determining 575 
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site-specific accuracy for the thousands of satellite soundings each day. In Figure 10, we introduced the four scenarios that 

emerge when pairing two CLIMCAPS metrics – a-priori departure and magnitude of AKDs – to propose them as a means to 

help facilitate product interpretation and characterization in the absence of ‘truth’ data. They can help distinguish those cases 

where a CLIMCAPS retrieval either departed from or stuck to its a-priori due to higher sensitivity to the true state (large 

AKDs). A data user can have confidence that such cases are good representations of the true state. Alternatively, those cases 580 

with small a-priori departures and small AKDs (scenario 3) should be interpreted with caution, because the measurements lack 

the means (information content) with which to confirm or improve upon the a-priori towards a better representation of the true 

state. Lastly, those retrievals with large a-priori departures and low AKDs (scenario 4) should be rejected as a misrepresentation 

of the true state because the retrieval is mostly likely dominated by noise, not signal. The a-priori may itself be close to the 

truth, but we cannot confirm this due to the system’s inability to observe conditions at that scene.  585 

CLIMCAPS has a series of quality control thresholds at various retrieval steps to test T and H2O retrievals but has no such 

tests for trace gas variables specifically. As a post-processing step within data applications, the quality control tests are 

assembled into a data filter that removes unsuccessful T and H2O retrievals or those with high uncertainty. Currently, the same 

filters are applied to all retrieved variables, with no distinction made between different variables at a target scene. We propose 

here a method with which to diagnosed CLIMCAPS retrievals on a case by case basis, one retrieval variable at a time. Instead 590 

of applying a blanket data filter, we illustrate how four diagnostic scenarios (Figure 10, Table 3) can help a data user to 

characterize retrieval quality along its vertical axis, from boundary layer to top of atmosphere.  In Figures 11 and 12 below we 

build on this to illustrate how these scenarios also apply to CLIMCAPS retrievals horizontally, i.e., spatially across a swath of 

observations. 

Figures 11 and 12 each have four panels; (a) a-priori departures at 500 hPa, calculated as percent difference between 595 

CLIMCAPS retrieval and its MERRA2 a-priori; (b) CLIMCAPS H2O AKDs at 500 hPa as metric of information content; 

(c) cloud clearing uncertainty quantified as the ‘amplification factor’ of instrument random noise (Chahine, 1977); and 

(d) cloud fraction retrievals for each CrIS footprint (or field of view). Figure 11 is a daytime scene (~13h30 local overpass 

time) over the Caribbean Ocean, including parts of northern Columbia and Venezuela, while Figure 12 is a night-time scene 

(~01h30 local overpass time) over the southeast continental United States. Note how CLIMCAPS retrieval departures do not 600 

appear spatially random, but instead clustered into distinct features. This means that CLIMCAPS adds new spectral information 

to its MERRA2 a-priori under specific conditions, which we can diagnose to determine information content and quality. 

Comparing panels (a) with (c) and (d), we see that there is no direct correlation between retrieval departure (difference between 

retrieval and a-priori) and presence of or uncertainty due to clouds. This means that CLIMCAPS does have the ability to 

separate spectral information about H2O from clouds and add this to its a-priori where necessary. In Figures 11 and 12 we 605 

highlight specific features for discussion – solid lines indicate retrievals that passed all quality control tests and labelled ‘good’, 

while dashed lines indicate retrievals that failed at least one quality control test and labelled ‘bad’.  
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Figure 11: Diagnostic evaluation of CLIMCAPS-NOAA20 retrievals of H2O for ascending Granule 89 (~13h30 local overpass time) 610 
on 1 July 2018 over the Caribbean Sea as well as Northern Colombia and Venezuela. (a) H2O retrieval difference as percent 
departure from a-priori, MERRA2, at 500 hPa. (b) Averaging kernel matrix diagonal vector at ~500 hPa (AKD). (c) Cloud Clearing 
(CC) amplification factor, a metric of uncertainty about clouds in the radiance signal. (d) Cloud fraction [%] retrieved for each CrIS 
field of view. Shapes with solid lines indicate scenes where CLIMCAPS retrievals passed all quality control tests and shapes with 
dashed lines indicate scenes where CLIMCAPS retrievals failed at least one quality control test and are flagged as ‘bad’. We label 615 
each shape according to the scenario as depicted in Table 3. Shape 2 (scenario 2) has large a-priori departure and large information 
content. Shape 4 (scenario 4) has large a-priori departure and low information content. Shape 1 (scenario 1) has small a-priori 
departure and high information content. Panels (c) and (d) provide additional diagnostic information about cloud cover and 
uncertainty. 
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 620 

Figure 12: Same as Figure 11 but for descending Granule 40 (~01h30 local overpass time) on 1 July 2018 over the Southern United 
States. (a) H2O retrieval difference as percent departure from a-priori, MERRA2, at 500 hPa. (b) Averaging kernel matrix diagonal 
vector at ~500 hPa (AKD). (c) Cloud Clearing (CC) amplification factor, a metric of uncertainty about clouds in the radiance signal. 
(d) Cloud fraction [%] retrieved for each CrIS field of view. We highlight features where CLIMCAPS retrievals depart from 
MERRA2 (a-priori) to demonstrate the diagnostic scenarios introduced in Figure 10. Regions with solid lines indicate scenes where 625 
CLIMCAPS retrievals passed all quality control tests and regions with dashed lines indicate scenes where CLIMCAPS retrievals 
failed at least one quality control test and are flagged as “bad”. We label each shape according to the scenario as depicted in Table 3. 
Shape 4 (scenario 4) has large a-priori departure and low information content. Shape 3 (scenario 3) has small a-priori departure 
and low information content. Shape 1 (scenario 1) has small a-priori departure and high information content. Shapes 2 (scenario 2) 
has large a-priori departure and high information content.  Panels (c) and (d) provide additional diagnostic information about cloud 630 
cover and uncertainty. 
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In Figure 10 we use empirically defined thresholds to categorize retrievals into one of four scenarios, 0.1 for AKD and 0.2 for 

retrieval departure. Figures 11 and 12 demonstrate how they manifest spatially for specific features. Scenario 1, as a small a-

priori departure with high information content, is featured in (i) Figure 11 (shape 1) where the region has low cloud clover 

(<20% cloud fraction) and very low cloud clearing uncertainty and, (ii) Figure 12 (shape 1) with varying cloud cover that 635 

exceeds 60% at times, but maintains a relatively low cloud clearing uncertainty. In both these cases, retrievals passed 

CLIMCAPS quality control, maintained high information content and low cloud uncertainty, so they can be used in 

applications with confidence and be interpreted as a confirmation of the MERRA2 values for mid-tropospheric moisture. 

Scenario 2, as a large a-priori departure with high information content, is featured in (i) Figure 11 (shape 2) where CLIMCAPS 

retrievals increase MERRA2 H2O values at 500hPa by as much as 30% and despite significant cloud cover, maintain low cloud 640 

uncertainty and, (ii) Figure 12 (shape 2, centred at 35˚N, 97.5˚W) where CLIMCAPS either increases MERRA2 by 10% over 

a large region and as much as 40% at a localized site where cloud cover and uncertainty are both low; (iii) Figure 12 (shape 2 

centred at 29˚N, 98˚W) where CLIMCAPS decreases MERRA2 mid-tropospheric moisture by 20%. In these cases, retrievals 

passed quality control, maintained high information content in scenes with low cloud cover, so they can be used with 

confidence and interpreted as a legitimate departure from MERRA2 and more accurate representation of the true state 645 

compared to MERRA2 alone. Scenario 3, as small a-priori departure with low information content, is featured in (i) Figure 12 

(shape 3) where information content is below the 0.1 threshold and retrieval departure below 20%. These are retrievals that 

also failed CLIMCAPS quality tests (indicated by the dashed lines) but for reasons other than cloud uncertainty (which is low) 

and cloud cover (cloud clearing has high accuracy in partly cloudy scenes such as these). Scenario 4, as large a-priori departure 

with low information content, is featured in (i) Figure 11 (shape 4) and (ii) Figure 12 (shape 4) where CLIMCAPS reduces 650 

MERRA2 H2O values at 500 hPa by more than 50% and information content is less than the 0.1 threshold. A very high cloud 

clearing uncertainty (> 8 amplification of noise) and near solid cloud deck (> 80% cloud fraction) help explain why these 

retrievals failed quality control tests and should not be trusted in applications. Retrievals with information content less than 

0.1 give us no information on the quality of MERRA2 values (we cannot confirm or deny that they correspond with top of 

atmosphere measured radiances and therefore know nothing about their accuracy), they only highlight that observing capability 655 

was low at that scene. We can diagnose this lack of observing capability, which in itself yields information about the 

atmospheric state such as cloud cover and uncertainty, but we cannot use the retrievals with any confidence in applications or 

scientific analyses. On any given global day, a significant majority of the CLIMCAPS retrievals fall into scenarios 1 and 2, 

which means that we can use them with confidence and interpret their departure from MERRA2 (or lack thereof) with 

confidence. Note that the spatial patterns depicted in panels (a) and (b) of Figures 11 and 12 are unique to each retrieval 660 

variable and vary with pressure layers according to the AKD shape and vertical profile differences between retrieval and a-

priori.  
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4  Summary and Conclusion 

In this paper we described our implementation of the Rodgers (2000) Bayesian OE inversion method for CLIMCAPS V2 with 

a specific focus on averaging kernels. We contrast the Rodgers method for averaging kernels (Eq. 1) with our CLIMCAPS 665 

implementation (Eq. 2) and described the impact our approach has on retrieved products. CLIMCAPS is the NASA system for 

generating a continuous record of satellite soundings from two different instrument suites on multiple satellite platforms, 

AIRS/AMSU on Aqua and CrIS/ATMS on SNPP and NOAA20. CLIMCAPS products are publicly available through the 

NASA EOSDIS Earthdata portal, and each product file contains the full averaging kernel matrix (AKMs) for seven retrieval 

variables – T, H2O, CO, CH4, CO2, O3 and HNO3 at every scene. CLIMCAPS AKMs vary in shape and magnitude across 670 

(i) retrieval variables according to top-of-atmosphere spectral sensitivity and instrument spectral resolution, (ii) satellite 

platforms according to instrument characteristics and retrieval algorithm assumptions and, (iii) retrieval scenes according  

instrument effects such as view angle, environmental conditions such as temperature lapse rates, uncertainty in interfering and 

background variables, as well as a-priori assumptions about the target variable. At any given scene, the AKM for one variable 

is largely independent from that of another due to the CLIMCAPS sequential retrieval approach (Table 1; Smith and Barnet 675 

2019) and infrared channel selection to minimize spectral interference. For the first time, we compare the observing capability 

from CLIMCAPS-Aqua with CLIMCAPS-NOAA20 to diagnose and characterize continuity in information content across 

satellite platforms and instrument technology.  In summary, we can state the following: 

- The observing capability for T and H2O is different between CLIMCAPS-Aqua and CLIMCAPS-NOAA20. This 

may be due to differences in how we regularize the OE solution for each satellite suite of instruments, but may also reflect 680 

fundamental instrument differences – AIRS on Aqua is a grating spectrometer and CrIS on NOAA20 a Michelson 

interferometer. In future, we will investigate this question.  

- CLIMCAPS-NOAA20 has a higher observing capability for CO2 in the mid-troposphere than CLIMCAPS-Aqua.  

- CLIMCAPS has peak observing capability for CO and CH4 in the mid-troposphere, with CO at ~500hPa and CH4 

at ~300–400hPa. 685 

- CLIMCAPS information content for T, H2O, CO and O3 are largely independent of each other with different spatial 

patterns in their derived DOF (trace of AKM).  

- CLIMCAPS-NOAA20 has latitudinal variation in observing capability for H2O, O3, CO, CH4 and CO2. For H2O, 

CLIMCAPS-NOAA20 observing capability peaks in the tropics (30˚S to 30˚N) at 300 hPa, while it peaks lower down at 

450 hPa outside of the Tropics. CLIMCAPS-NOAA20 has the highest latitudinal variability for O3 with strongest peaks in 690 

the Tropics, both in the stratosphere and troposphere. CLIMCAPS-NOAA20 has almost no vertical stratification in 

observing capability in the polar regions (> 60˚N and < 60˚S). The mid-latitude regions have O3 AKM peaks in the 

stratosphere only. CO2 AKMs have strongest peak at 200 hPa in the tropics. Tropical CH4 has much lower vertical resolution 

(as seen in its broad averaging kernel functions) with no distinct peak at 400 hPa as seen in other latitudinal zones.  
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- CLIMCAPS-Aqua has latitudinal variation in its observing capability for T, H2O, O3, CH4, and HNO3. It is lowest 695 

in the boundary layer for all variables. It has highest vertical resolution (sharpest peak) for T at 700 hPa in the North Polar 

region (> 60˚N). CLIMCAPS-Aqua has lower observability for tropospheric O3 in the Tropics. HNO3 AKMs have distinct 

latitudinal variation with highest observability in the stratosphere (< 100 hPa) for all zones, but strongest in the North Polar 

regions (> 60˚N) followed by Mid-Latitudes, South Polar and Tropics in that order.  

- CLIMCAPS, whether from NOAA20 or Aqua, has sensitivity to O3 and CO2 in two broad layers, one in the mid-700 

troposphere and another in the stratosphere (< 50 hPa), sensitivity to CO and CH4 in one broad mid-tropospheric layer, 

HNO3 in one broad stratospheric layer, and multiple narrow tropospheric layers for H2O and T, with additional layers in the 

stratosphere for T.  

We identified four scenarios with which to diagnose CLIMCAPS retrievals vertically along a pressure gradient on a scene-

by-scene basis. These scenarios are, (1) high observing capability (large AKD) and small a-priori departure, (2) high observing 705 

capability (large AKD) with large a-priori departure, (3) low observing capability (small AKD) with small a-priori departure, 

and (4) low observing capability (small AKD) with large a-priori departure. CLIMCAPS has additional uncertainty metrics 

for evaluating retrievals, such as cloud clearing amplification factor, radiance residual, cloud fraction and cloud top height, 

DOF, retrieval covariance error, convergence strength and whether a range of quality control thresholds were exceeded. As a 

long-term record of temperature, moisture and trace gases, that is continuous and consistent across instruments and satellite 710 

platforms, CLIMCAPS V2 products can be useful in characterizing diurnal and seasonal atmospheric processes from different 

time periods and regions across the globe. 
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