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Abstract. The atmospheric boundary layer height (BLH) is a key parameter in several meteorological applicationssuch as

::
for

:::::
many

:::::::::::::
meteorological

::::::::::
applications,

:::::::::
including air quality forecasts. Several algorithms have been proposed to automatically

estimate BLH from lidar backscatter profiles. However recent advances in computing have enabled new approaches using ma-

chine learning that are seemingly well suited to this problem. Machine learning can handle complex classification problems

and can be trained by a human expert. This paper describes and compares two machine-learning methods, the K-means un-5

supervised algorithm and the AdaBoost supervised algorithm to derive BLH from lidar backscatter profiles. The K-means for

Atmospheric Boundary Layer (KABL) and AdaBoost for Atmospheric Boundary Layer (ADABL) algorithm codes used in

this study are free and open source. Both methods were compared to reference BLHs derived from colocated radiosonde data

over a two-year period (2017–2018) at two Météo-France operational network sites (Trappes and Brest). A large discrepancy

in the root-mean-square error (RMSE) and correlation with radiosondes was observed between the two sites. At the Trappes10

site, KABL and ADABL outperformed the manufacturer’s algorithm, while the performance was clearly reversed at the Brest

site. We conclude that ADABL is a promising algorithm (RMSE of 550 m at Trappes, 800 m for manufacturer) but has training

issues that need to be resolved; KABL has a lower performance (RMSE of 800 m at Trappes) than ADABL but is much more

versatile.

1 Introduction15

The atmospheric boundary layer is the lowest part of the troposphere
:::
and

::
is

:::
the

:::::
region

:
that is directly influenced by surface

forcings. As the area where
:
It

::
is

:::
the

:::::
layer

::::::
within

:::::
which

:
most human activities take place,

:::
and

:
all pollutants emitted from

the ground are diluted in
::
at

::::::
ground

:::::
level

:::
are

::::::::
dispersed

::::::
within

:
this layer. The key parameter used to model this dilution is

the depth of this layer, i.e., the boundary layer height (BLH). Because BLH can vary from a few tens of meters to approx-

imately 2 km within a single day, the volume available for the dilution of pollutants can vary considerably and result in air20

quality warnings (Stull, 1988; Dupont et al., 2016). In addition
:
is

:
a
::::::
crucial

:::::::::
parameter

:::
for

::::::
reliable

::::::::
warnings

:::
of

::::
poor

:::
air

::::::
quality

:::::::::::::::::::::::::::
(Stull, 1988; Dupont et al., 2016).

::::::::
However, BLH is one of the largest sources of uncertainty in air quality models (Mohan

et al., 2011) and there is a need to better evaluate this parameter (Arciszewska and McClatchey, 2001). In numerical weather

prediction models, physical processes change
:::::::
Accurate

::::::::::::
representation

::
of

:::
the

:::::::
physical

:::::::::
processes within the boundary layer

:::
are
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:::
also

::::::::
important

:::
for

:::::::::
numerical

:::::::
weather

::::::::
prediction

:::::::
models (Seity et al., 2011). In the study of physical processes in the boundary25

layer, with large eddy simulations (Lenschow et al., 2012) or with measurements (Brilouet et al., 2017), BLH is often used as

a normalization of the vertical profiles. Therefore, it is important to compare BLH calculated in models with that derived from

measurements.

However, measuring BLH is not straightforward. As stated in Seibert et al. (2000), there are no systems that match all the

requirements to make reliable BLH estimations
::::
meet

::
all

::
of

:::
the

:::::::::::
requirements

:::
for

:::::::
making

::::::
reliable

:::::
BLH

:::::::
estimates. The best BLH30

estimation
::::::
estimate

:::
of

::::
BLH can be achieved via the synergistic use of multiple instruments. However,

:
,
:::
but, adding instruments

limits the number of sites where estimations
::::::::
estimates can be made. In this paper, we focus on a single instrument, aerosol lidar

(see Sect. 2.1.1 for more information), that is already widely used (Haeffelin et al., 2012). In a basic setup, aerosol
:::::::
Aerosol

lidars are active systems
:::::
remote

:::::::
sensing

::::::::::
instruments

:
that emit a laser pulse vertically

:::
into

:::
the

::::::::::
atmosphere and measure the

backscattered light
::::::
amount

:::
of

::::
light

:::::::::::
backscattered

::::
from

:::::::
aerosols

:
as a function of the vertical range from the instrument. Aerosol35

particles are the main drivers of backscattered signals. Because aerosols are more concentrated in the boundary layer than in

the overlying free troposphere, there is often a sharp decrease in the backscatter profile between these two layers. However,

this decrease can be blurred or perturbed by other strong signals (e.g., clouds,
:::::
aerosol

:::::::
residing

:::
in

:::::::
elevated

::
or

:
residual layers,

and small-scale structures) and instrumental noise. For these reasons, numerous studies exist concerning the derivation of BLH

from aerosol lidar. Melfi et al. (1985) use a simple thresholding of the signal. Other methods are based on calculations of the40

derivative function of the backscatter profile. For example, Hayden et al. (1997) take the minimum of the gradient, Menut

et al. (1999) use the height where the second derivative is zero (the inflection point) as well as the variance of the signal, and

Senff et al. (1996) use the derivative of the logarithm of the backscattered signal. One of the most used methods is the wavelet

covariance transform, which searches for the maximum in the convolution between the backscatter profile and a Haar wavelet

(Gamage and Hagelberg, 1993; Cohn and Angevine, 2000; Brooks, 2003). More recent studies have been based on backscatter45

signal analysis such as the STRucture of the ATmosphere (STRAT) algorithm (Morille et al., 2007) and the Characterising

the Atmospheric Boundary layer based on Automatic lidar and ceilometer Measurements (CABAM) algorithm (Kotthaus and

Grimmond, 2018). Graph theory has also been used to impose continuity constraints (both vertically and in time) in BLH

estimations
::::::::
estimates, e.g., the Pathfinder algorithm (De Bruine et al., 2017). Inspired by image processing, some methods use

Canny edge detection in addition to backscatter signal analysis (Morille et al., 2007; Haeffelin et al., 2012). An extension of50

Pathfinder including the detection of the continuous aerosol layer was made in PathfinderTURB (Poltera et al., 2017). These

studies demonstrate that estimating BLH from aerosol lidar is still an open area of research.

In addition, artificial intelligence (AI), as a set of techniques aiming to reproduce human intelligence with machines, has

reemerged in the last decade because of the simultaneous increase in the amount of available data and computational power.

Both have reached levels that enable previously impossible
:::::::::
impractical

:
applications. AI is capable of tackling complex classifi-55

cation problems, especially in image classification (Krizhevsky et al., 2012). Such breakthroughs were made possible by deep

convolutional neural networks (LeCun et al., 2015); however, AI encompasses many other techniques that also benefit from

larger data
::::::
datasets and increased computational power (Besse et al., 2018). In this paper, we explore how the estimation of BLH

from backscatter profiles can be formulated as a classification problem and how appropriate algorithms can be applied to solve
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this problem.
::::::::::::::
Machine-learning

:::::::::
techniques

:::
are

::::::::::
categorized

::::
into

:::
two

:::::
broad

::::::::
families:

:::::::::
supervised

:::::::
learning

::::::::::
(mimicking

:
a
:::::::
reliable60

::::::::
reference)

::::
and

:::::::::::
unsupervised

:::::::
learning

::::::::::::::::::::::::::::::::::::::::
(learning without a reference; Hastie et al., 2009).

:
Toledo et al. (2014) have already de-

scribed a method that falls into
:::::
within

:
the scope of AI. They used unsupervised learning to classify whether measurement

points were within the boundary layer. This method has yielded convincing results in previous studies (Toledo et al., 2017;

Caicedo et al., 2017; Rieutord et al., 2014) and is pursued here using the K-means for Atmospheric Boundary Layer (KABL)

algorithm. KABL has been extensively tested and is shared via an open-source code. In addition, we test an alternative adap-65

tive boosting (AdaBoost) machine-learning algorithm, the AdaBoost for Atmospheric Boundary Layer (ADABL) algorithm.

Both algorithms classify whether the measurement points are inside or outside of the boundary layer; however, ADABL learns

the characteristics of both groups from a training set. The training set consists of atmospheric boundary layer identifications

made by human experts, which is acknowledged as being more reliable than available automatic methods (Seibert et al., 2000).

Algorithms classifying from a reference dataset (e.g., ADABL) are called supervised algorithms, while algorithms classifying70

without a reference dataset (e.g., KABL) are called unsupervised algorithms. Supervised algorithms make it possible to auto-

matically reproduce human expertise in boundary layer identification. To our knowledge, this is the first time that a supervised

algorithm has been applied to this problem. This study is of practical interest because it includes the publication of the source

code, which only uses free software.

In Sect. 2, we describe the data used in this study, i.e., the lidar data in the algorithm inputs, reference radiosonde data, and75

ancillary data used to sort the meteorological conditions. In Sect. 3, we describe the two machine-learning algorithms (KABL

and ADABL) and the procedures used to evaluate them. In Sect. 4, we present the results of our study, which consists of a

sensitivity analysis of the KABL algorithm, a comparison of the methods with the radiosonde data over a two-year period, and

a case study. In Sect. 5, we discuss the results, limitations, and prospects of our study. The final section is dedicated to the

conclusions that can be drawn from our study.80

2 Material

Our study used data from the Météo-France operational network. We used colocated radiosonde and aerosol lidar data over

two sites: Brest (a coastal city in an extreme western
:::::::::::
north-western region of France) and Trappes (a suburban area of Parisin

an inland region of France
::
an

::::::
inland

:::::::
suburban

::::
area

::::::
within

::::
Paris). The dataset spanned two years: 2017 and 2018. A case study

was conducted on August 2, 2018, for the Trappes site.85

2.1 Lidar data

2.1.1 Lidar network

Since 2016, Météo-France has deployed a network of six automatic backscatter lidars to help the Volcanic Ash Advisory

Center of Toulouse characterize
:::::
layers

::
of

:
volcanic ash and aerosol layers

::
in

:::
the

::::::::::
atmosphere. One of the six sensors can be

quickly redeployed at a more suitable geographic location depending on the transport event being tracked. The network, fully90
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Figure 1. Mini Micro Pulse LiDAR (MiniMPL) unit from the Météo-France network.

operational since April 2017, is continuously functioning and has detected aerosol events at altitudes of up to 17 km. It is part

of the wider automatic lidar and ceilometer network of the E-PROFILE program described in Haefele et al. (2016).

Two sampling sites in this network were selected: Brest (48.444◦ N, 4.412◦ W, 94 m above sea level) and Trappes (48.773◦

N, 2.0124◦ E, 166 m above sea level). Both sites are equipped with a Mini Micro Pulse LiDAR (MiniMPL), built by Sigma

Space Corporation with an exterior casing provided by Envicontrol. A MiniMPL unit from the Météo-France network is shown95

in Figure 1. MiniMPL is a compact version of the Micro Pulse LiDAR (MPL) systems approved for the global NASA Micro-

Pulse Lidar Network (MPLNET). A comprehensive description of MiniMPL can be found in Ware et al. (2016).

2.1.2 Data processing

MiniMPL acquires profiles of atmospheric backscattering at high frequency (2500 Hz) using a low-energy pulse (3.5 µJ)

emitted by a Nd:YAG laser at 532 nm. The profiles are acquired in photon-counting mode and, in our present configuration,100

averaged over 5 min and 30-m vertical resolution bins. The instrument uses a monostatic coaxial design where the laser beam

and the receiver optics share the same axis. Because of geometrical limitations, only a fraction of the signal can be recovered

in the near field. Therefore, in our system, the first usable data are available at 120 m above ground level.

The instrument has polarization capabilities with the collection of photons on two different channels (for more details see

Flynn et al. (2007));
::::::::
capability,

:::::::::
collecting

:::::::::::
backscattered

::::::::
photons

::
in

::::
two

:::::::
channels

:::::
with the measured raw signals on

::
in the105

"copolarized" and "cross-polarized" channels are suffixed co and cr, respectively
:::
(the

::::::::
intrument

::::
uses

::::
both

:::::::
circular

::::
and

:::::
linear

::::::::::::
depolarization;

:::
see

::::::::::::::::
Flynn et al. (2007),

:::
for

:::::
more

:::::::
details). These raw signals are processed to obtain the quantity of interest,

i.e., the range-corrected signal (RCS), which is also called the normalized relative backscatter. This processing consists of

several procedures including background, overlap, afterpulse, and dead-time corrections. A comprehensive description of the
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processing is given in Campbell et al. (2002). The "copolarized" and "cross-polarized" range-corrected signals, RCSco and110

RCScr, respectively, as delivered by the manufacturer’s software, are used as predictors for the machine-learning algorithms

described in Sect. 3.

The raw data type and format depends on the instrumental device used. To make the algorithms usable on other devices, we

converted the files to a normalized
::::::::::
harmonised format using the raw2l1 software 1; we then used these files as the algorithm

input.115

2.2 Radiosonde data

The algorithms were evaluated with respect to
::::::::
estimates

:::::::
derived

::::
from

:
radiosonde (RS) estimations

::::::
profiles. Météo-France

operates several RS sites for the World Meteorological Organization Global Observing System. Two RS sites are colocated with

the lidars at Brest and Trappes. These sites are equipped with Meteomodem robotsondes and typically launch a Meteomodem

M10 sonde at 11:15 UTC and 23:15 UTC every day.120

Many methods exist to estimate BLH from RS data, several of which have been used in the literature. Some of these methods

are listed below.

– Parcel method: BLH is the height at which the profile of the potential temperature θ reaches its ground value.

– Humidity gradient method: BLH is the height at which the gradient of the relative humidity is strongly negative.

– Bulk Richardson number method: BLH is the height at which the bulk Richardson number exceeds 0.25 (this threshold125

varies among studies).

– Surface-based inversion: BLH is the height at which the gradient temperature profile reaches zero.

– Stable layer inversion: BLH is the height at which the gradient of the potential temperature profile reaches zero.

Hennemuth and Lammert (2006) used the parcel and humidity gradient methods. Collaud Coen et al. (2014) used all the

techniques mentioned above and recommend the bulk Richardson number method for all cases. Guo et al. (2016) used the bulk130

Richardson number for a two-year climatology. Seidel et al. (2010) compared the parcel, humidity gradient, and surface-based

inversion methods, as well as other methods, over a period of 10 years at 505 sites worldwide. Seidel et al. (2012) compared

several methods and recommend the bulk Richardson number method.

Following the recommendations in Figure 10 of Seibert et al. (2000), we chose to compute BLH using the parcel method for

the 11:15 UTC sounding and the bulk Richardson number for the 23:15 UTC sounding
:::
and

::::
refer

::
to

::::
this

:::::::
estimate

::
as

::::::::
BLH-RS135

::::
from

::::
now

::
on.

1raw2l1, which is maintained by the Site Instrumental de Recherche par Télédétection Atmosphérique and is publicly available
:
at
:
https://gitlab.in2p3.fr/

ipsl/sirta/raw2l1
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2.3 Ancillary data

Ancillary data were used to describe the meteorological situations
::::::
situation

:
at the observation sites. These data were not used

by the machine-learning algorithms. All the instruments were colocated with the lidar and radiosonde launchings
:::::::
launches.

– Rain gauges were used to detect rain events.140

– Vaisala Ceilometer CL31 instruments were used to detect the cloud base height and distinguish cases with clouds on top

or inside
:::
of,

::
or

::::::
inside, the boundary layer. Even though MiniMPL is capable of detecting clouds, we relied on the CL31

cloud detection because the MiniMPL algorithm was found to report non-existent clouds.

– Scatterometers were used to estimate the
::::::::
horizontal

:
visibility and detect the occurrence of fog.

3 Machine-learning methods145

Machine-learning techniques are categorized into two broad families: supervised learning (mimicking a reliable reference) and

unsupervised learning (learning without a reference) (Hastie et al., 2009). First, we present the supervised algorithm leading to

ADABL. Then, we present the unsupervised algorithm leading to KABL.

3.1 Supervised learning method

Supervised methods learn from a reference. Such methods are divided into two families: classification, which aims to find150

the frontiers between groups, and regression, which aims to approximate a function. In this study, we treat the BLH derivation

::::::::
estimation

:
as a classification problem . We need

:::::
where

:::
we

::::
wish

:
to classify the measurement points of the lidar into two classes:

‘boundary layer’ or ‘free atmosphere’
::::
lidar

:::::::::::
measurement

::
at

::::
each

:::::
range

::::
gate

:::
as

::::::::
belonging

:::
to

:::::
either

:::::::::
‘boundary

:::::
layer’

::
or

:::::
‘free

::::::::::
atmosphere’. Then, the highest point of the ‘boundary layer’ class indicates the BLH estimate. Several supervised algorithms

were compared to maximize accuracy (see Sect. 3.1.3); however, we will only describe the one chosen
:
,
::::
here,

:::
we

::::::::
describe155

::::::::
Adaboost,

::::::
which

:::
was

:::
the

:::::::::
algorithm

:::::::
selected for this study. Boosting algorithms are a very powerful family of algorithms that

were developed for classification but can also be used for regression (Hastie et al., 2009). In particular, the AdaBoost algorithm

is designed for binary classification (Freund and Schapire, 1997) and is therefore well suited to our problem.

3.1.1 AdaBoost algorithm

Let us consider the following problem. We have N vectors xi ∈ Rp (here
:
,
:::
the

::::::::
numbers

::
of

:::::::::
predictors,

:
p= 4: seconds since160

midnight, height above ground, copolarized channel and cross-polarized channel), and for each vector, we have a binary

indicator yi ∈ {−1,1} (−1 for ‘boundary layer’, 1 for ‘free atmosphere’). From the sample (xi,yi)i∈[[1,N ]], where [[1,N ]] is

the ensemble of integers from 1 to N , we want to predict the output indicator ynew of any new vector xnew. To do so, we

must find a rule based on the xnew coordinate values (the features) to cast it into the appropriate class. Decision tree classifiers

(Breiman et al., 1984) perform this casting one feature at a time. For example, in Figure 2, there are black and white points in165
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Figure 2. Illustration of binary classification with decision trees on two-dimensional artificial data.

a two-dimensional space. The black points are mostly located where X1 is low, hence the rule "if X1 < t1, then the point is

black." However, in the other region, where X1 > t1, there are still some black points, all with low X2. Therefore, we add the

rule "if X2 < t2, then the point is black, else it is white." Decision trees are classifiers made up of such "if" statements with

various depths and thresholds. The deeper the tree, the more accurate the border but the more complex the decision and the

longer it takes to train. Deep trees are strongly subject to overfitting and are less efficient than other methods. However, shallow170

decision trees are valuable because of their simplicity and their speed, even though their performances
::::::::::
performance

:
are quite

limited (Hastie et al., 2009). They are often used as weak learners, that is, classifiers with poor performances
::::::::::
performance

:
(but

better than random) that are very simple (Freund and Schapire, 1997). In this study, weak learners in AdaBoost are trees with

a maximum depth of five (a maximum of five forks between the root and the leaves).

AdaBoost is based on decision tree classifiers. It aggregates these classifiers to determine the most accurate border. The175

concept behind AdaBoost is illustrated in Figure 3. First, a shallow decision tree is fitted to the entire dataset using the Classi-

fication and Regression Tree (CART) algorithm (Hastie et al., 2009). All points have the same weight in this first step. Some

points in the dataset are misclassified, and the error of the classifier is the weighted average of the misclassified points. Another

shallow decision tree is then fitted on a resampled dataset where the previously misclassified points are over-represented. This

new tree has new misclassified points that will be over-represented in the training of the next tree, and so on, up to the specified180

number of trees (M = 200 in our case). The detailed algorithm is described in Hastie et al. (2009), algorithm 10.1, and in

Schapire (2013).

3.1.2 Training of the algorithm

Such an algorithm needs to be trained using a trustworthy reference. On days where the boundary layer is easily visible to a

human expert, the top of the boundary layer can be drawn by hand; all points below this limit are in the class ‘boundary layer’185

and all points above this limit are in the class ‘free atmosphere’.

In this study, two days were labeled
::::::::
classified by hand. These two days where chosen because the boundary layers on these

days were easily visible; the two labeled
::::::::::::
hand-classified

:
days were at different sites in different seasons. The first labeled

::::::::::::
hand-classified

:
day was a clear summer day in Trappes, shown in Figure 4 (left); a stable boundary layer is present near the

ground during the night, topped by a residual layer and a few clouds between 02:00 UTC and 04:00 UTC. A mixed layer190

started to develop at 09:00 UTC and remained at approximately 2000 m for the rest of the day. At approximately 22:00 UTC,
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Figure 3. Illustration of boosting on two-dimensional artificial data with two classes.

a new stable layer appeared to develop near the ground; however, it is not very clear where this layer started or what its extent

was. The second labeled
::::::::::::
hand-classified day was a clear winter day in Brest, shown in Figure 4 (right): a stable boundary layer

was present near the ground during the night, topped by a residual layer, which was shallower than the layer observed at the

Trappes site. The mixed layer started to develop at 09
::
08:00 UTC and remained at approximately 1000 m with the height of the195

layer gradually decreasing throughout the day. At approximately 17:00 UTC, aerosols appeared to accumulate in a thin layer

close to the ground; therefore, we chose to drop BLHto that level
:::::
select

:::
the

:::
top

::
of

:::
this

::::
thin

::::
layer

::
as

:::::
BLH.

Figure 4. Hand-drawn references
::::::
reference

::::::::::
classification

:
and radiosonde estimates overlaying the lidar range-corrected signal for two days:

August 2, 2018, at the Trappes site (left) and February 24, 2018, at the Brest site (right).
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The coordinates of the points on the curves of the hand-drawn BLHs were obtained using the Visual Geometry Group Image

Annotator software2. Then, the output curves were interpolated with a cubic spline to match the lidar temporal resolution.

Given the resolution of the lidar, this method of labeling the data results in N = 86,400 individuals in total
:::
(this

:::::::
number

::
is

:::
the200

::::::
product

::
of

::::
288

::::::
profiles

:::
per

::::
day,

::::
150

::::::
vertical

:::::
range

::::
bins

:::
and

::::
two

::::::
labeled

:::::
days).

3.1.3 Retained configuration

Four predictors were used: the two lidar channels, time (number of seconds since midnight), and altitude (meters above ground

level). The ADABL configuration used was

– Weak
::::
weak

:
learner: decision tree of depth five;205

– Number
::::::
number

:
of weak learners: 200; and

– Predictors
::::::::
predictors: time, altitude, RCSco, and RCScr.

This configuration was chosen because more complex classifiers do not necessarily improve the performance. The com-

putation time of the algorithm was still reasonable: training took 23 s on the full dataset and predicting BLH for a full day

took 3.7 s
:::
with

::
a

::::::
modern

::::::
laptop. AdaBoost was chosen after a comparison of multiple classification algorithms, i.e., random210

forest, nearest neighbor, decision trees, and label spreading (study not shown here). The benchmark score was the accuracy

as measured by the percentage of individuals that were well
:::::::
correctly classified. The accuracy was estimated by group K-fold

cross-validation, where labeled datasets are grouped into chunks of three consecutive hours, one group was used as a testing

set and all the rest as a training set. This operation was repeated until each group was used as the testing set. The resulting

accuracy was 96%. However, this figure overestimates the generalization ability of AdaBoost. A more correct estimation would215

be obtained with an independent validation set (e.g., a new labeled
::::::::::::
hand-classified

:
day). An independent validation set was not

used here because the cross-validation accuracy was only used to discriminate between the classification algorithms.

It is possible to quantify the relative importance of the predictors (Breiman et al., 1984; Hastie et al., 2009). After training,

the relative importance of the time,RCSco,RCScr, and altitude predictors was 30.3%, 28.4%, 26.5%, and 14.8%, respectively.

3.2 Unsupervised learning methods220

Unsupervised methods aim to identify groups in the data. In our case, we want to identify the group ‘boundary layer’. The

BLH estimate is then the upper boundary of this group. Two unsupervised learning algorithms were tested: K-means and

expectation–maximization (EM).

3.2.1 K-means algorithm

The K-means algorithm is a well proven and commonly used algorithm for data segmentation (Jain et al., 1999; Pollard et al.,225

1981) and consists of three steps, where K is the number of clusters specified by the user.
2Publicly available online at https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html.
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Figure 5. Illustration of the K-means and expectation–maximization algorithm on two-dimensional artificial data with two clusters.

1. Initialization: K centroids m1, ...,mK are initialized at random locations inside the feature space.

2. Attribution: The distances from all points to all centroids (d(xi,mk))k∈[[1,K]],i∈[[1,N ]] are computed, and points are

attributed to the closest centroid:

C(i) = argmink {d(xi,mk)}.230

3. Update: The centroids are re-defined as the average point of the cluster: mk =
∑N

i=1 xi1C(i)=k∑N
i=1 1C(i)=k

.

Steps 2 and 3 are repeated until the centroids stop moving. It has been shown that this algorithm converges to a local minimum

of the intra-cluster variance (Selim and Ismail, 1984). Figure 5 (left) illustrates this algorithm.

3.2.2 EM algorithm

The EM algorithm assumes that each group k ∈ [[1,K]] is generated by a Gaussian distribution (µk,Σk). The algorithm itera-235

tively estimates the parameters µ̂k, Σ̂k, and the responsibility for each Gaussian γ̂ik, where the responsibility is the probability

of the point xi being generated by the k-th Gaussian. Points are then attributed to the group with the highest responsibility:

C(i) = argmaxk(γ̂i1, ..., γ̂
i
K). Figure 5 (right) illustrates this algorithm.

The K-means and EM algorithms are very similar. If we assume that all Gaussians
::::::::::
distributions have the same fixed variance

and that this variance tends to zero, the EM and K-means algorithms are the same. However, K-means does not rely on a240

Gaussian assumption.
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3.3 Flowchart and description of KABL parameters

A simplified flowchart of KABL and ADABL is shown in Figure 6. This section focuses on the KABL parameters to introduce

the sensitivity analysis made in Sect. 4.1. The parameters of the KABL software are detailed here.

– algo: The applied machine-learning algorithm. Possible values are:245

– ‘gmm’ for the EM algorithm (Gaussian mixture model); and

– ‘kmeans’ for the K-means algorithm.

– classif_score: The internal score used to automatically choose the number of clusters (only used when n_clusters =

‘auto’). See Sect. 3.4 and Table 1 for a description of the internal scores.

– init: Initialization strategy for both algorithms. Three choices are available:250

– ‘random’: randomly pick an individual as the starting point (both K-means and EM);

– ‘advanced’: use a more sophisticated initialization (kmeans++ for K-means (Arthur and Vassilvitskii, 2007) and

the output a K-means pass for EM); and

– ‘given’: start at explicitly passed
:::::::
selected point coordinates.

– max_height: The height (meters above ground level) at which the profiles are cut.255

– n_clusters: The number of clusters to be formed (between two and six). This is either explicitly given or determined

automatically to optimize the score given in classif_score.

– n_inits: The number of repetitions of the algorithm. When this number is larger, the algorithm is more likely to find the

global optimum but requires more time.

– n_profiles: The number of profiles concatenated prior to the application of the algorithm. For example, if n_profiles = 1,260

only the current profile is used. If n_profiles = 3, the current profile and the two previous profiles are concatenated and

input into the algorithm.

– predictors: The list of variables used in the classification. These variables can be different at night and during the day.

For both time periods, the variables can be chosen from

– RCSco: the copolarized range-corrected backscatter signal; and265

– RCScr: the cross-polarized range-corrected backscatter signal.

The parameters of the KABL software are highlighted in bold in the following explanation of the KABL algorithm. A

netCDF file generated by the raw2l1 software needs to be provided as input data to KABL. The data, namely, the altitude

vector z (size Nz), the time vector t (size Nt), and the range-corrected signals RCSco and RCScr (Nt×Nz matrices), are

11



extracted from this file. Such data are prepared to fulfil the machine-learning algorithm requirements. For each time, the270

n_profiles last profiles are extracted. Then, the data they contain are normalized (by removing the mean and dividing by the

standard deviation); this provides a matrixX (N×p, whereN =n_profiles·Nz and p= |predictors| is the number of elements

in the list). The matrixX is the usual input for a machine-learning algorithm; it has one line for each individual observation and

one column for each variable (or predictor) observed. For the BLH retrieval, the preparation also provides a vector Z (size N )

containing the altitude of each individual observation. The algorithm (either K-means or EM, as specified by algo) is applied275

to the matrix X , with the parameters n_clusters, init, and n_inits. This results in a vector of labels (size N ) that contains the

cluster attribution of each individual. Finally, by definition of
::::
since

:::
by

::::::::
definition

:
the boundary layer as

:
is
:
the layer directly

influenced by the ground, we look for the first change in the cluster attribution, starting from the ground level. This gives us

the value of BLH for this profile. These operations are repeated until reaching the end of the netCDF file.

Figure 6. Simplified flowchart of the K-means for Atmospheric Boundary Layer (KABL) and AdaBoost for Atmospheric Boundary Layer

(ADABL) algorithms with a focus on the KABL parameters. The parameters are described in Sect. 3.3 and in Table 2.

3.4 Performance metrics280

Two types of metrics were used.

– External scores: These metrics compare the result to a trustworthy reference. They have the advantage of providing a

meaningful evaluation of the performance but depend strongly on the quality of the reference (i.e., its accuracy and

availability).
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– Internal scores: These metrics rate how well the classification performs based only on the distances between points. They285

have the advantage of being always computable but are not linked to any physical property and therefore are not always

meaningful.

None of these metrics are perfect; however, the information they provide allows a broader understanding of the algorithm

performance.

3.4.1 External scores290

External scores use a reference to assess the quality of the result. In our case, the reference is the RS-estimated BLH
:::
are

:::::::
BLH-RS

::::::::::
(RS-derived

:::::
BLH)

:
and, when available, the human expert-estimated

:::::
expert

:::::::::::::
hand-classified BLH. Two external scores

are used in this study. If we denote Ẑ as the estimated BLH (by any of the previously introduced algorithms) and Zref as the

reference, the external scores are as follows. :
:

– RMSE, where lower values are better:295

E2 =

√
E
[
(Ẑ −Zref )2

]
. (1)

– The Pearson correlation, where higher values are better:

ρ=
cov(Ẑ,Zref )

σ(Ẑ)σ(Zref )
. (2)

Here, Ẑ and Zref are random variables, E [·] denotes the mathematical expectation, and σ(·) denotes the standard deviation.

When these scores are estimated, the random variables are replaced by a sample vector and the expectation and standard300

deviation are replaced by their usual estimators.

3.4.2 Internal scores

The quality of a classification can be quantified using scores that are based only on the labels and the distances between

points. Such scores estimate how trustworthy an estimation is without any external input. Many such scores exist with different

formulations and different strengths and weaknesses (Desgraupes, 2013). In this study, three internal scores were used.
:
:
:

305

– The silhouette score (Rousseeuw, 1987):

Ssil =
b− a

max(a,b)
, (3)

where a is the average distance to its own group and b is the average distance to the neighboring group. Ssil = 1 is the

best classification, Ssil = 0 is neutral, and Ssil =−1 is the worst classification.

– The Calinski–Harabasz index (Caliński and Harabasz, 1974):310

Sch =
(N −K)B

(K − 1)
∑K

k=1Wk

, (4)
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Table 1. Table of metrics used to measure the performance of the K-means for Atmospheric Boundary Layer (KABL) algorithm. The metrics

are described in detail in Sect. 3.4.

Metric Type Description
Best/,

:
worst

value
::::
score

corr External Pearson correlation coefficient 1/
:
, 0

errl2 External Root-mean-square error (RMSE) 0/
:
, +∞

s_score Internal Silhouette score 1/,
:
−1

db_score Internal Davies–Bouldin index 0/
:
, +∞

ch_score Internal Calinski–Harabasz index +∞/,
:
0

chrono Other
Time to perform

::::::
estimate

::::
BLH

:::
for

:
a
:
24 h of BLH

estimations
:
hr

:::::
period

:

0/
:
, +∞

n_invalid Other
Number of invalid values

::::
BLH

:::::::
estimates (NaN or Inf)

in
::
for

::
a 24 h of BLH estimations

::
hr

:::::
period

0/+∞
:
,
:::
288

where N is the number of points, K is the number of clusters, B is the between-cluster dispersion, and Wk is the

within-cluster dispersion of the cluster k. Higher Sch indicates a better classification.

– The Davies–Bouldin index (Davies and Bouldin, 1979):

Sdb = max
k′ 6=k

(
δ̄k + δ̄k′

d(µk,µk′)

)
, (5)315

where k and k′ are the two cluster numbers, δ̄k is the average distance between points and their cluster center for the

cluster k, and d(µk,µk′) is the distance between the cluster centers µk and µk′ . Lower Sdb indicates a better classification.

These three scores were chosen to diversify the metrics and are all implemented in Scikit-learn (version ≥0.20).

3.4.3 Other metrics

In addition to the internal and external scores, the computation time and the number of invalid values (NaN or Inf) were320

recorded. BLH estimates of NaN or Inf can occur when all the points of the profile are assigned to the same cluster; this reflects

a faulty configuration of the algorithm. Even though these metrics do not measure how well a program is performing, they are

useful to the user.

All the metrics used to measure the performance of KABL are summarized in Table 1.
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4 Results325

4.1 Sensitivity analysis of the KABL algorithm

A sensitivity analysis was performed on the KABL code to identify the "best" configuration. Various KABL configurations

were extensively tested on a single day: August 2, 2018, at the Trappes site, for which we have a hand-made
::::::::::::
hand-classified

reference (Figure 4 (left)). The most relevant configurations were retained and tested on the two-year lidar dataset.

There are eight parameters in the KABL code (see Sect. 3.3 for their descriptions). To assess the sensitivity of KABL330

to these parameters, the performance metrics (given in Sect. 3.4) were estimated with the hand-made
::::::::
calculated

::::::
using

:::
the

::::::::::::
hand-classified

:
BLH as Zref and with the output of KABL as Ẑ for different combinations of input parameters. The tested

values for the input parameters are
:::::
output

::::::
metrics

:
given in Table 2, and the output metrics are

:
1
:::::
were

:::::
tested

:::::
using

:::
the

:::::
input

:::::
values

:
given in Table 1

:
2. We refer to a set of values for the KABL parameters as a configuration. Screening all the possible

values listed in Table 2 would require 3240 different configurations.335

To obtain an overview of these 3240 configurations, we started by estimating the influence of the parameters (listed in

Table 2) on the different metrics (listed in Table 1). The influence of the parameters was quantified using first-order Sobol

indices (Sobol, 2001; Iooss and Lemaître, 2015; Rieutord, 2017), that is, the ratio of the variance of the metric when the

parameter was fixed over the total variance of the metric. If we denote Y as the metric and X as the vector of the parameters,

where all the parameters are treated as random variables, the first-order Sobol index of the i-th parameter is defined as Si =340

V (E [Y |Xi])/V (Y ), where V (·) denotes the variance and E [·] denotes the expectation. A higher Sobol index indicates a larger

influence.

Figure 7 shows the Sobol indices obtained with the KABL computer code. Examining the matrix line by line, one can see

that the
:::::::
different

:
metrics are sensitive to different parameters. For example, the silhouette score is very sensitive to n_clusters

while the Calinski–Harabasz index is sensitive to n_profiles and predictors. Examining the matrix column by column, one345

can see that some parameters are more influential than others (e.g., classif_score is much less influential than n_clusters). This

matrix highlights the main effects of changing a parameter and, therefore, how to set each parameter appropriately. For each

parameter, we examined the metrics that it influences and determined the preferred configuration.

Critical parameters are indicated in Figure 7 by the darkest blue columns, namely, n_clusters, algo, predictors, and init3.

For each parameter, Figure 8 shows the distribution of the relevant output given the parameter value (violin plots are explained350

in Hintze and Nelson (1998)). For example, Figure 8a has the value of algo on its x-axis and the computing time on its y-

axis. The 3240 different configurations were divided into two groups; those with algo=‘kmeans’ and those with algo=‘gmm’.

Figure 8a shows a smoothed histogram of the computing time for the divided populations. The other panels in Figure 8 were

constructed in the same manner. Each line corresponds to a critical parameter, and we represent the two most influenced outputs

according to Figure 7.355

3Even though n_profiles has a large Sobol index for the Calinski–Harabasz index, this influence was not explored because it is known: it is due to the

linear increase in this index with the number of points.
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Table 2. Possible values for the parameters of the KABL code. The parameters are described in details in Sect. 3.3. The dependencies

between parameters result in 3240 different configurations.

Parameter Possible values Meaning

algo
‘kmeans’ The K-means algorithm is used

‘gmm’ The EM algorithm is used (Gaussian mixture model)

classif_score

‘silh’ The silhouette score is used

‘db’ The Davies–Bouldin index is used

‘ch’ The Calinski–Harabasz index is used

init

’random’ Starting points are chosen randomly

‘advanced’ Starting points are chosen with a smarter strategy

‘given’ Starting points are explicitly given

max_height
3500 The altitude above which profile data is discarded

(meters above ground level)4500

n_clusters

2

The number of clusters to be formed is explicitly

passed and is always the same

3

4

5

‘auto’
The number of clusters is automatically chosen to

optimize classif_score

n_inits
10 The number of times the algorithm is repeated with

different initializations (when init is not ‘given’)80

n_profiles

1 Only the current profile is used

2 The current profile and the previous profile are used

3
The current profile and the two previous profiles are

used

4
The current profile and the three previous profiles are

used

predictors

‘co’
The copolarized range-corrected signal is used at all

times

‘co/co+cr’

The copolarized range-corrected signal is used during

the daytime, and both polarization channels are used

separately
::::::::::
independently

:
during the nighttime

‘co+cr’
Both polarization channels are used separately

::::::::::
independently at all times
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Figure 7. Relative influence of parameters on the different metrics. The x-axis indicates the parameters of the code, and the y-axis indicates

the metrics. The shading represents the influence of the parameter on the metric with darker shading indicating a larger influence. The

abbreviations for the parameters are described in Table 2 and the abbreviations for the metrics are described in the Table 1.

The parameter values were chosen to give the most optimal values for the metrics they influence. The optimal values are

indicated by a yellow star in each plot. To set algo, we examined the computing time (Figure 8a) and the Davies–Bouldin

index (Figure 8b). These figures indicate that ‘kmeans’ is the best choice for both metrics (resulting in a lower computing

time and a lower Davies–Bouldin index). To set init, we examined the correlation (Figure 8c) and the computing time (Figure

8d). In this case, ‘given’ appears to be the best choice. To set n_clusters, we examined RMSE (Figure 8e) and the silhouette360

score (Figure 8f). They indicate that the best numbers of clusters are three and ‘auto’, respectively. We chose to give priority to

RMSE because the silhouette score has very high values for two clusters, which is suspicious given the presence of a cloud and

a residual layer on this day. To set predictors, we examined the silhouette score (Figure 8g) and the Calinski–Harabasz index

(Figure 8h); here, ‘co’ appears to be the best choice. Following this methodology, we can identify a few configurations worth

trying. These configurations were tested on the two-year dataset. The configuration used to generate the results in Sect. 4.2.1365

is given in Table 3. This configuration was chosen to maximize the correlation between KABL and RS at the Trappes site.

4.2 Two-year comparison

The
::::
BLH

::::::::
estimates

:::::
from

:::
the

:
three methods (KABL, ADABL, and the manufacturer’s algorithm) were compared to RS

estimates
:::::::
BLH-RS

:
over a two-year period.

4.2.1 Overall comparison370

As explained in Sect. 3.4, two external scores, RMSE and the correlation, were used to assess the quality of the estimates. In

equations 1 and 2, the reference BLH Zref was set to the RS estimate
:::::::
BLH-RS, as described in Sect. 2.2. To compute the scores,
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Figure 8. Distribution of the relevant outputs for the critical inputs. The effect of algo on (a) the computing time and (b) the Davies–Bouldin

index. The effect of init on (c) the correlation and (d) the computing time. The effect of n_clusters on (e) the root-mean-square error (RMSE)

and (f) the silhouette score. The effect of the predictors on (g) the silhouette score and (h) the Calinski–Harabasz index. For each panel, the

best parameter value is highlighted by a yellow star.
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Table 3. Retained values for the parameters of the KABL code after the sensitivity analysis.

Parameter
Retained

values

algo ‘kmeans’

classif_score ‘db’

init ‘given’

max_height 4500

n_clusters 3

n_inits 10

n_profiles 1

predictors ‘co’

the BLH estimates from the lidar and radiosonde must be colocated. At the time of each RS estimation
::
For

:::::
each

:::::::
BLH-RS, the

corresponding lidar
::::
BLH

:
estimate is the average of all the available estimates within the 10 min following the release of the

radiosonde (this translates to one or two lidar estimates). The
:::::
Using

:::
the

::::::::
ancillary

::::::::::::
measurements

::::::::
presented

::
in

:::::
Sect.

::::
2.3,

:::
the375

following meteorological conditions were discarded:

– rain (rain gauge measures the rainfall as >0 mm);

– fog (scatterometer measures the visibility as <1000 m);

– low level cloud (ceilometer measures the cloud base height as <3000 m);

– RS estimation
:::::::
BLH-RS

::
is below 120 m (blind zone for lidar); and380

– nighttime (RS launched at 23:15 UTC).

This selection rejects a large part of the dataset but ensures that only well-defined cases are retained for the comparison. In

total, 178 RS measurements from Trappes and 101 RS measurements from Brest were used for the overall comparison. The

meteorological conditions were measured using the ancillary instruments presented in Sect. 2.3. The results of the comparison

are shown in Figure 9.385

In Figure 9 , we can see the results of the comparison between the KABL and RS estimates
:::::
Figure

:
9
:::::::
displays

::::
how

:::
the

:::::
three

:::::::
methods,

::::::
KABL

:
(blue bars), between the ADABL and RS estimates (grey bars) , and between the manufacturer ’s and RS

estimates (orange bar)
::::::
ADABL

:::::::
(brown

::::
bars)

:::
and

::::::::::::
manufacturer

::::::
(orange

:::::
bars),

:::::::
compare

::
to
::::::::
BLH-RS. The first column represents

RMSE E2 (lower is better), and the second column represents the correlation ρ (higher is better). The upper row shows the

results for the Brest site, the lower row shows the results for the Trappes site. One can see very different results depending on390

the site. While both KABL and ADABL outperform the manufacturer’s algorithm at the Trappes site, neither algorithm does

at the Brest site. The correlation is strongly affected by the site. While the correlation for both KABL and ADABL is higher
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Figure 9. Results of a two-year comparison with the radiosonde (RS) estimates at both sites for two metrics: RMSE and correlation.
::::::
INDUS

::::
refers

::
to

::
the

::::::::::::
manufacturer’s

:::::::
algorithm,

::::::
KABL

:::
and

::::::
ADABL

::::
refer

::
to

::
the

:::::::::
eponymous

:::::::
estimates.

:
Cases at night or with rain, fog, an RS-estimated

boundary layer height (BLH) of under 120 m, or clouds under 3000 m were removed. The 95% confidence intervals were estimated using

percentile bootstrapping (Davison and Hinkley, 1997).

than that for the manufacturer’s algorithm at the Trappes site, it collapses to close to zero for KABL at the Brest site (0.07 for

ADABL). The RMSE values can be compared to the values given in Haeffelin et al. (2012). For KABL, we find 770 m at the

Brest site and 798 m at the Trappes site, while for ADABL, we find 675 m at the Brest site and 552 m at the Trappes site. Our395

values are notably higher than those in Haeffelin et al. (2012). This is likely due to the larger extent of our dataset (178 RS at

Trappes and 101 at Brest, spanning a two-year period) and the low maturity of the algorithms. Between ADABL and KABL,

ADABL
:::::::
ADABL

:
has better correlation and RMSE values than KABL at both sites. The manufacturer’s algorithm performs

well without any specific tuning on our part. It uses a wavelet covariance transform, as described in Brooks (2003). This result

is not surprising because the wavelet method has been shown to be robust in numerous studies, especially in Caicedo et al.400

(2017), who included a cluster analysis method and concluded that the wavelet method is preferred.

4.2.2 Seasonal and diurnal cycles

To quantify the ability of the algorithms to provide a consistent BLH estimation
::::::
estimate, Figure 10 shows the seasonal cycle

(monthly average) and the diurnal cycle (six-minute average) at both sites. For each estimator, the thick line represents the

average BLH estimate and the shaded area represents the inter-quartile gap. Rain, fog, and low-cloud conditions were discarded.405

For the monthly average, the night
:::::::::
night-time values were also removed. If we include only night estimates, the

:::
The

:
seasonal

cycle is reversed for the RS estimates, that is, the BLH estimates are
::::
when

::::
only

:::::::::
night-time

::::::
values

:::
are

:::::::
studied,

::::
with

::::::::
BLH-RS

::::
being

:
lower in summer

:::
than

::::::
winter,

:::
on

:::::::
average. For other estimators, we do not see such a difference between the day and

night seasonal cycles (not shown).
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At the Brest site (Figure 10a), estimates made by the manufacturer’s algorithm are lower than those made by KABL and410

ADABL and estimates made by ADABL are usually higher than those made by KABL (except in July). The RS estimation

gave BLH values that
:::::::
BLH-RS

::::::
values were low in summer (June–October), high in February and March (higher than the

KABL estimates), and between the manufacturer’s and KABL estimates during the rest of the year. Overall, the manufacturer’s

algorithm displays the seasonal cycle that is closest to that of the RS estimates
:::::::
BLH-RS, while KABL and ADABL both

overestimate BLH. The inter-quartile distances
:::::
range (shaded areas) are

:
is large for all estimations, reflecting the wide range415

of the BLH estimates.

At the Trappes site (Figure 10c), KABL and ADABL also overestimate BLH in comparison to the RS estimates
:::::::
BLH-RS,

while the manufacturer’s estimate is close. The seasonal cycle is more visible at Trappes than at Brest, and all BLH estimates

are higher in summer than in winter. The most pronounced cycle is given by KABL, while the least pronounced cycle is

given by the RS estimation
:::::::
BLH-RS. The inter-quartile distances

:::::
range are also very large, especially in summer, because the420

difference between the BLH estimates during the day and at nightis larger
:::::::
reflecting

::::
the

:::::::
variation

:::
of

::::
BLH

::::::::
between

:::
day

::::
and

::::
night.

Figures 10b and 10d show the diurnal cycle, where all values within the same six-minute period in the day were averaged.

Because the radiosondes are only launched twice a day, at 11:15 UTC and 23:15 UTC, an equivalent RS-estimated
:::::::
BLH-RS

diurnal cycle cannot be drawn. However, we used the average and quartile values at these times as checkpoints for the other425

estimates. The manufacturer’s and KABL estimates both have very smooth diurnal cycles, with lower BLH at night and

maximum BLH around 15:00 UTC at the Trappes site and around 13:00 UTC at the Brest site. The KABL average is always

higher than that calculated by the manufacturer’s algorithm. The ADABL estimation has a very different diurnal cycle, similar

to the conceptual image we have of the boundary layer. Indeed, ADABL was trained using hand-made
::::::::::::
hand-classified

:
BLHs

that reflect this conceptual image. Therefore, it is not surprising that ADABL reproduces this image well; however, it may fail430

to adapt to special cases. It appears that the "time" predictor (the number of seconds since midnight) has a large influence that

is not balanced by the other predictors. This is likely because ADABL was trained on only two days, resulting in an unbalanced

importance for sunrise and sunset on these particular days and at these locations. To balance this importance, the AdaBoost

algorithm needs to be trained on more days and at more sites with a representative selection of cases.

4.3 Case study435

The chosen case study was for April 19, 2017, at the Trappes site. The boundary layer was clearly visible and had nearly all

the features of the conceptual image. The case study day needs to be different than the days used for the training of ADABL ;

otherwise, the comparison will be biased in favor
:::
was

:::
for

::
a

:::
day

:::
that

::::
was

:::
not

::::::::
included

::
in

:::
the

:::::::
ADABL

:::::::
training

:::
set,

::
so

:::
as

:::
not

::
to

:::
bias

:::
the

::::::::::
comparison

::
in

::::::
favour of ADABL.

Figure 11 represents the range-corrected copolarized backscatter signal (RCSco) in shaded colors. The x-axis indicates440

the hour of the day (UTC), and the y-axis indicates the height (meters above ground level). The different BLH estimates are

represented by dotted lines: blue indicates KABL, orange indicates the manufacturer’s algorithm, and green indicates ADABL.

At the beginning of the day, there is a thick residual layer containing some plumes. Both KABL and the manufacturer’s
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Figure 10. (a, c) Seasonal and (b, d) diurnal cycles of all BLH estimates at both sites. INDUS indicates the manufacturer’s algorithm. Thick

lines represent the average, and the shaded area represents the quartiles.

algorithm include these plumes in the boundary layer. Conversely, ADABL gives a very low estimate where there is no visible

frontier. In the morning (from 08:00 UTC to 12:00 UTC), all the algorithms capture the
:::::::
morning transition reasonably well.445

However, KABL includes more irrelevant estimates (hitting what remains
:::::::
selecting

::::::::
remnants

:
of the surface layer) than the

other methods and ADABL gives an estimate that is too high for no apparent reason around 12:00 UTC. During the day,

ADABL sticks to the top of the boundary layer, the manufacturer’s algorithm sticks to the surface layer (which is very visible),

and KABL oscillates between the two. The evening transition is blurry; the
:::::
signal

::::
from

:::
the

:
surface layer slowly sends back

increasing amounts of signal, finally turning
::::::::
increases,

::
as

:
the mixed layer

:::::
decays

:
into a residual layer. KABL locates this450

transition very early (around 17:00 UTC), when it stops oscillating and sticks to the surface layer. ADABL makes the transition

more smoothly, from 19:00 UTC to 22:00 UTC. The manufacturer’s algorithm is the last to make the transition, at around

23:00 UTC, and the transition then occurs very sharply. We can conclude from this case study that none of the algorithms

perfectly capture the boundary layer. Some of the limitations are physical, e.g., the evening transition is ill defined, resulting
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Figure 11. Case study: BLH estimates using different methods on April 19, 2017, at the Trappes site. Superimposed on the lidar range-

corrected signal are BLH estimates from KABL (blue dotted line), the manufacturer’s algorithm (denoted "INDUS", orange dotted line), and

ADABL (green dotted line). The two crosses at 11:15 UTC and 23:15 UTC indicate the radiosonde estimates for that day
:::
and

::
the

:::
two

:::::
icons

:
at
::::
5:50

::::
UTC

:::
and

:::::
19:49

::::
UTC

:::::::
represent

::
the

::::
time

::
of

:::::
sunrise

::::
and

:::::
sunset,

:::::::::
respectively.

in disagreement between the algorithms. The RS estimate
:::::::
BLH-RS

:
at 23:15 UTC is close to the lower boundary of the lidar455

range. This highlights the fact that BLHs
::::
BLH

:
below 120 m are not rare and cannot be detected with lidar alone, whatever the

method
:::
will

:::
not

:::
be

:::::::
detected

::
by

::::
lidar

::
if

::::
BLH

::
is
::
in

:::
the

::::
lidar

:::::
blind

::::
zone. Some of the other limitations are algorithmic; KABL has

an unfortunate tendency to oscillate between several candidates for the top of the boundary layer (surface layer or clouds), and

ADABL too closely reproduces the features of the days it has been trained on (e.g., night estimates and morning transitions).

5 Discussion and prospects460

This section discusses various aspects of the results and the methodology. For the sake of readability, it has been split into

several short subsections.

5.1 Algorithm maturity

Both of the examined algorithms are very recent
::::::::
algorithms

:::::::::
examined

::::
here

:::
are

:::
not

:::
yet

::::::
mature

:::::
when

:::::::
applied

::
in

::::
this

::::::
context.

K-means algorithms have already been used to detect BLHs in previous studies (Toledo et al., 2014; Caicedo et al., 2017;465

Toledo et al., 2017; Rieutord et al., 2014); therefore, it is a more mature method. This is visible in this paper via the level of
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Figure 12. Cluster labels in output of
:::
for KABL

:::::
output on a time–altitude

:::::::::
time–altitude

:
grid for April 19, 2017, at the Trappes site with the

BLH estimated with KABL
::::
BLH

:
(black line) with

:::::::
estimated

::::
using

:
(a) the centroids initialized at random and (b) the centroids initialized at

given values.

investigation, which was much higher for KABL than for ADABL. Concerning boosting, this the first time, to our knowledge,

that such an algorithm has been tested on this type of problem; therefore, ADABL is a completely new algorithm. Yet, it

outperforms KABL and competes favorably with the manufacturer’s algorithm despite raising training issues.

5.2 Time and altitude continuity470

The oscillations observed in Figure 11 are unrealistic and need to be avoided. They occur with KABL because clusters do not

always have vertical persistence, as shown in Figure 12. One can see the cluster labels on a time–altitude grid for the same

day as in Figure 11. When the initialization is random (Figure 12a, init = ‘random’, default settings in K-means), the labels

are also random. Only the transition of the labels on a profile is important. When the initialization is given (Figure 12b, init =

‘given’, retained settings in KABL), the labels can be identified. The blue cluster starts from very high backscatter
::::::::
attenuated475

:::::::::
backscatter

:::::::::
coefficient

:
(it detects clouds and the shallow morning BL); the red cluster starts from high backscatter

::::::::
attenuated

:::::::::
backscatter

:::::::::
coefficient (it detects the mixed layer or residual layer); and the green cluster starts from low backscatter

::::::::
attenuated

:::::::::
backscatter

:::::::::
coefficient (it detects the free atmosphere). Oscillations occur when some points are identified as free atmosphere

in the middle of the boundary layer. In the case study presented here (Figures 11 and 12b), this happens in the afternoon,

when the blue cluster (starting from very high backscatter
:::::::::
attenuated

:::::::::
backscatter

:::::::::
coefficient) gathers a few points near the first480

measurements and the overhead artifacts because very high backscatter
::::::::
attenuated

:::::::::
backscatter

:::::::::
coefficient

:
is irrelevant under

these conditions.

Several prospects exist to enforce vertical persistence of the clusters in KABL, we list here four examples. First, the problem

identified in Figure 12b could be solved by choosing the number of clusters automatically. However, this option was tested
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(case where n_clusters = ‘auto’ in Sect. 3.3) and it did not solve this issue. The sensitivity analysis showed that n_clusters =485

‘auto’ led to higher discrepancies with respect to the RS estimates
:::::::
BLH-RS. In fact, this setting usually gives low estimates of

BLH because the automatically chosen number of clusters is usually high. A more advanced strategy to automatically choose

the number of clusters (e.g., Tibshirani et al. (2001))
:::::::::::::::::::::::
(e.g., Tibshirani et al., 2001) might get around this issue. Second, the

:::
The

vertical persistence of clusters can be enforced by adding altitude to the KABL predictors. Third, it
::::
This can be done thanks

to a post-processing, for example, with a moving average or by imposing a maximum BLH growth rate (Poltera et al., 2017).490

Fourth, the
:::
The distance used in K-means could also be modified to incorporate these constraints, for example, by adding

penalty terms.

In ADABL, time and altitude continuity are ensured because they are within the predictors. However, ADABL yields BLH

estimates that are too similar to the BLHs in the training set. Removing time and/or altitude from the predictors should be

considered to force the algorithm to rely more on the measurements. Further, the sensitivity analysis presented here for KABL495

needs to be performed for ADABL.

5.3 Real-time estimations
:::::::::
estimation

Even though it was not necessary for this study, all of the algorithms studied here can be used in real time. As soon as

a backscatter
::::
lidar

:
profile is available, BLH estimations can be performed instantaneously4. However, KABL suffers from

undesirable oscillations from one profile to the next. A method to filter these oscillations is needed but would disable the "real-500

time" feature of the algorithm. In addition, the hour of the day needs to be explicitly passed in a periodic function. This has not

been done here because we worked only on 24-hour time periods.

5.4 Quality of the evaluation

Even though we made an effort to sort the meteorological conditions using ancillary data, the two-year comparison still mixes

heterogeneous conditions. In addition, the results are clearly different at the sites studied here, emphasizing the importance505

of local conditions. A more precise casting of the meteorological conditions with atmospheric stability indices or large-scale

insights would lead to a better understanding of the strengths and weaknesses of the algorithms. The importance of the sites

needs to be investigated by extending the study to a larger number of sites with different environments. A more careful ex-

amination of cloudy days also needs to be performed. Cases where the cloud bases are below 3 km were filtered from our

study. However, cases where clouds reside inside the inversion should be detected by KABL as an extra cluster; further studies510

are required to confirm this behavior. In addition, ADABL was not specifically trained to deal with cloudy situations. Further

studies to determine how ADABL behaves without training and how it could be appropriately trained would be interesting
:::
are

:::::::
required.

5.5 Quality of the reference

4Both KABL and ADABL need less than 1 s to run a single profile.
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Radiosondes unquestionably provide the proper reference for altitude measurements
::::::::::
Radiosonde

::::::
profiles

:::
are

::::::
usually

::::::::
regarded

::
as515

::
the

::::
best

::::::::
reference

:::
for

:::::
BLH. However, the derivation of BLH from such measurements is contentious because several methods

exist and some strongly disagree. Moreover, RS measurements cannot be used to assess the full diurnal BLH cycle
::::
cycle

::
of

::::
BLH. This is a clear limitation of this study because the RS measurements cannot determine if the difference between the

diurnal cycle of ADABL and those of the other methods represents an improvement. Therefore, a very interesting project would

be to use a dedicated field experiment with high-frequency radiosonde
:::::::::
tethersonde

:
or other continuously running instruments520

as a reference. For example, microwave radiometers are good candidates because they provide information that is not based on

aerosols and BLH derivations
:::
the

::::::::
derivation

::
of

:::::
BLH from these instruments are routine (Cimini et al., 2013).

5.6 ADABL: Training

ADABL already shows good performance when trained on only two days. Most of its bad estimates result from the short length

of its training period. Therefore, a short-term project would be to label more days with various meteorological conditions.525

However, the dependence of ADABL on training makes it sensitive to instrumentation settings and calibrations. Even though

the effect of a calibration or the evolution of an instrumental device has not been studied, it is likely that training needs to

be repeated after each calibration or change in the instrumental device. Therefore, two strategies are possible for training

ADABL: remove the influence of calibration prior to training (this would require knowing the instrumental constants for all

of the devices) or train it to deal with differences (this would require including as many different devices as possible in the530

training set, which would then become very large). In any case, the main limitation will be the need to label the entire
::::::
training

dataset (a priori by human experts).

5.7 KABL: Training-less

KABL appeared to perform the least well in this study; however, there are interesting prospects to improve its performance.

KABL does not require any training; therefore, it is less dependent on instrumentation settings and calibrations. Because it535

is not strongly dependent on the instrumental devices, it can be used on backscatter profiles made by other instruments (e.g.,

ceilometers). Moreover, other profiles besides the backscatter intensity can be added as additional predictors for unsupervised

learning after normalization. Therefore, the concept of KABL can be advanced further to create synergy between multiple

remote sensing instruments. Microwave radiometers are good candidates because they have comparable time resolution to

lidar and provide independent information concerning the thermal stratification of the boundary layer. Cloud radars also have540

comparable time resolution to lidar and provide additional independent information.

5.8 Quality flags

Currently, no quality flags for the estimation are provided. One approach would be to use the internal scores (i.e., silhouette,

Davies–Bouldin, and Calinski–Harabasz defined in Sect. 3.4) as quality flags; however, further study is required to determine

whether these metrics can serve as reliable quality flags.545
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6 Conclusions

This paper described two algorithms based on machine learning to estimate the mixing
:::::::
boundary

:
layer height from aerosol

lidar measurements. The first, KABL, is based on the K-means algorithm. The second, ADABL, is based on the AdaBoost

algorithm. Both algorithms take the same input file, one day of data generated by the raw2l1 routine, and produce similar

output, a BLH time series for the input day. KABL is a non-supervised algorithm that looks for a natural separation in the550

backscatter signals between the boundary layer and the free atmosphere. ADABL is a supervised algorithm that fits a large

number of decision trees in a labeled dataset and aggregates them in an intelligent manner to provide a good prediction. KABL,

ADABL, and the lidar manufacturer’s algorithm were tested on a two-year dataset taken from the Météo-France operational

lidar network. The Trappes and Brest sites were chosen because of their different climates and the availability of regular RS

measurements, which were used as a reference.555

A large discrepancy in RMSE and the correlation with the radiosondes was observed between the two sites. At the Trappes

site, KABL and ADABL outperformed the manufacturer’s algorithm while the opposite occurred at the Brest site. At both

sites, ADABL performed better than KABL (higher correlation and lower error) and the manufacturer’s algorithm performed

well. By analyzing the seasonal and diurnal cycles, we determined that the KABL and manufacturer’s estimates have similar

behavior; however, the KABL estimates are always higher by approximately 200 m. ADABL generates the most pronounced560

diurnal cycle, with a pattern that is very similar to the expected diurnal cycle; however, its results depend greatly on the days it

has been trained on. In particular, the sunset and sunrise times of these days over-influenced the ADABL estimation
:::::::
estimate. In

the case study, we saw that both algorithms perform well overall; however, we identified several algorithmic limitations, e.g.,

KABL tended to oscillate between several candidates for the top of the boundary layer (surface layers or clouds) and ADABL

was overly constrained by the days it was trained on (e.g., the night estimate and morning transition). In summary, ADABL is565

promising but has training issues that need to be resolved, KABL has a lower performance but is much more versatile, and the

manufacturer’s algorithm using a wavelet covariance transform performs well with little tuning but is not open source. A wide

range of future developments is available for ADABL and KABL, the most immediate being that the training set of ADABL

can be enhanced, time and altitude continuity can be enforced in the KABL estimation, and both can be compared to high

temporal resolution RS measurements.570

Code availability. The KABL source code is available to and usable by all users, including commercial users. The code is freely available

under an open-source license at the following link: https://github.com/ThomasRieutord/kabl. It is made in Python 3.7 with regular statistics

and machine-learning packages, namely, Scikit-learn 0.20 (Pedregosa et al., 2011) and SALib 1.3.7 (Herman and Usher, 2017), which are

open source and available under free licenses. The repository contains all the necessary features to run the code on raw2l1 outputs. Several

days of data are also provided as examples.575
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