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Abstract. The atmospheric boundary layer height (BLH) is a key parameter in-—several-meteorological-applicationssuch-as
for many meteorological applications, including air quality forecasts. Several algorithms have been proposed to automatically

estimate BLH from lidar backscatter profiles. However recent advances in computing have enabled new approaches using ma-
chine learning that are seemingly well suited to this problem. Machine learning can handle complex classification problems
and can be trained by a human expert. This paper describes and compares two machine-learning methods, the K-means un-
supervised algorithm and the AdaBoost supervised algorithm to derive BLH from lidar backscatter profiles. The K-means for
Atmospheric Boundary Layer (KABL) and AdaBoost for Atmospheric Boundary Layer (ADABL) algorithm codes used in
this study are free and open source. Both methods were compared to reference BLHs derived from colocated radiosonde data
over a two-year period (2017-2018) at two Météo-France operational network sites (Trappes and Brest). A large discrepancy
in the root-mean-square error (RMSE) and correlation with radiosondes was observed between the two sites. At the Trappes
site, KABL and ADABL outperformed the manufacturer’s algorithm, while the performance was clearly reversed at the Brest
site. We conclude that ADABL is a promising algorithm (RMSE of 550 m at Trappes, 800 m for manufacturer) but has training
issues that need to be resolved; KABL has a lower performance (RMSE of 800 m at Trappes) than ADABL but is much more

versatile.

1 Introduction

The atmospheric boundary layer is the lowest part of the troposphere and is the region that is directly influenced by surface
forcings. As-the-area—where-It is the layer within which most human activities take place, and all pollutants emitted from
the-grotund-are-dilutedin-at ground level are dispersed within this layer. The key parameter used to model this dilution is
the depth of this layer, i.e., the boundary layer height (BLH). Because BLH can vary from a few tens of meters to approx-
imately 2 km within a single day, the volume available for the dilution of pollutants can vary considerably and resalt-in—air
quatity warnings (Stul-1988; Dupontet-al,2016)—In-additionis a crucial parameter for reliable warnings of poor air quality.
(Stull, 1988; Dupont et al., 2016). However, BLH is one of the largest sources of uncertainty in air quality models (Mohan
et al., 2011) and there is a need to better evaluate this parameter (Arciszewska and McClatchey, 2001). In-numerieal-weather

s-physies esses-che Accurate representation of the physical processes within the boundary layer are
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also important for numerical weather prediction models (Seity et al., 2011). In the study of physical processes in the boundary

layer, with large eddy simulations (Lenschow et al., 2012) or with measurements (Brilouet et al., 2017), BLH is often used as
a normalization of the vertical profiles. Therefore, it is important to compare BLH calculated in models with that derived from
measurements.

However, measuring BLH is not straightforward. As stated in Seibert et al. (2000), there are no systems that mateh-all-the
requirements-to-make reliable BH-estimationsmeet all of the requirements for making reliable BLH estimates. The best BEH
estimation-estimate of BLH can be achieved via the synergistic use of multiple instruments: - but, adding instruments
limits the number of sites where estimations-estimates can be made. In this paper, we focus on a single instrument, aerosol lidar

(see Sect. 2.1.1 for more information), that is already widely used (Haeffelin et al., 2012). In-a-basic-setup;-aeresol-Aerosol

lidars are active systems-remote sensing instruments that emit a laser pulse vertieally-into the atmosphere and measure the
backseattered-ight-amount of light backscattered from aerosols as a function of the vertical range from the instrument. Aerosot
partieles-are-the-main-drivers-of -backseattered-signals—Because aerosols are more concentrated in the boundary layer than in

the overlying free troposphere, there is often a sharp decrease in the backscatter profile between these two layers. However,
this decrease can be blurred or perturbed by other strong signals (e.g., clouds, aerosol residing in elevated or residual layers,
and small-scale structures) and instrumental noise. For these reasons, numerous studies exist concerning the derivation of BLH
from aerosol lidar. Melfi et al. (1985) use a simple thresholding of the signal. Other methods are based on calculations of the
derivative function of the backscatter profile. For example, Hayden et al. (1997) take the minimum of the gradient, Menut
et al. (1999) use the height where the second derivative is zero (the inflection point) as well as the variance of the signal, and
Senff et al. (1996) use the derivative of the logarithm of the backscattered signal. One of the most used methods is the wavelet
covariance transform, which searches for the maximum in the convolution between the backscatter profile and a Haar wavelet
(Gamage and Hagelberg, 1993; Cohn and Angevine, 2000; Brooks, 2003). More recent studies have been based on backscatter
signal analysis such as the STRucture of the ATmosphere (STRAT) algorithm (Morille et al., 2007) and the Characterising
the Atmospheric Boundary layer based on Automatic lidar and ceilometer Measurements (CABAM) algorithm (Kotthaus and
Grimmond, 2018). Graph theory has also been used to impose continuity constraints (both vertically and in time) in BLH
estimationsestimates, e.g., the Pathfinder algorithm (De Bruine et al., 2017). Inspired by image processing, some methods use
Canny edge detection in addition to backscatter signal analysis (Morille et al., 2007; Haeffelin et al., 2012). An extension of
Pathfinder including the detection of the continuous aerosol layer was made in PathfinderTURB (Poltera et al., 2017). These
studies demonstrate that estimating BLH from aerosol lidar is still an open area of research.

In addition, artificial intelligence (Al), as a set of techniques aiming to reproduce human intelligence with machines, has
reemerged in the last decade because of the simultaneous increase in the amount of available data and computational power.
Both have reached levels that enable previously impessible-impractical applications. Al is capable of tackling complex classifi-
cation problems, especially in image classification (Krizhevsky et al., 2012). Such breakthroughs were made possible by deep
convolutional neural networks (LeCun et al., 2015); however, Al encompasses many other techniques that also benefit from
larger data-datasets and increased computational power (Besse et al., 2018). In this paper, we explore how the estimation of BLH

from backscatter profiles can be formulated as a classification problem and how appropriate algorithms can be applied to solve
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this problem. Machine-learning techniques are categorized into two broad families: supervised learning (mimicking a reliable

reference) and unsupervised learning (learning without a reference; Hastie et al., 2009). Toledo et al. (2014) have already de-

scribed a method that falls inte-within the scope of Al They used unsupervised learning to classify whether measurement

points were within the boundary layer. This method has yielded convincing results in previous studies (Toledo et al., 2017,
Caicedo et al., 2017; Rieutord et al., 2014) and is pursued here using the K-means for Atmospheric Boundary Layer (KABL)
algorithm. KABL has been extensively tested and is shared via an open-source code. In addition, we test an alternative adap-
tive boosting (AdaBoost) machine-learning algorithm, the AdaBoost for Atmospheric Boundary Layer (ADABL) algorithm.
Both algorithms classify whether the measurement points are inside or outside of the boundary layer; however, ADABL learns
the characteristics of both groups from a training set. The training set consists of atmospheric boundary layer identifications
made by human experts, which is acknowledged as being more reliable than available automatic methods (Seibert et al., 2000).
Algorithms classifying from a reference dataset (e.g., ADABL) are called supervised algorithms, while algorithms classifying
without a reference dataset (e.g., KABL) are called unsupervised algorithms. Supervised algorithms make it possible to auto-
matically reproduce human expertise in boundary layer identification. To our knowledge, this is the first time that a supervised
algorithm has been applied to this problem. This study is of practical interest because it includes the publication of the source
code, which only uses free software.

In Sect. 2, we describe the data used in this study, i.e., the lidar data in the algorithm inputs, reference radiosonde data, and
ancillary data used to sort the meteorological conditions. In Sect. 3, we describe the two machine-learning algorithms (KABL
and ADABL) and the procedures used to evaluate them. In Sect. 4, we present the results of our study, which consists of a
sensitivity analysis of the KABL algorithm, a comparison of the methods with the radiosonde data over a two-year period, and
a case study. In Sect. 5, we discuss the results, limitations, and prospects of our study. The final section is dedicated to the

conclusions that can be drawn from our study.

2 Material

Our study used data from the Météo-France operational network. We used colocated radiosonde and aerosol lidar data over
two sites: Brest (a coastal city in an-extreme-westera-north-western region of France) and Trappes (a-suburban-area-of Parisin
an-intand-region-of Praneean inland suburban area within Paris). The dataset spanned two years: 2017 and 2018. A case study
was conducted on August 2, 2018, for the Trappes site.

2.1 Lidar data
2.1.1 Lidar network

Since 2016, Météo-France has deployed a network of six automatic backscatter lidars to help the Volcanic Ash Advisory
Center of Toulouse characterize layers of volcanic ash and aerosol fayersin the atmosphere. One of the six sensors can be

quickly redeployed at a more suitable geographic location depending on the transport event being tracked. The network, fully
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Figure 1. Mini Micro Pulse LiDAR (MiniMPL) unit from the Météo-France network.

operational since April 2017, is continuously functioning and has detected aerosol events at altitudes of up to 17 km. It is part
of the wider automatic lidar and ceilometer network of the E-PROFILE program described in Haefele et al. (2016).

Two sampling sites in this network were selected: Brest (48.444° N, 4.412° W, 94 m above sea level) and Trappes (48.773°
N, 2.0124° E, 166 m above sea level). Both sites are equipped with a Mini Micro Pulse LIDAR (MiniMPL), built by Sigma
Space Corporation with an exterior casing provided by Envicontrol. A MiniMPL unit from the Météo-France network is shown
in Figure 1. MiniMPL is a compact version of the Micro Pulse LIDAR (MPL) systems approved for the global NASA Micro-
Pulse Lidar Network (MPLNET). A comprehensive description of MiniMPL can be found in Ware et al. (2016).

2.1.2 Data processing

MiniMPL acquires profiles of atmospheric backscattering at high frequency (2500 Hz) using a low-energy pulse (3.5 uJ)
emitted by a Nd:YAG laser at 532 nm. The profiles are acquired in photon-counting mode and, in our present configuration,
averaged over 5 min and 30-m vertical resolution bins. The instrument uses a monostatic coaxial design where the laser beam
and the receiver optics share the same axis. Because of geometrical limitations, only a fraction of the signal can be recovered
in the near field. Therefore, in our system, the first usable data are available at 120 m above ground level.

The instrument has polarization

Flyan-etal(2007));—capability, collecting backscattered photons in two channels with the measured raw signals en-in the
"copolarized" and "cross-polarized" channels are-suffixed co and cr, respectively (the intrument uses both circular and linear

depolarization; see Flynn et al. (2007), for more details). These raw signals are processed to obtain the quantity of interest,

i.e., the range-corrected signal (RCS), which is also called the normalized relative backscatter. This processing consists of

several procedures including background, overlap, afterpulse, and dead-time corrections. A comprehensive description of the
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processing is given in Campbell et al. (2002). The "copolarized" and "cross-polarized" range-corrected signals, RC'S., and
RC'S,.,., respectively, as delivered by the manufacturer’s software, are used as predictors for the machine-learning algorithms
described in Sect. 3.

The raw data type and format depends on the instrumental device used. To make the algorithms usable on other devices, we
converted the files to a nermalized-harmonised format using the raw2ll software '; we then used these files as the algorithm

input.
2.2 Radiosonde data

The algorithms were evaluated with respect to estimates derived from radiosonde (RS) estimationsprofiles. Météo-France
operates several RS sites for the World Meteorological Organization Global Observing System. Two RS sites are colocated with
the lidars at Brest and Trappes. These sites are equipped with Meteomodem robotsondes and typically launch a Meteomodem
M10 sonde at 11:15 UTC and 23:15 UTC every day.

Many methods exist to estimate BLH from RS data, several of which have been used in the literature. Some of these methods

are listed below.

Parcel method: BLH is the height at which the profile of the potential temperature 6 reaches its ground value.

Humidity gradient method: BLH is the height at which the gradient of the relative humidity is strongly negative.

Bulk Richardson number method: BLH is the height at which the bulk Richardson number exceeds 0.25 (this threshold

varies among studies).

Surface-based inversion: BLH is the height at which the gradient temperature profile reaches zero.

Stable layer inversion: BLH is the height at which the gradient of the potential temperature profile reaches zero.

Hennemuth and Lammert (2006) used the parcel and humidity gradient methods. Collaud Coen et al. (2014) used all the
techniques mentioned above and recommend the bulk Richardson number method for all cases. Guo et al. (2016) used the bulk
Richardson number for a two-year climatology. Seidel et al. (2010) compared the parcel, humidity gradient, and surface-based
inversion methods, as well as other methods, over a period of 10 years at 505 sites worldwide. Seidel et al. (2012) compared
several methods and recommend the bulk Richardson number method.

Following the recommendations in Figure 10 of Seibert et al. (2000), we chose to compute BLH using the parcel method for
the 11:15 UTC sounding and the bulk Richardson number for the 23:15 UTC sounding and refer to this estimate as BLH-RS

from now on.

Yraw2l1, which is maintained by the Site Instrumental de Recherche par Télédétection Atmosphérique and is publicly available at https://gitlab.in2p3.fr/
ipsl/sirta/raw211


https://gitlab.in2p3.fr/ipsl/sirta/raw2l1
https://gitlab.in2p3.fr/ipsl/sirta/raw2l1
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2.3 Ancillary data

Ancillary data were used to describe the meteorological sittations-situation at the observation sites. These data were not used

by the machine-learning algorithms. All the instruments were colocated with the lidar and radiosonde taunechingslaunches.
— Rain gauges were used to detect rain events.

— Vaisala Ceilometer CL31 instruments were used to detect the cloud base height and distinguish cases with clouds on top
erinside-of, or inside, the boundary layer. Even though MiniMPL is capable of detecting clouds, we relied on the CL31

AARAANAAAAANA

cloud detection because the MiniMPL algorithm was found to report non-existent clouds.

— Scatterometers were used to estimate the horizontal visibility and detect the occurrence of fog.

3 Machine-learning methods

3.1 Supervised learning method

Supervised methods learn from a reference. Such methods are divided into two families: classification, which aims to find
the frontiers between groups, and regression, which aims to approximate a function. In this study, we treat the BLH derivation

estimation as a classification problem —We-need-where we wish to classify the

“boundarytayer—or—free-atmosphere’lidar measurement at each range gate as belonging to either ‘boundary layer’ or ‘free
atmosphere’. Then, the highest point of the ‘boundary layer’ class indicates the BLH estimate. Several supervised algorithms

were compared to maximize accuracy (see Sect. 3.1.3)-however—we-will-only-deseribe-the-one-chosen—, here, we describe
Adaboost, which was the algorithm selected for this study. Boosting algorithms are a very powerful family of algorithms that
were developed for classification but can also be used for regression (Hastie et al., 2009). In particular, the AdaBoost algorithm

is designed for binary classification (Freund and Schapire, 1997) and is therefore well suited to our problem.
3.1.1 AdaBoost algorithm

Let us consider the following problem. We have N vectors z; € R? (here, the numbers of predictors, p = 4: seconds since
midnight, height above ground, copolarized channel and cross-polarized channel), and for each vector, we have a binary
indicator y; € {—1,1} (—1 for ‘boundary layer’, 1 for ‘free atmosphere’). From the sample (z;,%;)ic[1,n7, Where [1, N] is
the ensemble of integers from 1 to N, we want to predict the output indicator y,.,, Of any new vector Z,.,,. To do so, we
must find a rule based on the x,,.,, coordinate values (the features) to cast it into the appropriate class. Decision tree classifiers

(Breiman et al., 1984) perform this casting one feature at a time. For example, in Figure 2, there are black and white points in
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Figure 2. Illustration of binary classification with decision trees on two-dimensional artificial data.

a two-dimensional space. The black points are mostly located where X is low, hence the rule "if X; < ¢;, then the point is
black." However, in the other region, where X; > t1, there are still some black points, all with low X5. Therefore, we add the
rule "if X5 < to, then the point is black, else it is white." Decision trees are classifiers made up of such "if" statements with
various depths and thresholds. The deeper the tree, the more accurate the border but the more complex the decision and the
longer it takes to train. Deep trees are strongly subject to overfitting and are less efficient than other methods. However, shallow
decision trees are valuable because of their simplicity and their speed, even though their performanees-performance are quite
limited (Hastie et al., 2009). They are often used as weak learners, that is, classifiers with poor perfermanees-performance (but
better than random) that are very simple (Freund and Schapire, 1997). In this study, weak learners in AdaBoost are trees with
a maximum depth of five (a maximum of five forks between the root and the leaves).

AdaBoost is based on decision tree classifiers. It aggregates these classifiers to determine the most accurate border. The
concept behind AdaBoost is illustrated in Figure 3. First, a shallow decision tree is fitted to the entire dataset using the Classi-
fication and Regression Tree (CART) algorithm (Hastie et al., 2009). All points have the same weight in this first step. Some
points in the dataset are misclassified, and the error of the classifier is the weighted average of the misclassified points. Another
shallow decision tree is then fitted on a resampled dataset where the previously misclassified points are over-represented. This
new tree has new misclassified points that will be over-represented in the training of the next tree, and so on, up to the specified
number of trees (M = 200 in our case). The detailed algorithm is described in Hastie et al. (2009), algorithm 10.1, and in
Schapire (2013).

3.1.2 Training of the algorithm

Such an algorithm needs to be trained using a trustworthy reference. On days where the boundary layer is easily visible to a
human expert, the top of the boundary layer can be drawn by hand; all points below this limit are in the class ‘boundary layer’
and all points above this limit are in the class ‘free atmosphere’.

In this study, two days were labeled-classified by hand. These two days where chosen because the boundary layers on these
days were easily visible; the two tabeled-hand-classified days were at different sites in different seasons. The first tabeted
hand-classified day was a clear summer day in Trappes, shown in Figure 4 (left); a stable boundary layer is present near the
ground during the night, topped by a residual layer and a few clouds between 02:00 UTC and 04:00 UTC. A mixed layer
started to develop at 09:00 UTC and remained at approximately 2000 m for the rest of the day. At approximately 22:00 UTC,
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(1) Generate a simple classifer
Put more weight on misclassified points
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Figure 3. Illustration of boosting on two-dimensional artificial data with two classes.

a new stable layer appeared to develop near the ground; however, it is not very clear where this layer started or what its extent
was. The second labeled-hand-classified day was a clear winter day in Brest, shown in Figure 4 (right): a stable boundary layer
was present near the ground during the night, topped by a residual layer, which was shallower than the layer observed at the

195 Trappes site. The mixed layer started to develop at 6908:00 UTC and remained at approximately 1000 m with the height of the
layer gradually decreasing throughout the day. At approximately 17:00 UTC, aerosols appeared to accumulate in a thin layer
close to the ground; therefore, we chose to dropBIEHte-thatlevelselect the top of this thin layer as BLH.

Lidar backscatter (log10) | TRAPPES 2018/08/02 Lidar backscatter (log10) | BREST 2018/02/24

~~-- Reference (hand-made) ~-- Reference (hand-made)

Height (m agl)
Height (m agl)

Figure 4. Hand-drawn referereesteference classification and radiosonde estimates overlaying the lidar range-corrected signal for two days:

August 2, 2018, at the Trappes site (left) and February 24, 2018, at the Brest site (right).
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The coordinates of the points on the eurves-ofthe-hand-drawn BLHs were obtained using the Visual Geometry Group Image
Annotator software?. Then, the output curves were interpolated with a cubic spline to match the lidar temporal resolution.
Given the resolution of the lidar, this method of labeling the data results in IV = 86,400 individuals in total (this number is the

roduct of 288 profiles per day, 150 vertical range bins and two labeled days).

3.1.3 Retained configuration

Four predictors were used: the two lidar channels, time (number of seconds since midnight), and altitude (meters above ground

level). The ADABL configuration used was
— Weak-weak learner: decision tree of depth five;
— Number-number of weak learners: 200; and
— Predietorspredictors: time, altitude, RC'S,,, and RC'S,.

This configuration was chosen because more complex classifiers do not necessarily improve the performance. The com-
putation time of the algorithm was still reasonable: training took 23 s on the full dataset and predicting BLH for a full day
took 3.7 s with a modern laptop. AdaBoost was chosen after a comparison of multiple classification algorithms, i.e., random
forest, nearest neighbor, decision trees, and label spreading (study not shown here). The benchmark score was the accuracy
as measured by the percentage of individuals that were well-correctly classified. The accuracy was estimated by group K-fold
cross-validation, where labeled datasets are grouped into chunks of three consecutive hours, one group was used as a testing
set and all the rest as a training set. This operation was repeated until each group was used as the testing set. The resulting
accuracy was 96%. However, this figure overestimates the generalization ability of AdaBoost. A more correct estimation would
be obtained with an independent validation set (e.g., a new labeled-hand-classified day). An independent validation set was not
used here because the cross-validation accuracy was only used to discriminate between the classification algorithms.

It is possible to quantify the relative importance of the predictors (Breiman et al., 1984; Hastie et al., 2009). After training,
the relative importance of the time, RC'S,.,, RC'S,,, and altitude predictors was 30.3%, 28.4%, 26.5%, and 14.8%, respectively.

3.2 Unsupervised learning methods

Unsupervised methods aim to identify groups in the data. In our case, we want to identify the group ‘boundary layer’. The
BLH estimate is then the upper boundary of this group. Two unsupervised learning algorithms were tested: K-means and

expectation—maximization (EM).
3.2.1 K-means algorithm

The K-means algorithm is a well proven and commonly used algorithm for data segmentation (Jain et al., 1999; Pollard et al.,

1981) and consists of three steps, where K is the number of clusters specified by the user.

ZPublicly available online at https://www.robots.ox.ac.uk/~vgg/software/via/via- 1.0.6.html.


https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html
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Figure 5. Illustration of the K-means and expectation—maximization algorithm on two-dimensional artificial data with two clusters.

1. Initialization: K centroids my,...,mx are initialized at random locations inside the feature space.

2. Attribution: The distances from all points to all centroids (d(z;,m#))ke[1,x],ic[1,n] are computed, and points are
attributed to the closest centroid:
230 C(i) = argming {d(z;,my)}.

N
. . ; ilo(i)=
3. Update: The centroids are re-defined as the average point of the cluster: my, = w
i=1+C(i)=k
Steps 2 and 3 are repeated until the centroids stop moving. It has been shown that this algorithm converges to a local minimum

of the intra-cluster variance (Selim and Ismail, 1984). Figure 5 (left) illustrates this algorithm.
3.2.2 EM algorithm

235 The EM algorithm assumes that each group k € [[1, K| is generated by a Gaussian distribution (p, >y ). The algorithm itera-
tively estimates the parameters jix, ), and the responsibility for each Gaussian 4, where the responsibility is the probability
of the point 2° being generated by the k-th Gaussian. Points are then attributed to the group with the highest responsibility:
C(i) = argmaxy(9i,...,9%). Figure 5 (right) illustrates this algorithm.

The K-means and EM algorithms are very similar. If we assume that all Gaussians distributions have the same fixed variance

240 and that this variance tends to zero, the EM and K-means algorithms are the same. However, K-means does not rely on a

Gaussian assumption.

10



3.3 Flowchart and description of KABL parameters

A simplified flowchart of KABL and ADABL is shown in Figure 6. This section focuses on the KABL parameters to introduce

the sensitivity analysis made in Sect. 4.1. The parameters of the KABL software are detailed here.
245 — algo: The applied machine-learning algorithm. Possible values are:

— ‘gmm’ for the EM algorithm (Gaussian mixture model); and
— ‘kmeans’ for the K-means algorithm.

— classif_score: The internal score used to automatically choose the number of clusters (only used when n_clusters =

‘auto’). See Sect. 3.4 and Table 1 for a description of the internal scores.
250 — init: Initialization strategy for both algorithms. Three choices are available:

— ‘random’: randomly pick an individual as the starting point (both K-means and EM);

— ‘advanced’: use a more sophisticated initialization (kmeans++ for K-means (Arthur and Vassilvitskii, 2007) and

the output a K-means pass for EM); and

— ‘given’: start at explicitly passed-selected point coordinates.
255 — max_height: The height (meters above ground level) at which the profiles are cut.

— n_clusters: The number of clusters to be formed (between two and six). This is either explicitly given or determined

automatically to optimize the score given in classif_score.

— n_inits: The number of repetitions of the algorithm. When this number is larger, the algorithm is more likely to find the

global optimum but requires more time.

260 — n_profiles: The number of profiles concatenated prior to the application of the algorithm. For example, if n_profiles = 1,
only the current profile is used. If n_profiles = 3, the current profile and the two previous profiles are concatenated and

input into the algorithm.

— predictors: The list of variables used in the classification. These variables can be different at night and during the day.

For both time periods, the variables can be chosen from

265 - RCS,,: the copolarized range-corrected backscatter signal; and

— RCS,,: the cross-polarized range-corrected backscatter signal.

The parameters of the KABL software are highlighted in bold in the following explanation of the KABL algorithm. A
netCDF file generated by the raw2ll software needs to be provided as input data to KABL. The data, namely, the altitude

vector z (size V), the time vector ¢ (size V), and the range-corrected signals RC'S,, and RC'S., (IN; x N, matrices), are

11



270 extracted from this file. Such data are prepared to fulfil the machine-learning algorithm requirements. For each time, the
n_profiles last profiles are extracted. Then, the data they contain are normalized (by removing the mean and dividing by the
standard deviation); this provides a matrix X (/N X p, where N =n_profiles- N, and p = |predictors| is the number of elements
in the list). The matrix X is the usual input for a machine-learning algorithm; it has one line for each individual observation and
one column for each variable (or predictor) observed. For the BLH retrieval, the preparation also provides a vector Z (size V)

275 containing the altitude of each individual observation. The algorithm (either K-means or EM, as specified by algo) is applied
to the matrix X, with the parameters n_clusters, init, and n_inits. This results in a vector of labels (size N) that contains the
cluster attribution of each individual. Finally, by-definition-of-since by definition the boundary layer as-is the layer directly
influenced by the ground, we look for the first change in the cluster attribution, starting from the ground level. This gives us

the value of BLH for this profile. These operations are repeated until reaching the end of the netCDF file.

Parameters Process Pseudo-code
(only for KABL) I NetCDF from raw2l1
z,t,RCSco,RCScr = extract_data(
input_netcdf,
max_height Data extraction max_height
)
blh = zeros(t.size)
Loop on profiles ¢ for i in range(t.size):
predictors . X,Z = prepare_data(
n_profiles Data preparation : %
RCSco[i,:],
: RCScrli,:],
predictors,
i algo : n_profiles
"“lf‘:_l—l:‘sct‘;‘;z Apply algorithm : )
— n_inits KABL or ADABL . labels = apply_algo(
init algo,
. classif_score, rameter
n_clusters, pﬂ"‘jm ers
. X are different
. n_inits for ADABL
—— Derive BLH : ) init
blh[i] = blh_from_labels(labels, Z)
i end for
add_blh_to_netcdf(
.. input_netcdf,
——— Write in NetCDF output_netcdf,
blh

)

NetCDF from raw2l1
& Wwith a new BLH field

Figure 6. Simplified flowchart of the K-means for Atmospheric Boundary Layer (KABL) and AdaBoost for Atmospheric Boundary Layer
(ADABL) algorithms with a focus on the KABL parameters. The parameters are described in Sect. 3.3 and in Table 2.

280 3.4 Performance metrics

Two types of metrics were used.

— External scores: These metrics compare the result to a trustworthy reference. They have the advantage of providing a
meaningful evaluation of the performance but depend strongly on the quality of the reference (i.e., its accuracy and

availability).
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285 — Internal scores: These metrics rate how well the classification performs based only on the distances between points. They
have the advantage of being always computable but are not linked to any physical property and therefore are not always

meaningful.

None of these metrics are perfect; however, the information they provide allows a broader understanding of the algorithm

performance.
290 3.4.1 External scores

External scores use a reference to assess the quality of the result. In our case, the reference is-the-RS-estimated-BlHare
BLH-RS (RS-derived BLH) and, when available, the human expert-estimated-expert hand-classified BLH. Two external scores
are used in this study. If we denote Z as the estimated BLH (by any of the previously introduced algorithms) and Z,..; as the

reference, the external scores are as follows—;_

295 — RMSE, where lower values are better:
Ey = E[(Z—Z,.ef)ﬂ. 1)

— The Pearson correlation, where higher values are better:

7,7,
p= COUA( ) vef) ) (2)
0(2)0(Zrey)
Here, Z and Z,.. ¢ are random variables, E -] denotes the mathematical expectation, and o (-) denotes the standard deviation.
300 When these scores are estimated, the random variables are replaced by a sample vector and the expectation and standard

deviation are replaced by their usual estimators.
3.4.2 Internal scores

The quality of a classification can be quantified using scores that are based only on the labels and the distances between
points. Such scores estimate how trustworthy an estimation is without any external input. Many such scores exist with different

305 formulations and different strengths and weaknesses (Desgraupes, 2013). In this study, three internal scores were used-—: _

— The silhouette score (Rousseeuw, 1987):

b—a

Suit = ——,
! max(a,b)

3

where a is the average distance to its own group and b is the average distance to the neighboring group. Ss;; = 1 is the

best classification, Sg;; = 0 is neutral, and S,;; = —1 is the worst classification.
310 — The Calinski-Harabasz index (Calinski and Harabasz, 1974):
N—-K)B
o (N-K) @

(K -1 Wy
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Table 1. Table of metrics used to measure the performance of the K-means for Atmospheric Boundary Layer (KABL) algorithm. The metrics

are described in detail in Sect. 3.4.

Best/, worst
Metric Type Description
valuescore
corr External Pearson correlation coefficient 140
errl2 External Root-mean-square error (RMSE) 04, 400
s_score Internal Silhouette score 14, -1
db_score Internal Davies—Bouldin index 04, 400
ch_score Internal Calinski—Harabasz index +ocf, 0
Time to perferm-estimate BLH for a 24 h-of BEH
chrono Other RN 0#, 400
estimations-hr period
Number of invalid valses-BLH estimates (NaN or Inf)
n_invalid Other RN 0/+oc-, 288
infor a 24 h-ef BEH-estimations-hr period

where N is the number of points, K is the number of clusters, B is the between-cluster dispersion, and W}, is the

within-cluster dispersion of the cluster k. Higher .S.;, indicates a better classification.

— The Davies—Bouldin index (Davies and Bouldin, 1979):

Sk+gk’>
315 Sqp =max [ ——— |, 5
%az(d(uk,uk,) ©)

where k and &’ are the two cluster numbers, &y, is the average distance between points and their cluster center for the

cluster k, and d (g, pui ) is the distance between the cluster centers 1y, and 1. Lower S indicates a better classification.

These three scores were chosen to diversify the metrics and are all implemented in Scikit-learn (version >0.20).
3.4.3 Other metrics

320 In addition to the internal and external scores, the computation time and the number of invalid values (NaN or Inf) were
recorded. BLH estimates of NaN or Inf can occur when all the points of the profile are assigned to the same cluster; this reflects
a faulty configuration of the algorithm. Even though these metrics do not measure how well a program is performing, they are
useful to the user.

All the metrics used to measure the performance of KABL are summarized in Table 1.
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4 Results
4.1 Sensitivity analysis of the KABL algorithm

A sensitivity analysis was performed on the KABL code to identify the "best" configuration. Various KABL configurations
were extensively tested on a single day: August 2, 2018, at the Trappes site, for which we have a hand-made-hand-classified
reference (Figure 4 (left)). The most relevant configurations were retained and tested on the two-year lidar dataset.

There are eight parameters in the KABL code (see Sect. 3.3 for their descriptions). To assess the sensitivity of KABL
to these parameters, the performance metrics (given in Sect. 3.4) were estimated—with-the-hand-made—calculated using the
hand-classified BLH as Z,..; and with the output of KABL as Z for different combinations of input parameters. The tested
values—for-the-input-parameters-are-output metrics given in Table 2;-and-the-output-metries-are-1 were tested using the input
values given in Table +2. We refer to a set of values for the KABL parameters as a configuration. Screening all the possible
values listed in Table 2 would require 3240 different configurations.

To obtain an overview of these 3240 configurations, we started by estimating the influence of the parameters (listed in
Table 2) on the different metrics (listed in Table 1). The influence of the parameters was quantified using first-order Sobol
indices (Sobol, 2001; Iooss and Lemaitre, 2015; Rieutord, 2017), that is, the ratio of the variance of the metric when the
parameter was fixed over the total variance of the metric. If we denote Y as the metric and X as the vector of the parameters,
where all the parameters are treated as random variables, the first-order Sobol index of the i-th parameter is defined as S; =
V(E[Y|X;]) /V(Y), where V() denotes the variance and [E [-] denotes the expectation. A higher Sobol index indicates a larger
influence.

Figure 7 shows the Sobol indices obtained with the KABL computer code. Examining the matrix line by line, one can see
that the different metrics are sensitive to different parameters. For example, the silhouette score is very sensitive to n_clusters
while the Calinski—Harabasz index is sensitive to n_profiles and predictors. Examining the matrix column by column, one
can see that some parameters are more influential than others (e.g., classif_score is much less influential than n_clusters). This
matrix highlights the main effects of changing a parameter and, therefore, how to set each parameter appropriately. For each
parameter, we examined the metrics that it influences and determined the preferred configuration.

Critical parameters are indicated in Figure 7 by the darkest blue columns, namely, n_clusters, algo, predictors, and init>.
For each parameter, Figure 8 shows the distribution of the relevant output given the parameter value (violin plots are explained
in Hintze and Nelson (1998)). For example, Figure 8a has the value of algo on its x-axis and the computing time on its y-
axis. The 3240 different configurations were divided into two groups; those with algo=‘kmeans’ and those with algo=‘gmm’.
Figure 8a shows a smoothed histogram of the computing time for the divided populations. The other panels in Figure 8 were
constructed in the same manner. Each line corresponds to a critical parameter, and we represent the two most influenced outputs

according to Figure 7.

3Even though n_profiles has a large Sobol index for the Calinski—Harabasz index, this influence was not explored because it is known: it is due to the

linear increase in this index with the number of points.
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Table 2. Possible values for the parameters of the KABL code. The parameters are described in details in Sect. 3.3. The dependencies

between parameters result in 3240 different configurations.

Parameter Possible values Meaning
algo ‘kmeans’ The K-means algorithm is used
‘gmm’ The EM algorithm is used (Gaussian mixture model)
‘silh’ The silhouette score is used
classif_score ‘db’ The Davies—Bouldin index is used
‘ch’ The Calinski-Harabasz index is used
‘random’ Starting points are chosen randomly
init ‘advanced’ Starting points are chosen with a smarter strategy
‘given’ Starting points are explicitly given
3500 The altitude above which profile data is discarded
max_height
4500 (meters above ground level)
2
3 The number of clusters to be formed is explicitly
n_clusters 4 passed and is always the same
5
. , The number of clusters is automatically chosen to
auto optimize classif_score
. 10 The number of times the algorithm is repeated with
nnits 80 different initializations (when init is not ‘given’)
1 Only the current profile is used
2 The current profile and the previous profile are used
n_profiles
The current profile and the two previous profiles are
: used
The current profile and the three previous profiles are
! used
L The copolarized range-corrected signal is used at all
0 times
predictors
The copolarized range-corrected signal is used during
‘co/co+cr’ the daytime, and both polarization channels are used
separatety-independently during the nighttime
. , Both polarization channels are used separately
co+cr

independently at all times
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Figure 7. Relative influence of parameters on the different metrics. The z-axis indicates the parameters of the code, and the y-axis indicates
the metrics. The shading represents the influence of the parameter on the metric with darker shading indicating a larger influence. The

abbreviations for the parameters are described in Table 2 and the abbreviations for the metrics are described in the-Table 1.

The parameter values were chosen to give the mest-optimal values for the metrics they influence. The optimal values are
indicated by a yellow star in each plot. To set algo, we examined the computing time (Figure 8a) and the Davies—Bouldin
index (Figure 8b). These figures indicate that ‘kmeans’ is the best choice for both metrics (resulting in a lower computing
time and a lower Davies—Bouldin index). To set init, we examined the correlation (Figure 8c) and the computing time (Figure
8d). In this case, ‘given’ appears to be the best choice. To set n_clusters, we examined RMSE (Figure 8e) and the silhouette
score (Figure 8f). They indicate that the best numbers of clusters are three and ‘auto’, respectively. We chose to give priority to
RMSE because the silhouette score has very high values for two clusters, which is suspicious given the presence of a cloud and
a residual layer on this day. To set predictors, we examined the silhouette score (Figure 8g) and the Calinski—Harabasz index
(Figure 8h); here, ‘co’ appears to be the best choice. Following this methodology, we can identify a few configurations worth
trying. These configurations were tested on the two-year dataset. The configuration used to generate the results in Sect. 4.2.1

is given in Table 3. This configuration was chosen to maximize the correlation between KABL and RS at the Trappes site.
4.2 Two-year comparison

The-BLH estimates from the three methods (KABL, ADABL, and the manufacturer’s algorithm) were compared to RS
estimates-BLH-RS over a two-year period.

4.2.1 Overall comparison

As explained in Sect. 3.4, two external scores, RMSE and the correlation, were used to assess the quality of the estimates. In

equations 1 and 2, the reference BLH Z,..; was set to the RS-estimateBLH-RS, as described in Sect. 2.2. To compute the scores,
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Figure 8. Distribution of the relevant outputs for the critical inputs. The effect of algo on (a) the computing time and (b) the Davies—Bouldin
index. The effect of init on (c) the correlation and (d) the computing time. The effect of n_clusters on (e) the root-mean-square error (RMSE)
and (f) the silhouette score. The effect of the predictors on (g) the silhouette score and (h) the Calinski-Harabasz index. For each panel, the

best parameter value is highlighted by a yellow star.
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Table 3. Retained values for the parameters of the KABL code after the sensitivity analysis.

Parameter Retained
values
algo ‘kmeans’
classif_score ‘db’
init ‘given’
max_height 4500
n_clusters 3
n_inits 10
n_profiles 1
predictors ‘co’

the BLH estimates from the lidar and radiosonde must be colocated. At-the-time-of-each-RS-estimationFor each BLH-RS, the

corresponding lidar BLH estimate is the average of all the-available estimates within the 10 min following the release of the

radiosonde (this translates to one or two lidar estimates). The-Using the ancillary measurements presented in Sect. 2.3, the

following meteorological conditions were discarded:

rain (rain gauge measures the rainfall as >0 mm);

fog (scatterometer measures the visibility as <1000 m);

low level cloud (ceilometer measures the cloud base height as <3000 m);

- RS-estimation- BLH-RS is below 120 m (blind zone for lidar); and

nighttime (RS launched at 23:15 UTC).

This selection rejects a large part of the dataset but ensures that only well-defined cases are retained for the comparison. In

total, 178 RS measurements from Trappes and 101 RS measurements from Brest were used for the overall comparison. Fhe

esﬂma%es—{eﬁmge%zﬁ%ADABL brown bars) and manufacturer (orange bars), compare to BLH-RS. The first column represents

RMSE FE5 (lower is better), and the second column represents the correlation p (higher is better). The upper row shows the

results for the Brest site, the lower row shows the results for the Trappes site. One-—can-see-very-differentresults-depending-on
the-site—While both KABL and ADABL outperform the manufacturer’s algorithm at the Trappes site, neither algorithm does

at the Brest site.

—While the correlation for both KABL and ADABL is higher
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Figure 9. Results of a two-year comparison with the radiosonde (RS) estimates at both sites for two metrics: RMSE and correlation. INDUS

refers to the manufacturer’s algorithm, KABL and ADABL refer to the eponymous estimates. Cases at night or with rain, fog, an RS-estimated

boundary layer height (BLH) of under 120 m, or clouds under 3000 m were removed. The 95% confidence intervals were estimated using

percentile bootstrapping (Davison and Hinkley, 1997).

than that for the manufacturer’s algorithm at the Trappes site, it collapses to close to zero for KABL at the Brest site (0.07 for
ADABL). The RMSE values can be compared to the values given in Haeffelin et al. (2012). For KABL, we find 770 m at the
Brest site and 798 m at the Trappes site, while for ADABL, we find 675 m at the Brest site and 552 m at the Trappes site. Our
values are notably higher than those in Haeffelin et al. (2012). This is likely due to the larger extent of our dataset (178 RS at
Trappes and 101 at Brest, spanning a two-year period) and the low maturity of the algorithms. Between- ADABLand KABL;
ADABLE-ADABL has better correlation and RMSE values than KABL at both sites. The manufacturer’s algorithm performs
well without any specific tuning on our part. It uses a wavelet covariance transform, as described in Brooks (2003). This result
is not surprising because the wavelet method has been shown to be robust in numerous studies, especially in Caicedo et al.

(2017), who included a cluster analysis method and concluded that the wavelet method is preferred.
4.2.2 Seasonal and diurnal cycles

To quantify the ability of the algorithms to provide a consistent BLH estimationestimate, Figure 10 shows the seasonal cycle
(monthly average) and the diurnal cycle (six-minute average) at both sites. For each estimator, the thick line represents the
average BLH estimate and the shaded area represents the inter-quartile gap. Rain, fog, and low-cloud conditions were discarded.
For the monthly average, the nightnight-time values were also removed. H-we-inclade-onty-night-estimates;the The seasonal
cycle is reversed for-the RS-estimates;-that-is;-the BH-estimates-are-when only night-time values are studied, with BLH-RS
being lower in summer than winter, on average. For other estimators, we do not see such a difference between the day and

night seasonal cycles (not shown).
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At the Brest site (Figure 10a), estimates made by the manufacturer’s algorithm are lower than those made by KABL and
ADABL and estimates made by ADABL are usually higher than those made by KABL (except in July). Fhe RS-estimation
gave BEH-vatues—that BLH-RS values were low in summer (June—October), high in February and March (higher than the
KABL estimates), and between the manufacturer’s and KABL estimates during the rest of the year. Overall, the manufacturer’s
algorithm displays the seasonal cycle that is closest to that-of-the-RS-estimatesBLH-RS, while KABL and ADABL both
overestimate BLH. The inter-quartile distanees-range (shaded areas) are-is large for all estimations;reflecting-the-widerange
of-the-BlEH-estimates.

At the Trappes site (Figure 10c), KABL and ADABL also overestimate BLH in comparison to the RS-estimatesBLH-RS,
while the manufacturer’s estimate is close. The seasonal cycle is more visible at Trappes than at Brest, and all BLH estimates
are higher in summer than in winter. The most pronounced cycle is given by KABL, while the least pronounced cycle is
given by the RS-estimationBLH-RS. The inter-quartile dﬁe&nee%gavr\lglg are also very large, especially in summer, becatse-the

erreflecting the variation of BLH between day and

Figures 10b and 10d show the diurnal cycle, where all values within the same six-minute period in the day were averaged.
Because the radiosondes are only launched twice a day, at 11:15 UTC and 23:15 UTC, an equivalent RS-estimated-BLH-RS

diurnal cycle cannot be drawn. However, we used the average and quartile values at these times as checkpoints for the other
estimates. The manufacturer’s and KABL estimates both have very smooth diurnal cycles, with lower BLH at night and
maximum BLH around 15:00 UTC at the Trappes site and around 13:00 UTC at the Brest site. The KABL average is always
higher than that calculated by the manufacturer’s algorithm. The ADABL estimation has a very different diurnal cycle, similar
to the conceptual image we have of the boundary layer. Indeed, ADABL was trained using hand-made-hand-classified BLHs
that reflect this conceptual image. Therefore, it is not surprising that ADABL reproduces this image well; however, it may fail
to adapt to special cases. It appears that the "time" predictor (the number of seconds since midnight) has a large influence that
is not balanced by the other predictors. This is likely because ADABL was trained on only two days, resulting in an unbalanced
importance for sunrise and sunset on these particular days and at these locations. To balance this importance, the AdaBoost

algorithm needs to be trained on more days and at more sites with a representative selection of cases.
4.3 Case study

The chosen case study was for April 19, 2017, at the Trappes site. The boundary layer was clearly visible and had nearly all
the features of the conceptual image. The case study daynee : int :
WHWWWW
bias the comparison in favour of ADABL.

Figure 11 represents the range-corrected copolarized backscatter signal (RC'S,,) in shaded colors. The z-axis indicates

the hour of the day (UTC), and the y-axis indicates the height (meters above ground level). The different BLH estimates are
represented by dotted lines: blue indicates KABL, orange indicates the manufacturer’s algorithm, and green indicates ADABL.

At the beginning of the day, there is a thick residual layer containing some plumes. Both KABL and the manufacturer’s
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Figure 10. (a, c) Seasonal and (b, d) diurnal cycles of all BLH estimates at both sites. INDUS indicates the manufacturer’s algorithm. Thick

lines represent the average, and the shaded area represents the quartiles.

algorithm include these plumes in the boundary layer. Conversely, ADABL gives a very low estimate where there is no visible
frontier. In the morning (from 08:00 UTC to 12:00 UTC), all the algorithms capture the morning transition reasonably well.
However, KABL includes more irrelevant estimates (hitting-what-remains-selecting remnants of the surface layer) than the
other methods and ADABL gives an estimate that is too high for no apparent reason around 12:00 UTC. During the day,
ADABL sticks to the top of the boundary layer, the manufacturer’s algorithm sticks to the surface layer (which is very visible),
and KABL oscillates between the two. The evening transition is blurry; the signal from the surface layer slowly sends-baek
inereasing-amounts-of signalfinally-turning-increases, as the mixed layer decays into a residual layer. KABL locates this
transition very early (around 17:00 UTC), when it stops oscillating and sticks to the surface layer. ADABL makes the transition
more smoothly, from 19:00 UTC to 22:00 UTC. The manufacturer’s algorithm is the last to make the transition, at around
23:00 UTC, and the transition then occurs very sharply. We can conclude from this case study that none of the algorithms

perfectly capture the boundary layer. Some of the limitations are physical, e.g., the evening transition is ill defined, resulting
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Figure 11. Case study: BLH estimates using different methods on April 19, 2017, at the Trappes site. Superimposed on the lidar range-
corrected signal are BLH estimates from KABL (blue dotted line), the manufacturer’s algorithm (denoted "INDUS", orange dotted line), and
ADABL (green dotted line). The two crosses at 11:15 UTC and 23:15 UTC indicate the radiosonde estimates for that day and the two icons

at 5:50 UTC and 19:49 UTC represent the time of sunrise and sunset, respectively.

in disagreement between the algorithms. The-RS-estimate-BLH-RS at 23:15 UTC is close to the lower boundary of the lidar
range. This highlights the fact that BEHs-BLH below 120 m are not rare and eannot-be-detected-with-lidar-alone;whatever-the
methodwill not be detected by lidar if BLH is in the lidar blind zone. Some of the other limitations are algorithmic; KABL has
an unfortunate tendency to oscillate between several candidates for the top of the boundary layer (surface layer or clouds), and

ADABL too closely reproduces the features of the days it has been trained on (e.g., night estimates and morning transitions).

5 Discussion and prospects

5.1 Algorithm maturity

Both of-the-examined-algorithms-are-very-reeentalgorithms examined here are not yet mature when applied in this context.
K-means algorithms have already been used to detect BLHs in previous studies (Toledo et al., 2014; Caicedo et al., 2017,

Toledo et al., 2017; Rieutord et al., 2014); therefore, it is a more mature method. This is visible in this paper via the level of
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Figure 12. Cluster labels in-output-offor KABL output on a time—altitude-time—altitude grid for April 19, 2017, at the-Trappes site-with the
BEH-estimated-with-KABL BLH (black line) with-estimated using (a) the centroids initialized at random and (b) the centroids initialized at

given values.

investigation, which was much higher for KABL than for ADABL. Concerning boosting, this the first time, to our knowledge,
that such an algorithm has been tested on this type of problem; therefore, ADABL is a completely new algorithm. Yet, it

outperforms KABL and competes favorably with the manufacturer’s algorithm despite raising training issues.

5.2 Time and altitude continuity

The oscillations observed in Figure 11 are unrealistic and need to be avoided. They occur with KABL because clusters do not
always have vertical persistence, as shown in Figure 12. One can see the cluster labels on a time—altitude grid for the same
day as in Figure 11. When the initialization is random (Figure 12a, init = ‘random’, default settings in K-means), the labels
are also random. Only the transition of the labels on a profile is important. When the initialization is given (Figure 12b, init =
‘given’, retained settings in KABL), the labels can be identified. The blue cluster starts from very high backseatter-attenuated
backscatter coefficient (it detects clouds and the shallow morning BL); the red cluster starts from high backseatter-attenuated
backscatter coefficient (it detects the mixed layer or residual layer); and the green cluster starts from low backseatter-attenuated
backscatter coefficient (it detects the free atmosphere). Oscillations occur when some points are identified as free atmosphere
in the middle of the boundary layer. In the case study presented here (Figures 11 and 12b), this happens in the afternoon,
when the blue cluster (starting from very high backseatterattenuated backscatter coefficient) gathers a few points near the first
measurements and the overhead artifacts because very high backseatter-attenuated backscatter coefficient is irrelevant under
these conditions.

Several prospects exist to enforce vertical persistence of the clusters in KABL, we list here four examples. First, the problem

identified in Figure 12b could be solved by choosing the number of clusters automatically. However, this option was tested
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(case where n_clusters = ‘auto’ in Sect. 3.3) and it did not solve this issue. The sensitivity analysis showed that n_clusters =
‘auto’ led to higher discrepancies with respect to the-RS-estimatesBLH-RS. In fact, this setting usually gives low estimates of
BLH because the automatically chosen number of clusters is usually high. A more advanced strategy to automatically choose
the number of clusters (e-g-Fibshirani-et-ak-(2061))-(e.g., Tibshirani et al., 2001) might get around this issue. Seeond;-the-The
vertical persistence of clusters can be enforced by adding altitude to the KABL predictors. Third;-t-This can be done thanks
to a post-processing, for example, with a moving average or by imposing a maximum BLH growth rate (Poltera et al., 2017).
Feurth;—the-The distance used in K-means could also be modified to incorporate these constraints, for example, by adding
penalty terms.

In ADABL, time and altitude continuity are ensured because they are within the predictors. However, ADABL yields BLH
estimates that are too similar to the BLHs in the training set. Removing time and/or altitude from the predictors should be
considered to force the algorithm to rely more on the measurements. Further, the sensitivity analysis presented here for KABL

needs to be performed for ADABL.
5.3 Real-time estimationsestimation

Even though it was not necessary for this study, all of the algorithms studied here can be used in real time. As soon as
a baekseatter-lidar profile is available, BLH estimations can be performed instantaneously*. However, KABL suffers from
undesirable oscillations from one profile to the next. A method to filter these oscillations is needed but would disable the "real-
time" feature of the algorithm. In addition, the hour of the day needs to be explicitly passed in a periodic function. This has not

been done here because we worked only on 24-hour time periods.
5.4 Quality of the evaluation

Even though we made an effort to sort the meteorological conditions using ancillary data, the two-year comparison still mixes
heterogeneous conditions. In addition, the results are clearly different at the sites studied here, emphasizing the importance
of local conditions. A more precise casting of the meteorological conditions with atmospheric stability indices or large-scale
insights would lead to a better understanding of the strengths and weaknesses of the algorithms. The importance of the sites
needs to be investigated by extending the study to a larger number of sites with different environments. A more careful ex-
amination of cloudy days also needs to be performed. Cases where the cloud bases are below 3 km were filtered from our
study. However, cases where clouds reside inside the inversion should be detected by KABL as an extra cluster; further studies
are required to confirm this behavior. In addition, ADABL was not specifically trained to deal with cloudy situations. Further

studies to determine how ADABL behaves without training and how it could be appropriately trained would-be-interestingare
required.

5.5 Quality of the reference

4Both KABL and ADABL need less than 1 s to run a single profile.
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sRadiosonde profiles are usually regarded as
the best reference for BLH. However, the derivation of BLH from such measurements is contentious because several methods

exist and some strongly disagree. Moreover, RS measurements cannot be used to assess the full diurnal BEH-eyele—cycle
of BLH. This is a clear limitation of this study because the RS measurements cannot determine if the difference between the
diurnal cycle of ADABL and those of the other methods represents an improvement. Therefore, a very interesting project would
be to use a dedicated field experiment with high-frequency radiosonde-tethersonde or other continuously running instruments
as a reference. For example, microwave radiometers are good candidates because they provide information that is not based on

aerosols and BEH-derivations-the derivation of BLH from these instruments are routine (Cimini et al., 2013).
5.6 ADABL: Training

ADABL already shows good performance when trained on only two days. Most of its bad estimates result from the short length
of its training period. Therefore, a short-term project would be to label more days with various meteorological conditions.
However, the dependence of ADABL on training makes it sensitive to instrumentation settings and calibrations. Even though
the effect of a calibration or the evolution of an instrumental device has not been studied, it is likely that training needs to
be repeated after each calibration or change in the instrumental device. Therefore, two strategies are possible for training
ADABL: remove the influence of calibration prior to training (this would require knowing the instrumental constants for all
of the devices) or train it to deal with differences (this would require including as many different devices as possible in the
training set, which would then become very large). In any case, the main limitation will be the need to label the entire training

dataset (a priori by human experts).
5.7 KABL: Training-less

KABL appeared to perform the least well in this study; however, there are interesting prospects to improve its performance.
KABL does not require any training; therefore, it is less dependent on instrumentation settings and calibrations. Because it
is not strongly dependent on the instrumental devices, it can be used on backscatter profiles made by other instruments (e.g.,
ceilometers). Moreover, other profiles besides the backscatter intensity can be added as additional predictors for unsupervised
learning after normalization. Therefore, the concept of KABL can be advanced further to create synergy between multiple
remote sensing instruments. Microwave radiometers are good candidates because they have comparable time resolution to
lidar and provide independent information concerning the thermal stratification of the boundary layer. Cloud radars also have

comparable time resolution to lidar and provide additional independent information.
5.8 Quality flags

Currently, no quality flags for the estimation are provided. One approach would be to use the internal scores (i.e., silhouette,
Davies—Bouldin, and Calinski-Harabasz defined in Sect. 3.4) as quality flags; however, further study is required to determine

whether these metrics can serve as reliable quality flags.
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6 Conclusions

This paper described two algorithms based on machine learning to estimate the mixing-boundary layer height from aerosol
lidar measurements. The first, KABL, is based on the K-means algorithm. The second, ADABL, is based on the AdaBoost
algorithm. Both algorithms take the same input file, one day of data generated by the raw2ll routine, and produce similar
output, a BLH time series for the input day. KABL is a non-supervised algorithm that looks for a natural separation in the
backscatter signals between the boundary layer and the free atmosphere. ADABL is a supervised algorithm that fits a large
number of decision trees in a labeled dataset and aggregates them in an intelligent manner to provide a good prediction. KABL,
ADABL, and the lidar manufacturer’s algorithm were tested on a two-year dataset taken from the Météo-France operational
lidar network. The Trappes and Brest sites were chosen because of their different climates and the availability of regular RS
measurements, which were used as a reference.

A large discrepancy in RMSE and the correlation with the radiosondes was observed between the two sites. At the Trappes
site, KABL and ADABL outperformed the manufacturer’s algorithm while the opposite occurred at the Brest site. At both
sites, ADABL performed better than KABL (higher correlation and lower error) and the manufacturer’s algorithm performed
well. By analyzing the seasonal and diurnal cycles, we determined that the KABL and manufacturer’s estimates have similar
behavior; however, the KABL estimates are always higher by approximately 200 m. ADABL generates the most pronounced
diurnal cycle, with a pattern that is very similar to the expected diurnal cycle; however, its results depend greatly on the days it
has been trained on. In particular, the sunset and sunrise times of these days over-influenced the ADABL estimationestimate. In
the case study, we saw that both algorithms perform well overall; however, we identified several algorithmic limitations, e.g.,
KABL tended to oscillate between several candidates for the top of the boundary layer (surface layers or clouds) and ADABL
was overly constrained by the days it was trained on (e.g., the night estimate and morning transition). In summary, ADABL is
promising but has training issues that need to be resolved, KABL has a lower performance but is much more versatile, and the
manufacturer’s algorithm using a wavelet covariance transform performs well with little tuning but is not open source. A wide
range of future developments is available for ADABL and KABL, the most immediate being that the training set of ADABL
can be enhanced, time and altitude continuity can be enforced in the KABL estimation, and both can be compared to high

temporal resolution RS measurements.

Code availability. The KABL source code is available to and usable by all users, including commercial users. The code is freely available
under an open-source license at the following link: https://github.com/ThomasRieutord/kabl. It is made in Python 3.7 with regular statistics
and machine-learning packages, namely, Scikit-learn 0.20 (Pedregosa et al., 2011) and SALib 1.3.7 (Herman and Usher, 2017), which are
open source and available under free licenses. The repository contains all the necessary features to run the code on raw2lI outputs. Several

days of data are also provided as examples.
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