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Abstract. Atmospheric boundary layer height (BLH) is a key parameter for several meteorological applications, for example air

quality forecast. To measure it, a common practice is to use aerosol lidars: a strong decrease in the backscatter signal indicates

the top of the boundary layer. This paper describes and compares two methods of machine learning to derive the BLH from

backscatter profiles: the K-means algorithm and the AdaBoost algorithm. Their codes are available under a fully open access,

with the name KABL (K-means for Atmospheric Boundary Layer) and ADABL (AdaBoost for Atmospheric Boundary Layer).5

Both methods are compared to the lidar manufacturer’s software and to reference BLH derived from collocated radiosondes.

The radiosondes are taken as the reference for all other methods. The comparison is carried out on a two-year long period

(2017-2018) on 2 Meteo-France’s operational network sites (Trappes and Brest). Results show that, although its training is

limited, ADABL is performing better than KABL and can easily be improved by enhancing its training set. However, KABL

can be easily adapted for other instrumental device and used to make instrument synergy, while ADABL must be fully re-10

trained at each change in the instrument settings.

1 Introduction

Atmospheric boundary layer concentrates many scientific challenges (small scale flows, turbulence...) and with high impacts

due to its position of interface between ground and atmosphere. For example, air quality forecasts rely on many meteorological

parameters, and among them the boundary layer height (BLH) is of first importance. Indeed, the BLH is the depth of atmosphere15

where all pollutants emitted from the ground will remain. As it varies from a few tenth meters to about 2 km within a day, the

dilution/concentration can be very important and responsible for air quality warnings (Stull, 1988; Dupont et al., 2016). Beside,

it is one of the largest source of uncertainty in air quality model (Mohan et al., 2011) and there is a need of better evaluation

of this parameter (Arciszewska and McClatchey, 2001). In numerical weather prediction models, physical processes are not

the same inside the boundary layer (Seity et al., 2011). Therefore it is worth to compare BLH from models and BLH from20

measurements.

However, measuring the boundary layer height is not straightforward. As stated in Seibert et al. (2000), there is no system

matching the requirements to make a reliable estimation of BLH. Best BLH estimation can be achieved through instrument

synergy. However, adding instruments limits the eligible sites where the estimation can be made. In this paper we choose to
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focus on a single instrument, the aerosol lidar (see section 2.1.1 for more information), already widely used (Haeffelin et al.,25

2012). The boundary layer is detected by a decrease of the lidar signal at its top. But this decrease can be blurred, perturbed

by other strong signals (clouds, residual layers..) and numerical artifacts can occur. For these reasons, there exists numerous

studies on BLH derivation from aerosol lidars. Melfi et al. (1985) make a simple thresholding of the signal. Others are based

on derivatives: Hayden et al. (1997) take the minimum of the gradient. Menut et al. (1999) use the height of zeroing the second

derivative (inflection point) and also the variance of the signal. Senff et al. (1996) use the derivative of the logarithm of the30

back-scattered intensity along the height. One of the most used method is the wavelet covariance transform (WCT): it looks

for the maximum in the convolution between the signal profile and a Haar wavelet (Gamage and Hagelberg, 1993; Cohn and

Angevine, 2000; Brooks, 2003). More recent studies are based on backscatter signal analysis, like STRAT (Morille et al., 2007)

or CABAM (Kotthaus and Grimmond, 2018). Other studies use graph theory to impose continuity constraints (both vertically

and in time) in the BLH estimation: Pathfinder (De Bruine et al., 2017). Inspired by image processing, some use Canny edge35

detection in addition to backscatter signal analysis (Morille et al., 2007; Haeffelin et al., 2012). STRAT and Pathfinder have

been merge into PathfinderTURB by Poltera et al. (2017). All this literature shows that finding BLH from aerosol lidar is still

an open question.

Furthermore, artificial intelligence (AI) has reborn in the last decade due to the concomitant increase of available data and

computational power. Both reached levels allowing applications that were not possible before. AI has shown some ability to40

tackle complex classification problems, especially in image classification (Krizhevsky et al., 2012). Such breakthroughs were

done thanks to deep convolutional neural networks (LeCun et al., 2015), but AI encompasses much more techniques that also

benefit from larger data and computational power (Besse et al., 2018). In this paper we will see how the BLH derivation from

backscatter profile can be formulated as a classification problem and we will apply appropriate algorithms to solve it. Toledo

et al. (2014) already described a method that falls into the AI scope. It uses unsupervised learning to classify the measure points45

in or out of the boundary layer. This idea has yielded convincing results in past studies (Toledo et al., 2017; Rieutord et al.,

2014). It has been pursued here (under the name of KABL), and explored more carefully. In addition, an alternative machine

learning algorithm (named ADABL) was tested. As KABL, it classifies measure points in or out of the boundary layer, but it

learns the characteristics of both groups from a training set. To our knowledge, this is the first time that boosting algorithms

are applied to this problem.50

First, in section 2, we state which data have been used in this study: lidar data in input of algorithms, radiosounding data as

reference, ancillary data to sort meteorological conditions. Next, in section 3, we described the two machine learning algorithms

(KABL and ADABL) and the procedure to evaluate them. Then, in section 4, we present the results of our study: a sensitivity

analysis of the KABL algorithm, a comparison of methods against radiosondes for a 2 years period and case studies. Finally,

in section 5, a discussion about the results, the limitations and the prospects of this study is proposed. Last section is dedicated55

to take-home conclusions.
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Figure 1. Typical MiniMPL unit from Meteo-France network

2 Material

In this study, the data comes from Meteo-France’s operational network. We used collocated radiosoundings and aerosol lidar

over two sites : Brest (coastal city in extreme West of France) and Trappes (sub-urban area of Paris, inland). The dataset has a

span of two years : 2017 and 2018. A case study is taken on the 2nd of August 2018 in Trappes.60

2.1 Lidar data

2.1.1 Lidar network

Starting in 2016, Meteo-France has deployed a network of 6 automatic backscatter lidars to help the Volcanic Ash Advisory

Center (VAAC) of Toulouse characterize volcanic ash and aerosols layers. One sensor can be quickly redeployed on a more

suitable geographic location depending on the transport event to follow. The network, fully operational since April 2017, is65

functioning continuously and has been able to detect aerosol events up to an altitude of 17 km. It is part of the wider Automatic

Lidars and Ceilometers (ALC) network of the E-PROFILE program described in Haefele et al. (2016).

Two sampling sites of this network have been selected: Brest (48.444 N, 4.412 W, 94 m a.s.l) and Trappes (48.773 N,

2.0124 E, 166 m a.s.l). Each site is equipped with a Mini Micro Pulse LiDAR (MiniMPL), built by Sigma Space Corporation;

the exterior casing was provided by Envicontrol. A typical MiniMPL unit from Meteo-France network is shown in figure 1.70

The MiniMPL is a compact version of the standard MPL systems deployed in the NASA global lidar network (MPLNET). A

comprehensive description of the MiniMPL can be found in Ware et al. (2016).
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2.1.2 Data processing

The miniMPL acquires profiles of atmospheric backscattering at high frequency (2500 Hz) using a low energy pulse (3.5 µJ)

emitted by a Nd:YAG laser at 532 nm. The profiles are acquired in photon-counting mode and, in our present configuration,75

averaged over 5 minutes and 30 meters vertical resolution bins. The instrument uses a monostatic coaxial design: the laser

beam and the receiver optics share the same axis. Due to geometrical limitations, only a fraction of the signal can be recovered

in the near field. Therefore the first usable data are provided at 120 meters above ground level on our system.

The instrument has polarization capabilities with the collection of photons on two different channels (more details in Flynn

et al. (2007)): the measured raw signals on the "copolarized" and "crosspolarized" channel, respectively suffixed co and cr.80

These raw signals are then processed to obtain the quantities of interest: the range corrected signalRCS, also called normalized

relative backscatter, NRB. This industrial processing comprises several procedures such as background, overlap, afterpulse

and dead-time corrections. A comprehensive description of this processing is given in Campbell et al. (2002). Finally the

"copolarized" and "crosspolarized" range corrected signal as delivered by the industrial software, respectively RCSco and

RCScr will be used as predictors for the machine learning algorithms described in part 3.85

Raw data type and format depends on the instrumental device used. To make the algorithms usable on other devices, we

used as input of the algorithms the files processed to a normalised format by the raw2l1 routine. raw2l1 is developed by the

SIRTA and publicly available here: https://gitlab.in2p3.fr/ipsl/sirta/raw2l1

2.2 Radiosonde data

The algorithms are evaluated against radiosounding estimations. Meteo-France operates several radiosounding sites for the90

WMO Global Observing System. Two radiosoundings sites are collocated with the lidars of Brest and Trappes. They are

equipped with a Meteomodem robotsonde and typically launch a Meteomodem M10 sonde at 11:15 AM and PM every day.

Many methods exists to derive BLH from radiosondes, and have been variously used in the literature.

– Parcel method: BLH is the height at which the θ profile reaches its ground value.

– Humidity gradient method: BLH is the height at which the gradient of relative humidity is strongly negative.95

– Bulk Richardson number method: BLH is the height at which the bulk Richardson number exceeds 0.25 (threshold

depending on authors).

– Surface-based inversion: BLH is the height at which the gradient temperature profile reaches zero.

– Stable layer inversion: BLH is the height at which the gradient of potential temperature profile reaches zero.

Hennemuth and Lammert (2006) use the parcel method and the humidity gradient methods. Collaud Coen et al. (2014) use all100

the techniques mentioned above and recommend the Bulk Richardson number method for all cases. Guo et al. (2016) use bulk

Richardson number for a 2 years climatology. Seidel et al. (2010) compare the parcel method, the humidity gradient method,
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the surface-based inversion and other methods over 10 years and 505 sites over the world. Seidel et al. (2012) compare many

methods and recommend bulk Richardson number.

After testing some of these methods on our dataset, we chose to derive boundary layer height with parcel method for the105

11:15 sounding and bulk Richardson number for the 23:15 one.

2.3 Ancillary data

Ancillary data have been used for the description of the meteorological situation. They are not used by machine learning

algorithms. All the instruments are collocated with lidar and radiosoundings.

– Rain gauges were used to detect rain events.110

– Vaisala CL31 ceilometers were used to detect cloud base height, and distinguish cases with cloud on top or inside the

boundary layer. Although the MiniMPL is perfectly capable of detecting clouds, we chose not to use the industrial

algorithm. The algorithm has shown in our experience to make some false positives.

– Scatterometers were used to estimate visibility and detect fog cases.

3 Machine learning methods115

Machine learning techniques are separated in two wide families: supervised learning (mimic a reliable reference) and unsu-

pervised learning (learn without reference) (Hastie et al., 2009). First we present the supervised algorithm leading to ADABL.

Second we present unsupervised learning leading to KABL.

3.1 Supervised learning method

Supervised methods learn from a reference. They are divided in two families: classification (aims to find the frontiers between120

groups) and regression (aims to approximate a function). In this work, we consider the boundary layer height derivation as a

classification problem. From all points measured by the lidar, which are in the boundary layer and which are not? Then, the

highest point of the boundary layer class is the BLH. Boosting algorithms are a very powerful family of algorithms, initially

made for classification but they can also be used for regression (Hastie et al., 2009). AdaBoost (Adaptive Boosting) algorithm

is well designed for binary classification (Freund and Schapire, 1997), thus it is the one we used.125

3.1.1 AdaBoost algorithm

Let us consider the following problem: we have N vectors xi ∈ Rp (here p= 4: seconds since midnight, height above ground

copolarized channel, crosspolarized channel) and for each vector, we have a binary indicator yi ∈ {−1,1} (-1 for boundary

layer, 1 for free atmosphere). From the sample (xi,yi)i∈[[1,N ]], we want to predict the output indicator ynew of any new vector

xnew. To do so, we must find a rule based on xnew coordinates values (the features) to cast it into the appropriate class. Decision130
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Figure 2. Illustration of binary classification with decision trees on fake 2-dimensional data

tree classifiers (Breiman et al., 1984) do this casting one feature at a time. For example, in the figure 2, there are black points

and white points in a 2-dimensional space. Black points are mostly located where X1 is low, hence the rule "if X1 < t1, then it

is black". But in the other region, where X1 > t1, there are still some black points, all with low X2. Therefore, at the output of

the following rule, we add the rule "if X2 < t2, then it is black, else it is white." Decision trees are classifiers made up of such

"if" statements, with various depths and thresholds. The deeper the tree, the more accurate the border, but the more complex the135

decision and the longer it is to train. As a matter of fact, deep trees are strongly subject to overfitting and they are less efficient

than other methods. However, shallow decision trees are valuable because of their simplicity and their speed, even though their

performance are quite limited (Hastie et al., 2009). They are often used as a weak learner: that is to say, classifiers with poor

performances (although still better than random) but very simple (Freund and Schapire, 1997). In this study, weak learners in

AdaBoost are trees with a maximum depth of 5 (maximum 5 forks between root an leaves).140

AdaBoost is based on decision tree classifiers. It aggregates them in order to have the most accurate border. The idea of

AdaBoost is illustrated by figure 3. First, a shallow decision tree is fitted on a random subsample of the dataset. Some points

of the dataset are misclassified: the error of the classifier is the number of misclassified points. Another shallow decision tree

is fitted on a subsample of the dataset where the previously misclassified points are over-represented. This new tree has new

misclassified points, that will be over-represented in the training of the next tree, and so on, up the specified number of tree145

(m= 200 in our case). The classification given in output of AdaBoost is the average ŷ of all the predicted class by the trees

{ŷm}m∈[[1,M ]], weighted by their performance {α̂m}m∈[[1,M ]]: ŷ = sign(
∑m

m=1 α̂mŷm)

3.1.2 Training of the algorithm

Such algorithm must be trained from a trustworthy reference. For few days where the boundary layer is easily visible for a

human expert, the boundary layer top is drawn by hand: all points below this limit are in the class "boundary layer", all points150

above are in the class "free atmosphere".

Two days were labelled by hand. These two days where chosen because the boundary layer is quite visible and they are in

different site at different seasons. The first labelled day is a clear day of summer at Trappes, shown on figure 4 (top): a stable

boundary layer is present near the ground at night, topped by a residual layer and few clouds between 02:00 and 04:00 UTC.

The mixed layer starts developing at 9:00 UTC and stays around 2000 meters for the rest of the day. Around 22:00 UTC, a new155

stable layer seems to develop near the ground but it is not very clear where it starts and what is its extent. The second labelled
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Figure 3. Illustration of boosting on fake 2-dimensional data and 2 classes.

day is a clear day of winter at Brest, shown on figure 4 (bottom): a stable boundary layer is present near the ground at night,

topped by a residual layer, shallower than at Trappes. The mixed layer starts developing at 9:00 UTC and stays around 1000

meters and decreasing along the day. Around 17:00 UTC, aerosols seems to accumulate in a thin layer close to the ground,

therefore we choose to drop the BLH at that level.160

Figure 4. Hand-made reference and RS estimation over lidar range-corrected intensity signal for two days: 2nd of August 2018 at Trappes

(top) and 24th of February at Brest (bottom).
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The line of BLH made by hand is then loaded thanks to VGG Image Annotator software1 to draw the BLH by hand and

get the coordinates of the curve’s points. Then, the output curve is interpolated with cubic spline to meet the lidar temporal

resolution. Given the resolution of the lidar, this way of labelling the data gives N = 86400 individuals in total.

3.1.3 Retained configuration

Four predictors are used: the two lidar channels, the time (number of seconds since midnight) and the altitude (meters above165

ground level). The current configuration of ADABL is thus the following:

– Weak learner: decision tree of depth 5

– Number of weak learners: 200

– Predictors: time, altitude, RCSco, RCScr

It was chosen by a trade-off between accuracy and computing time. The accuracy is the percentage of individuals well170

classified. It is estimated by cross-validation (random split, 80% training set, 20% testing set) and reaches 99.5% of the testing

test. The computing is still reasonable: it takes 23 seconds to train on the full dataset and 3.7 seconds to predict the BLH for a

full day.

It is possible to quantify the relative importance of the predictors (Breiman et al., 1984; Hastie et al., 2009). After the training,

the time accounts for 30.3%, RCSco for 28.4%, RCScr for 26.5% and the altitude for 14.8%.175

3.2 Unsupervised learning methods

Unsupervised methods aim to find groups in data. In our case, we want to identify the group "boundary layer". The boundary

layer height is then the border of this group. Two unsupervised learning algorithms have been tested: K-means and Expectation-

Maximisation (EM).

3.2.1 K-means algorithm180

The K-means algorithm is a well proven and commonly used algorithm to make data segmentation (Jain et al., 1999; Pollard

et al., 1981). The algorithm has 3 steps:

1. Initialisation: K centroids m1, ...,mK are initialized at random places inside the feature space.

2. Attribution: distances from all points to all centroids (d(xi,mk))k∈[[1,K]],i∈[[1,N ]] are computed, and points are attributed

to the closest centroid:185

C(i) = argmink {d(xi,mk)}.

3. Update: centroids are re-defined as the average point of the cluster: mk =
∑N

i=1 xi1C(i)=k∑N
i=1 1C(i)=k

1Publicly available online following this URL: https://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html
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Figure 5. Illustration of K-means and EM algorithm on fake 2-dimensional data and 2 clusters.

Steps 2 and 3 are repeated until the centroids stop moving. It has been shown this algorithm converges to a local minimum of

the intra-cluster variance Selim and Ismail (1984). The figure 5 (left) illustrates it.

3.2.2 Expectation-Maximisation algorithm190

The Expectation-Maximisation algorithm addresses the classification when the groups are Gaussian. It assumes each group

k ∈ [[1,K]] is generated by a Gaussian distribution (µk,Σk). The algorithm estimates iteratively the parameters µ̂k, Σ̂k and

the responsibility for each Gaussian γ̂i
k (the responsibility is the probability for the point xi to be generated by the k-th

Gaussian). Points are then attributed to the group with the highest responsibility: C(i) = argmaxk(γ̂i
1, ..., γ̂

i
K) The figure 5

(right) illustrates it.195

K-means and EM algorithm are quite similar: if we assume all Gaussian have the same fixed variance and that this variance

tends to zero, EM and K-means algorithms are the same. However, K-means does not rely on the Gaussian assumption of the

groups.

3.3 KABL flowchart

The simplified flowchart of KABL is shown in figure 6. A netCDF file generated by the raw2l1 software must be provided200

as input data of the KABL code. The data, namely: the vector of altitude z (size Nz), the vector of time t (size Nt), the

range-corrected signals RCSco and RCScr (matrices of shape Nt×Nz), are extracted from this file. Such data are prepared

9

https://doi.org/10.5194/amt-2020-78
Preprint. Discussion started: 7 April 2020
c© Author(s) 2020. CC BY 4.0 License.



to fulfil machine learning algorithms requirements. For each time, n_profiles last profiles are extracted. Then the data they

contain are normalised (remove mean and divide by standard deviation) and this provides a matrix X (shape N × p) with

N =n_profiles×Nz and p= |predictors| (number of elements in the list). The matrixX is the usual input for machine learning205

algorithm: it has one line per individual observation and one column for each variable (or predictor) observed. For the need of

BLH retrieval, the preparation provides also a vector Z (sizeN ) with the altitude of each individual observation. The algorithm

(either K-means or EM, the one specified in algo) is applied on the matrix X , with the parameters n_clusters, init and n_inits.

It provides a vector of labels (size N ) which contains the cluster attribution of each individual. Finally, we look for the first

change in cluster attribution, starting from the ground. This gives us the BLH for this profile. These operations are repeated up210

to the end of the netCDF file.

Figure 6. Simplified flowchart of KABL computer code

The parameters of this computer code were in bold font in the text and they are detailed here:

– algo: the machine learning algorithm that will be applied. Possible values are

– ’gmm’, for the EM algorithm (Gaussian mixture)

– ’kmeans’, for the K-means algorithm215

– classif_score: internal score used to automatically choose the number of clusters (only used when n_clusters=’auto’).

See section 3.4 for a description of these scores.

– init: initialisation strategy for both algorithms. Three choices are available:

– ’random’: pick randomly an individual as starting point (both Kmeans and GMM)
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– ’advanced’: more sophisticated way to initialize (kmeans++ for Kmeans (Arthur and Vassilvitskii, 2007), the output220

a Kmeans pass for GMM)

– ’given’: start at explicitly passed point coordinates

– max_height: height (meter above ground level) at which profiles are cut.

– n_clusters: the number of clusters to be formed (between 2 and 6). Either explicitly given, either determined automati-

cally to optimise the score given in classif_score.225

– n_inits: number of repetition of the algorithm. The more it is, the more likely is to find the global optimum, but also the

more time it takes.

– n_profiles: number of profiles concatenated before the application of the algorithm. For example, if n_profiles=1, only

the current profile is used. If n_profiles=3, the current profile and the two previous are concatenated and put in input of

the algorithm.230

– predictors: list of variables used in the classification. They can be different at night and at day. For both, it can be chosen

among

– RCSco: copolarized range-corrected backscatter signal

– RCScr: crosspolarized range-corrected backscatter signal

3.4 Performance metrics235

Two kind of metrics have been used:

– External scores: they compare the result to a trustworthy reference. They have the advantage to give a meaningful

evaluation of the performance, but they depend widely on the quality of the reference (accuracy and availability).

– Internal scores: they tell how well the classification is done, based only on the distances between points. They have the

advantage to be always computable, but they are not linked to any physical property, hence are not always meaningful.240

As none of them is perfect, the information brought by all give a broader understanding of the algorithms performance.

3.4.1 External scores

External scores use a reference to assess the quality of the result. In our case, the reference is the BLH estimated from RS

and, when available, the BLH estimated by a human expert. If we denote by Ẑ the estimated BLH (by any of the previously

introduced algorithm) and by Zref the reference, the external scores used in this study are denoted as follow: the root-mean-245

squared error (E2, equation 1), the average gap (E1, equation 2), the Pearson’s correlation (ρ, equation 3).

E2 =
√

E
[
(Ẑ −Zref )2

]
(1)
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E1 = E
[
|Ẑ −Zref |

]
(2)

250

ρ=
cov(Ẑ,Zref )
σ(Ẑ)σ(Zref )

(3)

In these formulae, Ẑ and Zref are random variables. In the estimation of these scores, they are replaced by a vector of

sample, and the expectation and standard deviation are replaced by their usual estimators. For unsupervised algorithms, such

errors are calculated on all external information. For supervised algorithms, such errors are calculated only on the external

information that was not used to train the algorithm (the test set) which is about 20% of the total.255

3.4.2 Internal scores

The quality of a classification can be quantified by some scores only based on the labels and the distances between points. It

gives an estimation of how trustworthy an estimation is, without external input. Many scores exist, with different formulation,

different strengths and weaknesses (Desgraupes, 2013). In this study, three internal scores are used:

– Silhouette score (Rousseeuw, 1987).260

Compares average distance to its own group (a) to average distance to the neighbouring group (b): Ssil = b−a
max(a,b) .

1 is the best classification, 0 is neutral. -1 the worst.

– Calinski-Harabasz index (Caliński and Harabasz, 1974).

Compares between-cluster dispersion (B) to within-cluster dispersion (Wk): Sch = (N−K)B

(K−1)
∑K

k=1 Wk
.

+∞ is the best classification, 0 the worst.265

– Davies-Bouldin index (Davies and Bouldin, 1979).

Compares the average distance to its group center (δ̄k) to the distance between the group centers (d(µk,µk′)): Sdb =

max
k′ 6=k

(
δ̄k + δ̄k′

d(µk,µk′)

)

0 is the best classification, +∞ the worst.

These three scores have been chosen to diversify the metrics and they are all implemented in Scikit-learn (≥0.20).270

3.4.3 Other metrics

In addition to the internal and external scores, the computation time and the number of invalid values (NaN or Inf) are recorded.

Even though they don’t measure how well the program is doing, they are useful for the user.

All the metrics used to measure the performance of KABL are summarized in the table 1.
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Metric Type Description
Best/worst

value

corr External Pearson correlation coefficient 1/0

errl1 External Average absolute gap with reference 0/+∞
errl2 External Root-mean-squared gap with reference 0/+∞

s_score Internal Silhouette coefficient 1/-1

db_score Internal Davies-Bouldin index 0/+∞
ch_score Internal Calinski-Harabasz index +∞/0

chrono Other Time to perform 24 hours of BLH estimation 0/+∞

n_invalid Other
Number of invalid values (NaN or Inf) in 24 hours of

BLH estimations
0/+∞

Table 1. Table of metrics used to measure the performance of KABL algorithm

4 Results275

4.1 Sensitivity analysis of KABL algorithm

A sensitivity analysis was carried out on KABL code in order to find the "best" configuration. Various configuration of KABL

have been tested extensively on a single day: the 2nd of August 2018 at Trappes, for which we have a hand-made reference

(see figure 4-top). The more relevant configuration is then retained and tested on the two years dataset.

There are 8 parameters in the KABL code (see section 3.3 for their description). To assess the sensitivity of KABL to these280

parameters, the performance metrics (given in section 3.4) were estimated with the hand-made BLH as Zref and with KABL’s

output as Ẑ for different combination of input parameters. The tested values for the input parameters are given in table 2 and

the output metrics are given in table 1. We call a configuration a set of values for KABL parameters. Screening all the possible

values listed in table 2 would take 3240 different configurations.

To look into these 3240 configurations at a glance, we started by estimating the influence of the code parameters (listed in285

table 2) onto the different metrics (listed in table 1). Their influence is quantified by first order Sobol indices (Sobol, 2001;

Iooss and Lemaître, 2015; Rieutord, 2017), that is to say the ratio of the variance of the metric when the parameter is fixed over

the total variance of the metric. If we denote by Y the metric and by X the vector of parameters, all considered as random,

the first order Sobol index of the i-th parameter is defined by Si = V (E [Y |Xi])/V (Y ) (with V (·) denoting variance and E [·]
expectation). The higher the Sobol index, the higher the influence.290

Figure 7 shows the Sobol indices obtained on the KABL computer code. Reading the matrix line by line, one can see that

the metrics are sensitive to different parameters: silhouette score is very sensitive to n_clusters, for example, while Calinski-

Harabasz index is sensitive to n_profiles and predictors. Reading the matrix column by column, one can see that some

parameters are more influential than others (classif_score is much less than n_clusters, for example). It also highlights what
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Parameter Possible values Meaning

algo
’kmeans’ The K-means algorithm is used

’gmm’ The EM algorithm is used (Gaussian mixture model)

classif_score

’silh’ Silhouette score is used

’db’ Davies-Bouldin index is used

’ch’ Calinski-Harabasz index is used

init

’random’ Starting point are chosen randomly

’advanced’ Starting points are chosen with smarter strategy

’given’ Starting points are explicitly given

max_height
3500 Height (meter above ground level) at which profiles are

cut4500

n_clusters

2

Numbers of clusters to be formed is explicitly passed

and is always the same

3

4

5

’auto’ Automatically chosen to optimise classif_score

n_inits
10 Numbers of time the algorithm is repeated with

different initialization (when init is not ’given’)80

n_profiles

1 Only the current profile is used

2 The current profile and the previous are used

3 The current profile and the 2 previous are used

4 The current profile and the 3 previous are used

predictors

RCS0 Copolarized range-corrected signal is used all times

dRCS0nRCS12

Copolarized range-corrected signal is used during

daytime, both polarization channels are used separately

during nighttime

RCS12 Both polarization channel are used separately all times
Table 2. Table of possible values for the parameters of KABL computer code. With the dependencies between parameters, it gives 3240

different configurations.
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Figure 7. Relative influence on parameters over different metrics: on x-axis are the code’s parameters, on y-axis are the metrics, the color

shade represents the influence of the parameter over the metric.

are the main effects of changing this parameter, and hence, how to set it well. For each parameter, we will look at the metrics295

it has an influence on and decide which configuration is better.

Critical parameters are thus indicated in the figure 7 by the deepest blue columns, namely: n_clusters, algo, predictors and

init2. For each of them, we have drawn in figure 8 the distribution (violin plots) of the relevant output conditionally to the

parameter value. For example, the sub-figure 8-a has for abscissa the value of algo and for ordinate the computing time. The

3240 different configurations are divided in two parts: the ones with algo=’kmeans’ and the ones with algo=’gmm’. What we300

see in sub-figure 8-a is the smoothed histogram of the computing time for the divided populations. The other sub-figures are

constructed in the same way. Each line correspond to a critical parameter, and we represent the two most influenced outputs

according to figure 7.

Parameters values are chosen to give the most optimal value for the metrics they have influence on. Optimal values are

indicated by a yellow star on each plot. To set algo, we better look at the computing time (8-a) and the Davies-Bouldin score305

(8-b): it results that ’kmeans’ is the best choice for both (lower computing time and lower Davies-Bouldin index). To set init,

we better look at the correlation (8-c) and the computing time (8-d): ’given’ appear to be the best choice. To set n_clusters,

we better look at the RMSE (8-e): 3 clusters is the best; and the silhouette score (8-f): ’auto’ is the best. We chose to give the

priority to the RMSE because silhouette score has also very high values for 2 clusters, which is suspicious. To set predictors,

we better look at the silhouette score (8-g) and the Calinski-Harabasz score (8-h): ’RCS0’ appear to be the best choice. The310

same methodology was applied to the remaining parameters and the resulting configuration is in table 3. It will be used to

generate the results in the next section.

2Although n_profiles has a large Sobol index for Calinski-Harabasz index, this influence is not explored because it is only due the increase of ch_score

with the number of points.
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Figure 8. Distribution of the relevant outputs of the critical inputs: a) and b) show the effect of algo on computing time and Davies-Bouldin

index (respectively). c) and d) show the effect of init on correlation and computing time. e) and f) show the effect of n_clusters on RMSE

and silhouette score. g) and h) show the effect of predictors over silhouette score and Calinski-Harabasz score. For each sub-graph, the best

parameter value is highlighted by an yellow star.

16

https://doi.org/10.5194/amt-2020-78
Preprint. Discussion started: 7 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Parameter
Retained

values

algo ’kmeans’

classif_score ’db’

init ’given’

max_height 4500

n_clusters 3

n_inits 10

n_profiles 1

predictors RCS0
Table 3. Retained values for KABL computer code’s parameters after sensitivity analysis

4.2 Two years comparison

All methods (KABL, ADABL and the manufacturer’s) have been compared to radiosounding estimation for a two-year period.

4.2.1 Overall comparison315

As explained in the section 3.4, three external scores are used to assess the quality of the estimations: the RMSE, the average

gap and the correlation. As the average gap E1 and the RMSE E2 are very similar, we will show only the RMSE E2 and the

correlation ρ. In formulae 1 and 3, the reference BLH Zref is now the RS estimation, as described in section 2.2. To be able

to compute such score, BLH estimation from lidar and from RS must be collocated. At the time of each RS estimation, the

corresponding lidar estimation is the average of all available within the next 10 minutes after release (it means 1 or 2 lidar320

estimations). The following meteorological conditions have been discarded:

– Rain (rain gauge measures RR>0)

– Fog (scatterometer measures visibility <1000m)

– Low level cloud (ceilometer measures cloud base height <3000m)

– RS estimation below 120m (blind zone for lidar)325

– Nighttime (launch of 23:15 UTC)

This selection rejects a large part of the dataset, but it ensures to keep only well-defined boundary layer. Meteorological

conditions are measured by ancillary instruments presented in section 2.3. The results of the comparison are shown in figure 9.

In figure 9 we can see the results of the comparison between KABL and RS (blue bars), ADABL and RS (grey bars), manu-

facturer’s algorithm and RS (orange bar). The first column represents the RMSE E2 (the lower the better). The second column330
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Figure 9. Results of the comparison with radiosounding for 2 years, on both sites, for two metrics: RMSE and correlation. Cases at night or

with rain, fog, BLH estimated by RS under 120m or cloud under 3000m have been removed.

represents the correlation ρ (the higher the better). The first line shows the results for Brest site, the second line for Trappes

site. KABL has the largest error for both sites, the lowest correlation for Brest and the second lowest for Trappes. ADABL

has the best performance (highest correlation, lowest error) for Trappes and medium performances for Brest. Manufacturer’s

algorithm has the best performance for Brest, medium error and lowest correlation for Trappes. Overall, ADABL has better

performances than KABL, and so has the manufacturer’s. However, it is not clear which one between the manufacturer and335

ADABL is the best. Machine learning algorithms have better performances at Trappes. It may be because the boundary layer is

better defined in Trappes than in Brest (generally higher, larger aerosol load and less often perturbed by synoptic disturbances).

4.2.2 Seasonal and diurnal cycles

In order to qualify the ability of the algorithm to give a consistent estimation of BLH, we have drawn in figure 10 the seasonal

cycle (monthly average) and the diurnal cycle (six-minute average) on both sites. For each estimator, the thick line is the average340

BLH estimation and the shaded area in the inter-quartiles gap. Rain, fog and low clouds conditions have also been discarded.

For monthly average, the night values are removed too. If we take only night estimation, the seasonal cycle is reversed for RS

estimations: they are lower in summer. For other estimators, we do not see such a difference between day and night seasonal

cycle (not shown).

In Brest (fig. 10-a), estimations from the manufacturer are lower than estimations from KABL and ADABL. Estimations345

from ADABL are usually higher than estimations from KABL (excepted in July). Radiosoundings give BLH estimate rather

low in summer (June to October), rather high (higher than KABL’s) in February and March and between manufacturer’s and

KABL’s during the rest of the year. Overall, the manufacturer’s has the cycle the closest to RS, while KABL overestimates

and ADABL overestimates even more. Inter-quartiles distances (shaded areas) are large for all estimations, reflecting the wide

range of values BLH estimations can take.350
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In Trappes (fig. 10-c) also, KABL and ADABL overestimate BLH in comparison to RS, while manufacturer’s estimation is

close. The seasonal cycle is more visible than in Brest: all BLH estimations are higher in summer than in winter. The one with

the more marked cycle is KABL, while the one with the less marked cycle is RS. Inter-quartiles distances are also very large,

especially in summer, because the difference between BLH at day and BLH at night is larger.

Figures 10-b and d show the diurnal cycle: all values with the same 0.1 hour in the day (6 minutes) were averaged. The355

diurnal cycle of RS cannot be drawn because they are only launched twice a day: at 11:15 and 23:15 UTC. However, we have

drawn the average and quartile values at these hours, as a checkpoint for the other estimations. Manufacturer’s and KABL

estimations have both a quite smooth diurnal cycle, with lower BLH at night and a maximum around 15:00 UTC at Trappes

and 13:00 at Brest. KABL’s average is always higher than manufacturer’s one. ADABL’s estimation show a really different

diurnal cycle, quite similar to the conceptual image we have of the boundary layer. Indeed, it has been trained on hand-made360

BLHs which reflects this conceptual image. Thus it is no surprise ADABL reproduce it well, however it may fail to adapt to

special cases. It seems that the "time" predictor (number of second since midnight) has a large influence and is not balanced

by other predictors. This is probably due to the fact it has been trained on only two days: sunrise and sunset this particular

days and locations acquire an unbalanced importance. To balance this importance, the AdaBoost algorithm should be trained

on more days and more sites, with a representative selection of cases.365

4.3 Case study

The chosen case study is the 19th of April 2017 at Trappes. The boundary layer is clearly visible and has almost all the features

of the conceptual image. It must be different than the days used for the training of ADABL.

In figure 11 is represented the co-polarized backscatter intensity (RCSco) in shade of colors. Abscissa is the hour of the day

(UTC). Ordinate is the height (meter above ground level). The different BLH estimates are superimposed in dotted lines: blue370

is KABL, orange is the manufacturer’s algorithm, green is ADABL. At the beginning of the day, there is a thick residual layer

with some plumes inside. Both KABL and manufacturer’s include these plume into the boundary layer. Conversely, ADABL

give a very low estimation where there is no visible frontier. In the morning (from 8 to 12 UTC), they all catch the transition

reasonably well. However KABL has more irrelevant estimations (hitting what remains of the surface layer) than others, and

ADABL goes too high with no apparent reason around 12:00. During the day, ADABL sticks to the boundary layer top, the375

manufacturer’s sticks to the surface layer (quite visible) and KABL oscillates between both. The evening transition is blurry:

the surface layer slowly sends back more and more signal to finally turn the mixed layer into a residual layer. KABL locates

the transition very early (around 17:00), when it stops oscillating and sticks to the surface layer. ADABL makes the transition

more smoothly, from 19:00 to 22:00. The manufacturer’s algorithm is the latest to make the transition, around 23:00, quite

sharply. We can conclude from this case study that no algorithm perfectly catches the boundary layer. Some of the limitations380

are physical: the evening transition is ill-defined, therefore algorithms disagree. The RS of 23:15 gives an estimation which is

close to the lower boundary of lidar range. It highlights the fact that BLH below 120m are not that rare and cannot be detected

with the lidar alone, whatever the method. Some others are algorithmic: KABL has an unfortunate trend to oscillate between
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Figure 10. Seasonal (a and c) and diurnal (b and d) cycles of all BLH estimations on both sites. Thick lines represent the average, shaded

area the quartiles.

several candidates for boundary layer top (surface layer or clouds), ADABL reproduces too much the features of the days it

has been trained on (night estimation and morning transition).385

5 Discussion

This sections discusses various aspects of the results and the methodology. For the sake of readability, it has been split in many

short paragraphs.

5.1 Algorithms maturity

Both algorithms are very recent. K-means algorithms have already been used to detect BLH in previous studies (Toledo et al.,390

2014, 2017; Rieutord et al., 2014). Therefore it is the most mature method and this is visible in this paper by the level of
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Figure 11. Case study: BLH estimations by different methods the 19th of April 2017 at Trappes.

investigation which was much higher for KABL than for ADABL. Concerning boosting, it is the first time, to our knowledge,

that such algorithm is tested on this problem. Thus ADABL is a completely new algorithm and yet it outperforms KABL and

competes with the manufacturer’s. However, it raises training issues.

5.2 Real time estimation395

Although it has not been necessary for this study, all algorithms can be used in real time: as soon as the backscatter profile

is available, BLH estimations can be performed instantaneously3. However, it has been shown that KABL suffers from unde-

sirable oscillations from one profile to the next. A method to filter these oscillations will be needed, but it can also divest the

"real-time" property.

5.3 Quality of the evaluation400

Although we had made an effort to sort meteorological conditions with ancillary data, the comparison over 2 years still mixes

heterogeneous situations. More precise casting of meteorological situation (with atmospheric stability indices or large scale

insight, for example) would lead to a better understanding of algorithm strengths and weaknesses.

3Both KABL and ADABL need less than 1 second to run on a single profile
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5.4 Quality of the reference

Radiosoundings are unquestionably the reference for altitude measurements. However, the derivation of BLH from the mea-405

surements is more questionable, as several methods exists and (strongly) disagree. Moreover, they cannot be used to assess the

full diurnal cycle of the BLH. It is a clear limitation of this study: it cannot tell if the difference between ADABL’s diurnal cy-

cle and the others is an improvement of not. Therefore a very interesting prospects would be to use dedicated field experiment

with high frequency RS or other continuously running instruments as reference. For example, microwave radiometers are good

candidates, as they bring an information not based on aerosols and BLH derivation is usual from these instruments (Cimini410

et al., 2013).

5.5 Training of ADABL

ADABL shows already good performances while it has been trained on two days only. It has been shown that most of its bad

estimations come from the short length of its training period. Hence, a short term prospect would be to label more days, with

various meteorological conditions. However, its dependence on training makes it more sensitive to instrumentation settings and415

calibration. Although the effect of a calibration or an evolution of the instrumental device has not been studied, it is likely that

the training must be repeated after each calibration or change in the instrumental device. Therefore, two strategies are possible

for the training of ADABL: remove the influence of calibration before training (it would require to know the instrumental

constants for all devices) or train it to deal with differences (it would require to include as many different devices as possible

in the training set, which would become very large). In any case, the main limitation will be the need to label all the dataset (a420

priori by human expert).

5.6 KABL is "trainingless"

KABL appeared to be the less well performing algorithm in this study, but it has very interesting ways of improvement.

It does not require any training, therefore it is less dependent on instrumentation settings and calibration. As it is poorly

dependent on instrumental device, one could use it on backscatter profiles made by other instruments (ceilometers). Moreover,425

one can imagine to add other profiles than backscatter intensity: after normalisation, it is just an additional predictor for

unsupervised learning. Thus the idea of KABL can be pushed further to make instrument synergy between remote sensing

instruments. Microwave radiometers are (again) good candidate, because they have a comparable time resolution and they

bring an independent information on the thermal stratification of the boundary layer. Cloud radar have also comparable time

resolution and they bring another independent information.430

6 Conclusions

This paper has described two algorithms based on machine learning to estimate the mixing layer height from aerosols lidars

measurements. One of them is based on K-means algorithm: it is named KABL (K-means for Atmospheric Boundary Layer).
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The other is based on AdaBoost algorithm: it is named ADABL (AdaBoost for Atmospheric Boundary Layer). Both take the

same input: one day of data generated by raw2l1 routine; and give the same output: the time series of BLH for this day. KABL435

is a non-supervised algorithm. It will look for a natural separation in the basckscatter signals between the boundary layer and

the free atmosphere. ADABL is a supervised algorithm. It fits a large number of decisions trees on a labelled dataset and

aggregates them smartly to give a good prediction. KABL, ADABL and the lidar manufacturer’s algorithm (unknown) have

been tested on a 2-years dataset taken from Meteo-France operational network of lidars. The sites of Trappes and Brest have

been chosen for their different climate and the availability of regular radiosoundings, which were used as the reference. KABL440

has the largest error for both sites, the lowest correlation for Brest and the second lowest for Trappes. ADABL has the best

performance (highest correlation, lowest error) for Trappes and medium performances for Brest. Manufacturer’s algorithm has

the best performance for Brest, medium error and lowest correlation for Trappes. Overall, ADABL has better performances than

KABL, and so has the manufacturer’s algotithm. However, it is not clear which one between the manufacturer and ADABL is

better. By analysing seasonal and diurnal cycles, we can see that KABL and manufacturer’s estimations have similar behaviour,445

but KABL is always higher of about 200m. ADABL has the most marked diurnal cycle, with a look very similar to the expected

diurnal cycle, but it depends too much on the days it has been trained on. Especially, the sunset and sunrise time of these days

are over-influencing the estimations. On the case study, we can see that both algorithms perform globally well, but we have also

illustrated some algorithmic limitations: KABL has an unfortunate trend to oscillate between several candidates for boundary

layer top (surface layer or clouds), ADABL is too much constained by the days it has been trained on (night estimation and450

morning transition).

This experiment show that, despite few training and no maturity on the application of boosting on this problem, ADABL is

competing with the manufacturer’s algorithm. However, it is dependent on a trustworthy training set to get improved. Although

KABL estimations do not always match with RS ones, it has the valuable advantage to not being dependent on a training set.

Therefore it might easily be extended on backscatter profiles from other instruments (like ceilometers).455

Code availability. The source code of KABL was made to be available and usable to all users, including commercial ones. It is freely

available under an open-source license at the following link: https://github.com/ThomasRieutord/kabl It is made in Python 3.7 with regular

packages in statistics and machine learning, namely: Scikit-learn 0.20 (Pedregosa et al., 2011) and SALib 1.3.7 (Herman and Usher, 2017),

which are all open-source and under free licences. The repository contains all necessary features to run the code on raw2l1 outputs. Several

days of data are also provided as examples.460
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