
Response to reviewer comments for manuscript: “Estimating
mean molecular weight, carbon number, and OM/OC with

mid-infrared spectroscopy in organic particulate matter samples
from a monitoring network”

Reviewer 1

The paper describes a new method for obtaining important characteristics of Organic Aerosol
(OA), such as mean carbon number, molecular weight and organic-mass-to-organic-carbon (OM/OC)
ratios, using mid-infrared spectroscopy (also referred to as Fourier transform infrared spec-
troscopy FTIR). The technique is applicable to spectra acquired non-destructively from Teflon
filters used for particulate matter sampling and it is tested on a relevant set of samples (more than
800) coming from the Interagency Monitoring of PROtected Visual Environments (IMPROVE)
network in US. The approach involves multivariate statistical analyses (namely Partial Least
Squares Regression – PLS) and classification by CART (classification and regression trees) ap-
plied on the absorbance profiles and linking them to molecular structures in OM. The multivariate
statistical models are trained on calibration spectra prepared from laboratory standards and are
then applied to the ambient samples. The results of the models are consistent with previous
OM/OC values estimated using different approaches and with temporal and spatial variations
in these quantities associated with aging processes, and different source classes (anthropogenic,
biogenic, and burning sources).

This is an overall well-written paper even if in some parts (the description of statistical methods
for instance) is quite hard to digest and follow and could be improved. The method is anyway
innovative and informative and so the manuscript is in my opinion worth of publication on AMT
after minor changes which are detailed below.

We thank the reviewer for the encouraging assessment.

1. Section 2.4, P9: This section is quite difficult to follow: the steps of the analysis are not clear
enough and there are for example some abbreviations not explained (i.e., what does “RMSE”
mean?) or misleading (i.e., PLS or PLSR?) and some definitions poorly explained. All this
makes difficult to follow the statistical methodology, its steps and their meaningfulness. My
suggestion is to rephrase the Section, spending time in clarifying the methodology and its steps
to make sure the readers can follow your process.

This section was rewritten with more explanation about each step to make it easier to follow
for readers.

2. You define the partial Least Squares Regression as “PLSR”, but then you use always “PLS” as
abbreviation in the subsequent text. Please decide your favorite abbreviation and check for
consistency;

In the revised version, only “PLSR” has been used to avoid confusion.

3. “RMSE” is not defined;
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The definition of “RMSE” was added the to the text. This parameter indicates the root mean
square error of predictions of the calibration models that were developed on a part of the
calibration set (9/10 of dataset in a 10-fold cross-validation) and used to estimate the desired
parameters (molecular weight and carbon number) for the rest of the calibration set (1/10 of
dataset in a 10-fold cross-validation).

4. Readers not familiar with multivariate statistical analysis can find difficult to understand the
concept of “different number of latent variable (LVs)”: please explain better what is a latent
variable in the context of this analysis and/or the motivation for repeating the analysis with
a different number of LVs;

It was added to the text that LVs are essentially linear combinations of original wavenumbers
in the spectra matrix. It is possible to built calibration models using different number of LVs.
Models developed using too few LVs do not give a good fit for the calibration set. On the
other hand, using too many LVs results in over prediction, i.e good fit for the calibration set
(the part of dataset that is used for developing models) but poor predictions for the test set
(the part of data set dataset that is not used for model development). As a result, there is an
optimum number of LVs, which is identified by a 10-fold cross-validation in this study.

5. The unbalanced use of the word “model” (in this section but in general in all the text) makes
sometimes difficult to follow the discussion and to understand the different steps of the method-
ology: the “model” is both the statistical analysis and its results, the calibration process as well
as the complete process to determine molecular weight and number of carbon-atoms. The word
“model” in the abstract and in the Introduction refers also to thermodynamics and chemical
numerical models, making even more confusing the discussion. I suggest to use more carefully
the word “model” distinguish between the different types of “models” considered. Other words
like “regression” when you are talking of PLS or sometimes simply “analysis” can be used to
clarify the steps.

The word “model” has been used more carefully in the revised version. The statistical models
are referred to as “calibration/statistical models” and the term “numerical model” is used
whenever referring to numerical simulations to avoid confusion. Models and parametrizations
such as 2-D VBS and the carbon number-polarity grid are referred to as “conceptual models”.

6. P3, L10: consider to add the article “the” before “spectrum”.

Corrected.

7. P4, L11 and L15: There are question marks inside the brackets: add reference or remove the
symbols.

This was a Latex compilation error and has been corrected.

8. P4, L12:equation(1): Consider to move the definition of µ in a different row.

Corrected.

9. P6, L5-7: How long is the sampling time? Not clear, even if important to understand possible
advantages/disadvantages of the technique. This is especially true because some sentences
later (L13 as also shown in Figure 4) it is stated that rural samples have very low recovery. Is
this problem possibly fixed by longer sampling time in rural/remote sites? Consider to add 1-2
sentences discussing this here or in the conclusion as a suggestion to make the methodology
more robust also in non-urban sites.

The same protocol was used for the urban and rural sites: samples were collected every third
day for 24 hours, midnight to midnight (added to the revised text). Because of lower OM mass
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concentration in rural sites the recovery percentage is usually lower. As correctly mentioned
by the reviewer, this can be improved by increasing the sampling time at the expense of
decreased temporal resolution although monitoring networks are less flexible regarding the
protocols (e.g., sampling time). Another problem that remains unresolved even by increasing
the sampling time is the low organic-to-inorganic (especially ammonium, which overlaps with
the aliphatic C–H absorbances) ratio in those samples that makes the local baseline correction
in the 2800–3000 cm−1 region complicated due to extensive peak overlap.

10. Figure 4: What is the number inside the histogram’s bars representative for? I suppose it is
the number of samples of each category, but this should be described explicitly in the caption.

The numbers represent the number of samples in each category. The information was added
to the caption.

11. Section 2.2, P6, L8: Is the choice of the laboratory standards linked to natural abundance
of species and/or functional groups? Or what is the rationale in the choice of the laboratory
standards? Looking at table 1, why for example only one species of dicarboxylic acid has been
tested? Or why only Fructose and not Glucose or Galactose? Or other Sugars with different
numbers of C-atoms/molecular weight? I can understand that the choice is made also based
on availability of standards and of already existing spectroscopic data, but this should be
acknowledged better in the text in my opinion.

The standards presented in this work include several straight-chain and cyclic alkanes and
alkanols combined with the previously existing standards from Ruthenburg et al. (2014). Au-
thors attempted to include standards that are relevant to atmospheric OA (e.g., levoglucosan
and sugars which are abundant in biomass burning and alkanes in fossil fuel emission). In
addition, it was tried to include a variety of samples necessary for capturing the effects of
chain-length, physical phase, cyclic and acyclic structure, and electronegative atoms on the
aliphatic C–H profile. However, the availability of standards, their spectroscopic data, and
their suitability for atomization were deciding factors for standard selection. This limitation
has been acknowledged more clearly in the revised version.

12. P9, L28: “to the classify . . .”, please remove “the”;

Corrected.

13. P15, L12: “The is not a concern. . .”, not meaningful sentence, probably misspelled;

“The” was changed to “This”.

14. P16, L2-3: “we used all laboratory standards to produce PLS models to applying to ambient
samples”, here maybe a passive form is needed. Please, replace with “we used all laboratory
standards to produce PLS model to be applied to ambient samples”.

The sentence was changed to “all laboratory standards were used to build PLSR models that
were applied to the ambient samples”.

15. P22, L7: other inconclusive question marks. Please replace with the number of figure or
explain.

This was a Latex compilation error and has been corrected.
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Reviewer 2

Yazdani et al. obtained important characteristics (mean molecular weight, carbon number
and OM/OC) of ambient organic particles using the aliphatic C–H absorbance profile in mid-
infrared spectrum. The method applied is solid and the analysis is comprehensive with the
results clearly presented. The authors also did careful comparison with some previous studies
using other techniques. As the molecular weight, carbon number and OM/OC can be used
in recent models or parameterizations characterizing organic aerosol (OA) evolution or other
physical properties, this study is timely and I recommend the publication after the following
comments can be addressed.

We thank the reviewer for the encouraging assessment.

16. It is nice that in the introduction the authors have tried to compare the advantages and
disadvantages of several techniques determining organic aerosol compositions, e.g., GC/MS,
FT-IR and AMS. However, discussions on soft ionization methods are limited (Line 14-16).
In recent years soft ionization methods have been frequently used characterizing elemental
compositions of ambient organic aerosols (Mazzoleni et al., 2010; Romonosky et al., 2017) and
the elemental composition information has been used predicting physicochemical properties of
OA, e.g. volatility (Li et al., 2016; Lin et al., 2016; Xie et al., 2020) and phase state DeRieux
et al. (2018); Li et al. (2020). Though the soft ionization methods have shortcomings such
as ionization efficiency as the authors pointed, they give more detailed chemical composition
information of OA, i.e., the number of C, H, O, N, S, comparing with the mid-infrared spec-
troscopy used in the study. I suggest more discussions about the advantages and disadvantages
of soft ionization methods and the mid-infrared spectroscopy should be added (Nizkorodov et
al., 2011; Laskin et al., 2016).

This is a good point. The comparison was made more complete by mentioning the recent
advances and applications of soft ionization methods and also more complete list of advantages
and shortcomings of mid-infrared spectroscopy.

17. I also suggest the authors could add more discussions about the future development of the
mid-infrared spectroscopy, for example, how to characterize the characteristics of nitrogen-
and sulfur- containing compounds? The compounds used in this study to produce laboratory
standards (Table 1) contain only CH and CHO compounds. Does it mean the method devel-
oped in this study can only be applied to CH and CHO compounds? However, ambient OA
contain heteroatoms.

In this study, The mean number of oxygen atoms was estimated indirectly via their effect on
the aliphatic C–H absorbances. Authors believe that the method is also applicable to other
hetereoatoms. However, the extent of spectral changes in the aliphatic C–H region, is to some
extent, dependent on the electronegativity of the heteroatom although some features like peak
ratios, which are informative about carbon number, should not be affected by heteroatoms.
Since FGs containing other heteroatoms have specific absorbances in mid-infrared spectra
(Pavia et al., 2008), the new method might be used in combination with the conventional
methods, working based on Beer-Lambert law, to identify heteroatoms (e.g., N in amines,
amides, and organonitrates; S in organosulfates) in addition to molecular weight and carbon
number. We did not include this discussion in the main text as it is still speculative.

Other interesting and important future aspect of this study is the estimation of OA phase
state using spectroscopic features. We found that peak profiles, including peak width, are
affected by phase state of the standards. This was added to the text as a future development
of the work. In addition a limited analysis regarding phase state estimation using spectroscopic
features was added the Supplement (Sect. S3).

4



18. Figure 9: What is the criteria of the liquid and solid phase state? Did the authors measure
the viscosity of these compounds or the phase state was estimated? How about the semi-solid
phase state, e.g., oil or gel?

In this work, the standards (pure compounds) with melting point below the laboratory tem-
perature (25 ◦C) were considered liquid and vice versa. Compounds such as docosane and do-
cosanol were in the form of amorphous crystals (Arangio et al., 2019) but no semi-solid/viscous
compound existed among standards.

19. Caption of Table 2: Better clarify the first 6 principal compounds were listed in Table 1.

The information was added to the caption.

20. Line 13, Page 14: The authors described “Many spectra, particularly urban ones, are clustered
close to tetradecane for the first 4 PCs (Fig. 10)”. However, it is difficult to differentiate which
points indicate “urban particles” in Fig. 10.

The points representing urban and rural samples have been color-coded in the revised version.

21. Line 4, Page 11: should be “into” not “in to”.

Corrected.

22. Figure 4 vertical axis: should be “percentage” not “precentage”. (6) Line 13, Page 15: should
be “There” not “The is”.

Corrected.

23. Line 13, Page 15: should be “There” not “The is”.

Corrected.

24. Line 4, Page 17: there are two “of” before “the mixture”.

Corrected.
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Abstract. Organic matter (OM) is a major constituent of fine particulate matter which contributes significantly to degradation

of visibility, radiative forcing, and causes adverse health effects. However, due to its sheer compositional complexity, OM is

difficult to characterize in its entirety. Mid-infrared spectroscopy has previously proven useful in the study of OM by providing

extensive information about functional group composition with high mass recovery. Herein, we introduce a new method for

obtaining additional characteristics such as mean carbon number and molecular weight of these complex organic mixtures using5

the aliphatic C−H absorbance profile in mid-infrared spectrum. We apply this technique to spectra acquired non-destructively

from Teflon filters used for fine particulate matter quantification at selected sites of Inter-agency Monitoring of PROtected

Visual Environments (IMPROVE) network. Since carbon number and molecular weight are important characteristics used by

recent
:::::::::
conceptual models to describe evolution in OM composition, this technique can provide semi-quantitative, observational

constraints of these variables at the scale of the network. For this task, multivariate statistical models are trained on calibration10

spectra prepared from atmospherically relevant laboratory standards and are applied to ambient samples. Then, the physical

basis linking the absorbance profile of this relatively narrow region in the mid-infrared spectrum to the molecular structure

is investigated using a classification approach. The multivariate statistical models predict mean carbon number and molecular

weight that are consistent with previous values of organic-mass-to-organic-carbon (OM/OC) ratios estimated for the network

using different approaches. The results are also consistent with temporal and spatial variations in these quantities associated15

with aging processes, and different source classes (anthropogenic, biogenic, and burning sources). For instance, the
::::::::
statistical

models estimate higher mean carbon number for urban samples and smaller, more fragmented molecules for samples in which

substantial aging is anticipated.

1 Introduction

1.1 Organic aerosols and measurement methods20

Organic mass is known to be an important constituent of fine particulate matter (PM). It is estimated to constitute 20–50

% of the total fine PM at mid-latitudes and up to 90 % in tropical forests (Kanakidou et al., 2005). This organic fraction
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contributes significantly to aerosol-related phenomena such as visibility and climate change, through radiative forcing and

affecting cloud formation, and causes adverse health effects (Shiraiwa et al., 2017b; Hallquist et al., 2009). Such effects

underscore the importance of better quantification of organic fraction in particulate matter which is a complex mixture of

multitude of compounds whose compositions, concentrations, and formation mechanisms are not yet completely understood

(Turpin et al., 2000).5

The determination of organic aerosol composition involves a large range of analytical and computational techniques. Among

the widely known techniques are gas chromatography/mass spectrometry (GC/MS), mid-infrared spectroscopy (
:
– often referred

to as Fourier transform infrared spectroscopy (FT-IR) )
:
– and aerosol mass spectrometry (AMS). GC/MS provides molecular

speciation information but is limited to a small mass fraction of the organic aerosols as low as 10 % (Hallquist et al., 2009).

AMS and FT-IR, however, can be used to analyze most of the organic mass in addition to providing information about either10

chemical classes or functional groups (Hallquist et al., 2009). AMS is an on-line technique with a relatively high size and

time resolution. Nevertheless, the extensive fragmentation caused by commonly used ionization method in AMS, i.e. electron

impact (IE
::
EI) ionization, makes the identification of original species difficult (Canagaratna et al., 2007; Faber et al., 2017).

There are a few emerging
::
In

:::::
recent

:::::
years,

:
soft ionization methods such as electrospray ionization (ESI),

:::::::::::::
photoionization

::::
(PI),

and chemical ionization (CI) that
:::
have

:::::
been

::::
used

:::::::::
frequently

:::
for

::::::::
predicting

:::::::::::::::
physicochemical

::::::::
properties

::
of

::::
OA,

::::
e.g.

::::::::
volatility15

::::::::::::::::::::::::::
(Li et al., 2016; Xie et al., 2020),

::::::
phase

::::
state,

::::
and

::::::::
viscosity

:::::::::::::::::::::::::::::::::::::::::::::::::
(Li et al., 2020; DeRieux et al., 2018; Shiraiwa et al., 2017a)

::
as

::
a

:::::::
function

::
of

::::::::
measured

::::::::
elemental

::::::::::
composition

::::
and

::::::::
molecular

:::::::
weight.

:::::
These

:::::::
methods

:
minimize analyte fragmentation

:
,
::::::::
providing

:::::
better

::::::::
estimates

::
of

:::::
molar

::::
mass

:::
of

::::::::
individual

:::::::::
molecules but often have other shortcomings such as ionization efficiency, which

varies by molecule (Nozière et al., 2015; Iyer et al., 2016; Hermans et al., 2017; Lopez-Hilfiker et al., 2019).

In mid-infrared spectroscopy, the vibrational modes of organic molecules, whose frequencies fall in the range of mid-20

infrared electromagnetic radiation, are excited. The advantages of mid-infrared spectroscopy over other common techniques

of quantifying OM are providing direct information on functional groups,
:::::
while minimizing sample alteration during the

analysis , and having low sampling and analytical cost (Ruthenburg et al., 2014).
::::::::
However,

:::
this

:::::::
method

::::
only

::::::::
provides

::::
bulk

:::
FG

::::::::::
information

:::
and

:::
has

:::::::::::
uncertainties

:::::::::
regarding

:::
the

:::::::::
absorption

:::::::::
coefficient

:::
for

:::::
group

::::::::::
frequencies

::::::::
(although

::::
this

:::::::::
coefficient

::
is

::::::
roughly

::::::
similar

::::::
across

:::::::
different

::::::::::
compounds;

::::::::::::
Hastings et al.

:
,
::::
1952

::
).

::::::::
Moreover,

::::::::::::
interpretation

::
of

::::::::::
mid-infrared

::::::::
spectrum

::
is

:::::
often25

::::::::::
complicated

:::
due

:::
to

::::::::
presence

::
of

::::::::::
overlapping

::::::
peaks.

:
In previous studies, different statistical methods were used to connect

mid-infrared absorbances to molar abundance of different functional groups, from which OM, OC (organic carbon), and the

OM/OC ratio were calculated with minimal assumptions (Coury and Dillner, 2008; Ruthenburg et al., 2014; Takahama et al.,

2016; Boris et al., 2019). These studies showed good agreement between FT-IR measurements and other methods of OM

characterization. For example, Boris et al. (2019) showed that OC measured by FT-IR is around 80 % of OC from thermal30

optical reflectance (TOR) measurements.

In addition to the abundance of organic functional groups, mid-infrared spectroscopy is informative about the environment

in which organic bonds are vibrating (e.g., degree of hydrogen bonding; Pavia et al. (2008)
:::::::::
Pavia et al.

:
,
::::
2008), therefore can be

used to extract more detailed structural information about OM. This ability of mid-infrared spectroscopy has been investigated

to a lesser extent in the context of atmospheric OM. In this work, we used this aspect to investigate two important structural35
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parameters in OM, i.e. mean molecular weight, and mean carbon number. These two parameters are important characteristics

used by recent models
:::::::::
conceptual

::::::
models

:::
and

::::::::::::::
parametrizations to describe evolution in atmospheric OM, in terms of its volatil-

ity and phase state (Shiraiwa et al., 2017a; Pankow and Barsanti, 2009; Kroll et al., 2011; Donahue et al., 2011). Moreover,

inspecting the spatial and temporal variations of these parameters helps us understand the processes involved in aerosol aging,

especially fragmentation (Murphy et al., 2012), and can be useful for identification of the dominant sources (Price et al., 2017;5

Gentner et al., 2012).

In this paper, the mean molecular weight, carbon number, and OM/OC ratio of ambient aerosols, which were collected

on polytetrfluoroethylene
:::::::::::::::::::
polytetrafluoroethylene

:
(PTFE) filters at selected IMPROVE sites, were estimated using FT-IR

::::::::::
spectroscopy. First, the aliphatic C−H region (2800–3000 cm−1) was extracted from the baseline-corrected spectra of lab-

oratory standards. The C – H spectral bands were then normalized to eliminate abundance information. Then, partial least10

squares regression (PLSR) was used to develop models on the high-dimensional and collinear spectral data. Thereafter, the

derived
::::::::
statistical models were used to estimate the mean properties of ambient samples. Finally, a classification algorithm was

applied to the
:::::
PLSR

:
model estimates to provide a better understanding of how the models

::::
they function.

1.2 Aliphatic C – H absorption and the molecular structure

We have used the aliphatic C – H region (2800–3000 cm−1) in mid-infrared spectrum to build
::::::::
statistical models for estimating15

molecular weight and carbon number. This section describes the connection of that region of
::
the

:
spectrum with the molecular

structure of organic aerosols and compares the approach used in this work with previous studies.

Recent studies using FT-IR and AMS have shown that the aliphatic C – H is the most abundant functional group in organic

aerosols (Russell et al., 2009; Ruthenburg et al., 2014; Zhang et al., 2007) highlighting its importance in OM. This functional

group also exhibits characteristics of “good group” frequencies in mid-infrared stretch region (Mayo et al., 2004). Since the20

hydrogen atom is much lighter than the carbon atom, most of the displacement during oscillation is related to the hydrogen;
:
,

thereby the carbon atom and consequently its connection to the rest of the molecule is involved to a much lesser extent in the

stretch (Mayo et al., 2004). This phenomenon results in a fairly consistent profile for C – H absorption band among different

molecules containing this functional group and makes it possible to reduce the dimensionality of spectrum to few independent

variables describing the band profile (advantageous when constructing
::::::::
statistical models using a limited number of samples).25

The light hydrogen atom also causes the aliphatic C – H functional group to absorb at a relatively high stretch frequency, which

makes
::::::
making

:
it isolated from most of other absorbing bonds (Mayo et al., 2004) except the broad carboxylic acid O – H

stretchthat ,
::::::

which absorbs in the 2400–3400 cm−1 range and the ammonium N – H stretch (Pavia et al., 2008). These broad

absorption profiles can be separated from the narrow aliphatic C – H bands by baseline correction. The unsaturated and aromatic

C – H bonds, which absorb at a slightly higher frequency than aliphatic C – H, were not considered in this work. These bonds30

are not prevalent in atmospheric samples (Russell et al., 2011; Decesari et al., 2000) and their absorption usually falls below

the FT-IR detection limit (Russell L. M. et al., 2009)
:::::::::::::::::
(Russell et al., 2009). The absorption bands attributed to unsaturated and

aromatic C – H were not visible in mid-infrared spectra of atmospheric samples of this study.
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The aliphatic C – H (sp3-hybridized) stretching band in mid-infrared spectrum is composed of four absorption peaks (two

doublets) that are attributed to CH2 (methylene) and CH3 (methyl) symmetric and asymmetric stretches (Mayo et al., 2004).

Methine (tertiary CH) also absorbs in this region, but has a very weak absorption compared to methyl and methylene (Pavia

et al., 2008). The profile of these four peaks (characterized by peak frequency, intensity, and width) is affected by the structure

of the molecule, inter- and intra-molecular interactions that change electron distribution, and the equilibrium geometry of the5

molecule (Atkins et al., 2017; ?)
:::::::::::::::::::::::::::
(Atkins et al., 2017; Kelly, 2013) as discussed below.

Group vibrational modes in a molecule are not completely decoupled from the rest of the molecule (McHale, 2017). Equation

1
::
(1)

:
describes a 2-body harmonic oscillator model of molecular vibration (in a classical point of view), for which ν̄ is the

fundamental wavenumber at which the bond vibrates, c is the speed of light, K is the spring constant of the chemical bond,

mH is mass of hydrogen atom and mM is the mass of the rest of the molecule (assuming the rest of the molecule is stiff). The10

reduced mass of the system, µ, increases with increasing the molecular weight (Eq. (1)
:
1), resulting in a decreased vibrational

frequency (wavenumber). There are also effects that change the vibrational frequency through changing the bond strength. For

example, electron-withdrawing effect of neighboring polar groups and ring structure strain elevate the absorption frequency

of the oscillator by increasing the equivalent spring constant (Pavia et al., 2008). The Bohlmann effect, in which electron

density is transferred from the lone pair of a neighboring nitrogen or oxygen into the C – H antibonding orbital, decreases15

the frequency by weakening the C – H bond (Lii et al., 2004). Hydrogen-bonding interactions and phase state can also affect

absorption frequency and intensity of bands corresponding to vibrational modes (Fornaro et al., 2015; Kelly, 2013).

ν =
1

2πc

√
K

µ
,where µ=

mHmM

mH +mM
.
ν̄ =

1

2πc

√
K

µ
,

where µ=
mHmM

mH +mM
.

(1)

The environment in which the molecules vibrate can effect the absorption peak width through different homogeneous and

inhomogeneous broadening mechanisms. Slightly different interaction of molecules in liquids and amorphous solids (to a20

lesser extent in crystals) is the basis of inhomogeneous broadening (Kelly, 2013). This phenomenon determines the change in

peak width due to phase state by changing the level of interaction between the molecules. Hydrogen bonding can also cause

inhomogeneous broadening due to enhanced anharmonicity (Thomas et al., 2013). The weak hydrogen bond,
:
which can exists

for aliphatic C – H functional group (Desiraju and Steiner, 2001)
:
, broadens its absorption band slightly and shifts its absorption

frequency.25

The peak height ratios in aliphatic C – H region are also indicators of some structural features of the molecule. For example,

the ratio of peak heights of asymmetric CH3 stretching to asymmetric CH2 stretching shows the relative abundance of these

groups in the sample (Orthous-Daunay et al., 2013). For straight-chain alkanes and some polymers, this ratio is directly related

to the chain length and can be used to estimate the carbon number of a molecule (Lipp, 1986; Mayo et al., 2004). This ratio

as well as the tertiary C – H absorption are informative about the degree of branching in the molecule. The ratio of symmetric30

to asymmetric CH2 peak heights is an
:::
the indicator of rotational and conformational order in a molecule, and

:
is
:

related to

chain length and phase state (Hähner et al., 2005; Corsetti et al., 2017; Orendorff et al., 2002). Price et al. (2017) compared
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Figure 1. Normalized aliphatic C – H spectra of the laboratory standards (left) and several atmospheric samples (right). This figure shows

variation in absorbance profile among the standards and atmospheric samples.

that ratio between mid-infrared spectra of emissions under different engine conditions for ultra-low sulfur diesel (ULSD)

and hydrogenation derived renewable diesel (HDRD) fuels and observed a slightly greater ratio for the ULSD emissions and

suggested this was due to the differences in the carbon number distribution of the two fuel emissions. In addition, some

other vibrational bands can affect this region through forming overtones and combination bands (Thomas, 2017). Overall, the

absorbance profile in the aliphatic C – H region contains direct and indirect information about carbon number and molecular5

weight and shows significant variation in laboratory standards and atmospheric samples (Fig. 1) related to their molecular

structure. In this work, we adopt a new approach for using mid-infrared spectra to characterize OM. We use variation in
:::
the

::::::::
variations

::
in

:::
the

:
aliphatic C – H region to estimate mean carbon number and mean molecular weight of atmospheric samples.

In previous studies on the mid-infrared spectrum of atmospheric aerosols, functional group molar abundance in laboratory

standards or total OC from other methods such as TOR were considered as the response variable, while non-normalized10

absorbances were considered as independent variables (Takahama et al., 2013; Ruthenburg et al., 2014; Reggente et al., 2016).

In this manner, linear models resembling the Bougher-Lambert-Beer law were developed. In this study, however, molecular

weight and carbon number
::::::::
statistical models were developed using chemical formulas of the laboratory standards (no molar

abundance information) and their normalized aliphatic C−H absorbances as independent variables. The current approach

extracts detailed information from the mid-infrared spectrum complementary to previous approaches (Fig. 2).15

2 Methods

We will describe the atmospheric samples as well as the laboratory standards for the calibration and test set in Sect. 2.1 and

2.2. Thereafter, the methodology for data analysis and interpretation will be discussed in Sect. 2.3, 2.4, and 2.5.

2.1 IMPROVE network monitoring sites (sampling and analysis)

Particulate matter with diameter less than 2.5 µm (PM2.5) was collected on PTFE filters (25 mm diameter Teflo® membrane,20

Pall Corporation) every third day
:::
for

::
24

::::::
hours,

::::::::
midnight

::
to
:::::::::

midnight,
:
at nominal flow rate of 22.8 Lmin−1 during 2011

5
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Figure 2. Diagram showing the relation between spectral features and molecular/physical properties. The way previous models (for

example Ruthenburg et al. (2014); Takahama et al. (2013))
::::::::
approaches

:::::::::::::::::::::::::::::::::::::::
(e.g. Ruthenburg et al., 2014; Takahama et al., 2013) and the current

model
:::::::
approach use

:::::::::
mid-infrared spectrum to estimate different parameters is shown in blue and red boxes

:
, respectively. Highlighted molec-

ular properties can only be estimated using the current approach.

and 2013 at selected sites in the Inter-agency Monitoring of PROtected Visual Environments (IMPROVE) network (http:

//vista.cira.colostate.edu/improve/). There are, in total, 814 samples collected at 7 sites in the USA in year 2011 and 2161

samples collected at 16 different sites in the USA 2013 (see Fig. 3). 1 out 7 sites in 2011 and 4 out of 16 of sites in 2013 are urban

sites and the rest are rural. FT-IR analysis was performed on the PTFE filters using a Bruker-Tensor 27 FT-IR
:::::::::::
spectrometer

equipped with a liquid nitrogen-cooled, wideband mercury-cadmium-telluride (MCT) detector, and
::
at a resolution of 4 cm−15

(data intervals of 1.93 cm−1; Nyquist sampling). For samples with low molar abundance of organic compounds, especially

aliphatic C – H, baseline correction could not be done properly in the aliphatic C – H region resulting in irregular and negative

absorbance profile
::::::
profiles. These samples were omitted from further analysis and only 798 were analyzed in this work. As can

be seen from Fig. 4, data recovery is higher in urban sites than rural sites due to having a usually more prominent aliphatic

C – H peak. Due to this under-sampling, generalizing the results of this work to the whole of rural samples should be done with10

caution.

2.2 Laboratory standards (sampling and analysis)

Compounds containing relevant functional groups to atmospheric OM such as aliphatic C−H, alcohol and acid O−H, carbonyl

C –– O, and with different structures (straight-chain and cyclic) and various chain lengths were used to produce laboratory

standards (Table 1). Five of the compounds used to make laboratory standards
:::
All

::::::::::
compounds

::::
used

:::
for

:::::::
creating

:::
the

::::::::
standards15

::::::::
contained

:::::::
aliphatic

:::::
C – H,

::::::
which

:
is
:::
the

:::::
main

::::
focus

::
of
::::
this

:::::
study.

::::
Five

::
of

::::
these

::::::::::
compounds were alkanes, just containing aliphatic

C – H. Three were straight-chain alcohols containing alcohol O – H as well. One was cyclic alcohol and one was a cyclic ketone

6
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Figure 3. The location of IMPROVE sites used for this work (the USA and Alaska); the year at which samples are taken is differentiated by

color and the type of the site by point shape.
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Figure 4. Percentage of the samples which were recovered from each category (sample type and season) after baseline correction.
:::
The

:::::
number

::
of
:::::::
samples

::
in

:::
each

:::::::
category

::
is

:::::
shown

::
in

:::
red.

having carbonyl C –– O; two were cyclic (not aromatic) sugar derivatives containing several O – H groups. The calibration set

also contained an ester, a ketone and one dicaboxcylic acid. All compounds used for creating the standards contained aliphatic

C – H which is the main focus of this study
::
In

:::::::
addition

::
to

::::::::
relevance

::
to
:::::::::::

atmospheric
::::
OM,

:::::
these

::::::::
standards

:::::
were

:::::::
selected

:::::
based

::
on

:::
the

::::::::::
availability

::
of

::::::::::::
spectroscopic

::::
data

:::
and

::::
their

:::::::::
suitability

:::
for

::::::::::
atomization. These compounds had comparable absorption

coefficients for aliphatic C – H and the effect of other functional groups
:
,
:::::::::::
heteroatoms, and the molecular structure was analyzed5

indirectly via the change in
:::
the aliphatic C – H absorbance profile. Some of the laboratory standards and their resulting spectra

were taken from Ruthenburg et al. (2014). The rest were created (using a similar protocol) from methanolic solutions with a

concentration of 0.1 g L−1 and analyzed by FT-IR as follows. Atomized aerosols of the desired compounds were first generated

using
::
by a TSI Model 3076 Aerosol Generator using the methanolic solutions. Then these particles were conducted by the flow

system towards a 47 mm PTFE filter (Pall
:::::
Teflo®

::::::::::
membrane,

::::
Pall

::::::::::
Corporation), where they were collected. The flow system10

was composed of a silica gel dryer (for drying the aerosols before collection), a sharp-cut-off 1 µm cyclone and a diluter

7



Table 1. Chemicals used in the calibration set to analyze the effect of different physical/chemical properties of organic molecules on aliphatic

C – H absorbance profile.

Compound Name Formula Class Phase State at 25◦C Molecular Weight (gmol−1) OM/OC

Tetradecane C14H30 alkane liquid 198.4 1.18

Hexadecane C16H34 alkane liquid 226.4 1.18

Heneicosane C21H44 alkane solid 296.6 1.18

Docosane C22H46 alkane solid 310.6 1.18

Triacontane C30H62 alkane solid 422.8 1.17

1-Pentadecanol C15H32O alkanol solid 228.4 1.27

1-Eicosanol C20H42O alkanol solid 298.6 1.24

1-Docosanol C22H46O alkanol solid 326.6 1.24

Cyclohexanol C6H12O cyclic alcohol liquid 100.2 1.39

Cyclohexanone C6H10O cyclic ketone liquid 98.1 1.36

Fructose C6H12O6 Sugars and their derivatives solid 180.2 2.50

Levoglucosan C6H12O5 Sugars and their derivatives solid 162.1 2.25

Suberic acid C8H14O4 dicarboxcylic acid solid 174.2 1.81

Arachdyl dodecanoate C32H64O2 ester solid 480.9 1.25

12-Tricosanone C23H46O ketone solid 338.7 1.23

system (which facilitated the adjustment of aerosol concentration in the line). The pressure drop needed for the flow through

the filter was provided by a rotary vacuum pump (Gast 0523-101Q-G588NDX) and the filter flow was controlled by a gas-

flow controller (Alicat MCR-100-SLPM-D/5M). The mass on the filters ranged from few micro-grams to tens of micro-grams.

After collecting the aerosols on the filters, FT-IR analysis was performed on the PTFE filters using a Bruker-Vertex 80 FT-IR

instrument
::::::::::
spectrometer

:
equipped with a deuterated lanthanum α alanine doped triglycine sulfate (DLaTGS) detector, with the5

same spectral resolution as the spectra of the ambient samples.

In total, 168 laboratory samples with different composition and molar abundance (absorption amplitude ranging from 0.001

to 2 before normalization) were used from which a subset of 43 samples was kept as a test set and the rest were used as

the calibration set. The test set was used solely for the purpose of evaluation of the
:::::::
statistical

:
models developed using the

calibration set. However, the final
::::::::
statistical models, which were applied to ambient samples, were developed using all 16810

laboratory standards to increase the model precision.

2.3 Baseline correction and normalization

The baseline removal is often a useful step in mid-infrared spectroscopy on PTFE filters, like in other methods of spectroscopy.

The baseline arises from light scattering by the filter membrane (Mcclenny et al., 1985) and particle
:::::::
particles

::::::::
collected

:::
on

::
the

:::::
filter as well as electronic transitions of some carbonaceous materials (Russo et al., 2014; Parks et al., 2019). For baseline15

8



removal, we used the smoothing spline method on 1500–4000 cm−1 region, where PTFE filter does not absorb, with parameter

selection criteria similar to the approach taken by Kuzmiakova et al. (2016). Briefly, a cubic smoothing spline was fitted to the

spectrum , and then was subtracted from the raw spectrum to obtain the pure contribution of functional groups at each wave-

length. The analyte region (the aliphatic C – H absorption region, 2800–3000 cm−1) was manually excluded from the baseline

by setting the weights in this region to zero in the the smoothing spline objective function (refer to Kuzmiakova et al. (2016)5

::::::::::::::
Kuzmiakova et al.

:
,
:::::
2016). The rest of the spectrum between 1500–4000 cm−1 was included in the baseline by setting the

weights one. After baseline correction, the aliphatic C – H absorbances were scaled between zero and one (Fig. 1) for all

spectra so that the absorbance profiles were comparable regardless of the absorbance intensity (functional group abundance).

2.4 Building the calibration models

We
::
In

::::
order

::
to

:::::::
estimate

:::::::::
molecular

:::::
weight

::::
and

::::::
carbon

::::::
number

::::
from

:::
the

:::::::::
nomralized

::::::::
aliphatic

::::
C – H

:::::::::::
absorbances

::
in

::
the

:::::::::::
mid-infrared10

::::::
spectra,

:::
we seek the solution of the following linear equation for the calibration models:

y = Xb+ e, (2)

where X is the normalized spectra matrix ,
:::
(the

::::::::
aliphatic

:::::
C – H

:::::::::
absorption

:::::::
region,

:::::::::
2800–3000

:::::::
cm−1),

:
y is

:::
the vector of

response variable (molecular weight or carbon number) and e is a vector of residuals (y and X are assumed to be centered).

In spectroscopic applications, due to indeterminacy (more independent variables than the number of samples) and collinearity15

(inter-correlation between independent variable) the ordinary least squares (OLS) method is not applicable or is not robust

unless regularized. Among the common methods developed for treating such a data structure, we chose univariate (y is a

vector, i.e. has one variable) partial least squares regression (PLSR) for this work (Wold et al., 1983). Univariate PLSR projects

X onto P basis with orthogonal scores T and residual matrix E such that,
:::
(Eq.

::
3)

::::
such

::::
that the covariance between each score

column and y is maximized (in each step of deflation).
:::::::::
Thereafter,

:::
the

:::::::
response

:::::::
variable

::
y
::

is
:::::::::

regressed
::::::
linearly

:::::::
against

:::
the20

:::::
scores

::::
(Eq.

:::
4). In Eq. (4), c is the regression coefficient of y as a function of scores (T) and f is the vector of residuals.

X = TP>+E, (3)

y = Tc+f . (4)

::::::::::
Determining

:::
the

::::::::
optimum

::::::
number

::
of

:::::
latent

:::::::
variable

:::::
(LVs),

::::::
which

:::
are

:::::
linear

:::::::::::
combinations

::
of

:::::::
original

::::::::::
wavenumber

::
in

::::
this

:::::
study,

:
is
:::
an

:::::::
essential

::::
step

:::
for

:::::::::
developing

:::::::::
calibration

:::::::
models

::::
with

::::::::
predictive

:::::::::
capability.

:
After solving the PLS problem for candidate25

:::::
PLSR

:::::::
problem

:::
for

::::::::::
calibration models with different number of latent variable (LVs)

:::
LVs, we ran a repeated 10-fold cross

validation on candidate models to indicate the number of latent variables giving the minimum RMSE
::
the

:::::::::
calibration

:::::::
models

:::
and

::::::::
calculated

:::
the

::::
root

:::::
mean

::::::
square

::::
error

:::::::
(RMSE)

::
of

::::::::::
predictions

:
(for the calibration set

:
)
::
for

:::::
each

:::::
model. Thereafter, a simpler

model (with fewer LVs)
::
the

::::::
model

:
whose RMSE was no more than

:::::
within

:
one standard error above the

::::
from

:::
the

:::::::::
calibration

model with minimum RMSE
:::
and

::::
had

:::::
fewer

::::
LVs

::::
(i.e.,

::
a

::::::
simpler

::::::
model)

:
was chosen (Hastie et al., 2009). The

:::::
Based

:::
on

:::
the30

::::::::::::::
above-mentioned

:::::::::
procedure,

:::
the

:
optimal number of LVs for molecular weight and carbon number models was

:::::::::
calibration

::::::
models

:::
was

::::::
found

::
to

::
be 19 and 20

:
, respectively.

9



2.5 Interpreting the
:::::::::
calibration models using the basic

:::::::
spectral features

Although the
:::::
PLSR

:
models have considerably fewer LVs (approximately 20) than the original wavenumbers (105), the lack

of physical interpretability and remaining number of LVs still hinders physical interpretation of the models
:::
their

::::::::
physical

:::::::::::
interpretation. Therefore, we first analyze the basic (physically interpretable) features of the mid-infrared spectrum -peak

:
–

::::
peak

frequencies, widths and ratios in aliphatic C – H region-
:::
the

:::::::
aliphatic

:::::
C – H

:::::
region

::
– for the calibration set and their relation with5

carbon number and molecular weight (Sect. 3.1). Spatial and temporal variation of these patterns in
::
the

:
atmospheric samples

are also analyzed and related to similar patterns in
::
the

:
laboratory standards.

The four basic features of the ambient sample spectra were used to build a classification and regression trees (CART)

(Breiman et al., 1983) to approximate the PLS
:::::
PLSR predictions of mean molecular weight and carbon number and

::
to better

understand their connection with the underlying spectral absorption characteristics. In this approach, binary decision trees are10

generated to the classify the PLS
::::::
classify

:::
the

:::::
PLSR

:
estimates based on partitioned domains of their basic spectral features.

The CART algorithm expands the trees in the order of decreasing explanatory power until certain stopping conditions (
::::
e.g.,

minimum number of observations in terminal nodes or minimum improvement of explanatory power at each step of splitting)

are satisfied.

3 Results and discussions15

First, the basic features of
:::
the

:
aliphatic C – H profile are discussed in atmospheric and

::
the

:::::::::::
atmospheric

::::
and

:::
the

:
laboratory

samples followed by a similarity check between the two (Sect. 3.1). Then, development of quantitative
:::::::::
calibration models for

predicting molecular weight and carbon is described, followed by investigation of their performance in the calibration and test

(Sect. 3.2). Thereafter, estimates of the models
::
the

::::::
model

::::::::
estimates are discussed for atmospheric samples and compared with

::
to the results reported in literature (Sect. 3.3). Finally, the basic features introduced earlier are used to classify the results of the20

sophisticated
::::::
(PLSR)

:
models in order to obtain a better understanding of the way the models

:::
they function (Sect. 3.4).

3.1 Basic features

Basic features of the spectrum in
::
the

:
aliphatic C – H region were calculated for atmospheric samples and laboratory standards

to study their temporal and spatial variation and their relation with molecular properties such as molecular weight, carbon

number, and the OM/OC ratio. These variables,
:
although few, can give a good estimate of the absorbance profile and make it25

more interpretable.

Figure 5 shows the convention of spectral features in the aliphatic C – H (2800–3000 cm−1) region used in this study. Apart

from methine group (tertiary C – H), which has a very weak absorption (Pavia et al., 2008), there are two doublets in this

region corresponding to CH2 and CH3 symmetric and asymmetric stretching vibrations. The CH3 symmetric peak is typically

suppressed by the surrounding peaks and is not completely distinguishable. Among the remaining peaks, the symmetric CH230

(ν̃s CH2) wavenumber is denoted by ν̃1. Likewise, the asymmetric CH2 (ν̃as CH2) wavenumber is denoted by ν̃2 and the

10
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Figure 5. A sample C – H spectrum showing the convention of peak parameters used in this study. The symmetric CH2 (ν̃s CH2) wavenumber

is denoted by ν̃1. The asymmetric CH2 (ν̃as CH2) wavenumber is denoted by ν̃2 and the asymmetric CH3 (ν̃as CH3) wavenumber by ν̃3.

Absorbance and width of the ith peak are also denoted by Ai and wi, respectively.

asymmetric CH3 (ν̃as CH3) wavenumber by ν̃3. Absorbance and peak width of the ith peak are also denoted by Ai and wi,

respectively.

In the next chapters, the variation of the mentioned spectral features are studied in
::
the

:
laboratory standards and atmospheric

samples. For this purpose,
::
the

:
atmospheric samples are separated in to

:::
into

:
urban, rural and burning samples

:::::::::
categories. The

burning category constitutes 95 samples of urban or rural sites and is taken from clusters 9a, 9b and 10 of Bürki et al. (2019)5

:::::::::::::::
Bürki et al. (2020) based on their spectral similarity. These samples are believed to be influenced by residential wood burning

or wildfires since they were usually taken
:::::::
collected

:
during a known fire period (Rimfire

::::
Rim

:::
Fire

:
in California in 2013) or

::
in

:::::::
Phoenix,

::::
AZ, during winter months when residential wood burning typically occurs

:::::::::::::::
(Pope et al., 2017).

3.1.1 Asymmetric CH2 peak wavenumber (ν̃2)

We calculated the second peak wavenumber (ν̃2) for
:::
the laboratory standards and atmospheric samples using a simple peak10

finding algorithm based on the first and second numerical derivatives of the spectrum. Generally, for laboratory standardsthe

frequency
::
For

:::
the

:::::::::
laboratory

:::::::::
standards,

:::
the

:::::::::
frequency

::::::::
generally

:
decreases with increasing molecular weight until it reaches

an asymptotic state after 200 g mol−1 (Fig. 6). The curve in Fig. 6 shows the theoretical peak frequency of the aliphatic C – H

when the bond spring constant is assumed to be 103 Nm−1 (Pavia et al., 2008), and the reduced mass is calculated based on

a ball-and-string assumption composed of the hydrogen atom (first “ball”) and the rest of molecule (second “ball”). The only15

effect considered in this model is the variation of the reduced mass of the oscillator. The fact that the less-oxygenated laboratory

samples follow the theoretical line closely implies that the value of the spring constant considered here is, on average, a good

approximation. However, especially for highly oxygenated (high OM/OC ratio) molecules and those with in liquid phase

11



(which have
:
a
:
lower molecular weight), the absorption frequency deviates from the theoretical line (higher frequency) due to

higher levels of inter-molecular interaction.
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Figure 6. Scatter plot showing the variation of the second peak wavenumber (ν̃2) with molecular weight (MW) in the calibration set, affected

by the OM/OC ratio and phase state. The black line shows the theoretical frequency with a spring constant equal to 103 Nm−1 for all C – H

bonds. The OM/OC ratio and phase state are shown for the samples. The error bars show uncertainty in calculated peak frequency due to

FT-IR scan resolution.

Regarding the atmospheric samples, most of categories have a peak density in 2915–2925 cm−1, close to that of straight-

chain molecules of the laboratory standards (Fig. 7, first row). Urban samples have a wider shoulder on the right side (around

2925 cm−1) in summer when the samples are expected to be more aged. Other variations are believed to be insignificant5

considering the scan resolution of the FT-IR instrument.

3.1.2 Peak height ratios (Ai/A2)

Analyzing the laboratory standards shows that a relatively linear but scattered relation exists between carbon number and

the A1/A2 ratio in the calibration set (Fig. 8, upper panel). Suberic acid,
:
that is the only dicarboxylic acid in the laboratory

standardsthat
:
, does not follow the general trend, probably due to strong dimerization. As mentioned in Sect. 1.2, the A1/A210

ratio compares symmetric and asymmetric absorbance of methylene functional group and its connection with carbon number

has already been highlighted in FT-IR analysis of some types of diesel fuels (Price et al., 2017). Increase in A1/A2 is also

observed between solid and liquids, consistent with the work of Corsetti et al. (2017). We also observe a nonlinear relation

between the A3/A2 ratio and carbon number with different levels based on branching and terminal functionalization (Fig. 8,

lower panel). This ratio is equal to zero for molecules lacking methyl group such as simple cyclic molecules while increasing15

as the number of branches containing terminal methyl increases.

Results show a clear separation in atmospheric samples regarding the sample type and season for both A1/A2 and A3/A2

ratios (Fig. 7, second and third row). The samples influenced by burning usually have the lowest A1/A2 ratio (Fig. 7, second

row). This observation is consistent with the presence of molecules with longer chains, as observed for laboratory samples.

Bürki et al. (2019) showed that
::::::::::::::::
Bürki et al. (2020)

::::::
showed

:::
that

:::
the

:
urban samples (in the same dataset) have their highest av-20
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Figure 7. Kernel density estimate of second peak wavenumber (ν̃2), the ratio of peak heights of symmetric CH2 to asymmetric CH2 stretching

(A1/A2), the ratio of peak heights of asymmetric CH3 to asymmetric CH2 stretching (A3/A2), and
:::
the second peak width (w2) of

::
the

:
aliphatic

C – H band in mid-infrared spectra of
::
the

:
atmospheric samples segregated based on sample type and season.

erage OM/OC ratio in summer which is concurrent with the their highest A1/A2 ratio which suggests shorter chain length.

The highest A1/A2 ratio for rural samples is observed in spring when the aerosols are highly oxidized (Bürki et al., 2019)

:::::::::::::::
(Bürki et al., 2020). This suggests that aged aerosols have lower carbon number probably due to the fragmentation process.

The measured A1/A2 ratio for majority of the atmospheric samples ranges between 0.6 to 0.8, which is consistent with the

value for laboratory standards. Results also show that the A3/A2 ratio is higher in rural samples compared to urban samples5

(with the exception of spring) suggesting a higher CH3 to CH2 abundance in those samples. This observation can be due to

lower carbon number or higher number branches containing CH3. Like the A1/A2 ratio, we observe fewer samples with low

A3/A2 ratios in urban sites in summertime. The A3/A2 ratio falls between 0.1–0.4 for majority of
:::
the atmospheric samples,
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Figure 8. Scatter plots showing the relation between carbon number (nC) and the ratio of peak heights of symmetric CH2 to asymmetric CH2

stretching (A1/A2, upper panel), and the ratio of peak heights of asymmetric CH3 stretching to asymmetric CH2 stretching (A3/A2, lower

panel), averaged for each substance in laboratory standards. Error bars show ± one standards error from the average and dashed lines are

visual guides for the trends and levels.

which is consistent with the value for laboratory standards. It is worth noting that peaks in atmospheric samples are more over-

lapped than laboratory standards, which makes calculation of peak ratios based on extrema of the original spectra imprecise.

In order to obtain peak ratios precisely
::
As

::
a
:::::
result, a peak fitting method based on Gaussian peaks was applied to atmospheric

samples
:
in
:::::

order
::
to

::::::
obtain

:::
the

::::
peak

:::::
ratios

:::::
more

:::::::
precisely.

3.1.3 Peak width (wi)5

We observe a clear correlation between w2 and the OM/OC ratio in the calibration set when solid and liquid phases are consid-

ered separately .
::::
(Fig.

::
9).

:
As mentioned in Sect. 1.2, hydrogen bonding increases the peak width, and the extent of hydrogen

bonding is usually a good indicator of the OM/OC ratio. This is because hydroxyl, hydroperoxyl, and carboxyl groupsthat
:
,

:::::
which

:
form hydrogen bonds,

:
are among the most effective functional groups in SOA formation due to the significant vapor

pressure reduction they cause (Seinfeld and Pandis, 2016). In this study, w2 is defined as the peak width at 75 % of the maxi-10

mum amplitude. This position is chosen for robustness of the measurement algorithm (to avoid interference with other peaks);

however, it can be converted to full width at half maximum (FWHM) assuming the proper peak profile (w2 is 65 % of FWHM

for a Gaussian peak). In addition to hydrogen bonding and phase state, superposition of a multitude of peaks with slightly
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different profiles can also have a statistical positive or negative effect on the peak width in mixtures (see Supplement Sect. S1).

The observed peak width in atmospheric sample spectra
::::::::::
min-infrared

:::::::
spectra

::
of

:::
the

:::::::::::
atmospheric

:::::::
samples is the result of all

above-mentioned factors. However, since all laboratory standards are produced with pure compounds, the significance of
:::
the

mixture effect cannot be evaluated.

Figure 7 (fourth row) shows a distinct distribution of w2 considering spatial and temporal variations as well as sample5

type
:::::::
category. Rural samples have a smaller value of w2 compared to urban and burning samples, although the former are usually

more oxidized (have higher OM/OC ratio). This observation suggests that other factors such as phase state and statistical effects

likely outweigh the oxygenation effect on absorption peak width.
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Figure 9. The average value of second peak width (w2) measured for each compound in the calibration set versus the OM/OC ratio, colored

based on compound phase state at laboratory condition (25 ◦C). Error bars show ± one standards error from the average and dashed lines

are visual guides.

3.1.4 Spectral similarity (dimension reduction)

In previous sections, the basic features of spectra in the aliphatic C – H region were presented and discussed for
:::
the atmospheric10

samples and laboratory standards. Here, we check the spectral similarity between atmospheric complex mixtures and laboratory

pure standards by means of principal component analysis (PCA), before developing quantitative
:::::::::
calibration models.

The spectral data of laboratory standards are highly collinear as can be seen from their correlation matrix heat map (Fig.

A1). In this case, PCA is efficient for reducing the data dimension so
:::
such

:
that only the first 6

::
six

:
principal components

(PCs) explain around 99 % of variance in the spectra (Table 2). For the sake of comparison, we have projected the spectra of15

atmospheric samples onto the 6
:::
six PCs. The results show that their scores, when projected onto laboratory PCs, are surrounded

by laboratory standards. Many spectra, particularly urban ones, are clustered close to tetradecane for the first 4
::::
four PCs (Fig.

10); greater differentiation is found among the higher PCs. This observation suggests that
:::
the laboratory standards are able to
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capture the main variations in the spectra of atmospheric samples, which have a more regular shape
:::::::
aliphatic

:::::
C – H

:::::
profile

:
close

to that of straight-chain alkanes.
:::
We

:::
also

:::::
found

::::
that

::::
PC3

::::::
appears

::
to
:::::::
capture

:::::
phase

::::
state

::::::::::
information

::::
(see

::::::::::
Supplement

::::
Sect.

::::
S2).

Table 2. Importance of the first 6
::
six

:
principal components in the laboratory standards.

PC1 PC2 PC3 PC4 PC5 PC6

Standard Deviation 1.414 0.668 0.647 0.332 0.203 0.133

Proportion of Variance 0.651 0.145 0.136 0.036 0.014 0.006

Cumulative Proportion 0.651 0.796 0.932 0.968 0.982 0.988

3.2 Developing and evaluating the
:::::::::
calibration

:
models

PLS
:::::
PLSR with cross validation was used to develop quantitative models for molecular weight (MW) and carbon number (nC)

with the calibration set composed of 143 samples including all compounds over the available mass range. The OM/OC ratio was5

then calculated from those
::::
these two parameters (OM/OC = MW

12 .01nC
). The developed

:::::
PLSR models gave reasonably good fit

results (r2 ranging from 0.94 to 0.99) for molecular weight, carbon number, and indirect OM/OC ratio in the calibration set

(Figure 11).

The prediction ability of the PLS
:::::
PLSR models was then evaluated using a test set composed of 43 samples which were not

used for developing the models. Models
:::
The

::::::
PLSR

::::::
models

:
also performed reasonably well in predicting molecular weight,10

carbon number and OM/OC ratio in the test set with r2 ranging from 0.92 to 0.98 (Fig. 11). The predictions with high relative

error were attributed to laboratory samples with low molar abundance (low signal-to-noise ratio), for which the baseline cor-

rection had the highest uncertainty. The
:::
This

:
is not a concern when applying the

:::::
PLSR

:
models to atmospheric samples since

the atmospheric samples with low signal-to-noise ratio were omitted in the first step (Sect. 2.1).

3.3 Applying the
:::::::::
calibration

:
models to atmospheric samples15

After checking the performance of the
:::::
PLSR models on the calibration and test set, we used all laboratory standards to produce

PLS models to applying to
::::
were

::::
used

:::
to

::::
build

:::::::::
calibration

:::::::
models

:::
that

:::::
were

::::::
applied

::
to
::::

the ambient samples. In the following

sections, the estimates of OM/OC, mean molecular weight, and mean carbon number for
:::
the ambient samples are shown in

different categories based on season and sample type (rural, urban and burning) after omitting the physically unreasonable

values. Thereafter, the trends and absolute values are compared with
::
to previous studies (when available) and our expectations20

based on aging process and aerosol emission sources.

In this work, we have assumed that we can obtain mean mixture (atmospheric samples) properties from the normalized spec-

trum of of the
:
a mixture using the

::::::::
calibration

:
models developed for pure compounds (laboratory standards). This assumption

relies on the linearity of the property estimation models (which is consistent with our calibrations, Eq. (4)
:
4), and equality of the

absorption coefficients of the compounds existing in the mixture (see Appendix B for more information). Thus, the absorption25

coefficient of aliphatic C – H has been assumed to be relatively similar between the compounds existing in atmospheric sam-

ples. Although the aliphatic C – H absorption coefficients of the laboratory standards were similar in this study, the variability
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Figure 10. Bi-plots showing the scores of normalized spectra of laboratory standards (color) and normalized spectra of atmospheric samples

(black
::::
filled

::::::
circles) projected onto the first 6

::
six

:
principal components (calculated for laboratory standards )

:::
and

::::
listed

::
in
:::::

Table
::
2.Purple

ellipses indicate the location of tetradecane standards.

of this absorption coefficient is relatively less-studied for compounds existing in
::
the atmospheric OM and needs to be addressed

in the future. This assumption is a potential source of error that may change the accuracy of the results, but the estimates for

atmospheric samples shown in the following sections suggest that this assumption does not overwhelm the findings.
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Figure 11. Scatter plot of fitted (predicted) indirect OM/OC ratio, molecular weight (MW), and carbon number (nC) against the values from

chemical formula of the calibration set (test set). The diagonal black lines indicate
::
the perfect fit (1:1).

3.3.1 OM/OC ratio

The OM/OC ratio is the first parameter that we investigate here since it has been studied extensively in atmospheric aerosols

(Bürki et al., 2019; Hand et al., 2019; Ruthenburg et al., 2014; Takahama et al., 2011; Simon et al., 2011; Aiken et al., 2008)(Bürki

et al., 2020; Hand et al., 2019; Ruthenburg et al., 2014; Takahama et al., 2011; Simon et al., 2011; Aiken et al., 2008). More-

over, it can be used as an indirect evaluation for mean molecular weight and mean carbon number estimates as the indirect5

OM/OC ratio is calculated from those two. An indirect OM/OC estimate that is consistent with previous studies implies that

estimates of molecular weight to carbon number are also likely to be reasonable.

The OM/OC ratio is estimated to be generally lower for urban samples (≈ 1.5) than rural samples (≈ 1.8; Fig. 14, first

row). The lower OM/OC ratio in urban sites is thought to be related to emission sources that are generally hydrocarbon, with
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low OM/OC ratio emitted from gasoline and diesel vehicles (fuel combustion and unburned motor oil) as a major part of

anthropogenic SOA precursors (Gentner et al., 2012) ) as well as cooking. These organic molecules do not undergo significant

oxidation and aging as the monitoring sites are generally close to the emission sources. In contrast, organic aerosols usually

undergo several steps of oxidation and receive substantial condensation of oxidized vapors, which results in higher OM/OC

ratio at rural and remote sites. Previous studies using several different methods (including FT-IR and AMS) show the same5

trend in urban and rural sites (Ruthenburg et al., 2014; Zhang et al., 2007; Simon et al., 2011; Bürki et al., 2019)(Ruthenburg

et al., 2014; Zhang et al., 2007; Simon et al., 2011; Bürki et al., 2020). In addition, the majority of the samples are in the range

that is usually considered for OM/OC ratio, i.e.,1.4–1.7 (Russell, 2003). We also observe that samples influenced by burning,

especially residential wood burning, have lower OM/OC ratio (≈ 1.4) than those associated with more oxidized aerosol such

as rural site, which has also been estimated by Bürki et al. (2019)
::::::::
consistent

::::
with

:::::::
OM/OC

::::::::
estimates

::
of

::::::::::::::::
Bürki et al. (2020).10

The OM/OC ratio in urban sites is estimated to be higher in summer compared to other seasons, especially winter (Fig.

14, first row) which is believed to be caused by more intense photochemical aging in summertime (Kroll and Seinfeld, 2008).

In rural sites, the trend becomes more complicated as vegetation, as major biogenic SOA emission sources, is more active in

summer time (Yuan et al., 2018; Seinfeld and Pandis, 2016). Samples influenced by burning are also estimated to have higher

OM/OC in summer when samples are affected by wildfires compared to winter when
::::::
burning

:
samples are mostly affected by15

residential wood burning. However, the contribution of photooxidation relative to emission sources is not clear in this case as

they are coupled in these observations (Bürki et al., 2019)
:::::::::::::::
(Bürki et al., 2020).

In order to have a direct comparison with other methods, we chose the Phoenix, AZ, monitoring site, for which recovery

percentage of the baseline correction method is close to 100 %, and compared our indirect OM/OC ratio estimates to the

corresponding ones , calculated by Bürki et al. (2019)
::::::::
calculated

:::
by

:::::::::::::::
Bürki et al. (2020). The latter method uses molar abun-20

dance information of functional groups in laboratory standards in addition to a much wider region of non-normalized mid-

infrared spectrum (1500–4000 cm−1). The median seasonal OM/OC ratio of this study underpredict that of Bürki et al. (2019)

:::::::::::::::
Bürki et al. (2020) by 0.12 on average, while reproducing the same temporal trends. Some of the discrepancies may be due

to insensitivity of spectral features to molecular characteristics in certain domains —
:
– for instance, the variation of peak fre-

quency ν̃2 diminishes with increasing molecular weight (Sect. 3.1.1). However, the overall agreement between the two methods25

is reasonable considering the indirect nature of estimates in our work (Fig. 12).

3.3.2 Molecular weight (MW)

The PLS
:::::
PLSR model estimates the mean molecular weight to range between 100–350 g mol−1 for majority of the samples

(Fig. 14, second row). To
::
the

:
best of authors’ knowledge no extensive study has been performed on mean molecular weight of

ambient organic aerosol constituents. Nevertheless, the estimated range is reasonably close to that of the studies that have been30

done. Those studies measured molecular weights up to 200 g mol−1 for SOA constituents using GC/MS and ion chromatog-

raphy (Cocker III et al., 2001; Jang and Kamens, 2001b; Kalberer, 2004), an average molecular weight between 200–300

g mol−1 for atmospheric HUmic-LIke Substances (HULIS) using electro-spray ionization (ESI) (Graber and Rudich, 2006),

and an average molecular weight between 300–450 g mol−1 for oligomers formed in a smog chamber, measured using laser
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Figure 12. Bar chart showing median OM/OC ratio calculated for each season based on samples collected in the Phoenix, AZ, monitoring

site using our method and the one used by Bürki et al. (2019)
:::::::::::::
Bürki et al. (2020).

desorption/ionization mass spectrometry (LDI-MS) (Kalberer et al., 2006). Although particle-phase oligomerization processes

result in high-MW compounds (Jang and Kamens, 2001a; Tolocka et al., 2004; Shiraiwa et al., 2014), the abundance of these

compounds is usually debated since the available experimental results regarding the reversibility of accretion reactions are con-

tradictory (Kroll and Seinfeld, 2008). Moreover, oligomer formation may be overestimated in laboratory conditions compared

to atmospheric particles (Kroll and Seinfeld, 2008; Kalberer, 2004; Trump and Donahue, 2014).5

Our model estimates
:::
The

:::::
PLSR

:::::::::
molecular

::::::
weight

:::::
model

::::::::
estimates

:
a
:
lower mean molecular weight for rural samples (≈ 200

g mol−1) compared to urban ones (≈ 240 g mol−1), while burning samples are estimated to constitute the heaviest molecules (≈
290 g mol−1). This observation is consistent with our knowledge of emission sources. Emissions in urban areas are influenced by

long-chain hydrocarbons from combustion products and motor oil (Gentner et al., 2012), while biomass burning is accepted to

be the primary source of high-MW HULIS (Li et al., 2019). We also observe a decrease in mean molecular weight peak density10

in urban samples from winter to summer that is believed to be attributed to fragmentation during more intense photooxidation

in summer Hand et al. (2019); Jimenez et al. (2009), for emission sources that do not change drastically between the two

seasons. The same phenomenon is observed in LDI mass-spectra of some urban samples in summer and winter reported by

Kalberer et al. (2006). Although the reduction in mean molecular weight due to fragmentation can be compensated for by

addition of heavy atoms to the molecule during oxidation, our results suggest that the overall direction of photooxidation in15

urban sites is reduction of the mean molecular weight.

3.3.3 Carbon number (nC)

The PLS
:::::
PLSR

::::::
carbon

:::::::
number model estimates that the recovered rural samples usually have lower mean carbon number

compared to urban samples and the samples influenced by burning (Figure 14, third row). Higher mean carbon number es-
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timates in urban sites (highest probability density around 16), which are coincident with high elemental carbon (EC) values

from TOR measurements (Fig. C1), can be attributed to major EC sources such as combustion of fossil fuel and biomass.

This is also consistent with high SOA formation potential of molecules with 15–25 carbon in diesel fuel shown by Gentner

et al. (2012). Samples affected by burning are estimated to have the highest mean carbon number among all samples. This

observation is consistent with the emissions of plant cuticle waxes, mainly composed of straight-chain hydrocarbons, observed5

during biomass burning (Hawkins and Russell, 2010) as well as HULIS (Graber and Rudich, 2006). We also observe a de-

crease in estimated mean carbon number of urban samples from winter to summer suggesting fragmentation during aging and

photooxidation processes.

The carbon-oxygen estimates of the PLS
:::::
PLSR models are consistent with the existing numerical simulation. We compared

our estimates with the numerical simulations by Jathar et al. (2015). Multi-generational oxidation model used by Jathar et al.10

(2015) (Statistical Oxidation Model, SOM)
:
, in a 3-D air quality model

:
) for simulating SOA in Los Angeles and Atlanta (two

urban locations) shows that carbon number in SOA ranges from 3 to 15 with the concentration peaks around 7, 10 and 15

(Fig. 13). For this comparison, we calculated the carbon-oxygen grid from our molecular weight and carbon number estimates,

assuming the organic molecules have a chemical formula of CNc
H2Nc+2−No

ONo
(a common assumption and one used by

Jathar et al.
:::::::::
Jathar et al.

:
,
::::
2015). Our models for

:::::
PLSR

::::::
models

:::
for

:::
the IMPROVE network estimate mean carbon number peaks15

(number density) for rural, urban, and burning samples to be around 8, 16 and 18 respectively, while the total range is limited

to 3–19 (Fig. 13). We also estimate the oxygen number to range from 2 to 6 for the majority of the samples. It should be noted

that this is as an order of magnitude comparison since the time frame and the location of the two studies are different and the

numerical simulation by Jathar et al. (2015) only considers SOA.
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Figure 13. Comparison between carbon-oxygen grid simulated by Jathar et al. (2015) for Atlanta and Los Angeles with sample points

estimated for IMPROVE network (2011 and 2013) from the molecular weight and carbon number estimates of this study. The dashed lines

show the range of simulated carbon and oxygen and the triangles indicate the location of the highest SOA concentrations for simulation
::

the

::::::::
simulations

:
of Jathar et al. (2015).
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Figure 14. Kernel density estimates of indirect OM/OC ratio, molecular weight (MW) and carbon number (nC) estimated from normalized

aliphatic C – H mid-infrared absorbances by PLS
::::
PLSR models (segregated by sample type and season).

3.4 Model
::::::::::
Calibration

::::::
model

:
interpretation

Reducing the spectrum to four basic features introduced in Sect. 3.1 (ν̃2,A3/A2,A1/A2, w2) is a manual data compression onto

a basis set of interpretable variables. Though information loss is inevitable, it was shown in Sect. 3.1 that these basic features

are still sufficient for qualitative explanation of spectral variations associated with different emission source and aerosol aging

process. In this section, predictions made by the PLS models on
:::::
PLSR

::::::
models

:::
on

:::
the

:
ambient samples are grouped based5

on the four basic features using CART (Fig. 15) in order to form a better understanding of how the sophisticated PLS
:::::
PLSR

models function.

The regression trees show that the peak ratios are observed to be the main grouping parameter for both carbon number and

molecular weight (Fig. 15). The inverse relation of peak ratios with carbon number appears in most of the splitting nodes of

carbon number and molecular weight regression trees (Fig. 15). This is consistent with the observed relation between carbon10

number and peak ratios in the calibration set (Fig. 8). Assuming that molecular weight is highly correlated with carbon number,

the classification of molecular weight based on peak ratios is also expected. The peak frequency (ν̃2) appears once as a node

in molecular weight tree and classifies the estimates based on the same trend that was observed in the calibration set (Fig.
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??
:
6). The second peak width (w2) also appears few times in the nodes probably adding information about the OM/OC ratio

and phase state. The two trees shown
::
in

:::
Fig.

:::
15 explain only around 50 % of the variation of estimates made by the PLS

:::::
PLSR

models. The explained variation can be increased to an arbitrarily high number through the use of more branches in the fitting

data set, but the predictive capability of regression trees for new samples depends highly on their similarity to the training set.

In summary, regression trees show that the predictions of the
::::
PLSR

:
models are generally consistent with the observed trends5

of the basic features in the calibration set (Supplement Sect. S2
::
S3

:
supports this conclusion for individual spectra for which

the PLS
:::::
PLSR models estimate quite different parameters). This observation implies that the PLS

:::::
PLSR

:
predictions of carbon

number and molecular weight are not independent of these basic features. However, the sophisticated PLS
:::::
PLSR

:
models use

other fine features in addition to
::
the

:
mentioned basic features to extract more detailed information and to reduce variabilities

stemming from different sources such as baseline correction.10
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Figure 15. Regression tree of molecular weight (MW) and carbon number (nC) estimates in atmospheric samples based on
:::
the basic spectral

features: second peak frequency (ν̃2), the ratio of peak heights of symmetric CH2 stretching to asymmetric CH2 stretching (A1/A2), the ratio

of peak heights of asymmetric CH3 to asymmetric CH2 stretching (A3/A2) and second peak width (w2) of aliphatic C – H band.

4 Concluding remarks

Normalized aliphatic C – H profiles
::::::::::
absorbances in mid-infrared spectrum were used in this study to estimate carbon number

and molecular weight of
::
the

:
atmospheric OM. First, it was shown that the spectral featuresin this region ,

:
such as peak fre-

quencies and ratios , are correlated with carbon number, molecular weight, and the OM/OC ratio for laboratory standards.
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We also observed a meaningful temporal and spatial variation of those features in atmospheric aerosol samples. Thereafter,

PLS
:::::
PLSR models were developed on laboratory standards to estimate the mentioned parameters in

::
the

:
atmospheric aerosol

samples . Estimated
::::
from

:::
the

:::::::::
IMPROVE

::::::::
network.

:::
The

::::::::
estimated

:
molecular weight and carbon number reconstruct the OM/OC

values in ambient aerosol
::
the

:::::::::::
atmospheric

:::::::
aerosols

:
that are consistent with previous studies with a reasonable difference

(an average undeprediction of 0.12). These new
::::::::
statistical

:
models estimate lower mean carbon number and mean molecular5

weight in more aged aerosols of the same source highlighting the fragmentation role in aging process (Murphy et al., 2012).

Moreover, they estimate relatively less oxidized, heavier molecules with higher carbon number for samples influenced by

burning. The findings show that the new technique can help us better understand characteristics of OM due to source emis-

sions and atmospheric processes. In addition, as
::::
since carbon number and molecular weight are important characteristics used

by recent models (Shiraiwa et al., 2017a; Li et al., 2016; Pankow and Barsanti, 2009; Kroll et al., 2011; Donahue et al., 2011)10

:::::::::
conceptual

::::::
models

::
or

::::::::::::::
parametrizations

:
(e.g. Shiraiwa et al., 2017a; Li et al., 2016; Pankow and Barsanti, 2009; Kroll et al.,

2011; Donahue et al., 2011) to describe evolution in OM composition, this technique can provide semi-quantitative, obser-

vational constraints on these variations at the scale of the network as well as for laboratory experiments.
:::
We

::::
also

:::::
found

::::
that

::
the

::::::
phase

::::
state

::
of

:::
the

:::::::::
laboratory

::::::::
standards

::::::
clearly

::::::
affects

::::
their

::::::::::::
spectroscopic

:::::::
features.

::::::
These

:::::::
features

:::
can

::
be

:::::
used

::
to

:::::::
develop

::::::::
predictive

::::::
models

::::
that

:::
can

:::::::
estimate

:::
the

:::::
phase

::::
state

::
of
:::::::::::
atmospheric

::::
OM.15

Only around 27 % of the existing samples could be analyzed with the developed models
::
our

::::::::
approach due baseline correction

limitations posed by low OM mass
::::::::
(compared

:::
to

::::::::
inorganic

:::::
mass)

:
on the filters. Under-sampling is more severe in rural sites

although expected trends (such as higher OM/OC ratio) are observed even in the current subset. As a result, one should be

cautious when extending the results of this study to draw general trends. Finally, although
:::::::
Although

:
some inaccuracy in the

results is likely due to extrapolating from laboratory standards and the indirect nature of the models
:::::::::
introduced

::::::::
approach20

(for which more research is needed), estimates of molecular weight, carbon number, and the OM/OC ratio were shown to be

reasonable. Further evaluation with different molecules and molecular mixtures can better constrain these estimates.
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Appendix A: Correlation matrix heat map

Figure A1. Correlation matrix heat map (absolute values) of mid-infrared spectra of the laboratory standards in aliphatic C – H region. In

this heat map, absolute value
:::::
values of correlation coefficient of absorbances at each wavenumber with absorbances at other wavenumbers is

::
are

:
demonstrated (ranging between zero to one).

Appendix B: Relating mixture property to pure compound property

Laboratory standards which have been used for model development are aerosols of single organic compounds, while atmo-

spheric organic aerosols are generally complex mixtures of multitude of species (Hallquist et al., 2009). This fundamental

difference highlights the importance of investigating the validity of the models for mixtures. Herein, the validity of the models5

developed on pure compounds is rationalized mathematically for estimating mean molecular properties of a non-interacting

mixture.

In the aliphatic C – H region, a particular absorbance profile is observed due to different absorbance at each wavenumber. The

absorbance profile is dependent on areal molar density n (mole per area of the filter) and the absorption coefficient ε= ε(ν̃) of

the compound, which is a function of wavenumber (ν̃). Thus, the absorbance profileA can be written as10

A= nε(ν̃), (B1)

In this work, spectra are normalized before applying the models. This normalization step is done by a function denoted as g.

The function g scales the profile between 0 and 1 regardless of the molar abundance, thus is scale-invariance, meaning that

g(x) = g(sx), (B2)
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where s is a an arbitrary scalar. After the normalization step, the model (function) f is applied to the spectra for estimating a

molecular property (carbon number or molecular weight) of the laboratory standards or atmospheric samples. f is linear if

f(
∑
i

xi) =
∑
i

f(xi), (B3)

which is true for the linear calibration models used in this work. A pure compound i with the absorption coefficient εi is

estimated to have the property Φi calculated by a scale-invariant model f(g(.)) (combining the model with the normalization5

step),

Φi = f(g(Ai)) = f(g(εi)). (B4)

For a mixture, the true mean property Φ̄true can be written as an molar average of the model estimates for pure compounds

assuming no strong interaction between them in the mixture,

Φ̄true =

∑
iniΦi∑
ini

=

∑
inif(g(εi))∑

ini
(B5)10

for which if the model is linear,∑
inif(g(εi))∑

ini
= f

(∑
inig(εi)∑

ini

)
= Φ̄lin. (B6)

However, when applying the models to a mixture spectrum, the actual value of Φ̄ is estimated from the measured mixture

absorbance profile, which is the sum of pure compound spectra,
∑

iAi as

Φ̄mix = f

(
g

(∑
i

Ai

))
. (B7)15

Since the normalization function g scales the profile between 0 and 1, i.e. g(x) = x/max(x), the true mixture mean assuming

a linear model will be:

Φ̄lin = f

(∑
inig(εi)∑

ini

)
= f

(∑
i

ξig(εi)

)
= f

(∑
i

ξiεi
max(εi)

)
, (B8)

where ξi = ni/
∑

ini is the mole fraction of the ith component in the mixture. However, the estimated molecular property for

a mixture based on the mixture spectrum (Φ̄mix) is20

Φ̄mix = f

(∑
i

Ai

)
= f

( ∑
iniεi

max(
∑

iniεi)

)
= f

( ∑
i ξiεi

max(
∑

i ξiεi)

)
= f

(∑
i

ξiεi
max(

∑
i ξiεi)

)
. (B9)

As a result, Φ̄mix and Φ̄lin are different because of their different denominators (max(
∑

i ξiεi) and max(εi)). This means that

the true mean property of a mixture is not necessarily the property estimated by applying the model to the mixture spectrum.

The difference is, however, negligible as long as the models are linear and the compounds in the mixture have relatively similar

absorption coefficients. These two conditions are valid for majority of compounds considered in the laboratory standards.25

Appendix C: Elemental carbon and carbon number
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Figure C1. Scatter plot showing the relationship between collocated measurements of EC concentration and carbon number estimates by

PLS
::::
PLSR models .

::
in

::
the

:::::::::
IMPROVE

::::::
network

::
in

::::
2011

:::
and

:::::
2013.
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