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Abstract. The retrieval of turbulence parameters with profiling Doppler wind lidars (DWL) is of high interest for boundary-

layer meteorology and its applications. The DWL measurements extend beyond the observations with meteorological masts

and are comparably flexible in their installation. Velocity-azimuth display (VAD) type scans can be used to retrieve turbulence

kinetic energy (TKE) dissipation rate through a fit of measured azimuth structure functions to a theoretical model. At the

elevation angle of 35.3◦ it is also possible to derive TKE. Modifications to existing retrieval methods are introduced in this5

study to reduce the errors due to advection and enable retrievals with a low number of scans. Data of two experiments are

utilized for validation: First, measurements at the Observatory Lindenberg – Richard-Aßmann Observatory (MOL-RAO) are

used for validation of the DWL retrieval with sonic anemometers on a meteorological mast. Second, distributed measurements

of three DWL during the CoMet campaign with two different elevation angles are analyzed. For the first time, the DWL VAD

turbulence retrievals are compared to in-situ measurements of a research aircraft (here: DLR Cessna Grand Caravan 208B)10

which allows measurements of turbulence above the altitudes that are in range for sonic anemometers.

From the validation against the sonic anemometers we confirm that lidar measurements can be significantly improved by the

introduction of the volume averaging effect into the retrieval. We introduce a correction for advection in the retrieval which

only shows minor reductions in the TKE error for 35.3◦ VAD scans. A significant bias reduction can be achieved with this

advection correction for the TKE dissipation rate retrieval from 75◦ VAD scans at the lowest measurement heights. Successive15

scans at 35.3◦ and 75◦ at the CoMet campaign are shown to provide TKE dissipation rates with a good correlation of R> 0.8

if all corrections are applied. The validation against the research aircraft encourages more and targeted validation experiments

to better understand and quantify the underestimation of lidar measurements in low turbulence regimes and altitudes above

tower heights.

1 Introduction20

The observation of turbulence in the atmosphere and in particular the atmospheric boundary layer (ABL) is of great importance

for basic research in boundary-layer meteorology as well as in applied fields such as aviation, wind energy (van Kuik et al.,

2016; Veers et al., 2019) or pollution dispersion (Holtslag et al., 1986).

A wide range of instruments are used to measure turbulence: sonic anemometers are nowadays the most popular in-situ in-
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strument which can be installed on meteorological masts and provide continuous data of the three-dimensional flow and its

turbulent fluctuations (Liu et al., 2001; Beyrich et al., 2006). For in-situ measurements above the height of towers, airborne sys-

tems are applied such as manned aircraft (Bange et al., 2002; Mallaun et al., 2015), remotely-piloted aircraft systems (RPAS,

van den Kroonenberg et al., 2011; Wildmann et al., 2015) or tethered lifting systems (TLS, Frehlich et al., 2003) which can be

equipped with turbulence probes such as multi-hole probes or hot wire anemometers. A different category of instruments are5

remote-sensing instruments such as radar, sodar and lidar which can measure wind speeds and allow the retrieval of turbulence

based on assumptions of the state of the atmosphere and the structure of turbulence. In this study, we focus on ground-based

Doppler wind-lidars (DWL), which have become increasingly popular in boundary-layer research because of their ease of

installation, invisible and eye-safe lasers, their reliability and high availability which is only restricted by clouds/fog and rain

or very low aerosol content in the atmosphere.10

A variety of methods already exist to retrieve turbulence from DWL measurements. They can be categorized according to

the respective scanning strategy applied: the simplest scanning pattern is a constant vertical stare to zenith, which allows to

obtain variances of vertical velocity and estimates of turbulence kinetic energy (TKE) dissipation rate (O’Connor et al., 2010;

Bodini et al., 2018). More complex are conical scans (velocity azimuth display, VAD) with continuous measurements along

the cone (Banakh et al., 1999; Smalikho, 2003; Krishnamurthy et al., 2011; Smalikho and Banakh, 2017). These scans include15

information on the horizontal wind component as well. A simplification of VAD scans are Doppler-beam-swinging (DBS)

methods, that reduce the number of measurements taken along the cone to a minimum of 4-5 beams and thus increase the

update rate for single wind profile estimations (Kumer et al., 2016). Both, VAD and DBS are popular scanning strategies that

are applied in commercial instruments. Kelberlau and Mann (2019a, b) introduced new methods to obtain better turbulence

spectra from conically scanning lidars by corrections for the scanner movement. Significantly different scanning strategies are20

vertical (or horizontal) scans which can also provide vertical profiles of turbulence (Smalikho et al., 2005), but even allow

deriving two-dimensional fields of TKE dissipation rate (Wildmann et al., 2019). Multi-Doppler measurements require more

than one lidar with intersecting beams, but do not need assumptions on homogeneity to measure turbulence at the points of

the intersection directly (Fuertes et al., 2014; Pauscher et al., 2016; Wildmann et al., 2018). For operational or continuous

monitoring of vertical profiles of turbulence in the ABL, VAD or DBS scans are most suitable. At an elevation angle of 35.3◦,25

a VAD scan allows to retrieve TKE, its dissipation rate, integral length scale and momentum fluxes according to a method that

was first developed for radar by Kropfli (1986) and adapted for lidar later by Eberhard et al. (1989) using the variance of radial

velocities along the scanning cone. Further improvements of this method have been implemented by Smalikho and Banakh

(2017) and Stephan et al. (2018), which also account for lidar volume averaging effects. We introduce modifications on the

estimation of structure function and variances in order to be able to retrieve turbulence parameters from a smaller number of30

VAD scans. For conditions with significant advection, the method can cause errors, especially at low altitudes where the cone

diameter of the VAD scan is small. With this study, we propose a method to reduce this error. We also apply the turbulence

retrieval to VAD scans with 75◦ elevation angle, which still allows to retrieve TKE dissipation rate. In this case the advection

correction is particularly important. The experiments that were carried out are explained in Sect. 2. The methods and the new

developments are explained in Sect.3. A focus of this study is on the validation of the lidar measurements with sonic anemome-
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ters and airborne in-situ measurements. The results of the validation are presented in Sect. 4. Conclusions and an outlook are

given in Sect. 5.

2 Experiment description5

In this study, data from two different experiments are analyzed. Both of the experiments and the instrumentation is introduced

in this section.

2.1 The MOL-RAO Falkenberg field site

The Meteorological Observatory Lindenberg – Richard-Aßmann Observatory (MOL-RAO) is part of Deutscher Wetterdienst

(DWD), the national meteorological service of Germany. The observatory is situated in the East of Germany, approximately10

65 km to the South-East of the center of Berlin. MOL-RAO runs a comprehensive operational measurement program to charac-

terize the physical structure and processes in the atmospheric column above Lindenberg. Measurements of ABL processes form

an essential part of it, they are carried out at the boundary layer field site (in German: Grenzschichtmessfeld, GM) Falkenberg,

about 5 km to the South of the main observatory site. The GM Falkenberg is situated in a rural landscape dominated by forest,

grassland and agricultural fields (see Fig. 1). A central measurement facility at the Falkenberg site is a 99m tower, equipped15

with booms to carry sensors every 10 m.

Since 2014, MOL-RAO is using a DWL „Stream Line“ (Halo Photonics Ltd.) for boundary layer measurements. From that

time the device has been extensively tested with respect to its operational use for wind and turbulence measurements. This

included, for instance, tests on the technical robustness and data availability under all weather conditions, but also tests of

different scanning strategies and retrieval methods for the 3D wind vector and for the TKE. The position of the DWL during a20

measurement period from 2 April 2019 through 30 April 2019 was at the western edge of the field site, at about 500 m distance

from the 99m tower. It should be noted that there is a small patch of forest about 300 m to the W-NW of the lidar site. During

this period the system continuously performed VAD scans with an elevation angle of 35.3◦ elevation which will be analysed

for turbulence retrievals in this study.

Continuous turbulence measurements (20 Hz sampling frequency) using sonic anemometer of type USA-1 (METEK GmbH)25

are performed at the 50m and 90m levels of the tower and have been used for validation purposes. The instruments are mounted

at the tip of the booms pointing towards South.

2.2 The CoMet (CO2 and Methane) Mission 2018

Within the scope of the CO2 and Methane Mission (CoMet) that was conducted in spring 2018, three Doppler wind lidars of

type Leosphere Windcube 200S (details see Tab. 1) were installed in Upper Silesia (Poland) with the purpose of providing30

spatially distributed wind and turbulence measurements in the ABL. CoMet aims at a better understanding of the budgets

of the two most important anthropogenic greenhouse gases (GHGs), CO2 and CH4. For this purpose, the research aircraft

HALO (high altitude and long range) was taking remote sensing and in-situ measurements over large parts of the European

3



Figure 1. Sketch of the measurement site at MOL-RAO, GM Falkenberg. Map data ©OpenStreetMap contributors 2019. Distributed under

a Creative Commons BY-SA License.

continent. A dedicated area of high interest was the region of Upper Silesia, where large amounts of methane are known to

be released due to the intensive coal extraction activities in the respective Coal Basin. During the CoMet campaign, the DLR

Cessna Grand Caravan 208B (D-FDLR) aircraft was equipped with in-situ instruments to measure greenhouse gases as well as

thermodynamic variables.5

The DWL measurements are particularly helpful to support the CoMet measurements by providing wind information which is

essential to derive emission flux estimates from passive remote sensing (Luther et al., 2019) or in-situ measurements of mass

concentrations (Fiehn et al., 2020). The DWL wind information can also be used to validate modeled wind of the transport

models for greenhouse gases. The lidars were remotely operated during the whole CoMet campaign period from 16 May 2017

to 17 June 2017 and were continuously measuring. The locations of the three lidars were planned to cover the whole region of10

interest and were finally chosen based on logistical constraints.

The lidars were operating in VAD modes with two different elevation angles. Since the focus for the CoMet campaign was

on continuous wind profiling and a good height coverage was desired, the lidars were programmed to perform VADs with

an elevation angle of 75◦ (see Tab. 1, VAD75) for a longer period, i.e. 24 scans (≈29 minutes), followed by only six scans

(≈7 minutes) at 35.3◦ elevation (VAD35) for turbulence retrievals.15

As shown in Fig. 2, the three lidars were separated by several tens of kilometers and were located in different terrain types.

While DWL#1 was in a mixed rural and urban area, DWL#2 was in a mostly forested environment and DWL#3 was in close

vicinity to the lake Goczalkowicki. The main wind direction during the campaign was from the East, with particularly strong

winds during nighttime low-level jet (LLJ) events. In this study we analyze statistics of the whole campaign, as well as a case

study on 5 June 2017, on which D-FDLR was performing long straight and level legs between 800 m and 1600 m as indicated20

in the flight path in Fig. 2. Since the D-FDLR was focusing on GHG measurements at the hotspots of the Upper Silesian

Coal Basin, there are no more straight and level flight paths that allow for turbulence retrieval. On this day however, the

research aircraft provides a unique possibility to validate lidar measurements with in-situ measurements at higher altitudes that
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Table 1. Main technical specifications of the Doppler wind lidars.

Windcube 200S, VAD75 Windcube 200S, VAD35 Stream Line

Wavelength λ 1.54 µm 1.54 µm 1.5 µm

Pulse length τp 200 ns 200 ns 180 ns

Time window Tw 288 ns 144 ns 240 ns

Bandwidth 26.7 m s−1 26.7 m s−1 19.4 m s−1

Elevation angle ϕ 75◦ 35.3◦ 35.3◦

Angular speed 5◦s−1 5◦s−1 5◦s−1

Pulse repetition frequency 20 kHz 20 kHz 15 kHz

Accumulation time 200 ms 200 ms 133 ms

CNR filter -20..0 dB -20..0 dB -15..0 dB

cannot be reached with sonic anemometers. The flow probe and inertial measurement unit on the D-FDLR are well-established

instruments that allow reliable measurements of the 3D-wind vector and turbulence (Mallaun et al., 2015).

Figure 2. Sketch of the measurement site in Upper Silesia. Red circles show the extent of the VAD-scan at 35.3◦ for 100 m and 2000 m

at the respective lidar location. The orange line marks the flight path of D-FDLR on 5 June 2017. The different shades of orange are used

to indicate a subdivision of the flight leg in shorter sublegs. Map data ©OpenStreetMap contributors 2019. Distributed under a Creative

Commons BY-SA License.
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3 Methods5

3.1 Sonic anemometer turbulence measurements

From the sonic anemometers on the meteorological mast, TKE and TKE dissipation rate are calculated. TKE is calculated

from the sum of variances ETKE = 0.5
(
σ2
u +σ2

v +σ2
w

)
. TKE dissipation rate ε is estimated through a fit of the theory of the

longitudinal Kolmogorov-structure function in the range τ1 = 0.1 s to τ2 = 2 s to the measured second-order structure function

of horizontal velocity. Muñoz-Esparza et al. (2018) showed that the structure function method is more robust than estimates10

from spectra. For this study, in order to have the best possible comparison to the lidar measurements the values for ε are

calculated for 30-minute intervals. The geometry of the sonic anemometer setup disturbs the measurements for wind directions

from 330◦ to 50◦ (see also App. D). Data for these wind directions are removed from the analysis.

3.2 VAD turbulence measurements

Methods to retrieve turbulence parameters from VAD scans are well-known and a variety of different methods exist. The15

method we refine in this study is based on the theory that was originally described by Eberhard et al. (1989) for lidar measure-

ments. The variance of radial velocities σ2
r depends on the range gate distance R, the azimuth angle θ and the elevation angle

ϕ. It is calculated from the measured radial velocities Vr:

vr(R,θ,ϕ,t) = Vr(R,θ,ϕ,t)−〈Vr(R,θ,ϕ)〉 (1)

σ2
r = 〈vr(R,θ,ϕ,t)2〉 (2)20

From a partial Fourier decomposition (see App. A) and for the special case of ϕ= 35.3◦ a simple equation for ETKE is

derived:

ETKE =
3

2
σ2
r|ϕ=35.3◦ . (3)

In this equation, σ2
r is the mean of the variance of radial velocites over all azimuth angles. In the following, we will refer to

this method as E89-retrieval.25

In order to retrieve estimations of TKE dissipation rate ε from VAD scans, a similar approach to the method for sonic anemome-

ters can be followed. A fit of the equation

Dr(ψ) = (4/3)CK(εψR′)2/3 , (4)

to the azimuth structure function with Dr the transverse structure function of radial velocities, CK the Kolmogorov constant,

ψ the azimuth angle increment andR′ =Rcosϕ retrieves an estimate for ε according to Smalikho and Banakh (2017). We will

refer to this method as S17A in the following.
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Scanning with Doppler lidar in a classical VAD with continuous motion of the azimuth motor involves a volume averaging of5

radial velocities in longitudinal (along the laser beam) and transverse (orthogonal to the beam) direction. The E89 and S17A

methods do not consider this effect and will thus yield a systematic underestimation of TKE and ε. Smalikho and Banakh

(2013) proposed a theory that considers the volume averaging and allows the retrieval of ε from conical scans, independent of

the elevation angle. In Smalikho and Banakh (2017), this method has been combined with the E89-method to yield TKE, ε and

the momentum fluxes. It is based on the decomposition of radial velocity variance σ2
r into its subcomponents, i.e.10

σ2
L = σ2

a +σ2
e , (5)

σ2
a = σ2

r −σ2
t , (6)

σ2
r = σ2

L +σ2
t −σ2

e (7)

where σ2
L is the lidar measured variance, σ2

a as the lidar measured variance without instrumental error σ2
e , and the turbulent

broadening of the lidar measurement σ2
t . In Smalikho and Banakh (2017), all of these variances and structure functions are15

calculated for single azimuth angles and then averaged. We describe in Sect.3.2.1 why we use total variances and structure

functions of all radial velocities.

The measured azimuth structure function Da(ψl) is a function of the separation angle ψl, where l is the index of the discrete

separation angle of the scan. It can be decomposed into the lidar measured structure function DL(ψl) and the instrumental

error σ2
e :20

DL(ψl) = 〈[vr(θ)− vr(θ+ψl)]
2〉 (8)

Da(ψl) =DL(ψl)− 2σ2
e (9)

Combining Eq. 7 with Eq. 9 yields:

σ2
r = σ2

L +σ2
t −

1

2
DL(ψl) +

1

2
Da(ψl) . (10)

It shows that since the instrumental error σ2
e is assumed to be a constant offset of azimuth structure function Da(ψl) and the25

lidar measurement DL(ψl), l can be chosen arbitrarily here. It is set to l = 1 because potential random errors like unstationary

flow will be least effective for small separation angles. Using Eq.3 and Eq. 21 (see Sect.3.2.1), TKE can be redefined as a

function of the measured line of sight variances σ2
L, the measured lidar azimuth structure function of radial velocities DL(ψ1)

and a residual term G, which includes the two unknowns σ2
t and Da(ψ1):

ETKE =
3

2

[
σ2
L−

DL(ψ1)

2
+G

]
, (11)

G= σ2
t +

1

2
Da(ψ1) (12)

In Banakh and Smalikho (2013), a relationship between the two unknowns and TKE dissipation rate is theoretically derived

from the two-dimensional Kolmogorov-Obhukov spectrum as5
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σt = ε2/3F (∆y) (13)

Da(ψl) = ε2/3A(l∆y) , (14)

where F (∆y) and A(l∆y) are model functions that include the lidar filter functions (see App. B). The lidar filter functions

in longitudinal direction depend on pulse width of the laser beam ∆p and the time window Tw of the data acquisition. The

transverse filter function is defined by ∆y =R∆θ cosϕ, which is the distance the lidar beam moves along the cone during one10

accumulation period. The parameters for the lidars in this study are provided in Tab. 1 and are calculated from information

given by the manufacturer for the specific lidar type. Hence, G depends on the turbulence dissipation rate ε:

G= ε2/3
[
F (∆y) +

A(∆y)

2

]
(15)

Using Eq. 14 and 9, ε can be retrieved from Da(ψl)−Da(ψ1):

ε=

[
DL(ψl)−DL(ψ1)

A(l∆y)−A(∆y)

]3/2
(16)15

This equation does not depend on the elevation angle, so that the method allows the retrieval of ε from VAD scans with elevation

angles different from 35.3◦ as well. Figure 3 gives an example of the different structure functions that are calculated in this

method (i.e. DL, Da and A) and also gives a comparison to the structure function Ds as calculated from sonic anemometer

measurements. Smalikho and Banakh (2017) found a separation angle of l∆θ = 9◦ an appropiate value for ABL measurements.

In this study, all VAD scans are performed with a resolution of ∆θ = 1◦, so that l = 9. In Fig. 3 the range that is thus used for20

the structure function fit is indicated by the bold black line.

The retrieval method for ε using Eq. 16 and TKE using Eq. 11 will be referred to as S17 in the following.

3.2.1 Modifications for small number of scans

The VAD at ϕ= 35.3◦ during the CoMet-campaign was not run continuously, but only six individual scans are performed

successively before switching back to the VAD at ϕ= 75◦ as described in Sect. 2.2. This means that only six data points are25

available to calculate variance and mean of the radial velocities at each azimuth angle, which cannot be considered a solid

statistic. We introduce two modifications of data processing to overcome this problem which are based on the assumptions of

stationary and homogeneous turbulence.

Practical implementation of the ensemble average

In Eq. 2, 〈Vr(R,θ,ϕ)〉 can be calculated as the arithmetic mean of radial velocities at specific azimuth angles:

〈Vr(R,θ,ϕ)〉=
1

N

N∑
n=0

Vr(R,θn,ϕ) , (17)5
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Figure 3. Example of structure functions of sonic anemometer (blue) and lidar (grey) at 90 m height on 4 April 2019, 1200-1230 UTC. The

dashed black line shows the measured lidar structure functionDL, the solid black lineDa is corrected for the systematic error σe (see Eq. 9).

The grey dashed line gives the model structure function A and the dotted lines indicate the reconstructed inertial subrange for the calculated

values of ε. The parts with bold lines are those ranges that are used for the structure function fits.

whereN is the number of scans. Instead of this approach, we suggest to use the reconstructed radial velocity from the retrieved

wind field over all individual scans as the expected value in the variance calculation. For the retrieval of the three wind

components (û, v̂, ŵ), filtered sine-wave fitting (FSWF) is applied (Smalikho, 2003). The reconstructed radial velocities V̂ are

then used as the expected value in the variance calculation:

V̂ = ŵ(R)sinϕ+ v̂(R)cosϕcosθ+ û(R)cosϕsinθ (18)10

〈Vr(R,θ,ϕ)〉= V̂ (R,θ,ϕ) . (19)

With this approach, all measurement points in the VAD with the same elevation angle are used to obtain the expected value

〈Vr〉 and thus, a better statistical significance is achieved. This method has also been proposed in Smalikho and Banakh (2017)

as a practical implementation of Eq. 2.

Averaging of variances

In Smalikho and Banakh (2017), the variances of the lidar measurements are defined as the average of variances at individual

azimuth angles:5
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σ2
r =

1

M

M∑
m=0

σ2
r(θm) (20)

The variances σ2
r(θm) are variances of a subsample of radial velocities of the VAD (i.e. those at a specific azimuth angle θm).

We use a simple relation between the variances of subsamples and the total variance of a dataset (see Appendix C). Applying

this to the radial velocity variances yields:

σ2
r =

k− 1

n− 1

g∑
m=1

σ2
r(θm) +

k(g− 1)

k− 1
vr , (21)10

where k is the number of samples at each azimuthal angle, g is the number of subsamples and n is the number of total samples

in the dataset (n= gk). Since the mean of the radial velocity fluctuations is zero by definition, Eq. 21 becomes:

σ2
r ≈ σ2

r(θm) . (22)

3.2.2 Filtering of bad estimates

Improvements of turbulence estimates in low signal conditions can be achieved with filtering of bad estimates as described in15

Stephan et al. (2018). This approach is not based on the calculation of the azimuth structure function from measured radial

velocities, but uses probability density functions (PDFs) and their corresponding standard deviations. The model PDF is defined

as a Gaussian function with a filter term P :

pM (x) =
1−P√

2πσ
exp

[
−1

2

(x
σ

)2]
+
P

Bv
, (23)

where P is the probability of bad estimates of x, σ is the standard deviation of the PDF and Bv is the velocity bandwidth of20

the lidar. For the measured variables vr(R,θ), ∆vr(R,θ+ ∆θ) and ∆vr(R,θ+ l∆θ), the best-fit model PDFs are found to to

obtain the corresponding standard deviations σ1, σ2 and σ3 and probability of bad estimates P1, P2 and P3. However, since

the PDFs cannot be assumed Gaussian in atmospheric turbulence, the standard deviations are finally calculated as the integral

over the measured PDFs in the range ±3.5σ according to Stephan et al. (2018).

Replacing σ2
L with σ2

1 , DL(ψ1) with σ2
2 and DL(ψl) with σ2

3 in Eqs. 11 and 16 yields:25

ETKE =
3

2

[
σ2
1 −

σ2
2

2
+G

]
and (24)

ε=

[
σ2
3 −σ2

2

A(l∆y)−A(∆y)

]3/2
(25)
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Figure 4. Sketch of measurement points of a VAD scan in an earth-fixed versus a flow-fixed coordinate system.

As suggested in Stephan et al. (2018), Eqs. 24 and 25 are only used if P > 0. We also introduced a quality control to discard

any measurements with P > 0.5 for best results. In practice, this method will thus only be applied in some conditions when5

the signal is weak and can extend the range of vertical profiles to some degree.

3.2.3 Correction for advection

The azimuth structure function and the volume average filter are distorted by advection through a modification of ∆y. The

effect is illustrated in Fig. 4. It shows that the distance between measurement points in a flow-fixed coordinate system is

unequally spaced and on average larger than in the earth-fixed coordinate system. We propose a simplified correction. When10

advection is not considered, the spacing between samples is given by

∆y = ∆θRcosϕ . (26)

An estimate of the mean spacing can be obtained from

∆y ≈ 1

N

N∑
i=0

√
dx2i + dy2i , (27)

where dxi = xi+1−xi. We propose a simplified correction in which

∆yc ≈
1

N

N∑
i=0

√
dx2c,i + dy2c,i , (28)
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where

dxc,i = dxi + cosΨU∆t (29)

dyc,i = dyi + sinΨU∆t (30)5

(31)

Here, R is the range gate distance, ϕ is the elevation angle, xi and yi are the measurement point locations , Ψ is wind

direction, U is wind speed and ∆t is the accumulation time of the lidar. The terms cosΨU∆t and sinΨU∆t describe the

effect of advection on the measurement location in x- and y-direction respectively. Using the corrected measurement location

displacements dxc,i and dxc,i, we can calculate a corrected mean transverse sensing volume ∆yc. This method does not account10

for the unequal spacing, but corrects the average separation of data points, which is particularly important for the statistical

evaluation of turbulence.

The effects of advection on the turbulence estimation is largest in the lowest levels of the VAD-scans, because ∆y is small

compared to U∆t in this case. The retrieval method including the filtering for bad estimates, and the advection correction is

referred to as W20 in the following.15

3.2.4 Quality control filters

In order to fulfill the assumptions that are made with regards to the turbulence model and the turbulence retrieval method, the

data is filtered according to the criteria given in Smalikho and Banakh (2017):

l∆y� Lv , (32)

Lv >max{∆z,∆y} (33)20

R′ωs� |〈V〉| (34)

For the purpose of evaluating the methods in a broad range, we set mild criteria for Eq. 32 and 34 using

l∆y < 2Lv and (35)

R′ωs > 2|〈V〉| . (36)

Equations 32 and 33 are criteria that require the integral length scale Lv to be larger than the sensing volume of the lidar in25

transversal (∆y) and longitudinal (∆z) direction. Unfortunately, there is no independent measurement of Lv at all heights of

the VAD scan, so that it is derived from the lidar measurement itself as Lv = 0.3796E
3/2

ε (Smalikho and Banakh, 2017).

The filter criteria in Eq. 34 is a filter for conditions with significant advection which distorts the measured structure functions

and is only applied if the method described in Sect.3.2.3 is not used.

Except for the retrieval method W20, which uses the filtering of bad estimates, we set fixed CNR filter thresholds adapted to30

the lidar type. Since the turbulence retrievals are very sensitive to bad estimates, we set the CNR thresholds to conservative

values that are given in Tab. 1.

An overview of all retrieval methods and their characteristics and filters that are applied is given in Tab. 2.
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Table 2. Overview of turbulence retrieval methods and the applied filters and methods

E89 S17A S17 W20

TKE yes yes yes yes

ε no yes yes yes

lidar volume averaging effect no no yes yes

CNR filter yes yes yes no

filter of bad estimates no no no yes

integral length scale filter yes yes yes yes

advection filter no no yes no

advection correction no no no yes

variance modifications yes yes yes yes

3.3 Turbulence estimation from airborne data

The estimation of turbulence parameters from the wind measurement system on the DLR Cessna Grand Caravan 208B (Mallaun5

et al., 2015) is done very similarly to the in-situ estimations from the sonic anemometer. TKE is calculated from the sum of

variances as described in Sect. 3.3. Dissipation rate is also calculated from the second order structure function, but with different

bounds for the time lag. For the flight data we use τ1 = 0.2 s and τ2 = 2 s, corresponding to approximately 13-130 m lag at

65 m s−1 mean airspeed.

To evaluate the heterogeneity of turbulence due to changing land use along the flight legs of more than 50 km length, we

divided the legs into sub-legs of 6.5 km (i.e. 100 s averaging time) and calculate turbulence for each leg individually. The5

location of the legs and the sublegs is shown in Fig. 2.
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4 Validation

4.1 Comparison to sonic anemometer

Best possible validation of the methods introduced in Sect. 3 can be performed with the lidar in close proximity to the mete-

orological mast such as at the measurement site at MOL-RAO. The sonic anemometers at 50 m and 90 m on the mast almost10

coincide with measurement levels of the lidar at 52 m and 93.6 m respectively. Since the VAD-retrieval with elevation angle

of 35.3◦ yields TKE as well as its dissipation rate, both turbulence parameters can be compared to values obtained from the

sonic anemometers. In this section we will evaluate the methods described in Sect. 3.2 and in particular the validity of the

assumptions made in Sect. 3.2.1 and the efficiency of the advection correction described in Sect. 3.2.3.

4.1.1 Validation of modified variance15

In Sect. 3.2.1 we introduced two modifications on the calculation of the averaged lidar radial velocity variances. These changes

are especially necessary if a low number of VAD scans is used for turbulence retrieval. In the MOL-RAO experiment, VAD

scans are run continuously with ϕ= 35.3◦, so that the modifications can be tested against the original version of the retrieval

method. The sonic anemometer at 90 m of the meteorological mast serves as an independent validation measurement. Figure 5a

shows a time series of the two methods and the sonic anemometer in a time period in which all systems were providing good20

data almost without interruption (22 April - 29 April 2019). The lidar retrieval with both variance methods follows the sonic

anemometer TKE estimation very well through the diurnal cycles, with some occasional overestimation that will be discussed in

Sect. 4.1.2. Figure 5b gives the difference (∆TKE) between azimuth average and total average to show that it is typically below

0.5 m2s−2 except for some periods with strong gradients in TKE. Figure 5c shows the scatterplot which directly compares the

S17 retrieval calculated with azimuth averaged variances to the S17 retrieval using total variances. There is a higher estimation25

of TKE in the total variance method which increases with TKE. We cannot fully explain this effect at this point, but it might be

due to the small scale turbulence that cannot be resolved with the 72 s sampling rate of radial velocities at individual azimuth

angles. It is small enough to be neglected for further analysis.

4.1.2 Comparison of lidar retrievals

The MOL-RAO dataset allows us to compare the retrievals without consideration of lidar volume averaging (E89 and S17A)30

to the S17 retrieval and its modified version W20 introduced in this study. For this purpose, the individual retrieval results are

compared to the sonic anemometer estimates of TKE and its dissipation rate ε. Figure 6 shows the scatter plots for TKE at the

two measurement levels. For each method, the coefficient of determination R2
c of the linear regression between sonic measure-

ment and lidar retrieval is given, as well as a bias which is calculated as b= (y−x) for TKE and blog = (log10 y− log10x) for

ε. We find that with the E89-method, TKE is systematically underestimated, as expected. In contrast to that, the S17-method

yields slightly overestimated TKE-values, if no advection filter is applied (light red dots), but a good agreement with the sonic5

anemometer in the absence of advection (red dots). The overestimation of TKE is larger for the lower level at 50 m compared
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Figure 5. Time series of TKE from lidar retrievals compared to a sonic anemometer at 90 m above ground level (a), the differencec between

the lidar retrieval with averaged variances (Eq. 20) at specific azimuth angles θ to the modified, total variance method (Eq. 21) (b) and the

scatterplot for the whole experimental period (c).

to the 90-m level which we attribute to the smaller averaging volume ∆y. Our refined version of the retrieval, including the

advection correction improves the results slightly and especially for the high turbulence cases (corresponding to high wind

speeds) at the 50-m level, as the scatterplots show. Figure 7 gives the scatterplot comparison of ε-retrieval from S17A, S17

and W20 with the sonic anemometer respectively. E89 does not provide an estimate for ε. Even more clearly than for TKE,10

the underestimation of the method without consideration of lidar volume averaging (S17A) is found. Also, a now positive

bias of b= 0.09 m2 s−2 of lidar estimates with the S17-method at the 50-m level is reduced with the advection correction to

b= 0.06 m2 s−2. It is evident from the ε-estimates that all lidar retrievals underestimate turbulence significantly compared to

the sonic anemometer in the low turbulence regimes, and in particular for values smaller than 2 · 10−3 m2 s−3, which is why

these values have been excluded for the estimation of biases (grey dots).15

4.1.3 Evaluation of advection error

To evaluate the error that is caused by advection in the S17-retrieval, all data that was collected at MOL-RAO was binned into

wind speeds with a bin-width of 1 m s−1. The mean absolute error between the lidar retrievals and the sonic anemometers

at the respective level is calculated and shown in Figure 8 for TKE and ε. Although the averaged errors of TKE are small in

general, it shows that the W20-method does reduce the error in comparison to the S17 method at the 50-m level. The error for

ε at the 50-m level increases with wind speed, but less for the W20-method. Hardly any improvement is found for the already5

small errors of TKE and ε at 90 m.
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Figure 6. Scatter plot of lidar TKE retrieval against sonic anemometer TKE at 50-m level (a-c) and 90-m level (d-f). E89-retrieval is shown

in (a) and (d), S17-retrieval in (b) and (e) and W20-retrieval in (c) and (f). The light red dots in (b) and (e) show all TKE estimates without

filter for advection, the dark red dots have the advection filter applied.

4.2 Comparison of elevation angles

VAD-scans with 35.3◦ allow to retrieve TKE as well as momentum fluxes using the methods described in Sect. 3. The disad-

vantage compared to VAD scans with larger elevation angles is that at the same range of the lidar line-of-sight measurement,

lower altitudes are reached. If the limit of range is not given by the ABL height in any case, this can lead to significantly lower10

data availability at the ABL top. Another advantage of greater elevation angles is that the horizontal area that is covered with

the VAD and thus the footprint of the measurement is much smaller than with low elevation angles. From the theory derived in

Sect. 3.3, we see that the dissipation rate retrieval does not depend on the elevation angle and can thus be obtained from VAD

scans with 75◦ elevation angle as well if the assumptions of isotropy and homogeneity hold. However, since the VAD at 75◦

has the more narrow cone, the separation distances ∆y at respective measurement heights are smaller and thus the sensitivity

to advection errors is expected to be larger. The measurements with two different elevation angles at the CoMet-campaign5

allow to compare dissipation rate retrievals for both kinds of VAD scans with the restriction that they are not simultaneous, but
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Figure 7. Scatter plot of lidar dissipation rate retrieval against sonic anemometer dissipation rate. The light red dots in (b) and (e) show the

results without advection filter. The light grey dots are all estimates below 2 · 10−3 m2s−3. Grey dots are not used for calculation of R nd

blog.

sequential.

Figure 9 shows the comparison of both types of VADs in scatter plots of three measurement heights for the whole campaign

period and DWL#1. In general, a large scatter is found between the two types of VAD which can be attributed to the different

measurement times, different footprint and heterogeneous terrain. Applying a filter for significant advection as described in10

Sect. 3.2.4 removes most of the measurement points at the 100 m level in the 75◦ VAD. Without the filter (grey and red points),

large, systematic overestimation against the VAD at 35.3◦ is found, which can still be seen at 500 m, but is not found at 1000 m

any more. With the advection correction of W20, the systematic error is reduced, but the random errors remain.

As for the comparison with the sonic anemometer, we evaluate the error in dependency of wind speed by binning the data in

wind speeds between 0 m s−1 and 10 m s−1 (see Fig. 10). A clear trend is found for the 100 m-level which can be significantly

reduced with the W20 method. A very small difference between the two elevation angles at the 500-m level is only reduced5

very little in the W20 method.
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Figure 8. Difference of lidar retrieval of TKE (a) and TKE dissipation rate (b) compared to sonic anemometer as a function of wind speed.

4.3 Comparison to D-FDLR

At CoMet, no meteorological tower with sonic anemometers on levels that could be compared to the Doppler lidars was

available. Instead, the aircraft D-FDLR was operating with a turbulence probe and provided in-situ turbulence data. On 5 June

2018, the aircraft was flying a so-called ’wall’-pattern, with long, straight and level legs at five altitudes (800 m, 1000 m,10

1100 m, 1300 m and 1600 m). At least the lowest three levels of this flight allow a comparison to measurement levels of the

top levels of lidar measurements on this day. Figure 11 shows the measured TKE of D-FDLR in the five flight levels. Only at

the lowest two light levels (i.e. 800 m and 1000 m), significant turbulence is measured, with strong variations along the flight

path.

Figure 12 shows the measurements from D-FDLR and the lidars DWL#1 and DWL#3 that were taken between 1400 and15

1530 UTC as vertical profiles. The solid red line gives the average of all sub-legs along the 50 km flight of D-FDLR, and the

shaded areas give the range between the minimum and the maximum at each height. It shows nicely how the measurements

of turbulence at the DWL#3-site are significantly lower than at DWL#1, which we attribute to the lake fetch. The D-FDLR

measurements of TKE almost match with the DWL#1 site and are all higher than at the DWL#3-site, which fits to the envi-

ronmental conditions of heterogeneous land-use. Figure 12a also gives the comparison between E89-, S17- and W20-estimates

of the same dataset. Here, it shows that the difference between S17 and W20 only occurs at the very lowest level, but the

underestimation of the E89-method is found up to 750 m. In dissipation rate estimates, the DWL#1 measurements are at the

low end of the range that was measured with D-FDLR and the lake-site measurements are even smaller. The estimates from

35.3◦-scans and 75◦-scans agree very well, especially at the higher levels, which shows that the assumption of isotropy and5

homogeneity seem to hold. The presumed underestimation of ε of lidar retrievals compared to in-situ measurements at absolute
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Figure 9. Scatter plot of lidar dissipation rate retrieval from VAD scans with 75◦ elevation angle versus 35.3◦. On the left, retrievals without

advection correction are shown for the three different levels (a) 100m, (b) 500m and (c) 1000m. On the right the corresponding scatter plots

with advection correction are presented (d-f).

values of 10−3 m2 s−3 is consistent to what was found for the comparison to sonic anemometer measurements. This single case

of airborne measurements compared to lidar retrievals at higher altitudes can however not provide any statistical validation.

Figure 13 shows measurements of ε retrieved with the W20-method for the VAD scans with 75◦ elevation and all three

lidars. It shows that the growth of the boundary-layer with its increased turbulence can be nicely captured by the lidars. There

are some differences between the three locations, especially lower turbulence close to the ground at the DWL#3-location and

a higher boundary layer at the DWL#2 location. More studies will be necessary in future, analyzing the data of the whole5

campaign to improve the understanding of land-atmosphere interaction in this case.
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Figure 10. Difference of lidar ε-retrievals of both kinds of VAD as a function of wind speed.

Figure 11. D-FDLR TKE measurements at five flight levels. Map data ©OpenStreetMap contributors 2019. Distributed under a Creative

Commons BY-SA License.
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Figure 12. Vertical profile of TKE (left) and ε (right) compared to measurements by D-FDLR.

Figure 13. Diurnal cycle of TKE dissipation rate on 5 June 2018 at the three lidar locations calculated with the W20-method.
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5 Conclusions

In this study, we used four different methods to retrieve turbulence from the same data obtained through lidar VAD scans.

The MOL-RAO experiment allowed us to show that methods which do not account for the lidar volume averaging effect

underestimate turbulence compared to sonic anemometers at 50 m and 90 m systematically. This has been shown for the first10

time with such a big dataset. The S17-method tackles this problem, but introduces an overestimation in our dataset. Parts

of this overestimation can be attributed to advection, which distorts the retrieval of the azimuth structure function and the

transverse filter function in the lidar model. The advection effects are relevant at the lowest measurement heights where the

spatial separation of lidar beams along the VAD cone ∆y is small. This effect is stronger than increasing wind speeds at higher

altitudes in our observations. We propose a correction for this issue and show here that our method reduces the systematic15

errors compared to the sonic anemometers at the 50-m level. To confirm that advection is the reason for this improvement

we show that the bias increases with wind speed. With all retrievals, dissipation rates of values smaller than 10−3 m2 s−3 are

underestimated by the lidars, likely because the small scale fluctuations that are carrying much of the energy in these cases,

cannot be resolved any more. A remaining piece of uncertainty are the lidar parameters ∆p and Tw which are given by the

manufacturer for the lidar type, but could potentially differ for individual lidars. Exact knowledge about these parameters could20

reduce the uncertainty of the model functions F and A (see App. B) and thus improve the corrections of the volume averaging

effects. It is conceivable that the observed overestimation of the S17 (and W20) based TKE can partly also be attributed to

these uncertainties.

The aircraft measurements that were carried out during the CoMet campaign were used to show the agreement of the lidar

retrievals with in-situ measurements at higher altitudes. It is the first time that these lidar measurements have been compared25

to in-situ aircraft data. Unfortunately, only measurements of one day allowed a comparison and the spatial separation of the

measurements introduces additional uncertainty. It was found that TKE estimates from lidar and aircraft compare rather well,

but the small values of dissipation rates at these heights are underestimated by the lidar to a similar order of magnitude as

for low turbulence conditions in the sonic anemometer comparison. Dedicated experiments will be necessary in future to

provide more comprehensive validation datasets for turbulence retrievals with lidar VAD scans. Given the larger separation30

distances ∆y of the lidar beams at higher altitudes, the assumption that l∆y� Lv is more likely to be violated. Airborne

in-situ measurements are the best way to validate the assumptions and the lidar retrievals in these cases.

The CoMet dataset was also used to show that with VAD-scans with larger elevation angle (here: 75◦) can be used to retrieve

TKE dissipation rate with the same method as for VAD-scans with 35.3◦ and the results are comparable. For this narrow

VAD cone scans, we showed that the advection correction is much more important than for lower elevation angles and strong

overestimation of ε can occur in conditions with high wind speeds if it is not applied. The distribution of three lidars in Upper

Silesia in areas of different land-use shows the variability of turbulence and boundary-layer flow in this area. Using the VAD

scans with different elevation angle can in future potentially help to analyze horizontal heterogeneity in the boundary layer and5

its impact on the calculation of area-averaged fluxes.
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Data availability. The data are available from the author upon request.

Appendix A: Fourier decomposition

Eberhard et al. (1989) show that radial velocity variance can be decomposed into the components u, v and w of the meteoro-

logical wind vector:10

〈v2r(R,θ,ϕ)〉= 〈[Vr(R,θ,ϕ,t)−〈Vr(R,θ,ϕ)〉]2〉

=
cos2ϕ

2

[
〈u2〉+ 〈v2〉+ 2tan2ϕ〈w2〉

]
+ sin2ϕ〈uw〉− sin2ϕ〈vw〉sinθ

+
cos2ϕ

2

[
〈u2〉+ 〈v2〉

]
cos2θ− cos2ϕ〈uv〉sin2θ (A1)

A partial decomposition of Eq. A1 yields:15

〈u2〉+ 〈v2〉+ 2tan2ϕ〈w2〉=
1

π cos2ϕ

2π∫
0

〈v2r〉dθ

=
2

cos2ϕ
〈〈v2r〉〉θ (A2)

〈uw〉=
1

π sin2ϕ

2π∫
0

〈v2r〉cosθdθ (A3)

〈vw〉=
−1

π sin2ϕ

2π∫
0

〈v2r〉sinθdθ . (A4)

These equations provide the basis for the retrieval of TKE and momentum fluxes from lidar VAD measurements.

Appendix B: Lidar filter functions

Theoretical models for the spectral broadening of lidar measurements (F (∆y)) and the structure function(A(l∆y)) are derived

in Banakh and Smalikho (2013) from the two-dimensional Kolmogorov spectrum for lidar measurements of turbulence:

Θ(κz,κy) = C3(κ2z +κ2y)−4/3

[
1 +

8

3
·

κ2y
κ2z +κ2y

]
(B1)5

F (∆y) =

∞∫
0

dκz

∞∫
0

dκyΘ(κz,κy)
[
1−H‖(κz)H⊥(κy)

]
(B2)

A(l∆y) = 2

∞∫
0

dκz

∞∫
0

dκyΘ(κz,κy)H‖(κz)H⊥(κy) [1− cos(2πl∆yiκy)] , (B3)
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where H‖ is the longitudinal and H⊥ the transverse filter function of lidar measurements in the VAD scan:

H‖(κ1) =

[
exp

[
−(π∆pκ1)2

] sin(π∆Rκ1)

π∆Rκ1

]2
(B4)

H⊥(κ2) =

[
sin(π∆yκ2)

π∆yκ2

]2
, (B5)10

where ∆p is derived from the FWHM pulse width τp, ∆R from the time window Tw and ∆y from the VAD azimuth increment

∆θ:

∆p= 0.5c

(
τp

2
√

log2

)
(B6)

∆R= 0.5cTw (B7)

∆y =R∆θ cosϕ (B8)15

(B9)

Appendix C: Sum of variance of subsamples

For statistically independent subsamples Xj with size kj , the total variance of the dataset can be derived as follows:

Ej = E[Xj ] =
1

kj

kj∑
i=1

Xji (C1)

Vj = Var[Xj ] =
1

kj − 1

kj∑
i=1

(Xji−Ej)2 , (C2)20

where j is the index of the subsample and i the index of the element in the subsample.

Var[X] =
1

n− 1

g∑
j=1

kj∑
i=1

(Xji−E[X])2 (C3)

=
1

n− 1

g∑
j=1

kj∑
i=1

(
(Xji−Ej)− (E[X]−Ej)

)2
(C4)

=
1

n− 1

g∑
j=1

kj∑
i=1

(Xji−Ej)2− 2(Xji−Ej)(E[X]−Ej) + (E[X]−Ej)2 (C5)

=
1

n− 1

g∑
j=1

(kj − 1)Vj + kj(E[X]−Ej)2 , (C6)

where n=
∑
kj . Eventually, for equally sized subsamples one obtains:

Var[X] =
1

n− 1

g∑
j=1

(k− 1)Vj + k(g− 1)Var[Ej ] (C7)

=
k− 1

n− 1

g∑
j=1

Vj +
k(g− 1)

k− 1
Var[Ej ] (C8)
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Figure D1. Scatter plot of horizontal wind speed retrieved from lidar measurements compared to sonic anemometer measurements at 50 m

(a) and 90 m (b) and wind direction (c and d).

Appendix D: Validation of wind retrieval

The FSWF-retrieval is used to obtain the three-dimensional wind vector from the lidar VAD scans. The results of the retrieval

is compared to the sonic anemometers at 50 m and 90 m and shown in Fig. D1. To show the distortion of the mast, no data

have been removed in the retrieval of wind speed and wind direction for this figure.5
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Appendix E: Nomenclature

λ laser wavelength
τp lidar pulse length (full width half maximum, FWHM)
Tw lidar time window
ϕ elevation angle
θ azimuth angle
u wind component towards East
v wind component towards North
w upward wind component
σ2
u u-wind component variance
σ2
v v-wind component variance
σ2
w w-wind component variance
τi time separation
Vr radial wind component
vr radial wind component difference from mean
σ2
r radial wind component variance
R range gate distance
ETKE turbulence kinetic energy
ε TKE dissipation rate
CK Kolmogorov constant
ψ azimuth angle increment
κ wave number
r separation distance
σ2
L variance of lidar measurements
σ2
e lidar instrumental noise
σ2
a variance of lidar measurements without instrumental noise
σ2
t turbulent broadening of the Doppler spectrum

∆R distance between neighboring range gate centers
Dr azimuth structure function
Ds longitudinal structure function measured by sonic anemometer
DL lidar measurement of azimuth structure function
Da DL− 2σ2

e

A theoretical model for azimuth structure function
F theoretical model for turbulent broadening of the Doppler spectrum
∆y distance of lidar beam movement during one accumulation period
∆yc modified ∆y for advection
pM model PDF
P probability of bad estimates
Lv integral length scale
ωs angular velocity of VAD scan
Ψ wind direction
U horizontal wind speed
∆t accumulation time
Rc linear regression correlation coefficient
b measurement bias
H‖ longitudinal low-pass filter function for lidar measurement
H⊥ transversal low-pass filter function for lidar measurement
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