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Abstract. A rig for calibrating a continuous-wave coherent Doppler wind lidar has been constructed. The rig consists of a

rotating flywheel on a frame together with an adjustable lidar telescope. The laser beam points toward the rim of the wheel in a

plane perpendicular to the wheel’s rotation axis, and it can be tilted up and down along the wheel periphery and thereby measure

different projections of the tangential speed. The angular speed of the wheel is measured using a high-precision measuring ring

fitted to the periphery of the wheel and synchronously logged together with the lidar speed. A simple, geometrical model5

shows that there is a linear relationship between the measured line-of-sight speed and the beam tilt angle and this is utilised

to extrapolate to the tangential speed as measured by the lidar. An analysis of the uncertainties based on the model shows that

a standard uncertainty on the measurement of about 0.1% can be achieved, but also that the main source of uncertainty is the

width of the laser beam and it’s associated uncertainty. Measurements performed with different beam widths confirms this.

Other measurements with a minimised beam radius shows that the method in this case performs about equally well for all the10

tested reference speeds ranging from about 3 m/s to 18 m/s.
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1 Introduction

Wind lidars are often referred to as being ’absolute’ instruments by which is meant that, given only the two parameters; the

laser wavelength and the frequency at which we sample the backscattered light, we are able to calculate the measured line-of-15

sight (LOS) speed through the well-known equation V = 1
2λ ·∆f , (Pearson et al., 2002). This to some implies that wind lidars

are also ’calibration free’ since there, in contrast to e.g. cup anemometers, are no empirical constants to be found through a

calibration. However, a calibration is fundamentally just a comparison to a reference with a known and traceable uncertainty

(Joint Committee for Guides in Metrology, 2012), and without a calibration we have no way of knowing that the lidar measures

correctly; small errors can easily creep into the frequency analysis or the laser wavelength may drift etc. Equally important, by20

using a reference with known uncertainty traceable to international measurement prototypes, we can assign an uncertainty to

the lidar radial speed and claim traceability. The latter is often a requirement in commercial measurements where the outcome
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can have financial consequences. The uncertainty of the calibration can further be transferred to the test instrument and form

the basis for additional operational uncertainty estimates.

Current practice for calibrating wind lidars is to use cup or sonic anemometers (Courtney, 2013) as reference instrument and

the calibration is often limited by the uncertainty of the reference instrument. Even when using sonic anemometers as reference

the overall lidar calibration uncertainty is typically of the order of 1− 2% (Wagenaar et al., 2016). This does not do justice5

to the lidars. We believe that the potential accuracy of wind lidars is much higher than that, lasers are after all very stable

instruments and frequency analysis not necessarily faulty, and therefore we propose a new calibration method with a targeted

standard uncertainty of 0.1%. The result of such an order of magnitude increase in accuracy can hopefully propagate through

the wind energy industry as higher accuracy will have significant economic benefits.

Inspired by a similar concept commonly used for calibrating Laser Doppler Anemometers (LDAs), (Shinder et al., 2013),10

we have constructed a rig for calibrating Doppler lidars. The rig in essence consists of a frame with a stainless-steel flywheel

in one end and an adjustable lidar telescope pointing toward the wheel rim in the other. However, conversely to an LDA system

a Doppler lidar measures the velocity component along the laser beam and we therefore use the lidar beam skimming on

the circumference rather than impinging the wheel surface perpendicularly as the LDA would do. The telescope is mounted

on a pivoting mechanism and with this the laser beam can be tilted and thus different projections of the wheel peripheral15

speed probed. In addition, we have developed a simple model relating the ratio between the speed sensed by the lidar and the

peripheral speed to the beam tilt angle and this method allows us to estimate the true peripheral speed by extrapolation from

speeds measured at other angles.

It might seem strange to use a rotating steel wheel as measurement target, after-all the lidar is intended for measuring on

small aerosols carried by the wind and not a solid metal target. On the other side, the lidar fundamentally measures a frequency20

shift in the backscattered light due to a relative motion and it is this frequency shift measurement and the subsequent conversion

to a speed we wish to calibrate. The origin of the backscatter is in this connection of less importance. One could, however,

envision a scenario where a lidar calibrated in this fashion is used to calibrate another lidar in e.g. a wind tunnel or the free

atmosphere. This would lead to a calibration procedure resembling that of the current practice but where the limiting accuracy

of a cup anemometer is alleviated.25

The manuscript is organised in the following way. First the calibration rig and lidar are described. Then the model describing

the relation between the measured line-of-sight speed and tilt angle is gradually developed beginning from a simple 1D model

to a more realistic 2D model and finally a 3D model. This model forms the basis of the following suggestion for a calibration

procedure and analysis of the various uncertainty contributions. Finally, calibrations performed with different laser beam widths

and at different reference speeds are presented.30

2 Calibration rig and lidar

The calibration rig consists of an aluminium frame on which is mounted a stainless steel wheel together with the transceiver, or

telescope, of the lidar. The wheel has a radius of 286.76 mm with a measured eccentricity of about 0.01 mm and it is coupled
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Table 1. Physical properties of the calibration rig.

Wheel radius R [mm] 286.76

Wheel eccentricity e [mm] 0.01

Distance telescope to wheel L [m] 1.578

Encoder pulses [pulse/rev] 1800

Encoder pitch [µm] 1000±3

directly to a servo motor to control its rotational speed. The telescope is mounted at approximately the same height as the top

of the wheel and in such a way that it can be tilted around a horizontal axis parallel to the wheel’s rotational axis using a fine

threaded adjustment screw, see Fig. 1. The pivot point is located approximately 10 cm directly under the lens. On top of the

telescope is mounted an inclinometer to measure the tilt angle of the laser beam.

In order to measure the rotational speed, a high-precision measuring ring is fitted to the periphery of the wheel together with5

a corresponding measurement head sitting near the bottom of the wheel, (AMO GmbH, 2013). As the wheel rotates the ring

induces a voltage in the static measurement head for each 1000 µm ±3 µm. The output of the system is 1800 TTL pulses per

wheel revolution, and the period for six consecutive pulses are measured, and inverted to give the wheel rotational frequency.

The physical properties of the calibration rig are summarised in Table 1.

The lidar is a direction sensitive continuous-wave coherent Doppler lidar operated with a 1565 nm fibre laser, (Pedersen10

et al., 2014). The Doppler spectra are based on a 1024 point discrete Fourier transform (DFT) of the detector output sampled at

120 MHz resulting in a spectrum resolution of 117 kHz or 0.0917 m/s. About 1200 spectra are combined to form one average

spectrum at a rate of approximately 100 Hz. Based on the average spectrum the radial speed is estimated as the 50% fractile of

the signal exceeding the detection threshold, (Angelou et al., 2012). Focusing of the laser beam is controlled by adjusting the

distance from the laser output fibre to the focusing lens with a micrometer screw. The lens has a 1” diameter and a focal length15

of 0.10 m. Laser, telescope and detectors are connected by optical fibres. The physical properties of the lidar are summarised

in Table 2.

Real-time signals from lidar, inclinometer, and rotation encoder are streamed to a measurement computer which synchronises

at 100 Hz and stores the data for post processing.

3 Model and calibration procedure20

Using a rotating wheel for calibration has been used with LDAs for many years, (Shinder et al., 2013; Bean and Hall, 1999;

Duncan and Keck, 2009), and as mentioned in Sect. 1 our calibration rig is strongly inspired by what has been done with LDAs.

However, unlike LDAs coherent Doppler lidars measure the velocity component along the laser beam meaning that the beam

must be aligned with and overlapping a tangent of the wheel and this poses a paradox since for the lidar to measure the true

tangential wheel speed, and only that, the overlap between laser beam and wheel surface will need to be infinitely small. In25
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Table 2. Physical properties of the lidar.

Lens diameter m 0.0254

Lens focal length m 0.10

Laser wavelength λ [nm] 1565

Sampling rate detector output fs [MHz] 120

Number of points in DFT NDFT 1024

Bin width [m/s] 0.0917

Measurement rate Hz 100

Figure 1. Photo of the calibration rig. To the left is seen the flywheel with cables through which the motor is controlled and to the right the

lidar telescope with optical cables connecting it with the laser and detectors. The inclinometer is not visible in the photo.

this case there will be no backscatter signal to detect! In order to circumvent this paradox it is therefore necessary to measure a

different component of the reference speed than the tangential together with the corresponding tilt angle and from that calculate

the measured tangential speed. Unfortunately, this approach also has some drawbacks in the form of additional uncertainties

due to the tilt angle measurement. Another source of uncertainty, present at any tilt angle, is the speed estimation uncertainty

due to the finite resolution of the measured Doppler spectrum which is especially pronounced when using a very narrow laser5

beam. The narrow beam leads to only a very limited range of projected speeds being sensed confining the Doppler signal to a

single spectral bin. However, this uncertainty can be eliminated by scanning over a range of tilt angles or alternatively, a range

of wheel speeds. We have developed a model from simple geometric considerations describing the ratio between the tangential

wheel speed and the speed sensed by the lidar as function of beam tilt angle. The model shows that this relationship is linear

and it can therefore be used to make a simple extrapolation back to what would be the tangential wheel speed sensed by the10

lidar.
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Figure 2. Schematic drawing of the calibration rig illustrating the basic geometry of the rig. The laser beam, illustrated in red, can be tilted

using an adjustment screw on the telescope mount.

In the following subsections the model is derived; first under the approximation that the laser beam has no transverse com-

ponent (i.e. it is infinitely narrow), during which we establish the relationship between the beam tilt angle, θ, and the skimming

angle, φs, and later for a collimated beam of finite width, w. The model predicts that there are two distinct measurement

regimes, one when the entire beam is on the wheel and one when part of the laser beam skims above the wheel, and this has

profound influence on interpreting the result. Finally, the suggested procedure for doing the calibration is described.5

3.1 Infinitely narrow beam

Figure 2 shows a schematic drawing of the calibration setup. The line-of-sight speed sensed by the lidar (VLOS) is the wheel’s

peripheral velocity projected into the direction of the beam at the point of intersection between the wheel surface and laser

beam. From Fig. 2 this is seen to be

VLOS = Vwheel cos(φs + θ) = ωRcos(φs + θ) , (1)10

where Vwheel is the peripheral speed, φs is the skimming angle, θ is the beam tilt angle, ω the angular frequency, and R the

radius of the wheel.

Now, to find the relation between φs and θ we can make use of an approach which will also prove valuable later on; instead

of tilting the beam we rotate the centre of the wheel, (x0,y0), an angle θ around the centre of the transceiver lens which defines

the origo of our coordinate system, see Fig. 3. The new centre of the wheel is denoted (xr,yr). From the figure it is clear that15

the angle, φr, between the vertical and the intersection point between beam and wheel is

φr = φs + θ, (2)
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Figure 3. Instead of tilting the beam the centre of the wheel is rotated around the lens centre.

and that

cos(φr) =
−yr
R

. (3)

From Fig. 2 we see that (x0,y0) = (L,−R) and from this we can calculate (xr,yr) via the rotation matrix R
z
(θ)xr

yr

=R
z
(θ)

x0

y0

=

cosθ −sinθ

sinθ cosθ

 L

−R

=

Lcosθ+R sinθ

Lsinθ−Rcosθ

 . (4)

As mentioned in Sect. 2 the physical beam actually rotates around a point situated beneath the lens but for a tilt angle of 2.5◦,5

which is the maximum attainable in our setup, this leads to a negligible difference for xr and yr of about 4 mm and 0.1 mm,

respectively. Now, rearranging and inserting into Eq. (1) we finally arrive at

VLOS

Vwheel
=
Rcosθ−Lsinθ

R
. (5)

Since the maximum tilt angle is only about 2.5◦ we can make the approximations that cosθ = 1 and sinθ = θ such that

VLOS

Vwheel
≈ 1− Lθ

R
. (6)10

It is thus seen that for small tilt angles there is a linear relationship between the speed ratio VLOS
Vwheel

and θ and this can be

utilised in the calibration procedure.

3.2 Finite width, collimated beam, 2D

Now, a real laser beam is of course not infinitely narrow but has a transverse profile of finite width, e.g. the laser used in this15

study has a Gaussian profile. We therefore expand the model to include the beam width radius, w, but to begin with limit our
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Figure 4. Schematic drawing used to derive the 2D thick beam model. Notice that w is the beam radius and (x0,y0 = L,−R−w).

selves to the two dimensional case and the assumption that the beam intensity has a constant transverse cross-section, i.e. the

intensity profile across the beam has a "top hat shape".

For a beam of finite width a finite part of the wheel perimeter will be illuminated by the laser and thus a range of line-of-sight

speeds be measured, see Fig. 4. Each incremental line-of-sight speed will be

dVLOS = Vwheel cos(φr) , (7)5

and these will each contribute a proportion dφr/∆φr of the total speed sensed by the lidar, where ∆φr = φr1 −φr0 is the

total angle subtended by lidar illumination. The total speed contribution VLOS is thus obtained by integrating Eq. (7) whilst

normalising by ∆φr

VLOS =
1

∆φr

φr1∫
φr0

Vwheel cosφdφ=
1

∆φr
Vwheel (sinφr1 − sinφr0) . (8)

By applying L’Hospital’s rule, the right hand side divided by Vwheel is easily seen to reduce to cosφr as φr1 approaches φr0 ,10

i.e. as the beam becomes narrower, and therefore give the same result as in Sect. 3.1 and the model is thus mathematically

consistent with the 1D model.

Even for a beam of finite width Eq. (6) is a good approximation to how the ratio VLOS
VWheel

changes as the beam is tilted. For

completeness, a mathematical derivation of this is presented in Appendix. A but from a physical point of view it can intuitively

be understood as that the high speed measured at φ1 is more or less balanced by the low speed measured at φ0. However, the15

approximation only applies as long as the entire beam cross-section is on the wheel; if part of the beam goes above the wheel,

as it will for very small tilt angles, the relationship changes as we shall see in Sect. 3.2.1.
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3.2.1 Skimming above the wheel

As mentioned above, Eq. (6) only applies as long as all of the beam is on the wheel but if parts of the beam go above the wheel

the relationship between VLOS
Vwheel

and θ changes and this is unavoidably what will happen when we try to measure as close as

possible to the true tangential speed. It is therefore interesting to take a closer look at the special case characterised by φ0 = 0,

that is for so small tilt angles that only parts of the beam hit the wheel. Furthermore, measuring in this angular range can be5

used to estimate the beam width which will be explained in Sect. 3.6:

When skimming above the wheel Eq. (8) reduces to

VLOS

Vwheel
=

1

φr1
(sin(φr1)) , (9)

and if we Taylor expand we get

VLOS

Vwheel
= 1− 1

6
φ2
r1 . (10)10

This means that as long as only a part of the beam is impinging on the wheel the sensitivity to the tilt angle is only a third

compared to when the entire beam illuminates the wheel. The range of angles to which this applies obviously depends on the

beam width. The angle where the top of the beam first touches the wheel, i.e. when the entire beam is on the wheel, is denoted

θ1 and is calculated through

θ1 = arctan

(
2w

L

)
. (11)15

3.3 3D model

In the previous section we modelled the laser beam intensity profile as a 2D top-hat shape. This is in conflict with the physical

reality in two ways; firstly, confining the model to two dimensions effectively means that we are assuming the beam cross-

section to be square and not round and secondly the real laser beam has a Gaussian intensity profile and not a top-hap shape.

To take these facts into account we must therefore expand the model to three dimensions.20

Still assuming that the beam is collimated we can model the beam as a cylinder of radius w centred around the x-axis

y2 + z2 = w2, (12)

and the wheel as a cylinder along the z-axis and centred around (xr,yr)

(x−xr)2 + (y− yr)2 =R2. (13)

The x-coordinates of the overlap between beam and wheel in the rotated frame of reference is found by solving Eq. (13)25

x=−
√
R2− (y− yr)2 +xr, (14)

where yr−R≤ y ≤ yr +R and the sign of the square root is chosen such that only parts of the wheel facing the telescope are

illuminated. The corresponding y and z-coordinates are governed by Eq. (12) such that (yr,zr) = (y,z). It should be noticed
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Figure 5. Comparison of the different models evaluated for tilt angles from 0− 1◦ to the left and to the right a close-up focusing on the

shallow angles where only a part of the beam touches the wheel. For the chosen beam radius θ1 = 0.18◦.

that in this way the overlap between wheel and beam has been parametrisised into a function of y and z i.e. g(x,y,z) =

g(X(y),y,z).

In order to find the ratio VLOS
VWheel

we follow the same procedure as outlined in Sect. 3.2 by integrating all the speed contributions

and normalise by the area of the illuminated surface, S. This can be done by calculating the surface integrals

VLOS

VRef
=

∫∫
S
I(y,z)cosφr dS

Ar(S)
5

=

∫∫
I(y,z) y−yr√

R2−(y−yr)2
dydz∫∫

R√
R2−(y−yr)2

dydz
, (15)

where I(y,z) is the beam intensity profile. The full derivation of Eq. (15) can be found in Appendix B.

3.4 Model comparison

In order to compare the different models from the simple narrow beam approximation and 2D top hat beam to the full 3D

Gaussian beam a numerical evaluation of each has been performed for a beam radius of 2.5 mm (1/e2-radius for the Gaussian10

profile) and plotted together as function of tilt angle in Fig. 5. The left plot shows the models evaluated from θ = 0− 1◦ and

the right is a close-up focusing on the transition range where more and more of the beam falls on the wheel. The values used

for R and L are the same as for the actual calibration rig.

Starting from angles larger than θ1 we see that all the models fall off with the same slope as predicted by the narrow beam

approximation. Again, this indicates that as long as the entire beam is on the wheel the sensitivity to a change in tilt angle is15

the same for all beam widths and we can use Eq. (6) to calculate this sensitivity. On the other hand it is also clear that the beam

width introduces an offset between the narrow beam and finite width models such that the wider beam measures a slightly

higher speed than the narrow. This can be seen as the upper and lower parts of the beam not balancing each other perfectly;

because of the curvature of the wheel the upper part spreads over a wider part of the wheel and therefore a wider range of
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Figure 6. Schematic drawing of the influence of the wheel not rotating around its centre point. The wheel rotates around the point (xr,yr)

which is off-sat from the wheel centre, cw, by e.

speeds. This means that the absolute lidar measurement for a given tilt angle depends on the beam width, and it is therefore

critical to know this.

For angles smaller than θ1 the models stand out more clearly from each other. The 2D beam with a top hat transverse profile

drops linearly from θ = 0◦ to θ1 where there is an abrupt change followed by a non-linear change in slope but soon it tends

toward slope of the narrow beam. This abrupt change is due the discontinuous nature of the assumed beam profile. It should be5

noted though that due to the abrupt change the Taylor expansions in Eqs. (6) and (10) do actually not meet in θ1. The two beams

with a Gaussian profile behave differently with a smooth transition from the two regimes because near the edges of the beam

the laser intensity is lower and therefore contributes less to the individual measurement. It is interesting to see how similar

the two Gaussian models behave indicating that including the third dimension is not critical as long as a Gaussian transverse

profile is used.10

3.5 Wheel eccentricity

As written in Sect. 2 the wheel when mounted on the servo motor has an eccentricity of about 0.01 mm. This eccentricity may

come from either the wheel itself or from the mounting on the motor so that the wheel centre and centre of rotation is not

perfectly aligned. In order to model the eccentricity and its effect on the calibration we will here assume the latter meaning

that we model the wheel as being ideal but with it’s centre off-sat from the centre of rotation by the amount e. Furthermore, we15

limit ourselves to regard the beam as having no transverse extent as we did in Sect. 3.1.

Figure 6 shows a schematic drawing of the situation adopting the method of rotating the centre of rotation around the lens.

The wheel rotates around the point (xr,yr) and the centre of the wheel, cw, therefore follows a circle of radius e around it. The

tangential speed at the intersection between wheel and beam is proportional to the distance, Re, from the rotation centre to the

intersection point and the proportionality constant is of course the angular velocity, ω. Re is a function of the rotation angle20

ψ. The lidar measures the projection of the tangential speed onto the laser beam and is thus given by VLOS = ωRe(ψ)cosφr.
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From the drawing we can see that that

cosφr =
−yr
Re(ψ)

⇒ VLOS = ωRe(ψ)
−yr
Re(ψ)

=−ωyr. (16)

This means that the dependence on ψ disappears and the measured line-of-sight speed will be the same for all rotation angles.

Now, as the wheel rotates it can happen that the intersection lies to the right of the point xr, as exemplified by the gray-

shaded circle, such that φr becomes negative, but because cosine is an even function the measured speed will still be the same.5

However, it is important to note that the measurement is not unaffected by the eccentricity because the radius of the wheel

effectively becomes R+ e and is therefore larger than in the non-eccentric case. Also for very small tilt angles there will be

a part of the wheel not being illuminated during a rotation and no measurement made. Another thing to notice is that this

conclusion will not hold for the thick beam, but as we have seen the narrow beam is really a very good approximation to the

general case for angles larger than θ1 which are the angles of interest for the calibration.10

3.6 Calibration procedure

As we have seen above our model predicts that there is a linear relationship between the ratio VLOS
Vwheel

and the tilt angle θ. This

means that we can in principle measure the projected speed at any tilt angle larger than θ1 and extrapolate back to the speed at

θ0 (θ = 0), i.e. where the bottom of the beam first touches the wheel, via Eq. (6). However, instead of a single measurement we

choose to measure the projected speed over a range of tilt angles and fit a straight line to the measured values and in that way do15

the extrapolation based on a number of measurements. This is in practice done by slowly turning the tilt adjustment screw on

the telescope while synchronously logging Vwheel, VLOS and θ. This method furthermore has the advantage of not relying on a

single lidar measurement which can be prone to discretisation uncertainty on the speed estimation. The change in angle causes

changes in the LOS speed that span several frequency bin widths and fitting over this range of angles will tend to average out

the errors on the individual measurements.20

The difficulty with the method lies in establishing the angles θ0 and θ1 i.e. where the beam just starts to touch the wheel and

when the entire beam is on the wheel, as illustrated in Fig. 7(a). In our setup the telescope is not perfectly aligned horizontally

with the top of the wheel and therefore the laser beam is not perfectly horizontal at θ0 as shown in the figure and it is therefore

necessary to establish θ0 in a different way other than a direct angle measurement with the inclinometer. For extremely shallow

tilts the lidar only occasionally detects a signal, maybe due the slight eccentricity of the wheel or differences in the surface25

characteristic meaning that some parts of the wheel perimeter extends farther into the laser beam or reflects stronger than

others. We choose the angle of this first sporadic signal as our best estimate for θ0.

The second angle, θ1, is more difficult to find and is more important for the overall calibration uncertainty. As the beam is

slowly lowered from θ0 the gaps between meaningful measurements become shorter and fewer until eventually a continuous

lidar signal is achieved. This means that enough of the beam is now touching the wheel for a signal to be detected for all30

rotation angles and we choose the angle where this first occurs as the our best estimate for θ1. Effectively we have thereby also

estimated the beam radius as

west =
L · tan∆θ

2
, (17)
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wheel (beam drawn in black) and correspondingly θ1 is the angle where top of the beam first touches the wheel (red beam). (b) Illustration

of the relation between the angles θ0 and θ1, and the fit intercept bi and the corrected intercept bc.

where ∆θ = θ1− θ0.

Another complication to the calibration arises due to the offset introduced by the finite beam width as explained in Sect. 3.4

and illustrated in Fig. 7(b). From the figure it is obvious that extrapolating from angles larger than θ1 will lead to an overesti-

mation of the speed at θ0 and it is therefore necessary to compensate for this. We will do this via Eqs. (6) and (10) which states

that the speed ratio is5

VLOS

VWheel
=

1− 1
3aθ, for θ ≤ θ1

1− aθ, for θ ≥ θ1,
(18)

where a= −L
R is the slope predicted by the models but instead we will use the slope of the actual linear regression while

assuming that the 1
3 relationship still holds. From this the overestimation can be found to be

OE =
2

3
a(θ1− θ0). (19)

In the end we therefore arrive at an estimate of the ratio between speed measured by the lidar and the reference wheel speed10

given as(
VLOS

VWheel

)
est

= bi−OE = bc, (20)

where bi is the intercept of the fitted straight line at θ0 and bc is the compensated intercept. As we saw in Sect. 3.4, Eq. (18) is

strictly not correct because of the non-linear drop in VLOS
VRef

close to θ1 as shown in Fig. 5, but for small values of w the resulting

error is small.15
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4 Uncertainties

In this section we will give an estimate of the uncertainties associated with the various parameters going into the calibration

and of course the overall calibration uncertainty. First the uncertainty on the reference speed is estimated, then the uncertainty

on the tangential speed measured by the lidar and finally we combine it into a total calibration uncertainty.

4.1 Uncertainty of reference speed (wheel)5

From Eq. (1) we know that the speed of the wheel is given as

Vwheel = ωR, (21)

and the uncertainty, U , on this can be obtained by applying the GUM model, (Joint Committee for Guides in Metrology, 2008)

and assuming that the uncertainties on the radius and on the rotational speed are uncorrelated

U2
Vwheel

=

(
UR

∂Vwheel

∂R

)2

+

(
Uω

∂Vwheel

∂ω

)2

= U2
Rω

2 +U2
ωR

2, (22)10

which in relative terms becomes

U2
Vwheel

V 2
wheel

=
U2
R

R2
+
U2
ω

ω2
. (23)

To get an estimate of the relative uncertainty we will assume an accuracy of 0.05 mm for the wheel radius and that the

rotational frequency measurement is derived from a reference frequency that itself has an accuracy of 10
−5 (10 ppm). Inserting

into Eq. (23) gives15

U2
Vwheel

V 2
wheel

=

(
0.05 mm

286.76 mm

)2

+
(
10−5

)2
=
(
1.75 · 10−4

)2
. (24)

The standard uncertainty of the wheel speed is thus of the order of 0.02%.

The calibration flywheel is made of stainless steel which has a thermal expansion of the order 16 ·10−6 /K, (Cverna, 2002).

Thus a change in temperature between the room where the radius was measured and the calibration room of 1 K will lead to a

change in the reference speed of the same proportion. The temperature has not been monitored during these measurements but20

assigning an uncertainty of 3 K will lead to a relative uncertainty of 0.0048% and therefore not contribute significantly to the

overall uncertainty.

4.2 Uncertainty of Vwheel measured by the lidar

With the calibration procedure suggested here the laser beam is slowly tilted more and more covering a wide range of projected

speeds. Since the response in VLOS to a change in θ is almost linear it is possible to extrapolate back to the angle θ0 by25

fitting a straight line to the measured data. However, this indirect way of determining the tangential wheel speed is of course

associated with different uncertainty contributions. Firstly there are the tilt angles, both the direct angle measurement but

13



also very importantly the estimation of θ0 and θ1. Secondly there are uncertainties associated with the fit where noise in the

measured values will lead to uncertainties in the forecasted slope and intercept.

Let us begin by looking at the uncertainty of the non-compensated intercept bi. This is obtained from a linear regression

which has an inherent uncertainty depending on the number of points in the regression and the level of noise in the measure-

ments. The standard error of the regression, SE, can be calculated as5

SE =

√
n− 1

n− 2

(
σ2

Λ− a2σ2
θ

)
, (25)

where where we have introduced symbol Λ = VLOS
Vwheel

, n is the number of observations and σ is the standard deviation, (Lee and

Seber, 2003). SE can be regarded as the standard deviation of the noise in the data and can be used to calculate the standard

error of the estimated slope, SEa and intercept, SEb

SEa =
SE√
nσθ

, (26)10

SEb =
SE√
n
·

√
1 +
〈θ〉2
σ2
θ

, (27)

where 〈θ〉 is the average of the measured tilt angles. As can be seen SEa and SEb depend inversely on the square root of

number of observations and for the actual calibrations in this study the relative SEa is of the order 1 · 10−4 or 0.01% and SEb

about a tenth of that which is so small in comparison to other contributions that they can be disregarded. Another contribution

to the bi uncertainty is the estimation of θ0. Since the intercept between the extrapolation and the ordinate is taken to be the15

tangential wheel speed measured by the lidar it is clear that the position of θ0 and the uncertainty of this is of great importance

for the measured speed and it’s uncertainty. As mentioned in Sect. 3.6, θ0 is defined as the angle where the lidar first starts to

pick up sporadic backscatter signals from the wheel surface but there is still an uncertainty associated with this due to the finite

resolution, δθ, of the inclinometer used to measure tilt angles. Assuming that the true θ0 is equally likely anywhere within the

resolution range (a rectangular probability distribution), the uncertainty on θ0 can be found as20

Uθ0 =
δθ

2
√

3
. (28)

The squared uncertainty on the intercept due to θ0 is thus

U2
bi =

(
δθ

2
√

3
· a
)2

, (29)

where a is the slope of the extrapolation.The resolution of the tilt measurement is δθ = 0.01◦ leading to a standard uncer-

tainty of Ubi = 0.028% when applying a slope of 9.5 percent per degree as is found in the measurements, see Sect. 5.1. This25

uncertainty is of the same order as that of the wheel speed.

We know that bi leads to an overestimation of the speed measured by the lidar and that we need to compensate for this. From

Eq. (20) we know that the calibration value compensated for the beam width is given as

bc = bi−
2

3
a∆θ, (30)
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and the uncertainty on this can thus be estimated through

U2
bc = U2

bi

(
∂bc
∂bi

)2

+U2
a

(
∂bc
∂a

)2

+U2
∆θ

(
∂bc
∂∆θ

)2

= U2
bi +U2

a

(
−2

3
∆θ

)2

+U2
∆θ

(
−2

3
a

)2

, (31)

where we have assumed that the uncertainties of the input parameters are uncorrelated. Ubi and Ua have both been estimated

above and in the following we will find an estimate for U∆θ.5

We will assume that the measurement of θ0 and θ1 are each associated with two uncertainty contributions UθM and UθD.

UθM is related to the absolute measurement of θ0 or θ1 and could e.g. be due to a gain or offset error, andUθD is a discrimination

uncertainty due to the finite resolution of the inclinometer. Uθ0M and Uθ1M are correlated because the angles are measured

using the same gauge whereas Uθ0D and Uθ1D are uncorrelated. We can therefore find the squared uncertainty on ∆θ = θ1−θ0

as10

U2
∆θ = U2

θ0M

(
∂∆θ

∂θ0

)2

+U2
θ0D

(
∂∆θ

∂θ0

)2

+U2
θ1M

(
∂∆θ

∂θ1

)2

+U2
θ1D

(
∂∆θ

∂θ1

)2

+ 2U2
θ0M

∂∆θ

∂θ0

∂∆θ

∂θ1
Uθ0MUθ1M r

= U2
θ0M +U2

θ0D +U2
θ1M +U2

θ1D − 2Uθ0MUθ1Mr, (32)

where r is the correlation coefficient. If assumed that Uθ0M = Uθ1M = UθM are fully correlated and Uθ0D = Uθ1D = UθD are

uncorrelated we end up with

U2
∆θ = 2U2

θM + 2U2
θD − 2U2

θM = 2U2
θD, (33)15

where UθD is the same as Uθ0 in Eq. (28).

Now, ∆θ is in essence our best estimate of the beam width as expressed through Eq. (17) but the validity of this assumption

is associated with some uncertainty. As we shall see in Sect. 5.1 the beam radius estimated with this method does resemble

what we would expect from a theoretical calculation of the beam radius, but on the other hand there is no reason to believe it

to be a completely correct estimate either. This uncertainty must be incorporated into U∆θ and we do this by adding the term20

Uθw such that

U2
∆θ = 2U2

θD +U2
θw . (34)

As mentioned above Uθw is quite large and in the following we will assume it to be 100% in relative terms such that

Uθw = ∆θ. For the smallest beam tested in this study we have ∆θ = 0.01◦ and this leads to an uncertainty originating from

U∆θ of about 0.069% out of a total of 0.074% and U∆θ is thus seen to be the dominant term in Ubc .25

4.3 Overall calibration uncertainty

We can finally find the overall measurement uncertainty. The lidar estimate of the wheel speed is the compensated calibration

constant times the reference wheel speed

VLOS = Vwheel · bc, (35)
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and the squared uncertainty therefore becomes

U2
VLOS

= U2
Vwheel

b2c +U2
bcV

2
wheel, (36)

and relative to Vwheel(
UVLOS

Vwheel

)2

=

(
UVwheel

Vwheel
bc

)2

+U2
bc . (37)

This means that Ubc and therefore U∆θ is the main contributor to the overall calibration uncertainty.5

5 Calibration measurements

In this section will be presented calibration measurements made with different beam widths and for different reference speeds.

5.1 Beam width

It is clear from the uncertainty analysis in Sect. 4 that the beam radius, expressed through ∆θ, is of great importance for the

overall calibration uncertainty. However, how to establish the beam width is not trivial even though our beam is well-behaved10

and can be well approximated by a pure Gaussian beam and the equations describing this, see Appendix C. For Gaussian beams

in general the 1/e or 1/e2 width of either the electrical field or irradiance is often used to define the beam radius but in our case

it must be defined as the width from which it is possible to detect a signal and this depends on several parameters such as the

detection threshold, scattering properties of the wheel surface, and also the angle between beam and wheel surface. The best

way we have of quantifying this is therefore to measure the tilt angles where we first detect a signal and where we constantly15

see a signal, respectively. It is clear that there is no guarantee that these angles represent the beam width and it is therefore

associated with a significant uncertainty but it is the best estimate we can make with the data at hand.

Following the procedure outlined in Sect. 3.6 we have carried out a series of calibrations with different focus of the beam

ranging from about 1 m to 5 m resulting in different beam widths at the wheel. Fig. 8 shows the measured beam radii as

function of focus distance calculated from Eq. 17. Shown is also the theoretical 1/e2 radii of the irradiance calculated using20

the standard equations for Gaussian beams. The first thing to notice is the clear resemblance in the shape of the two curves

indicating that this is a valid method for estimating the beam width although the absolute values do not agree. Actually, the

values of the calculated widths are about three times higher than the measured, but this is not too disturbing since we are

not expecting the measured width to represent the 1/e2-width but rather the width from where we can detect a signal. More

concerning is that the minimum around 1.5 m is not nearly as sharply defined for the measured values as for the theoretical25

and some of this could possibly be due the finite resolution of the angle measurement but probably not all of it. The minimum

beam radius of 0.14 mm located at 1.53 m and 1.78 m actually corresponds to ∆θ = 0.01◦ which is the same as the angle

measurement resolution. Finally, there is the point at 4.03 m which could look like an outlier; the beam width should not be

higher with the focus at 4.03 m than at 5.03 m but this has not been clarified. All in all it is very difficult do determine the beam

radius and it is thus associated with a large uncertainty. In order to put some numbers on we estimate a relative uncertainty of30
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Figure 8. Comparison between the measured beam widths and the theoretically calculated 1/e2 radius as function of focus distance.

Table 3. Theoretical and measured beam widths together with estimated uncertainties for the different focus distances used.

Focus distance Theo. beam radius Meas. beam radius Beam radius uncertainty

[m] [mm] [mm] [mm]

1.03 5.23 1.10 0.41

1.28 2.22 0.28 0.14

1.53 0.30 0.14 0.14

1.78 1.07 0.14 0.14

2.03 2.07 0.28 0.21

2.53 3.46 0.83 0.28

3.03 4.38 1.24 0.41

4.03 5.51 2.07 0.69

5.03 6.19 1.93 0.69

30% for the larger beam radii and 50% and even 100% for the smallest beams. The resulting absolute uncertainties can be seen

in Table 3 together with the theoretical and measured beam width for each focus distance.

Figures 9 and 10 show two examples of the calibrations made. Figure 9 is made with the laser beam focused at 1.53 m and

thus with the beam waist located very near the top of the wheel so that the beam width on the wheel is about as small as the

setup allows while in Fig. 10 the focus is placed at 2.53 m. The mean reference speed is 10.93 m/s. It is clearly seen how5
VLOS
Vwheel

in general falls off linearly as function of tilt angle as predicted by the models. However, it is also seen that on top of

this trend are some discrete steps, something that is also reflected in the residual plot. These steps are due to the narrow beam

width resulting in the range of sensed speed being smaller than the resolution of the lidar’s Doppler spectrum resulting in the
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Figure 9. Example of calibration measurement made with a focus setting of 1.53 m meaning that the waist of the beam is placed very near

the top of the wheel. The black curve is the measurement data and the red a least-squares fit of a straight line to the data. In the lower panels

is shown the residuals of the fit.
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Figure 10. Example of calibration measurement made with a focus setting of 2.53 m. The black curve is the measurement data and the red

a least-squares fit of a straight line to the data. In the lower panels is shown the residuals of the fit.

speed estimation to jump from bin to bin quite abruptly. In contrast, this feature is almost completely gone in Figure 10 where

the beam is much bigger and therefore a larger range of radial velocities is covered in each measurement which spreads the

Doppler signal over several bins. This binning effect has an impact on the fit result through the standard error on the slope and

intercept which is indeed higher for the narrow beam, but as mentioned in Sect. 4.2 this effect is still much smaller than other

uncertainty contributions. This smoothing effect of the regression can also be seen in the residual plots (lower panel) which5

have average values of essentially 0 (ranges between 2.3 ·10−14 and −2.1 ·10−14 for Fig. 9 and Fig. 10, respectively) meaning
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Figure 11. Fit slope and intercept as function of focus distance. The intercept values show a clear minimum at 1.53 m where the beam with

at the wheel is smallest clearly illustrating the need for compensating these results.

the fit is very close to the average. The red line in the top panel of the figures is the least-squares fit of a straight line to the

measurement data over the range of tilt angles indicated by the extend of the red line itself. The fit ranges over angles from

θ0 + 0.1◦ to 0.1◦ before the maximum measured tilt angle. The resulting fit parameters, slope and intercept, are shown in the

insets.

Figure 11 shows the fit slopes and intercepts for all nine calibrations as function of focus distance. According to the narrow5

beam model the slope of VLOS
Vwheel

is−L
R which with the parameters specified in Table 1 equals−9.60 percent per degree and from

the figures it is seen that the measured slopes range from −9.496 to −9.537 percent per degree. This is not a large difference

but it is still larger than the estimated uncertainty and it is more or less the same for all calibrations and not just one or two

outliers. The reason behind this deviation is not known.

More interesting for the calibration purpose is of course the fit intercept which is shown in red in Fig. 11. It is clearly seen10

that the intercept overestimates as expected and in shape the curve looks a lot like the measured beam width in Fig. 8. This

highlights the need to compensate the calibration result for this. This has been done in Fig.12 where the red curve shows

the compensated intercept values and the black curves represent the estimated standard uncertainties. The compensation has

clearly brought the intercept closer to 1 with the maximum and minimum placed approximately 0.3% on either side. Most of

the points are within or very close to the estimated standard uncertainty with the exception of the points at 1.78 m and 2.03 m.15

This is probably due to the measurement of ∆θ which seems low compared to the theoretical value as seen in Fig. 8 and

therefore the compensation becomes too weak. The combined uncertainties calculated using the equations derived in Sect. 4

range from about 0.08% for the narrow beams up to about 0.9% for the widest beams, and it is clearly seen how the shape of

the uncertainty curve follows that of the measured beam width in Fig. 8. This is due to the term Uθw which we have estimated

to be equal to the value of ∆θ and which is dominating. This underlines the importance of a good estimate of the beam width.20
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Figure 12. Compensated regression intercepts together with the estimated standard uncertainties.

5.2 Different reference speeds

In this section we present the results of calibrations made with different reference speeds but a fixed focus distance of 1.53 m,

i.e. with the smallest possible beam width at the wheel.

The tested reference speeds range from about 3.3 m/s to 17.3 m/s, and Figs. 13 and 14 show two examples of measurements

and fits made at 5.44 m/s and 13.89 m/s, respectively. In both cases there is a very good agreement with what is expected5

from the model as well as with the results in Sect. 5.1. It is noted that the characteristic staircase shape also seen in Fig. 9 is

very pronounced in both these figures, but that the length of each "step" seems to change with the reference wheel speed. This

is because that what is plotted is the ratio between measured and reference speed and for low reference speeds the bins of the

Doppler spectra becomes relatively larger as function of tilt angle.

Fig. 15 shows the resulting fit parameters for all the tested reference speeds. We see that the slope of the fit lies between10

−9.51 and −9.56 percent per degree and is more or less constant across the tested speeds. Also the fit intercept is very close to

constant for the first five tested speeds and is bounded within 0.998 and 1.002, and thus within the estimated uncertainty, but

the last point at 17.26 m/s stands out a bit. Here the intercept drops to below 1, but is still within the uncertainty. A possible

explanation for this is that at 17 m/s the wheel rotates at around 9.5 revolutions per second which is quite fast and the entire rig

including transceiver and inclinometer starts to shake which limits both lidar and angle measurement.15

Again the regression intercepts have been compensated and the result is shown in Fig. 16 together with the uncertainties.

Because of the small beam width used in these measurements the difference between bi and bc is very small. The assumed

uncertainty on ∆θ is the same as for the same focus distance in the previous section and the resulting combined standard

uncertainty is about 0.08% which most of the points lie close to.

20



0 0.5 1 1.5 2 2.5
0.75

0.8

0.85

0.9

0.95

1

v
L

id
a

r/v
W

h
e

e
l [

 ]

Wheel speed = 5.44 m/s

0 0.5 1 1.5 2 2.5

Tilt [°]

-5

0

5

R
e
s
id

u
a
l

10-3

y(x) = ax+b
i

a = -0.095246

b
i
 = 1.0011

R2 = 0.99862

Figure 13. Example of calibration measurement made with a reference speed 5.44 m/s and a focus distance of 1.53 m. The black curve is

the measurement data and the red a least-squares fit of a straight line to the data. In the lower panels is shown the residuals of the fit showing

some distinct oscillations because of the speed estimation jumping from bin to bin due to the very narrow beam.
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Figure 14. Example of calibration measurement made with a reference speed 13.89 m/s and a focus distance of 1.53 m.

6 Discussion

It can seem paradoxical to use a flywheel to calibrate a Doppler wind lidar when the parameter we want to measure, the

peripheral speed, is the one thing the lidar can not measure. Nevertheless, the presented measurements and analysis show that

the proposed calibration method is not only practically feasible but could actually lead to a significant reduction in calibration

uncertainty compared to the current practice. However, there could also be other methods for achieving a similar calibration5

result. For instance, it seems more straight forward to measure a linear motion along the direction of the beam and this might
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Figure 15. Results of fits for different reference speeds. Fit intercept not compensated for w.
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Figure 16. Compensated fit intercepts together with the estimated standard uncertainties.

very well be the case because besides directly measuring the desired parameter, the uncertainties introduced by the angle

measurement and assessing the zero-point of the angle scale together with the beam width can be alleviated. On the other hand,

there are also arguments for using the flywheel; as discussed earlier by scanning a range of speeds and fitting the inherent

uncertainty due to discretisation is reduced, and the symmetrical nature of the wheel makes it easy to obtain a very stable

reference speed whereas with a linear motion the target would probably have to be moved back and forth and thus accelerated5

up to a known speed repeatedly. This would then require the position of the reference target to logged together with it’s speed

which again demands a more complicated geometrical model. Another idea could be to measure in a range of angles covering

the direction toward the centre of the wheel. In this way, a zero-point defined as the angle where the beam is perpendicular to
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the wheel surface could be established as where no speed is measured thus alleviating the problems seen above with finding

θ0 and possibly θ1. In this case the calibration uncertainty would depend critically on the angle measurement uncertainty.

Unfortunately, the calibration setup does not allow for such a measurement to be made due to limitations in the attainable tilt

angles.

The uncertainty analysis shows that the main uncertainty contributor is U∆θ which essentially depends on the beam width5

estimation. An estimate for ∆θ based on the tilt angles for the first sporadic and the first stable measurements, respectively,

was proposed. Another approach that could potentially reduce this uncertainty is to measure the backscatter level as function

of tilt angle. In this way the backscatter signal would increase strongly from θ0 to θ1 as the overlap between beam and wheel

increases and then remain more or less constant when the entire beam is on the beam. Unfortunately, our lidar in its present

state does not measure or store the backscatter level and therefore this approach has not been tested.10

7 Conclusions

Inspired by a similar concept commonly used for calibrating LDAs we have constructed a setup for calibrating coherent

Doppler wind lidars based on a spinning flywheel with the lidar beam skimming the wheel periphery. The setup is made in

such a way that the laser beam can be tilted and thus probing different projections of the wheel’s tangential speed. A simple

model shows that there is a linear relation between the beam tilt angle and the measured LOS speed and this can be utilised to15

extrapolate back to the true tangential speed at zero tilt; the one angle otherwise impossible to measure at because the physical

overlap between wheel surface and laser beam disappears. The model takes into account the finite width of the laser beam but

only under the assumption that the beam is collimated while in reality the beam used in the tests is actually focused in order

to control the beam radius. The model also forms the basis of the uncertainty analysis which concludes that a total calibration

standard uncertainty of about 0.1% can be achieved with this setup which is approximately an order of magnitude better than20

current practice. The uncertainty analysis reveals that the main contributor to the total uncertainty is the finite radius of the

laser beam and in order to reduce the uncertainty it is essential to determine this better than we have been able to achieve so far.

Calibration measurements performed at different reference speeds and with different beam widths all show a good agreement

with the model and confirms that the lowest calibration uncertainty is achieved when the beam width is minimised.

Code and data availability. The measurements and scripts for data analysis is available via (Pedersen, 2020).25

Appendix A: Approximation to 1D model

In this section how the ratio VLOS
Vwheel

as function of tilt angle for a beam of small but finite width is approximately the same as that

for an infinitely narrow beam.
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If we apply Taylor’s expansion to the third order to Eq. (8) we get

VLOS

Vwheel
=

1

∆φr

(
φr1 −

1

6
φ3
r1 −φr0 +

1

6
φ3
r0

)
=

1

∆φr

(
∆φr −

1

6

(
φ3
r1 −φ

3
r0

))
= 1− 1

6
(φ2
r1 +φ2

r0 +φr1φr0), (A1)

and if we further make the approximations5

φ0 = φm− δ, (A2)

φ1 = φm + δ, (A3)

where φrm is the mean of φr0 and φr1 and δ is a small perturbation we get

VLOS

Vwheel
= 1− 1

6
(φ2
r1 +φ2

r0 +φr1φr0) = 1− 1

6

(
3φ2

m + δ2
)
≈ 1− 1

2
φ2

m ≈ cosφrm , (A4)

which is seen to be equal to Eq. (6).10
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Appendix B: 3D beam

The result of Eq. (15) can be reached in the following way

VLOS

VRef
=

∫∫
S
I(y,z)cosφr dS

Ar(S)

=

∫∫
I(y,z)cosφr

√
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∂X(y)
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)2

+
(
∂X(y)
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)2

dydz

∫∫ √
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∂X(y)
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)2

+
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∂X(y)
∂z

)2

dydz

=

∫∫
I(y,z)y−yrR

√
1 +

(
∂X(y)
∂y

)2

+
(
∂X(y)
∂z

)2

dydz

∫∫ √
1 +

(
∂X(y)
∂y

)2

+
(
∂X(y)
∂z

)2

dydz

5

=

∫∫
I(y,z)y−yrR

√
1 +

(
y−yr√

R2−(y−yr)2

)2

dydz

∫∫ √
1 +

(
y−yr√

R2−(y−yr)2

)2

dydz

=

∫∫
I(y,z)y−yrR

√
R2−(y−yr)2

R2−(y−yr)2 + (y−yr)2

R2−(y−yr)2 dydz∫∫
I(y,z)

√
R2−(y−yr)2

R2−(y−yr)2 + (y−yr)2

R2−(y−yr)2 dydz

=

∫∫
I(y,z)y−yrR

√
R2

R2−(y−yr)2 dydz∫∫
I(y,z)

√
R2

R2−(y−yr)2 dydz

=

∫∫
I(y,z) y−yr√

R2−(y−yr)2
dydz∫∫

R√
R2−(y−yr)2

dydz
. (B1)

Appendix C: Width of Gaussian beam10

The theoretical beam width at the top of the wheel can calculated by appropriate combination of the following two equations:

The width of an untruncated Gaussian beam at a distance x′ from the beam waist can be calculated through

w(x′) = w0

√
1 +

(
λx′

πw2
0

)2

, (C1)

where w0 is the width at the waist and λ is the laser wavelength, (Siegman, 1986). Similarly can w0 with the waist placed a

distance x from the focusing lens be found as15

w0(x) =

√√√√w2
l −

√
w4
l − 4

(
λx
π

)2
2

, (C2)

where wl is the beam width at the lens.
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