Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Preprints
https://doi.org/10.5194/amt-2020-94
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2020-94
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  23 Mar 2020

23 Mar 2020

Review status
A revised version of this preprint was accepted for the journal AMT and is expected to appear here in due course.

Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals

Juseon Bak1, Xiong Liu1, Manfred Birk2, Georg Wagner2, Iouli E. Gordon1, and Kelly Chance1 Juseon Bak et al.
  • 1Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
  • 2Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 682234 Wessling, Germany

Abstract. We evaluate different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on Brion-Daumont-Malicet et al. (1995) (BDM) currently used in our retrievals, and a new laboratory dataset by Birk and Wagner (BW) (2018). The BDM cross-section data have been recommended to use for retrieval of ozone profiles using spaceborne nadir viewing Backscattered UltraViolet (BUV) measurements since its improved performance was demonstrated against other cross-sections including Bass and Paur (1985) (BP) and those of Serdyuchenko et al (2014) and Gorshelev et al. (2014) (SER) by the Absorption Cross-Sections of Ozone (ACSO) activity. The BW laboratory data were recently measured within the framework of the ESA project SEOM-IAS (Scientific Exploitation of Operational Missions – Improved Atmospheric Spectroscopy Databases) to provide an advanced absorption cross-section database. The BW cross-sections are made from measurements at more temperatures and in a wider temperature range than BDM, especially for low temperatures. Compared to BW, BDM cross-sections are positively biased from ~2 % at shorter UV to ~5 % at longer UV at warm temperatures. Furthermore, these biases dynamically increase by up to ± 40 % at cold temperatures due to no BDM measurements below 218 K. We evaluate the impact of using different cross-sections on ozone profile retrievals from Ozone Monitoring Instrument (OMI) measurements. Correspondingly, this impact leads to significant differences in individual ozone retrievals by up to 50 % in the tropopause where the coldest atmospheric temperature is observed. Bottom atmospheric layers illustrate the significant change of the retrieved ozone values with biases of 20 % in low latitudes, which is not the case in high latitudes because the ozone retrievals are mainly controlled by a priori ozone information in high latitudes due to less photon penetration down to the lower troposphere. Validation with ozonesonde observations demonstrates that BW and BDM retrievals show altitude-dependent bias oscillations of similar magnitude relative to ozonesonde measurements, much smaller than those of both BP and SER retrievals. However, compared to BDM, BW retrievals show significant reduction in standard deviation by up to 15 %, especially at the coldest atmospheric temperature. Such improvement is achieved mainly by th better characterization of the temperature dependence of ozone absorption.

Juseon Bak et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Juseon Bak et al.

Juseon Bak et al.

Viewed

Total article views: 329 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
235 84 10 329 11 10
  • HTML: 235
  • PDF: 84
  • XML: 10
  • Total: 329
  • BibTeX: 11
  • EndNote: 10
Views and downloads (calculated since 23 Mar 2020)
Cumulative views and downloads (calculated since 23 Mar 2020)

Viewed (geographical distribution)

Total article views: 291 (including HTML, PDF, and XML) Thereof 291 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Sep 2020
Publications Copernicus
Download
Short summary
This paper evaluates different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on Brion-Daumont-Malicet et al. (1995) (BDM) currently used in our retrievals, and a new laboratory dataset by Birk and Wagner (BW) (2018).
This paper evaluates different sets of high-resolution ozone absorption cross-section data for...
Citation