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Vectors” Teixeira et al.

Responses to Referee 2

We would like to thank the referee for the careful read of the paper and for the detailed
comments. Please see our responses below:

1. My main criticism of the study is that I am unsure about the practical applicability
of the results. The study relies on the “truth” being available from a nature run to
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train the algorithm in the first place (e.g., to derive the clustering, to derive the random
forest). It is unclear to me how this will be circumvented for real-life applications, without
introducing other problems that may jeopardise the performance of the algorithm. I am
not convinced that the algorithm could be applied “as is” on Motion Vectors derived from
humidity fields retrieved from real sounding data, and indeed no attempt is presented
in the paper to investigate this. The paper should discuss how it is envisaged that the
algorithm can be applied to real-life situations and what the potential problem areas
are.

This study is meant to be a proof of concept – to show how a combination of random
forest, plus a Gaussian mixture model, can be used to learn error structures found via
comparison of simulated measurements with a reference “truth” dataset (as was done
in our previous work). As such, we would not expect the results to be applicable “as is”.
However, we do expect that there are certain errors endemic to AMVs that are captured
by our algorithm, and as such are also applicable to other scenarios. We have revised
our conclusions to contain a discussion of this issue, but in summary we expect that
current practice in numerical weather prediction may provide guidance here. While we
never know “truth” in any practical application, there are ways to approximate errors
without having exact knowledge of the true field. This is done routinely to characterize
errors in any observation used in any data assimilation system. Typically, error estima-
tion involves comparison with respect to an independent dataset, and in the case of
our machine learning algorithm, a similar procedure could be followed.

Furthermore, we note that in this paper we are primarily interested in the distribution
of a retrieved quantity versus the hidden truth. That is, given a retrieved value Ŷi, we
are interested in the first and second moments (i.e., E( Ŷi – Y) and var( Ŷi – Y))). We
model our uncertainty relative to the truth, and therefore we cannot avoid the need to
have some instances of the true data, or proxies thereof. This is a departure from much
of the literature on uncertainty modelling with machine learning (e.g., Coulston et al.,
2016; Tripathy et al., 2018; Tran et al., 2019; Kwon et al., 2020), which primarily define
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the uncertainty of a prediction as var( Ŷi), or how sensitive that prediction is to tiny
changes in the models/inputs. Our methodology allows for error estimates that fit natu-
rally within the data assimilation framework, and, unlike the sensitivity estimate var( Ŷi
), also enable hypothesis testing and risk determination in support of decision making.
To address the referee’s concern, we have expanded on this in the 2nd paragraph of
Section 3.1 and the 4th paragraph of the conclusion.

2. In several areas the manuscripts appears to suggest that the method would be gen-
erally applicable, ie to other AMVs and possibly beyond (e.g., p3 L80 “. . . our method-
ology in principle could be used to quantify uncertainty in any measurements...”). I think
this should be qualified. Subject to the point above, the algorithm may offer some value
for AMVs derived from sounder retrievals; I suspect the value for the cloud-tracked
AMVs is very limited - though these are currently the most widely used AMV datasets.
There may be applicability beyond this, but the authors should explain more clearly
how they expect the algorithm to be applied to "any measurement".

We have qualified our statement that the approach may be globally applicable to any
measurements, and have stated more specifically that it is likely to be useful for other
sources of AMVs. There are sources of error that are expected to be common to
any feature tracking algorithm (e.g., regions without strong gradients in the field being
tracked, or regions in which the wind is oriented parallel to contours in the field being
tracked). We have modified our conclusions to include this discussion.

3. It would be useful if the authors took a critical look at the physical basis or motivation
of their algorithm. The algorithm attempts to provide an uncertainty estimate for a
derived wind vector with the derived wind vector and water vapour as the only inputs.
I would expect other factors to play a considerable role, such as predictors describing
the texture of the scene (to characterise the likely success of the tracking step), or C2
predictors that describe more the meteorological conditions (to characterise how likely
humidity features are passive tracers). Spatial consistency measures such as the ones
typically used in the formulation of the Quality Indicator (Holmlund 1998) may also be
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relevant. The predictor choice used in the study appears ad-hoc to me, and it could
almost certainly be improved.

The predictor choice is indeed constrained and could almost certainly be improved
in implementation. However, the limits on the input variables are a specific decision
and not an oversight. The framework presented in this paper is not to necessarily
intended to produce the best possible AMV uncertainty algorithm but to show, in a
proof of concept, what a purely data-driven approach can lead to. In particular, we
based our approach around the state-dependent errors characterized in Posselt et al.
(2019), and sought to build an error characterization model that is itself state-driven.
Including other parameters towards improving the algorithm is certainly interesting, and
would most likely occur when implementing this methodology at scale, but is beyond
the specific intentions of this paper. We address this in L250-257. Furthermore, we
see in Figures 8-11 that even these limited inputs can produce physically recognizable
regimes.

Specific points:

1. Title: I find the title misleading, as the authors only address the uncertainty in the
wind estimates, not the height assignment uncertainty, which is a leading contributor
of uncertainty for the most commonly used AMVs. The use of “Atmospheric Motion
Vectors” may also lead readers to believe they will read about cloudy-tracked winds,
when the links to these in the manuscript are very weak. I suggest to be more specific
in the title, maybe “Estimation of uncertainty in wind retrievals derived from tracking
humidity structures using Machine Learning”.

We understand the reviewer’s viewpoint on this. With additional consideration of the
comments from reviewer 1 on the subject matter, the title has been rewritten to reflect
that the paper concerns water-vapor AMVs. With vapor-vapor AMVs, height assign-
ment uncertainty is less of a concern (we address this in our response to specific point
#3), and should guide the reader towards a better interpretation of what the paper
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covers.

2. p2, L34: Nguyen et al (2019) is referred to quite extensively in the paper (here
and elsewhere), but is listed as a comparatively inaccessible report from the National
Institute for Applied Statistics Research Australia. A journal paper with a similar title
has recently been published, and I wonder whether this could be referred to instead.

The reference noted has been replaced with the most updated reference to this paper.

3. p2, L 44-45 “However, height assignment is not the dominant portion of the er-
ror. . .”: This is a strong claim to make, and I think it needs to be backed up with a
suitable reference. Retrievals from infrared or microwave sounders do not represent
radiosonde-like profiles. For a given level in the retrieved profile, the averaging ker-
nel will describe the characteristics in the vertical represented by the retrieval - and
these are not Diracdelta functions. Height characteristics of AMVs derived from such
retrievals will hence be rather complex, and interpreting them subsequently as single-
level winds may well be a considerable contribution to the error budget. I am not aware
that this aspect has been thoroughly investigated in the literature yet. It should at least
be mentioned in the present study.

This statement has been rephrased and expanded upon in lines 54-57. We acknowl-
edge that height assignment error due to misspecification of height in the water vapor
profiles could be impactful on the uncertainties for the extracted AMVs. However, this
uncertainty cannot be directly assessed through analysis of the AMV extraction algo-
rithm alone. Instead, it necessitates quantified uncertainties on the water vapor profiles
themselves, something which is well beyond the scope of this paper.

4. p2, L51 “The Expected Error . . . to correct AMV observation error.”: The EE aims to
provide an estimate of the statistical characteristics of the observation error, but does
not try to correct any errors in the AMVs. Please rephrase.

Thank you for noticing this. This has been rephrased as recommended.
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5. p3, L90/91: It would be useful to provide an idea of the spatial scales used in the
tracking step, ie what is the typical size of the target used.

The tracking step size is a 33km grid box for a sigma level of 4.2. More details can be
found in Posselt et al (2019).

6. p 3, L 100/101, Fig. 1: The authors emphasise the poorer performance in drier
regions. While it is a little harder to see, my impression is that there is also poorer
performance near frontal features (e.g, positive biases East of South America or East
of North America). Poorer performance around frontal regions seems physically plau-
sible, as single-level humidity may not be a passive tracer in these regions. I think
it would be worth commenting on this in the main text. This could also motivate a
predictor other than water vapour in the scheme developed later.

We also suspect that vertical motion may be part of the reason behind the large errors
near fronts, although a portion is also certainly due to the features identified in Posselt
et al. (2019) (winds oriented along lines of constant water vapor). This paper aims to
model uncertainties that are both regime dependent and state dependent. Obviously,
these are intertwined: we see in figure 11 that the unskillful cluster 6 has a large rep-
resentation on the east coasts of North and South America, indicating that it is at least
partially capturing this frontal dynamic. When optimizing the methodology at scale,
special consideration for more specific regime types (that are not purely state depen-
dent) is a positive way of improving the uncertainty modelling approach for specific
needs.

7. p 5, L139-142: It is not quite clear to me whether the description of the train-
ing/testing dataset in this paragraph is effectively referring to the same datasets de-
scribed later (p8 L248/249). I got the impression here that all data for the 1.5/0.5
months were used, but later it sounds as if the dataset was subsampled. I suggest
making this clearer to avoid confusion.

The text has been rewritten to make it clearer that data has been subsampled from the
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training and testing datasets.

8. p 6, L187-191: It would be good if the authors could motivate further how they chose
9 clusters in the Gaussian mixture model. The text sounds as if it was a subjective
choice, but maybe there was an objective component as well? Given the very limited
inputs to characterise the conditions, and the lack of clear distinctions between some
clusters, the chosen number of clusters appears high.

As the reviewer suspected, there was a combination of quantitative and qualitative
reasoning in determining the number of clusters. We address this in lines 329-345.
New figures 8-11 also show greater clarity of the distinction between clusters.

9. p 7, L224/225 “Relative to . . . entire dataset.”: I am unsure about what is meant
here. I suggest rephrasing.

This redundant sentence has been removed.

10. p 8, first paragraph: It looks to me as if the clustering algorithm performs signifi-
cantly more poorly once the true wind value has been substituted. Contrary to what is
said in the text, clusters 4 and 5 shown in Fig. 9 appear relatively unskilful, certainly
in comparison to the same clusters shown in Fig. 6. Also, it looks as if the population
in clusters 6 and 8 (referred to as the “unskilled” regimes) is very low, and much lower
than what was found in Fig. 6. It appears that the assignment into these clusters is very
different to what was possible before. This may not be too surprising, as the previous
assignment had the benefit of the truth being available, but the aspect is not addressed
much in the text.

This is certainly a chief concern we have with the approach. There is substantial degra-
dation in the clustering algorithm’s performance when the model is not given the true
winds. An implementation of this methodology at scale could benefit from an improve-
ment in the random forest (or its replacement with a better performing emulator). This
is addressed in lines 261-266. We must note, however, that our ultimate intention is
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not to create a machine learning emulator for the wind-tracking algorithm, but simply to
employ it to model uncertainties.

11. p8, second paragraph/Fig. 11: Are the differences in standard deviation or bias
between the clusters statistically significant? Also, what is the relative population of
each cluster? Judging by Fig. 9 and 10, the clusters with the most different standard
deviation (clusters 6 and 8) appear to have relatively small populations, whereas the
variation in standard deviation in the remaining clusters is smaller.

We have over 800,000 observations in the dataset, and their relative population is listed
below

Regime Count Percent

1 42308 4.95%

2 77545 9.08%

3 49187 5.76%

4 231268 27.07%

5 190543 22.31%

6 311 0.04%

7 206353 24.16%

8 41223 4.83%

9 15491 1.81%

To address the question of whether the differences in standard deviation (std) or bias
between cluster is statistically significant, we opted to construct confidence intervals for
the bias and std within each regime using the bootstrap (Efron and Tibshirani, 1993).
The procedure of our bootstrap is as follows
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a. Subset the data to retain only observations with regime index j. Let’s assume that
we have Nj observation within this data subset

b. Sample with replacement Nj observations from this subset. This forms a bootstrap
sample

c. From 2., compute an estimate of the bias and std.

d. Repeat step 2-3 for 1000 times, giving us 1000 estimates of the bias and 1000
estimates of the std within regime j.

e. Compute 95% confidence intervals from the 1000 estimates of bias and std from 4.

The results for the confidence intervals in the attached Figure.

We note that the Figure above indicates that for many of the biases, they can be consid-
ered unbiased since their confidence interval includes 0 (e.g., regimes 2-8 for u-wind).
However, the plot also clearly indicates that two regimes are statistically different from
0 (regime 1 and 9). We also note that for the standard deviation maps, the CI’s indi-
cate that they are fairly stable (small narrow range) and that most of the regimes have
statistically different standard deviation (denoted here visually as CI’s that do not over-
lap one another). We also note that u and v wind direction tend to have very similar
patterns, indicating that our regime classification is persistent across u and v.

To summarize, the CI plot above indicate that the differences in std between different
regimes are highly statistically significant (as evidenced by the small confidence inter-
vals and their spacing). For the biases, 3 of the regimes are statistically significantly
different from the rest (i.e., regimes 1, 6, and 9), while the rest are likely relatively
unbiased (i.e., bias = 0 ).

12. p 8, L248/249: The authors mention that they use a training set of 1,000,000
points, and a testing dataset of the same number of points. How have these been
chosen within the available data? It looks as if many more points were available, at
least for the training dataset. Also, the link to p 5 L139-142 was not quite clear to me.
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We apologize for the lack of clarity on line 239-242. What we meant was that we used
the NatureRun data from Posselt et al. (2019), which applied an AMV algorithm to out-
puts from the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assim-
ilation Office (GMAO) GEOS-5 Nature Run (G5NR; Putman et al. 2014). The Nature
Run is a global dataset with ∼7 km horizontal grid spacing that includes, among other
quantities, three-dimensional fields of wind, water vapor concentration, clouds, and
temperature. The AMV algorithm is applied on four pressure levels (300hPa, 500hPa,
700hPa, and 850hPa) at 6-hourly intervals, using three consecutive global water vapor
fields spaced one hour apart, and for a 60-day period from 07/01/2006 to 08/30/2006.
In this paper, we make use of this dataset, although we focus only on the data at 700
hPa. We updated the manuscript on line 123-124 to refer to the data description in
Section 2.1 and to make clear that we are using the data at 700 hPa.

Regarding the full dataset, it uses a 5758 x 2879 grid for longitude and latitude, with
240 time steps (60 days at 6 hours intervals). This forms a 5758 x 2879 x 240 =
3978547680 data points, which is simply too large for us to feasibly train a model.
Therefore, we subsampled 1,000,0000 data points from this dataset uniformly where
each of the 3978547680 data point has an equal chance of being selected.

Thank you for bringing this point to our attention. We have clarified the paper about the
sampling process on the 1st bullet point of Section 3.7, and we have added information
about the lon, lat, time grid at the bottom of the 1st paragraph in Section 2.1.

13. p 9, formula 4 and elsewhere: Typo: CPRS should be CRPS.

Thank you for catching this. The typo has been fixed.

14. p 9, L279-283: The “≤” in L282 appears to be inconsistent with what is said about
CRPS earlier in the paragraph.

Thank you for catching this. The mistake was earlier in the paragraph, and has been
addressed.
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15. Fig. 12 and 13: Are these showing results for the test dataset? I assume they
do (based on what is said on p 5, L141/142), but I think it would be clearest if this
information was provided in the caption (a similar comment could be made for Fig. 6-
11).

The distinction between the training and test dataset has been made throughout the
figure captions.

16. p 10, L306-311: The authors point to the finding that the residuals normalised with
the estimated error have a standard deviation close to 1. It’s a useful cross-check,
but I suspect this finding primarily reflects that the training and testing data has similar
standard deviations of AMVs vs true winds. I suspect it would have been obtained
by assigning one constant observation error equal to the standard deviation of the
whole population together. It would be more meaningful to consider other metrics that
measure the Gaussianity of the distribution.

The reviewer’s assessment is correct in that assigning a constant observation error
equal to the standard deviation of the whole population together would also produce
normalized residuals with standard deviation close to 1. However, this test is designed
to show that our error predictions are actually consistent with the variability in validation
data (this is termed ‘validity’ in the statistical literature).

As a thought experiment, consider the case of optimal estimation uncertainty esti-
mates. Optimal estimation (Rodgers, 2000) purports to make estimates of the distri-
bution [Ŷi – Y] by making assumptions about the data structures, distributions, and/or
forward models, and the robustness of these uncertainty estimates are usually only
valid if these assumptions are correct. It is well-known in remote sensing that retrievals
from optimal estimations tend to produce uncertainty estimates that are too low relative
to validation data (Hobbs et al., 2017). For example, the uncertainties from OE for the
Orbiting Carbon Observatory-2 (OCO-2) instrument tend to be too small (relative to
validation data) by a factor of two. If we applied the same z-score test to the OCO-2
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data, we would have obtained standard deviations of z-scores that is probably around
2, indicating that there is something awry with their error estimates.

The referee has noted that an error estimate can be ‘valid’ without being useful (this is
the case with using the population standard deviation). This is why we also included the
discussion on the CRPS, which gives a comparative assessment of skill (or usefulness)
between two different predictions, and we have shown in this paper that our regime-
based method is more skillful than using the population-based mean, and at the same
time its error predictions are also valid.

17. p 11, L326-333: Given the points 10, 11, and 16, I’m not fully convinced by the
claim that the algorithm produces “accurate error estimates” and that it is as skilful
as the authors claim in identifying areas where the derived Motion Vectors are less
skilful. There is some skill improvement compared to assigning a single value, but that
is a very low baseline to compare the results with. Quality Indicator values are, for
instance, used at some NWP centres to assign situation-dependent observation error
values to AMVs. How would the present algorithm compare to such a scheme? Also,
the algorithm appears to perform not particularly convincingly in a situation where the
truth was available for training and no measurement noise or retrieval errors further
complicate the situation. How much skill will remain if it has to deal with these issues?

We understand the reviewer’s concerns in this regard. The uncertainties presented in
this paper are not, in it of themselves, a marked improvement from state of the prac-
tice AMV uncertainty modelling. But neither are they intended as such; this paper is
a proof of concept for the methodology it entails. As discussed in previous comments,
there is no doubt that the algorithm itself can be tuned and enhanced for specific use
cases. This would involve some reckoning with retrieval error of the water vapor fea-
tures. However, we do believe that the paper demonstrates that even a bare-bones
implementation of the approach can produce uncertainties that are valid and, to some
degree, useful. We further note that they are produced in a physics-agnostic frame-
work with no underlying assumptions and, critically, with a data-driven analysis of only
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the state elements. The research presented in Posselt et al. (2019) is fundamental
in driving the analysis in this paper: state-dependent errors provide the context for a
purely state-dependent uncertainty modelling approach. Ultimately, we hope to add to
the literature and understanding of AMV uncertainty modelling, not supplant existing
approaches. To the extent that the specific uncertainties produced in this paper are
useful, that will be exhibited in an upcoming paper.

Fig. 7 and Fig. 10: The scale of the y-axis is rather large. The region of interest is
probably confined to values < 20 m/s.

Thank you for this note. The axis on the figures have been changed accordingly.
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Fig. 1. Figure: Top rows (bias and std confidence intervals for u-wind), bottom rows (bias and
std confidence intervals for v-winds). The interval represent a 95% confidence interval.
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