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Responses to Referee 1 

 
We would like to thank the referee for the careful read of the paper and for the detailed comments. Please see our 

responses below: 

  
1. I have a problem with the present title. Reading it the first time I thought that paper was about improving 

error/quality of AMVs during the extraction process, and not during the assimilation process. From my 

understanding a title like: ‘Use of Machines Learning to improve Uncertainty Quantification of Atmospheric 

Motion Vectors assimilated in NWP models’, would certainly match better the real content of the paper and 

be less confusing. 

 

We certainly understand the reviewer’s outlook on this; uncertainty quantification can often be a confounding 

term with different interpretations across subject areas. The title has been modified to “Using Machine Learning to 

Model Uncertainty for Water-Vapor Atmospheric Motion Vectors” to reflect this.  

 

2. The test presented in this paper is limited to water vapour AMVs extracted on specific layers. This potentially 

corresponds to extraction of 3D winds from hyperspectral sounders, as mentioned in the introduction. 

However, there is actually no evidence that the results can be generalised to the common AMVs extracted 

from clouds tracking in infrared or visible channels. If the method is limited to hyperspectral winds, this must 

be clearly specified in the text and probably also in the title of the paper, and not let the reader supposed 

that it works for all types of AMVs. If the method is not limited to hyperspectral AMVs authors have to present 

results also with common cloud motion winds extracted from satellite imagery. I understand from the text 

that another paper is upcoming (line 325), but there is no description or information that can actually let me 

assume that common AMVs have been used, and that the results are positive. 

 

Referee #2 expressed similar concerns, and we can understand the reviewers’ perspective. We have qualified our 

statement that the approach may be globally applicable to any measurements, and have stated more specifically that 

it is likely to be useful for other sources of AMVs (especially those obtained by tracking gradients in trace gases). In 

paragraph 3 of the introduction we have included additional mention of the height assignment errors known to be an 

issue in tracking cloud features from radiances. This source of error is expected not to be as great of an issue when 

tracking retrieved trace gases (as shown in Posselt et al. 2019), as it is when tracking cloud features or radiance images. 

In addition, there are sources of error that are expected to be common to any feature tracking algorithm (e.g., regions 



without strong gradients in the field being tracked, or regions in which the wind is oriented parallel to contours in the 

field being tracked). We have modified our conclusions to include this in the last paragraph of discussion.  

 

3. The algorithm seems to be too dependent on the user’s choice of the number of clusters, and the paper does not 

discuss the dependence of the algorithm on the chosen training dataset. It is also very unclear if the different 

clusters identified could refer to kind of physical or geographical AMVs properties, or if they are only blindly 

resulting out of the numerical tests. Authors must clarify/discuss if the results may depend on the AMV extraction 

model used (Mueller 2017). It is not clear if the same clusters can be used for operational AMV extracted from 

other schemes too (NOAA, EUMETSAT, C2 JMA. . .Etc). If it is not the case I guess this study must be repeated 

individually for every different AMV extraction schemes and maybe after every releases of these codes, which 

should represent an important limitation for operational use in NWP models. Although the authors promise the 

possibility to distinguish different geophysical regimes, the application ultimately presented by the paper comes 

down to discriminating the AMVs that are null because they are tracking the ground radiance, which is much too 

simple to showcase the real benefits of the algorithm. 

 

This study is meant to be a proof of concept – to show how a combination of random forest, plus a Gaussian 

mixture model, can be used to learn error structures found via comparison of simulated measurements with a reference 

“truth” dataset (as was done in our previous work). Naturally, the particular algorithm developed in this paper is 

wholly dependent both on the nature run and the AMV extraction method. However, it is not intended to be an 

algorithm that can be immediately used in NWP models. Instead, we aim to present a model that can be reproduced 

(and tuned) for use in specific contexts of AMV methods and data assimilation frameworks. The computational costs 

of training the algorithm (~1 day on a single processor, per pressure level) and even the computational costs of running 

the AMV extraction on the nature run (an average of 3 days per pressure level, on a non-optimized cluster network), 

are not outside the usual demands when updating parameters of NWP models.  

 In regards to the physical and geographical properties of the identified clusters, we have added a section in 

lines 329-345 and Figures 8-11 discussing this. They illustrate that the clustering algorithm manages to generally 

discriminate among geophysical regimes. Regarding the choice of number of clusters, this is a tuning parameter that 

is highly specific to application. We note that having one or more tuning parameters is not uncommon in many data 

analysis methods (e.g., k-means, PCA, self-organizing network, random forest, neural nets, regularized regression, 

smoothing splines, wavelets, etc.). Here, our method requires only 1 major tuning parameter (the random forest model 

also has tuning parameters, but that process, being a supervised regression, can be guided by cross validation). We 

note that the search for the ‘optimal’ number of clusters should be guided by expert knowledge, although this process 

should be greatly simplified by including an information criterion (e.g., the Bayesian Information Criterion) in the 

Gaussian Mixture Modelling algorithm. We have updated the end of the last paragraph of Section  3.4 to include this 

discussion. 

 

Specific Comments: 



1) Everywhere I would change the denomination "true wind" to "G5NR wind" throughout the text. No matter 

the quality of any dataset relating to physical quantities, it does not deserve to be called "true". 

We understand that the term ‘true’ can often be controversial even when referencing a simulation. The denomination 

has been changed to ‘Nature Run Wind’ throughout the text. Thank you for the comment. 

2) Line 144 It would be good to recall that this Figure relates to the first 1.5 months of the dataset, in the 

caption of the Figure. 
Thank you. The distinction between training and test dataset has been made throughout the figure captions. 

3) Lines 144-145 This is disappointing. Given the use of a powerful tool like GMM and the possibility of 

identifying "geophysical regimes" (line 132), I expected far more than just discriminating two groups, one 

being functional AMVs, and the other merely being the AMVs tracking the ground radiance, when the water 

vapour layer is too thin. 

 

Figure 8-11, and lines 329-345 show that the clustering algorithm performs adequately in capturing consistent 

geophysical regimes. We focus in this paper on the ‘skillfull’ vs ‘unskillfull’ distinction because it is the most 

straightforward analysis for our purposes. More specific regime dependent uncertainties (as discussed in response to 

reviewer 2) is certainly a forward step after scaling this methodology beyond proof of concept.  

 

4) Line 270 This parts misses a "is" between "xi" and "the". 

 

Thank you for catching this. It was been corrected. 

 

5)  Section 4 The term Continuous Ranked Probability Score should be mentioned at least once before the 

formula at line 278. The two acronyms CPRS and CRPS are used in this section. Please correct.  

 

The typo has been corrected. We mentioned the full name for CRPS immediately preceding its equation in (4), and 

we added a reference to a paper (Gneiting and Katzfuss, 2014) immediately after the equation. 

 

6)  Line 309 You are referring to Figure 13, and not Figure 12 as written.  

 

Thank you for catching this. It has been corrected. 

 

7) Lines 329-330 I find your conclusion a little daring, knowing that you had to try different numbers of clusters 

before actually managing to discriminate the null AMVs. 

 We apologize for the ambiguity. Our intention in these lines was different from what came across. We meant 

to say that our algorithm is able to ‘find’ or separate geophysically meaningful clusters without requiring domain 

knowledge expertise or prior information on the distribution of the variables. Granted, the algorithm requires the users 

to slide the number of clusters across some scales, but this process is vastly simplified since there is only 1 scalar 



parameter to vary. As we noted before, having tuning parameters is par-the-course for the majority of data analysis 

methods such as k-means, PCA, self-organizing network, random forest, neural nets, regularized regression, 

smoothing splines, wavelets, etc.  

 We understand the referee’s concern, however. Therefore we have removed the aforementioned lines in the 

Conclusion, and we have included a note about the need to optimize over the number of clusters in 2nd paragraph of 

the Conclusion.   

 

 

  

 



 
“Using Machine Learning to Model Uncertainty for Water-Vapor Atmospheric 

Motion Vectors” 
Teixeira et al. 

 
Responses to Referee 2 

 
We would like to thank the referee for the careful read of the paper and for the detailed comments. Please see our 
responses below: 
 
 

1. My main criticism of the study is that I am unsure about the practical applicability of the results. The 
study relies on the “truth” being available from a nature run to train the algorithm in the first place (e.g., 
to derive the clustering, to derive the random forest). It is unclear to me how this will be circumvented for 
real-life applications, without introducing other problems that may jeopardise the performance of the 
algorithm. I am not convinced that the algorithm could be applied “as is” on Motion Vectors derived from 
humidity fields retrieved from real sounding data, and indeed no attempt is presented in the paper to 
investigate this. The paper should discuss how it is envisaged that the algorithm can be applied to real-life 
situations and what the potential problem areas are. 

 
This study is meant to be a proof of concept – to show how a combination of random forest, plus a 

Gaussian mixture model, can be used to learn error structures found via comparison of simulated measurements with 
a reference “truth” dataset (as was done in our previous work). As such, we would not expect the results to be 
applicable “as is”. However, we do expect that there are certain errors endemic to AMVs that are captured by our 
algorithm, and as such are also applicable to other scenarios. We have revised our conclusions to contain a 
discussion of this issue, but in summary we expect that current practice in numerical weather prediction may provide 
guidance here. While we never know “truth” in any practical application, there are ways to approximate errors 
without having exact knowledge of the true field. This is done routinely to characterize errors in any observation 
used in any data assimilation system. Typically, error estimation involves comparison with respect to an independent 
dataset, and in the case of our machine learning algorithm, a similar procedure could be followed.  

 
Furthermore, we note that in this paper we are primarily interested in the distribution of a retrieved quantity 

versus the hidden truth. That is, given a retrieved value Ŷi, we are interested in the first and second moments (i.e., E( 
Ŷi – Y) and var( Ŷi – Y))). We model our uncertainty relative to the truth, and therefore we cannot avoid the need to 
have some instances of the true data, or proxies thereof. This is a departure from much of the literature on 
uncertainty modelling with machine learning (e.g., Coulston et al., 2016; Tripathy et al., 2018; Tran et al., 2019; 
Kwon et al., 2020), which primarily define the uncertainty of a prediction as var( Ŷi), or how sensitive that 
prediction is to tiny changes in the models/inputs. Our methodology allows for error estimates that fit naturally 
within the data assimilation framework, and, unlike the sensitivity estimate var( Ŷi ), also enable hypothesis testing 
and risk determination in support of decision making. To address the referee’s concern, we have expanded on this in 
the 2nd paragraph of Section 3.1 and the 4th paragraph of the conclusion. 

 
 

2. In several areas the manuscripts appears to suggest that the method would be generally applicable, ie to 
other AMVs and possibly beyond (e.g., p3 L80 “. . . our methodology in principle could be used to quantify 
uncertainty in any measurements...”). I think this should be qualified. Subject to the point above, the 
algorithm may offer some value for AMVs derived from sounder retrievals; I suspect the value for the 
cloud-tracked AMVs is very limited - though these are currently the most widely used AMV datasets. There 
may be applicability beyond this, but the authors should explain more clearly how they expect the 
algorithm to be applied to "any measurement". 

  
We have qualified our statement that the approach may be globally applicable to any measurements, and 

have stated more specifically that it is likely to be useful for other sources of AMVs. There are sources of error that 



are expected to be common to any feature tracking algorithm (e.g., regions without strong gradients in the field 
being tracked, or regions in which the wind is oriented parallel to contours in the field being tracked). We have 
modified our conclusions to include this discussion. 
 
 

3. It would be useful if the authors took a critical look at the physical basis or motivation of their 
algorithm. The algorithm attempts to provide an uncertainty estimate for a derived wind vector with the 
derived wind vector and water vapour as the only inputs. I would expect other factors to play a 
considerable role, such as predictors describing the texture of the scene (to characterise the likely success 
of the tracking step), or C2 predictors that describe more the meteorological conditions (to characterise 
how likely humidity features are passive tracers). Spatial consistency measures such as the ones typically 
used in the formulation of the Quality Indicator (Holmlund 1998) may also be relevant. The predictor 
choice used in the study appears ad-hoc to me, and it could almost certainly be improved. 

 
The predictor choice is indeed constrained and could almost certainly be improved in implementation. 

However, the limits on the input variables are a specific decision and not an oversight. The framework presented in 
this paper is not to necessarily intended to produce the best possible AMV uncertainty algorithm but to show, in a 
proof of concept, what a purely data-driven approach can lead to. In particular, we based our approach around the 
state-dependent errors characterized in Posselt et al. (2019), and sought to build an error characterization model that 
is itself state-driven. Including other parameters towards improving the algorithm is certainly interesting, and would 
most likely occur when implementing this methodology at scale, but is beyond the specific intentions of this paper. 
We address this in L250-257. Furthermore, we see in Figures 8-11 that even these limited inputs can produce 
physically recognizable regimes.  
 
 
Specific points:  
 

1. Title: I find the title misleading, as the authors only address the uncertainty in the wind estimates, not the 
height assignment uncertainty, which is a leading contributor of uncertainty for the most commonly used 
AMVs. The use of “Atmospheric Motion Vectors” may also lead readers to believe they will read about 
cloudy-tracked winds, when the links to these in the manuscript are very weak. I suggest to be more specific 
in the title, maybe “Estimation of uncertainty in wind retrievals derived from tracking humidity structures 
using Machine Learning”.  

 
We understand the reviewer’s viewpoint on this. With additional consideration of the comments from 

reviewer 1 on the subject matter, the title has been rewritten to reflect that the paper concerns water-vapor AMVs. 
With vapor-vapor AMVs, height assignment uncertainty is less of a concern (we address this in our response to 
specific point #3), and should guide the reader towards a better interpretation of what the paper covers. 
 

2. p2, L34: Nguyen et al (2019) is referred to quite extensively in the paper (here and elsewhere), but is 
listed as a comparatively inaccessible report from the National Institute for Applied Statistics Research 
Australia. A journal paper with a similar title has recently been published, and I wonder whether this could 
be referred to instead.  

  
The reference noted has been replaced with the most updated reference to this paper. 
 

3. p2, L 44-45 “However, height assignment is not the dominant portion of the error. . .”: This is a strong 
claim to make, and I think it needs to be backed up with a suitable reference. Retrievals from infrared or 
microwave sounders do not represent radiosonde-like profiles. For a given level in the retrieved profile, the 
averaging kernel will describe the characteristics in the vertical represented by the retrieval - and these 
are not Diracdelta functions. Height characteristics of AMVs derived from such retrievals will hence be 
rather complex, and interpreting them subsequently as single-level winds may well be a considerable 
contribution to the error budget. I am not aware that this aspect has been thoroughly investigated in the 
literature yet. It should at least be mentioned in the present study. 

 



This statement has been rephrased and expanded upon in lines 54-57. We acknowledge that height 
assignment error due to misspecification of height in the water vapor profiles could be impactful on the uncertainties 
for the extracted AMVs. However, this uncertainty cannot be directly assessed through analysis of the AMV 
extraction algorithm alone. Instead, it necessitates quantified uncertainties on the water vapor profiles themselves, 
something which is well beyond the scope of this paper.  

 
4. p2, L51 “The Expected Error . . . to correct AMV observation error.”: The EE aims to provide an 
estimate of the statistical characteristics of the observation error, but does not try to correct any errors in 
the AMVs. Please rephrase. 
 

Thank you for noticing this. This has been rephrased as recommended.  
  

5. p3, L90/91: It would be useful to provide an idea of the spatial scales used in the tracking step, ie what is 
the typical size of the target used. 
 

The tracking step size is a 33km grid box for a sigma level of 4.2. More details can be found in Posselt et al (2019). 
 

6. p 3, L 100/101, Fig. 1: The authors emphasise the poorer performance in drier regions. While it is a 
little harder to see, my impression is that there is also poorer performance near frontal features (e.g, 
positive biases East of South America or East of North America). Poorer performance around frontal 
regions seems physically plausible, as single-level humidity may not be a passive tracer in these regions. I 
think it would be worth commenting on this in the main text. This could also motivate a predictor other 
than water vapour in the scheme developed later. 

  
We also suspect that vertical motion may be part of the reason behind the large errors near fronts, although 

a portion is also certainly due to the features identified in Posselt et al. (2019) (winds oriented along lines of constant 
water vapor). This paper aims to model uncertainties that are both regime dependent and state dependent. Obviously, 
these are intertwined: we see in figure 11 that the unskillful cluster 6 has a large representation on the east coasts of 
North and South America, indicating that it is at least partially capturing this frontal dynamic. When optimizing the 
methodology at scale, special consideration for more specific regime types (that are not purely state dependent) is a 
positive way of improving the uncertainty modelling approach for specific needs.  
 

7. p 5, L139-142: It is not quite clear to me whether the description of the training/testing dataset in this 
paragraph is effectively referring to the same datasets described later (p8 L248/249). I got the impression 
here that all data for the 1.5/0.5 months were used, but later it sounds as if the dataset was subsampled. I 
suggest making this clearer to avoid confusion. 

 
The text has been rewritten to make it clearer that data has been subsampled from the training and testing datasets. 
  

8. p 6, L187-191: It would be good if the authors could motivate further how they chose 9 clusters in the 
Gaussian mixture model. The text sounds as if it was a subjective choice, but maybe there was an objective 
component as well? Given the very limited inputs to characterise the conditions, and the lack of clear 
distinctions between some clusters, the chosen number of clusters appears high. 

  
As the reviewer suspected, there was a combination of quantitative and qualitative reasoning in determining the 
number of clusters. We address this in lines 329-345. New figures 8-11 also show greater clarity of the distinction 
between clusters.  
 
 

9. p 7, L224/225 “Relative to . . . entire dataset.”: I am unsure about what is meant here. I suggest 
rephrasing. 
 

This redundant sentence has been removed.  
 
 



10. p 8, first paragraph: It looks to me as if the clustering algorithm performs significantly more poorly 
once the true wind value has been substituted. Contrary to what is said in the text, clusters 4 and 5 shown 
in Fig. 9 appear relatively unskilful, certainly in comparison to the same clusters shown in Fig. 6. Also, it 
looks as if the population in clusters 6 and 8 (referred to as the “unskilled” regimes) is very low, and much 
lower than what was found in Fig. 6. It appears that the assignment into these clusters is very different to 
what was possible before. This may not be too surprising, as the previous assignment had the benefit of the 
truth being available, but the aspect is not addressed much in the text. 

 
This is certainly a chief concern we have with the approach. There is substantial degradation in the clustering 
algorithm’s performance when the model is not given the true winds. An implementation of this methodology at 
scale could benefit from an improvement in the random forest (or its replacement with a better performing 
emulator). This is addressed in lines 261-266. We must note, however, that our ultimate intention is not to create a 
machine learning emulator for the wind-tracking algorithm, but simply to employ it to model uncertainties. 
 
 

11. p8, second paragraph/Fig. 11: Are the differences in standard deviation or bias between the clusters 
statistically significant? Also, what is the relative population of each cluster? Judging by Fig. 9 and 10, the 
clusters with the most different standard deviation (clusters 6 and 8) appear to have relatively small 
populations, whereas the variation in standard deviation in the remaining clusters is smaller. 

 
We have over 800,000 observations in the dataset, and their relative population is listed below 
 

  Regime    Count   Percent 
      1    42308      4.95% 
      2    77545      9.08% 
      3    49187      5.76% 
      4    231268     27.07% 
      5    190543     22.31% 
      6      311      0.04% 
      7    206353     24.16% 
      8    41223      4.83% 
      9    15491      1.81%  
 

 To address the question of whether the differences in standard deviation (std) or bias between cluster is 
statistically significant, we opted to construct confidence intervals for the bias and std within each regime using the 
bootstrap (Efron and Tibshirani, 1993). The procedure of our bootstrap is as follows 
 

1. Subset the data to retain only observations with regime index j. Let’s assume that we have Nj observation 
within this data subset 

2. Sample with replacement Nj observations from this subset. This forms a bootstrap sample 
3. From 2., compute an estimate of the bias and std. 
4. Repeat step 2-3 for 1000 times, giving us 1000 estimates of the bias and 1000 estimates of the std within 

regime j. 
5. Compute 95% confidence intervals from the 1000 estimates of bias and std from 4. 
 
The results for the confidence intervals (in graphical forms) are listed below: 
 



  

  
 
Figure: Top rows (bias and std confidence intervals for u-wind), bottom rows (bias and std confidence intervals 
for v-winds). The interval represent a 95% confidence interval. 
 

 We note that the Figure above indicates that for many of the biases, they can be considered unbiased since 
their confidence interval includes 0 (e.g., regimes 2-8 for u-wind). However, the plot also clearly indicates that two 
regimes are statistically different from 0 (regime 1 and 9). We also note that for the standard deviation maps, the 
CI’s indicate that they are fairly stable (small narrow range) and that most of the regimes have statistically different 
standard deviation (denoted here visually as CI’s that do not overlap one another). We also note that u and v wind 
direction tend to have very similar patterns, indicating that our regime classification is persistent across u and v. 
 

To summarize, the CI plot above indicate that the differences in std between different regimes are highly 
statistically significant (as evidenced by the small confidence intervals and their spacing). For the biases, 3 of the 
regimes are statistically significantly different from the rest (i.e., regimes 1, 6, and 9), while the rest are likely 
relatively unbiased (i.e., bias = 0 ). 
 
 

12. p 8, L248/249: The authors mention that they use a training set of 1,000,000 points, and a testing 
dataset of the same number of points. How have these been chosen within the available data? It looks as if 
many more points were available, at least for the training dataset. Also, the link to p 5 L139-142 was not 
quite clear to me. 

 
We apologize for the lack of clarity on line 239-242. What we meant was that we used the NatureRun data from 
Posselt et al. (2019), which applied an AMV algorithm to outputs from the NASA Goddard Space Flight Center 
(GSFC) Global Modeling and Assimilation Office (GMAO) GEOS-5 Nature Run (G5NR; Putman et al. 2014). The 



Nature Run is a global dataset with ~7 km horizontal grid spacing that includes, among other quantities, three-
dimensional fields of wind, water vapor concentration, clouds, and temperature. The AMV algorithm is applied on 
four pressure levels (300hPa, 500hPa, 700hPa, and 850hPa) at 6-hourly intervals, using three consecutive global 
water vapor fields spaced one hour apart, and for a 60-day period from 07/01/2006 to 08/30/2006. In this paper, we 
make use of this dataset, although we focus only on the data at 700 hPa. We updated the manuscript on line 123-124 
to refer to the data description in Section 2.1 and to make clear that we are using the data at 700 hPa. 
 
Regarding the full dataset, it uses a 5758 x 2879 grid for longitude and latitude, with 240 time steps (60 days at 6 
hours intervals). This forms a 5758 x 2879 x 240 = 3978547680 data points, which is simply too large for us to 
feasibly train a model. Therefore, we subsampled 1,000,0000 data points from this dataset uniformly where each of 
the 3978547680  data point has an equal chance of being selected.  
 
Thank you for bringing this point to our attention. We have clarified the paper about the sampling process on the 1st 
bullet point of Section 3.7, and we have added information about the lon, lat, time grid at the bottom of the 1st 
paragraph in Section 2.1. 
 
 

13. p 9, formula 4 and elsewhere: Typo: CPRS should be CRPS. 
 
Thank you for catching this. The typo has been fixed. 
 

14. p 9, L279-283: The “≤” in L282 appears to be inconsistent with what is said about CRPS earlier in the 
paragraph.   

 
Thank you for catching this. The mistake was earlier in the paragraph, and has been addressed. 
 

15. Fig. 12 and 13: Are these showing results for the test dataset? I assume they do (based on what is said 
on p 5, L141/142), but I think it would be clearest if this information was provided in the caption (a similar 
comment could be made for Fig. 6- 11). 

 
The distinction between the training and test dataset has been made throughout the figure captions. 
 

16. p 10, L306-311: The authors point to the finding that the residuals normalised with the estimated error 
have a standard deviation close to 1. It’s a useful cross-check, but I suspect this finding primarily reflects 
that the training and testing data has similar standard deviations of AMVs vs true winds. I suspect it would 
have been obtained by assigning one constant observation error equal to the standard deviation of the 
whole population together. It would be more meaningful to consider other metrics that measure the 
Gaussianity of the distribution. 

 
The reviewer’s assessment is correct in that assigning a constant observation error equal to the standard 

deviation of the whole population together would also produce normalized residuals with standard deviation close to 
1. However, this test is designed to show that our error predictions are actually consistent with the variability in 
validation data (this is termed ‘validity’ in the statistical literature). 
 

As a thought experiment, consider the case of optimal estimation uncertainty estimates. Optimal estimation 
(Rodgers, 2000) purports to make estimates of the distribution [Ŷi – Y] by making assumptions about the data 
structures, distributions, and/or forward models, and the robustness of these uncertainty estimates are usually only 
valid if these assumptions are correct. It is well-known in remote sensing that retrievals from optimal estimations 
tend to produce uncertainty estimates that are too low relative to validation data (Hobbs et al., 2017). For example, 
the uncertainties from OE for the Orbiting Carbon Observatory-2 (OCO-2) instrument tend to be too small (relative 
to validation data) by a factor of two. If we applied the same z-score test to the OCO-2 data, we would have 
obtained standard deviations of z-scores that is probably around 2, indicating that there is something awry with their 
error estimates. 
 

The referee has noted that an error estimate can be ‘valid’ without being useful (this is the case with using 
the population standard deviation). This is why we also included the discussion on the CRPS, which gives a 



comparative assessment of skill (or usefulness) between two different predictions, and we have shown in this paper 
that our regime-based method is more skillful than using the population-based mean, and at the same time its error 
predictions are also valid. 
 
 

17. p 11, L326-333: Given the points 10, 11, and 16, I’m not fully convinced by the claim that the algorithm 
produces “accurate error estimates” and that it is as skilful as the authors claim in identifying areas where 
the derived Motion Vectors are less skilful. There is some skill improvement compared to assigning a single 
value, but that is a very low baseline to compare the results with. Quality Indicator values are, for instance, 
used at some NWP centres to assign situation-dependent observation error values to AMVs. How would the 
present algorithm compare to such a scheme? Also, the algorithm appears to perform not particularly 
convincingly in a situation where the truth was available for training and no measurement noise or retrieval 
errors further complicate the situation. How much skill will remain if it has to deal with these issues? 
 
We understand the reviewer’s concerns in this regard. The uncertainties presented in this paper are not, in it 

of themselves, a marked improvement from state of the practice AMV uncertainty modelling. But neither are they 
intended as such; this paper is a proof of concept for the methodology it entails. As discussed in previous comments, 
there is no doubt that the algorithm itself can be tuned and enhanced for specific use cases. This would involve some 
reckoning with retrieval error of the water vapor features. However, we do believe that the paper demonstrates that 
even a bare-bones implementation of the approach can produce uncertainties that are valid and, to some degree, 
useful. We further note that they are produced in a physics-agnostic framework with no underlying assumptions and, 
critically, with a data-driven analysis of only the state elements. The research presented in Posselt et al. (2019) is 
fundamental in driving the analysis in this paper: state-dependent errors provide the context for a purely state-
dependent uncertainty modelling approach. Ultimately, we hope to add to the literature and understanding of AMV 
uncertainty modelling, not supplant existing approaches. To the extent that the specific uncertainties produced in this 
paper are useful, that will be exhibited in an upcoming paper.  

 
Fig. 7 and Fig. 10: The scale of the y-axis is rather large. The region of interest is probably confined to 
values < 20 m/s. 

Thank you for this note. The axis on the figures have been changed accordingly.  
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Using Machine Learning to Model Uncertainty for Water-Vapor 1 
Atmospheric Motion Vectors 2 

Joaquim V. Teixeira1, Hai Nguyen1, Derek J. Posselt1, Hui Su1, Longtao Wu1 3 

1Jet Propulsion Laboratory, California Institute of Technology 4 

Abstract. Wind-tracking algorithms produce Atmospheric Motion Vectors (AMVs) by tracking clouds or water vapor 5 
across spatial-temporal fields. Thorough error characterization of wind-tracking algorithms is critical in properly 6 
assimilating AMVs into weather forecast models and climate reanalysis datasets. Uncertainty modelling should yield 7 
estimates of two key quantities of interest: bias, the systematic difference between a measurement and the true value, 8 
and standard error, a measure of variability of the measurement. The current process of specification of the errors in 9 
inverse modelling is often cursory and commonly consists of a mixture of model fidelity, expert knowledge, and need 10 
for expediency. The method presented in this paper supplements existing approaches to error specification by 11 
providing an error-characterization module that is purely data-driven and requires few tuning parameters. Our 12 
proposed error-characterization method combines the flexibility of machine learning (random forest) with the robust 13 
error estimates of unsupervised parametric clustering (using a Gaussian Mixture Model). Traditional techniques for 14 
uncertainty modeling through machine learning have focused on characterizing bias, but often struggle when 15 
estimating standard error. In contrast, model-based approaches such as k-means or Gaussian mixture modelling can 16 
provide reasonable estimates of both bias and standard error, but they are often limited in complexity due to reliance 17 
on linear or Gaussian assumptions. In this paper, a methodology is developed and applied to characterize error in 18 
tracked-wind using a high-resolution global model simulation, and it is shown to adequately capture the error features 19 
of the tracked wind.   20 

1. Introduction 21 

Reliable estimates of global winds are critical to science and application areas, including global chemical transport 22 
modeling and numerical weather prediction. One source of wind measurements consists of feature-tracking based 23 
Atmospheric Motion Vectors (AMVs), produced by tracking time sequences of satellite-based measurements of 24 
clouds or spatially distributed water vapor fields (Mueller et al., 2017; Posselt et al., 2019). The importance of global 25 
measurements of 3-dimensional winds was highlighted as an urgent need in the NASA Weather Research Community 26 
Workshop Report (Zeng et al., 2016) and was identified as a priority in the 2007 National Academy of Sciences Earth 27 
Science and Applications from Space (ESAS 2007) Decadal Survey and again in ESAS 2017. For instance, wind is 28 
used in the study of global CO2 transport (Kawa et al., 2004), numerical weather prediction (NWP; Cassola and 29 
Burlando, 2012), as inputs into weather and climate reanalysis studies (Swail and Cox, 2000), and for estimating 30 
current and future wind-power outputs (Staffell and Pfenninger, 2016). 31 

Thorough error characterization of wind-track algorithms is critical in properly assimilating AMVs into forecast 32 
models. Prior literature has explored the impact of ‘poor’ error-characterization in Bayesian-based approaches to 33 
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remote sensing applications. Nguyen et al. (2019) proved analytically that when the input bias is incorrect in Bayesian 44 
methods (specifically, optimal estimation retrievals), then the posterior estimates would also be biased. Moreover, 45 
they proved that when the input standard error is ‘correct’ (that is, it is as close to the unknown truth as possible), then 46 
the resulting Bayesian estimate is ‘efficient’; that is, it has the smallest error among all possible choices of prior 47 
standard error. Additionally, multiple active and passive technologies are being developed to measure 3D winds, such 48 
as Doppler wind lidar (DWL), radar, and infrared/microwave sensors that derive AMVs using feature-tracking of 49 
consecutive images. Therefore, an accurate and robust methodology for modeling uncertainty will allow for more 50 
accurate assessments of mission impacts, and the eventual propagation of data uncertainties for these instruments.   51 

Velden and Bedka (2009) and Salonen et al. (2015) have shown that height assignment contributes a large component 52 
of uncertainty in AMVs tracked from cloud movement and from sequences of infrared satellite radiance images. 53 
However, with AMVs obtained from water vapor profiling instruments (e.g., infrared and microwave sounders), 54 
height assignment error cannot be directly assessed purely through analysis of the AMV extraction algorithm. Height 55 
assignment is instead an uncertainty in the water vapor profile itself. Unfortunately, without the quantified 56 
uncertainties on the water vapor profile necessary to pursue such a study, that is well beyond the scope of this paper. 57 
As such, this study will focus on errors in the AMV estimates at a given height. Previous work has demonstrated 58 
several different approaches for characterizing AMV vector error. One common approach is to employ quality 59 
indicator thresholds, as described by Holmund et al (2001), which compare changes in AMV estimates between 60 
sequential timesteps and neighboring pixels, as well as differences from model predictions, to produce a quality 61 
indicator to which a discrete uncertainty is assigned. The Expected Error approach, developed by Le Marshal et al. 62 
(2004), builds a statistical model using linear regression against AMV-radiosonde values to estimate the statistical 63 
characteristics of AMV observation error.  64 

In this study, we outline a data-driven approach for building an AMV uncertainty model using observing system 65 
simulation experiment (OSSE) data. We build on the work by Posselt et al. (2019) in which a water vapor feature-66 
tracking AMV algorithm was applied to a high-resolution numerical simulation, thus providing a global set of AMV 67 
estimates which can be compared to the reference winds produced by the simulation. In this case, a synthetic “true” 68 
state is available with which AMVs can be compared and errors are quantified, and it is shown that errors in AMV 69 
estimates are state dependent. Our approach will use a conjunction of machine learning (random forest) and 70 
unsupervised parametric clustering (Gaussian mixture models) to build a model for the uncertainty structures found 71 
by Posselt et al. (2019). The realism and robustness of the resulting uncertainty estimates depend on the realism and 72 
representativeness of the reference dataset. This work builds upon the work of Bormann et al. (2014) and Hernandez-73 
Carrascal and Bormann (2014), who showed that wind tracking could be divided into distinct geophysical regimes by 74 
clustering based on cloud conditions. This study supplements that approach with the addition of machine learning, 75 
which, compared with traditional linear modeling approaches, should allow the model to capture more complex non-76 
linear processes in the error function.  77 
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Traditional techniques for modeling uncertainty through machine learning have focused on characterizing bias but 89 
often struggle when estimating standard error. By pairing a random forest algorithm with unsupervised parametric 90 
clustering, we propose a data-driven, cluster-based approach for quantifying both bias and standard error from 91 
experimental data. According to the theory developed by Nguyen et al. (2019), these improved error characterizations 92 
should then lead to improved error characteristics (e.g., lower bias, more accurate uncertainties) in subsequent analyses 93 
such as flux inversion or data assimilation. 94 

This paper does not purport that the specific algorithm detailed here should supplant error characterization approaches 95 
for all AMVs; indeed, most commonly assimilated AMVs are based on tracking cloud features, not water vapor 96 
profiles. In addition, this algorithm is trained and developed for a specific set of AMVs extracted from a water vapor 97 
field associated with a particular range of flow features. As such, application of our algorithm to modeled or observed 98 
AMVs will be most appropriate in situations with similar dynamics to our training set. However, we intend in this 99 
paper to demonstrate that the methodology is successful in characterizing errors for this set of water vapor AMVs and 100 
suggest that this approach— that is, capturing state-dependent uncertainties in feature-tracking algorithms through a 101 
combination of clustering and random forest— could be implemented in other feature-tracking AMV extraction 102 
methods and situations.  103 

The rest of the paper is organized as follows: In Section 2, we give an overview of the simulation which provides the 104 
training data for our machine learning approach. We then motivate and define the specific uncertainties this study 105 
aims to characterize. In Section 3, we describe the error characterization approach with the specifics of our error 106 
characterization model, including both the implementation of and motivations for employing the random forest and 107 
Gaussian mixture model. In Section 4, we provide a validation of our methods, attempting to assess the bias of our 108 
predictions. In Section 5, we discuss the implications of our error characterization approach, both on AMV estimation 109 
and data assimilation more broadly. 110 

2. Experimental Set-up 111 

2.1 Simulation and Feature-Tracking Algorithm 112 

We trained our model on the simulated data used by Posselt et al. (2019), which applied an AMV algorithm to outputs 113 
from the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office (GMAO) GEOS-5 114 
Nature Run (G5NR; Putman et al. 2014). The Nature Run is a global dataset with ~7 km horizontal grid spacing that 115 
includes, among other quantities, three-dimensional fields of wind, water vapor concentration, clouds, and 116 
temperature. Note that throughout the text we will use the term ‘Nature Run wind’ to refer to reference winds in the 117 
simulation dataset used to train the uncertainty model. The AMV algorithm is applied on four pressure levels (300hPa, 118 
500hPa, 700hPa, and 850hPa) at 6-hourly intervals, using three consecutive global water vapor fields spaced one hour 119 
apart, and for a 60-day period from 07/01/2006 to 08/30/2006. The water-vapor fields from GEOS5 were input to a 120 
local-area pattern matching algorithm that approximates wind speed and direction from movement of the matched 121 
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patterns. The algorithm searches a pre-set number of nearby pixels to minimize the sum-of-absolute-differences 130 
between aggregated water vapor values across the pixels. Posselt et al. (2019) describes the sensitivity of the tracking 131 
algorithm and the dependency of the tracked winds on atmospheric states in detail. The coordinates of the data are on 132 
a 5758 x 2879 x 240 spatio-temporal grid for the longitude, latitude, and time dimension, respectively. 133 

It is important to note that the AMV algorithm tracks water vapor on fixed pressure levels. In practice, these would be 134 
provided by satellite measurements, whereas in this paper we use simulated water vapor from the GEOS-5 Nature 135 
Run. In this simulation height assignment of the AMVs is assumed to be perfectly known. This assumption is far from 136 
guaranteed in real world applications but, as previously discussed, its implications are not pursued in this paper. As 137 
such, we focus solely on observational AMV error and not on height assignment error. We note that in practice, one 138 
approach to understanding the behavior and accuracy of the wind-tracking algorithm is to apply it to modeled data 139 
(e.g., Posselt et al., 2019). Our approach seeks to complement this approach by providing a machine-140 
learning/clustering hybrid approach that can further divide comparison domains into ‘regimes’ which may provide 141 
further insights into the behavior of the errors and/or feedback into the wind-tracking algorithm. 142 

A snapshot of the dataset at 700hPa is given in { REF _Ref29398327 \h  \* MERGEFORMAT }, where we display 143 
the water vapor from Nature Run (top left panel), the wind speed from Nature Run (top right panel), the tracked wind 144 
from the AMV-tracking algorithm (bottom right panel), and the difference between the Nature Run and tracked wind 145 
(bottom left panel). Note that the wind-tracking algorithm tends to have trouble in region where the Nature Run water 146 
vapor content is close to zero. It is clear that while the wind-tracking algorithm tends to perform well in most regions 147 
(we can classify these regions as areas where the algorithm is skilled), in some regions the algorithm is unable to 148 
reliably make a reasonable estimate of the wind speed (unskilled). We will examine these skilled and unskilled regimes 149 
(and their corresponding contributing factors) in section 3.{ INCLUDEPICTURE 150 
"https://lh4.googleusercontent.com/Bxx2AuV0Yv_LyfydtO30hkD9PeGug6p_AMNp7hKH4ZIU9SY-151 
rZBzlPepaT-fAG51TilWVrFM0KlfBkBZLjfWQbubq8aSFsxKvRu0LGALEH-152 
cNQpJeJ1qvxE6Dimat5t6hP2UFfCK" \* MERGEFORMATINET } 153 

2.2 Importance of Uncertainty Representation in Data Assimilation 154 

Proper error characterization for any measurement, including AMVs, is important in data assimilation. Data 155 
assimilation often uses a regularized matrix inverse method based on Bayes’ theorem, which, when all probability 156 
distributions in Bayes’ relationship are assumed to be Gaussian, reduces to minimizing a least-squares (quadratic) cost 157 
function Eq (1):  158 

! = ($ − $!)'
"#
($ − $!) + )(*+ − ,) − -[$]0

$
1"#)(*+ − ,) − -[$]0				 (1) 159 

where x represents the analysis value, xb represents the background field (first guess), B represents the background 160 
error covariance, y represents the observation, and H represents the forward operator that translates model space into 161 
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observation space. This translation may consist of spatial and/or temporal interpolation if x and y are the same variable 172 
(e.g., if the observation of temperature comes from a radiosonde), or may be far more complicated (e.g., a radiative 173 
transfer model in the case of satellite observations). R represents the observation error covariance, and a represents 174 
the accuracy, or bias, in the observations. The right hand side of Eq. (1) can be interpreted as a sum of the contribution 175 
of information from the data (y – H[x] - a) and the contribution from the prior (x – xb), which are weighted by their 176 
respective covariance matrices. In our analysis, the AMVs obtained from the wind-tracking algorithm is used as ‘data’ 177 
in subsequent analysis. That is, the tracked wind data *+  is a biased and noisy estimator of the true wind y, and might 178 
be assumed to follow the model Eq. (2): 179 

y+ = y + 	ϵ (2) 180 

where ϵ is an error term, commonly assumed to be Gaussian with mean a and covariance matrix R (i.e., ϵ	~	N(	,, 1	)), 181 
which are the same two terms that appear in Equation (1). As such, for data assimilation to function, it is essential to 182 
correctly specify the bias vector a and the standard error matrix R. Incorrect characterizations of either of these 183 
components could have adverse consequences on the resulting data assimilation analyses with respect to bias and/or 184 
the standard error (Nguyen et al., 2019). 185 

3 Methodology 186 

3.1 Generalized Error Characterization Model  187 

An overview of our approach is outlined in { REF _Ref29398351 \h  \* MERGEFORMAT }. Given a set of training 188 
predictors X, training responses Ŷ, and simulated true response Y, our approach begins with two independent steps. 189 
In one step, a Gaussian mixture model is trained on the set of X, Ŷ, and Y. This clustering algorithm identifies 190 
geophysical regimes where the nonlinear relationships between the three variables differ. In the other step, a random 191 
forest is used to model Y based on X and Ŷ. This step produces an estimate of the true response (we call this :;) using 192 
only the training predictors and response. We then employ the Gaussian mixture model to estimate the clusters which 193 
the set of X, Ŷ, and :; pertain to. Subsequently, we compute the error characteristics of each cluster of X, Ŷ, and :;  in 194 
the training dataset. Thereafter, given a new point consisting solely of X and Ŷ, we can assign it to a specific cluster 195 
and ascribe to it a set of error characteristics.  196 

In this paper, we are primarily interested in the distribution of a retrieved quantity versus the truth. That is, given a 197 
retrieved value Ŷi, we are interested in the first and second moments (i.e., E( Ŷi – Y) and var( Ŷi – Y)), respectively. 198 
We note that there is a large body of existing work on uncertainty modeling in the machine learning literature (e.g., 199 
Coulston et al., 2016; Tripathy et al., 2018; Tran et al., 2019; Kwon et al., 2020), although these approaches primarily 200 
define the uncertainty of a prediction as var( Ŷi ), or quantify how sensitive that prediction is to tiny changes in the 201 
models/inputs. Our approach, on the other hand, characterizes the error as var( Ŷi – Y), which describes how accurate 202 
a prediction is relative to the true value. For this reason, our methodology is more stringent in that it requires 203 
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knowledge of the true field (which comes naturally within OSSE framework) or some proxies such as independent 211 
validation data or reanalysis data. In return, the error estimates from our methodology fit naturally within the data 212 
assimilation framework (that is, it constitutes the parameter R in Eq. (1)).  213 

What follows in this paper is an implementation of the error characterization model obtained for a subsample of the 214 
GEOS-5 Nature Run at a fixed height of 700hPa. In particular, we trained the error characterization on a random 215 
subsample from the first 1.5 months of the Nature Run, and show the results obtained when applying it to a test 216 
subsample drawn from the subsequent 0.5 months of the Nature Run.   217 

3.2 Error Regime 218 

When examining the relationship between AMVs and Nature Run winds in { REF _Ref29398366 \h  \* 219 
MERGEFORMAT }, it is clear that there are two distinct ‘error-regimes’ present in the dataset. The majority of AMV 220 
estimates can be categorized as ‘skilled’, wherein their estimate lies clearly along a one-to-one line with the Nature 221 
Run wind. However, there is also clearly an ‘unskilled’ regime, for which the AMV estimate is very close to zero 222 
when there are actually moderate or large Nature Run wind values present. Our goal is to provide unique error 223 
characterizations for each error regime, because the error dynamics are different within each regime. Furthermore, 224 
when we analyze this error and its relationship to water vapor, we see that ‘unskilled’ regime correlates highly with 225 
areas of low water vapor in { REF _Ref29398395 \h  \* MERGEFORMAT }. This matches the error patterns discussed 226 
in Posselt et al. (2019). We note that the division between skilled and unskilled regimes does not need to be binary. 227 
For instance, in some regions the wind-tracking algorithm might be unbiased with high-correlation with the true winds, 228 
and in other regions the algorithm might still be unbiased relative to the true winds, but with higher errors. The second 229 
situation is clearly less skilled than the first, although it might still be considered ‘skilled’, and this separation of the 230 
wind-tracking estimates into various ‘grades’ of skill forms the basis of our error model. 231 

3.3 Gaussian Mixture Model  232 

These distinct regimes present an opportunity to employ machine learning. Bormann et al. (2014) and Hernandez-233 
Carrascal and Bormann (2014) demonstrated that cluster (also called regime) analysis is a successful approach for 234 
wind-tracking error characterization, and so we aim to train a clustering algorithm that will cluster a given  individual 235 
AMV estimate to various ‘grades’ of skill. In particular, we use a clustering algorithm that can take advantage of the 236 
underlying geophysical dynamics. To this end, we employ a Gaussian mixture model, an unsupervised clustering 237 
algorithm based on estimating a training set as a mixture of multiple Gaussian distributions.  A mathematical overview 238 
follows: 239 

1. Define each location containing Nature Run winds, water vapor, and AMV estimates as a random variable 240 
x%	 241 

2. Define θ as the population that consists of all x%	in the training dataset 242 
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3. Model the distribution of the population P(θ) as: 255 

P(θ) =?π&N)µ&, 	Σ&0

'

&
(3) 256 

Where N)µ&, 	Σ&0 is the normal distribution with mean µ& and covariance Σ& of the j-th cluster,  257 

K	is	the	number of clusters, and  π& is the mixture proportion. 258 

4. Determine π&, µ&, 	Σ& for K clusters using the Expectation–Maximization Algorithm 259 
5. From 3. and 4., estimate the probability of a given x% belonging to the j-th cluster as P)x% ∈ k&0 = p%& 260 
6. Assign point x% to the cluster with the maximum probability p%& 261 

The mixture model clustering is based on the R package ‘Mclust’ developed by Fraley et al. (2012), which builds upon 262 
the theoretical work of Fraley and Raftery (2002) for model-based clustering and density estimation. The process uses 263 
an Expectation-Maximization algorithm to cluster the dataset, estimating a variable number of distinct multivariate 264 
Gaussian distributions from a sample dataset. Training the Gaussian mixture model on this dataset provides a 265 
clustering function which outputs a unique cluster for any data point with the same number of variables.{ 266 
INCLUDEPICTURE "https://lh5.googleusercontent.com/hTyZLCheUtO1nax6OCT-267 
PrH_M3_pNyiVsopj3jyTJr8CNcKeTT_GkQa80dAOLFIWvxtdQ9EApaE5c8G2WyjlYfk1ihxPSxClrO5xtAz0LgG2268 
ToHP00myCbV6YGIEMXnwpn1FE5n6" \* MERGEFORMATINET } 269 

In one dimension, a Gaussian mixture model looks like the distributions depicted in { REF _Ref29398417 \h  \* 270 
MERGEFORMAT }: instead of modeling a population as a single distribution (Gaussian or otherwise), the GMM 271 
algorithm fits multiple Gaussian distributions to a population. One key aspect of this algorithm is the capability of 272 
assigning a new point to the most likely distribution. For example, in the 1-D figure, a normalized AMV estimate with 273 
a value of 10 would be more likely to originate from the broad cluster ‘2’ than the narrow cluster ‘4’. In this case, we 274 
model the population as a Gaussian mixture model in five-dimensional space, which consists of two Nature Run wind 275 
vector components (u and v), two AMV estimates of these wind components (u+	and v+), and the simulated water vapor 276 
values, all of which have been standardized to have mean 0 and standard deviation of 1. Each cluster has a 5-277 
dimensional mean vector for the center and a 5x5 covariance matrix defining their multivariate Gaussian shape. The 278 
estimation of a covariance matrix allows for the characterization of the relationships between the different dimensions 279 
within each cluster, and as such the gaussian mixture model approach provides greater potential for understanding the 280 
geophysical basis of error regimes than other unsupervised clustering approaches. 281 

We note that the choice of inputs to the clustering methodology is limited, and that a more successful clustering may 282 
be achieved by including additional meteorological or geographic information. However, the intention of this paper 283 
is to study the ability of a purely data-driven approach, where no additional information or assumptions are passed to 284 
the machine learning model outside of the inputs and outputs to the AMV algorithm itself. Posselt et al. (2019) showed 285 
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that state dependent uncertainties are a major source of error in water vapor AMVs; introducing further information 307 
may cloud our ability to discern these specific uncertainties. While scaling this methodology to other applications may 308 
incentivize tailoring to specific conditions, this paper aims to demonstrate that modifications are encouraged for 309 
improvement, but not necessary for success.  310 

Having trained the Gaussian mixture model on the 1.5 month training dataset, we applied the clustering algorithm to 311 
a testing dataset sampled from the subsequent 0.5 months of the nature run. By re-analyzing the AMV estimate in 312 
relation to the Nature Run winds within each cluster ({ REF _Ref29338668 \h  \* MERGEFORMAT }), we find that 313 
the clustering approach successfully separates the AMV estimates according to their ‘skillfulness’. Essentially, we 314 
repeat Figure 3 but divide the AMV estimates by cluster. We see that, for example, clusters 4, 5, and 7 clearly represent 315 
cases in which the feature-tracking algorithm provides an accurate estimate of the Nature Run winds, with very low 316 
variance around the one-to-one line (i.e., low estimation errors). Clusters 1, 2, 3, and 9 are somewhat noisier than the 317 
low-variance clusters, with error characteristics similar to those of the entirety of the dataset. That is, they are 318 
considered less skilled, but their estimates still lie on a one-to-one line with respect to the true wind. Clusters 6 and 8, 319 
on the other hand, are clearly unskilled in different ways. Cluster 6 is a noisy regime, which captures much of the 320 
more extreme differences between the AMV estimates and the Nature Run winds. Cluster 8, on the other hand, 321 
represents the low AMV estimate, high Nature Run wind regime. This cluster is returning AMVs with values of zero 322 
where the Nature Run wind is clearly non-zero because of the very low water vapor present. We further see the 323 
stratification of the regimes when analyzing the absolute AMV error in relation to the water vapor content (Figure 7). 324 
We see that clusters that have similar behaviors in the error pattern (such as 1, 2, and 3) represent different regimes of 325 
water vapor content. 326 

We specified 9 individual clusters due to a combination of quantitative and qualitative reasons. Quantitatively, the 327 
‘Mclust’ package uses the Bayesian Information Criterion (BIC), a model selection criterion based on the likelihood 328 
function which attempts to penalize overfitting, to select the optimal number of clusters given an input range. Using 329 
an input range of one through nine, the BIC indicated the highest number of clusters would be optimal. More 330 
importantly, however, the 9 clusters can be physically distinguished and interpreted. Plots of the geophysical variables 331 
in the testing set associated with each of the clusters are shown in Figures 8-11. Specifically, Figure 8 plots the 332 
distribution of water vapor for each cluster, while Figure 9 plots the mean wind magnitude in each direction by cluster. 333 
Figure 10 plots the correlation matrix for each cluster and Figure 11 show the geographic distribution of each cluster. 334 
In looking at these in combination, we see discernable and discrete clusters with unique characteristics. For example, 335 
cluster 1 captures the very dry, high-wind regime in the southern hemisphere visible in Figure 2. Cluster 7 336 
encompasses the tropics, while cluster 3 captures mid-latitude storm systems. Clusters 6, 8, and 9 are all characterized 337 
by a much worse performance of the AMV tracking algorithm, exhibited both in Figure 7 and in Figure 8 but all 338 
encompass different geographic and geophysical regimes. We see that the clustering algorithm succeeds in capturing 339 
physically interpretable clusters without having any knowledge of the underlying physical dynamics. We note that in 340 
other applications, the optimal number of clusters will change and the researcher will need to explore various choices 341 
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of this parameter in their modeling, although this tuning process should be greatly simplified by the inclusion of an 354 
information criterion (e.g., BIC) in the GMM algorithm. 355 

3.5 Random Forest 356 

The clustering algorithm requires the Nature Run wind vector component values (u and v) in order to classify the 357 
AMV error. When applying the algorithm in practice to tracked AMV wind from real observations, the true winds are 358 
unknown. To represent the fact that we will not know the true winds in practice, we develop a proxy for the Nature 359 
Run winds using only the AMV estimates and the simulated water vapor itself. This is an instance in which the 360 
application of machine learning is desirable, since machine learning excels at learning high-dimensional non-linear 361 
relationships from large training datasets. In this case, we specifically use random forest to create an algorithm which 362 
predicts the Nature Run wind values as a function of the tracked wind values and water vapor.  363 

Random forest is a machine learning regression algorithm which, as detailed by Breiman (2001), employs an ensemble 364 
of decision trees to model a nonlinear relationship between a response and a set of predictors from a training dataset. 365 
Here, we chose random forest specifically because it possesses certain robustness properties that are more appropriate 366 
for our applications than other machine learning methods. For instance, random forest will not predict values that are 367 
outside the minimum and maximum range of the input dataset, whereas other methods such as neural networks can 368 
exceed the training range, sometimes considerably so. Random forest, due to the sampling procedure employed during 369 
training, also tends to be robust to overtraining in addition to requiring fewer tuning parameters compared with 370 
methods such as neural networks. 371 

We trained a random forest with 50 trees on a separate set of tracked winds and water vapor values to predict Nature 372 
Run winds using the ‘randomForest’ package in R. While the random forest estimate as a whole does not perform 373 
much better than the AMV values in estimating the Nature Run wind (2.89 RMSE for random forest vs 2.91 RMSE 374 
for AMVs), as shown in { REF _Ref29394704 \h  \* MERGEFORMAT }, it does not display the same discrete 375 
regimentation as the AMV estimates in Figure 3. As such, the random forest estimates can act as a proxy for Nature 376 
Run wind values in our clustering algorithm — they remove the regimentation which is a critical distinction between 377 
the AMV estimates and the Nature Run wind values. 378 

3.6 Finalized Error Characterization Model 379 

The foundation of the error characterization approach is to combine the random forest and clustering algorithm. We 380 
apply the Gaussian mixture model, as trained on the Nature Run winds (in addition to the AMVs and water vapor), to 381 
each point of water vapor, AMV estimate, and associated random forest estimate. This produces a set of clusters 382 
which, when implemented, require no direct knowledge of the actual Nature Run state ({ REF _Ref29394987 \h  \* 383 
MERGEFORMAT }).  384 
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Naturally, the clustering algorithm performs better when applied to the dataset with the Nature Run winds, as 400 
opposed to winds generated from the random forest algorithm. The former is created with direct knowledge of the 401 
Nature Run winds, and any approximation will lead to increased uncertainties. In practice, the performance of the 402 
cluster analysis can be improved by enhancing the performance of the random forest itself. As with any machine 403 
learning algorithm, the random forest contains hyperparameters that can be optimized for specific applications. In 404 
addition, performance could be improved by including additional predictor variables. Our intent is not to use the 405 
random forest as a wind tracking algorithm; rather, the random forest is presented in this paper as a proof of concept.  406 

Nonetheless, we see in Figure 13 and Figure 14 that the error characterization still discretizes the testing data set into 407 
meaningful error regimes. The algorithm manages to separate the AMV estimates into appropriate error clusters. Once 408 
again, clusters 6 and 8 manage to capture unskilled regimes, and cluster 7, and to a lesser extent clusters 4 and 5, 409 
remain skillful. By taking the mean and standard deviation of the difference between AMV estimates and Nature Run  410 
winds in each cluster, we develop error characteristics for each cluster ({ REF _Ref29395022 \h  \* MERGEFORMAT 411 
}); these quantities are precisely the bias and uncertainty that we require for the cost function J in Eq (1). We see that 412 
the unskilled clusters have very high standard errors and they correspond roughly to the areas of unskilled regimes in 413 
Figure 3. Similarly, skilled clusters 5, 4 and 7 have standard errors below that of the entire dataset. Since each cluster 414 
now has associated error characteristics (e.g., bias and standard deviation), it is then straightforward to assign the bias 415 
and uncertainty for any new tracked wind observation by computing which regime it is likely to belong to. 416 

3.7 Experimental Set up 417 

In this section we will describe our experimental setup for training our model on the GEOS-5 Nature Run data and  418 
testing its performance on a withheld dataset. We divide the dataset into two parts: a training set consisting of the first 419 
1.5 months of the GEOS-5 Nature Run, and a testing set consisting of the last 0.5 month of the Nature Run. Our 420 
training/testing procedure for the simulation data and tracked wind is as follows:  421 

1. Divide the simulation data and tracked wind into two sets: training set of 1,000,000 points from the first 1.5 422 
months of the Nature Run and a testing set of 1,000,000 points from the final 0.5 months of the Nature Run. 423 

2. We train a Gaussian Mixture Model on a normalized random sample of observations from the training dataset 424 
of Nature Run  winds (u and v direction), tracked winds (u and v direction), and water vapor with n=9 clusters. 425 

3. We train two separate random forests on a different random sample of 750,000 observations from the training 426 
dataset. We use tracked wind (u and v direction) and water vapor to model, separately, Nature Run  winds in 427 
both the u and v directions.  428 

4. We apply the random forests to the dataset used for the Gaussian Mixture Model. This provides a random 429 
forest estimate for each point, which is used as a substitute for Nature Run  wind values in the next step.  430 

5. We predict the Gaussian mixture component assignment for each point of water vapor, tracked winds, and 431 
random forest estimate using the GMM parameters estimated in Step 2. 432 
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6. We compute the mean and standard deviation of the difference between the tracked winds and the Nature 446 
Run  winds, per direction, for each Gaussian mixture model cluster assignment. This provides a set of error 447 
characteristics that are specific to each cluster.  448 

7. We can apply the random forest, and then the cluster estimation, to any set of water vapor and tracked AMV 449 
estimates. Thusly, any set of tracked AMV estimates and water vapor can be mapped to a specific cluster, 450 
and therefore its associated error characteristics.  451 

4 Results and Validation 452 

In this section, we compare our clustering method against a simple alternative, and we quantitatively demonstrate 453 
improvements that result from our error characterization. Recall that in Section 3, we divided the wind-tracking 454 
outputs into 9 regimes, which range from very skilled to unskilled. For the i-th regime, we can quantify the predicted 455 
uncertainty estimate as a gaussian distribution with mean mi and standard deviation σ%, which has a well-defined 456 
cumulative distribution function which we denote as Fi. To test the performance of our uncertainty forecast, we divide 457 
the dataset described in Section 2 into a training dataset (first 1.5 month) and a testing dataset (last 0.5 month). Having 458 
trained our model using the training dataset, we apply the methodology to the testing dataset, and we compare the 459 
performance of the predicted probability distributions against the actual wind error (tracked winds - Nature Run 460 
winds). This is a type of probabilistic forecast assessment, and we assess the quality of the prediction using a scoring 461 
rule called continuous ranked probability score (CRPS), which is defined as a function of a cumulative distribution 462 
function F and an observation x as follows:  463 

CRPS(F, x) = 	T 	

(

"(
(F($) − 	U(* − $))

)	V*																																																						(W)	 464 

Where U( ) is the Heaviside step function and denotes a step function along the real line that is equal to 1 if the argument 465 
is positive or zero, and it is equal zero if the argument is negative (Gneiting and Katzfuss, 2014) . The continuous rank 466 
probability score here is strictly proper, which means that the function CRPS(F, x) attains the minimum if the data x 467 
is drawn from the same probability distribution as the one implied by F. That is, if the data x is drawn from the 468 
probability distribution given by F, then CRPS(F, x) < CRPS(G, x) for all G ≠ F.  469 

The alternative error characterization method that we test against is a simple marginal mean and marginal standard 470 
deviation of the entire tracked subtract Nature Run  wind dataset. This is essentially equivalent to an error 471 
characterization scheme that utilizes one regime, where m and σ are given as the marginal mean and the marginal 472 
standard deviation of the residuals (i.e., tracked wind minus Nature Run  winds). Here, we use a negatively oriented 473 
version of the CRPS (i.e., Eq.(4) without the minus sign), which implies that lower is better. A histogram evaluating 474 
the performance of our methodology against the naive error characterization method is given in { REF _Ref29398184 475 
\h  \* MERGEFORMAT }. 476 
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The relative behavior of the CRPS is consistent between u and v winds. The CRPS tends to have to wider distribution 505 
when applied to the regime-based error characterization. Compared to the alternative error characterization scheme, 506 
our methodology produces a cluster of highly accurate predictions (low CRPS scores), in addition to some cluster of 507 
very uninformative predictions (high CRPS scores). These clusters correspond to the highly skilled cluster (e.g., 508 
Cluster 3) and the unskilled clusters (Cluster 6 and 8), respectively. Overall, the mean of the CRPS is lower for our 509 
methodology than it is for the alternative method, indicating that as a whole our method produces a more accurate 510 
probabilistic forecast.  511 

Thus far we have shown that our method produces more accurate error-characterization than an alternative method 512 
based on marginal means and variance. Now, we assess whether our methodology provides valid probabilistic 513 
prediction; that is, we test whether the uncertainty estimates provided are consistent with the empirical distribution of 514 
the validation data. To assess this, we construct a metric in which we normalize the difference between the Nature 515 
Run wind and the tracked wind by the predicted variance. That is, for the i-th observation, we compute the normalized 516 
values for u* and v* using the following equations: 517 

z+,% =
u* −	\+*
σ+,%

 518 

z-,% =
v* − ]+*
σ-,%

(5) 519 

Where u*  is the i-th Nature Run u wind from the Nature Run data, \+* is the tracked-wind, and σ+,% is the error as 520 
assessed by our model (recall that it is a function of the regime index to which \+* has been assigned). The values for 521 
the v-wind are defined similarly. The residuals in Eq (5) can be considered as a variant of the z-score, and it is 522 
straightforward to see that if our error estimates are valid (i.e., accurate), then the normalized residuals in Eq. (5) 523 
should have a standard deviation of 1. If our uncertainty estimates σ+,% and σ-,% are too large, then the standard deviation 524 
of z+,% and z-,% should be less than 1; similarly, if our uncertainty estimates are too small, then the standard deviation 525 
of z+,% and z-,% should be larger than 1. In { REF _Ref45710459 \h  \* MERGEFORMAT }, we display the histogram 526 
of the normalized residuals z+ and z-. It is clear that for both types of wind, the standard deviation of z+,% and z-,% are 527 
1.003 and 1.009, respectively, indicating that our error characterization model is highly accurate when forecasting 528 
uncertainties. 529 

5 Conclusion 530 

Error characterization is an important component of data validation and scientific analysis. For wind-tracking 531 
algorithms, whose outputs (tracked u and v) are often used as observations in data assimilation analyses, it is necessary 532 
to accurately characterize the bias and standard error (e.g., see Section 2.2). Nguyen et al. (2019) illustrated that 533 
incorrect specification of these uncertainties (, and R in Eq. (1)) can adversely affect the assimilation results – 534 
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mischaracterization of bias will systematically offset a tracked wind, while an erroneous standard error could 555 
incorrectly weigh the cost function. 556 

In this paper we demonstrate the application of a machine learning uncertainty modeling tool to AMVs derived from 557 
hyperspectral sounder water vapor profiles. The methodology, based on a combination of gaussian mixture model 558 
clustering and random forest, identified distinct geophysical regimes and provided uncertainties specific to each 559 
regime. This was achieved in a purely data-driven framework; nothing was known to the model except the specific 560 
inputs and outputs of the AMV algorithm, deducing the relationship between regime and uncertainty from the 561 
underlying multivariate distribution of water vapor, Nature Run wind, and tracked wind. Our algorithm does require 562 
one major tuning parameter in the number of clusters for the GMM algorithm, although the search for the ‘optimal’ 563 
number of clusters can be aided by the inclusion of an information criterion (e.g., the BIC) in the GMM model. 564 
Nonetheless this methodology was sufficient to produce improved error estimates of state-dependent uncertainties as 565 
detailed in Posselt et al. (2019).  566 

At its most general, our methodology consists of two parts: an emulator and a clustering algorithm. In this 567 
implementation, random forest and Gaussian mixture modelling are the approaches; in theory, these two steps could 568 
be accomplished using other algorithms belonging to the appropriate class. Indeed, improvements to the methodology 569 
could surely be made with further research in both areas. Given the degradation in the uncertainty estimates between 570 
those produce with and without Nature Run wind values, an improvement of the emulator could yield the most efficient 571 
returns. This could either take the form of improving or replacing the random forest algorithm. As previously 572 
discussed, improvements could also be made in both the inputs to and nature of the clustering algorithm.  573 

We note that our methodology requires knowledge of the true field of interest (here u and v), or some proxy thereof. 574 
This makes our methodology a natural supplement to OSSE-based studies where the true fields of interest are provided 575 
by numerical weather models. Such studies are important components of algorithm validation (e.g., Posselt et al., 576 
2019), and our proposed methodology provides a framework for characterizing the error within different geophysical 577 
regimes. In practice, we envision that the lack of true fields could be addressed by either using independent validation 578 
data or reanalysis model data. Therefore, there would be an additional component of error due to the usage of proxy 579 
data in lieu of the true field, but this error should be inversely proportional to the quality of the proxy data.  580 

The error estimation algorithm presented in this paper is a proof of concept. While the methodology is expected to be 581 
generally applicable to other AMV extraction methods (e.g., cloud-track winds or tracking of other trace gases), our 582 
specific error functions are only valid for our specific training dataset. That said, the state-dependent errors identified 583 
by Posselt et al. (2019) are also expected to apply to other water vapor AMVs. This is because, in general, AMV 584 
algorithms have difficulty tracking fields with very small gradients, and will produce systematic errors in situations 585 
for which isolines in the tracked field (e.g., contours of constant water vapor mixing ratio) lie parallel to the flow. To 586 
the extent that our algorithm represents a general class of errors, the results may be applicable to other geophysical 587 
scenarios and other AMV tracking methodologies. As mentioned in the introduction, robust estimates of uncertainty 588 
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are important for data assimilation, and we expect that our methodology could be used to provide more accurate 632 
uncertainties for AMVs used in data assimilation for weather forecasting and reanalysis. To do so, we recommend 633 
training on a dataset that is large enough to encompass the full range of features likely to be seen by the assimilation 634 
and forecast system. To the extent that errors may be seasonally and regionally dependent, it may be more effective 635 
to train the error estimation algorithm on data that is expected to represent the specific flow regimes and water vapor 636 
features valid for a particular forecast or assimilation period. We have tested the error function described in this paper 637 
in an AMV weather forecast and data assimilation OSSE study using GEOS5, and its impact will be reported in a 638 
forthcoming paper.   639 
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 727 

Figure { SEQ Figure \* ARABIC }: Map of Nature Run at one timestep at 700hPa (A): Water Vapor 
(B):  Nature Run Wind Speed (C): Difference between Nature Run Wind Speed and AMV Estimate (D): 
AMV Estimate. 
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 728 

 729 

Figure { SEQ Figure \* ARABIC }: Diagram of Training Approach and Diagram of Implementation steps. 730 
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 731 

Figure { SEQ Figure \* ARABIC }:  Scatter plot of the simulated Nature Run wind vs AMV estimates for u 732 
and v wind in the training dataset. 733 

 734 

Figure { SEQ Figure \* ARABIC }: Simulated water vapor vs the absolute value of the difference between 735 
Nature Run and tracked winds in the training dataset. 736 
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 741 

Figure { SEQ Figure \* ARABIC }: Example of Gaussian Mixture Model in one dimension. Density Figures 742 
for the U-Direction AMV Estimate dimension of fitted Gaussian mixture. 743 

 744 

 745 

Figure { SEQ Figure \* ARABIC }: Scatterplot of simulated Nature Run wind vs AMV Estimates, each sub-746 
panel corresponding to the specific Gaussian mixture component to which each point in the testing set has 747 
been assigned. (A): U-Direction Wind (B): V-Direction Wind. 748 
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 752 

 753 

Figure { SEQ Figure \* ARABIC }: Scatterplot of Water Vapor vs Absolute Tracked Wind Error, each sub-754 
panel corresponding to the specific Gaussian mixture component to which each point in the testing set has 755 
been assigned. (A): U-Direction Wind (B): V-Direction Wind. 756 

 757 
Figure { SEQ Figure \* ARABIC }: Histogram of Nature Run water vapor for each cluster identified by the 758 
Gaussian mixture model, applied to the testing set. Each sub-panel represents the cluster each point was 759 
assigned to. 760 
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 765 
Figure { SEQ Figure \* ARABIC }: Mean tracked winds and Nature Run winds, in each direction, for each 766 
cluster applied to the test set. Each sub-panel represents the cluster each point was assigned to. 767 

 768 

 769 
Figure { SEQ Figure \* ARABIC }: Correlation matrix between each clustered element for each identified 770 
cluster in the original training dataset. Each sub-panel refers to a specific cluster. 771 
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 772 
Figure { SEQ Figure \* ARABIC }: Geographic distribution by cluster of AMV retrieval locations in the 773 
testing dataset. Each sub-panel represents one cluster. 774 
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 777 

Figure { SEQ Figure \* ARABIC }: Scatterplot of Nature Run wind estimate vs random forest produced 778 
estimate. (A): U Direction (B): V Direction 779 
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 782 

Figure { SEQ Figure \* ARABIC }: Scatterplot of  Nature Run  wind vs AMV Estimates, each sub-panel 783 
corresponding to the specific Gaussian mixture component to which each point in the testing set has been 784 
assigned when the Nature Run  wind value has been substituted by the random estimate. (A): U-Direction 785 
Wind (B): V-Direction Wind 786 

 787 

Figure { SEQ Figure \* ARABIC }: Water Vapor vs Absolute Tracked Wind Error, each sub-panel 788 
corresponding to the specific Gaussian mixture component each point in the testing set has been assigned 789 
when the Nature Run wind value has been substituted by the random estimate. (A): U-Direction Wind (B): V-790 
Direction Wind 791 
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 801 

Figure { SEQ Figure \* ARABIC }: (A): Bias (Left Panel) and Standard Error (Right Panel) for each 802 
Gaussian mixture cluster in figure 6, U direction. (B): Same as (A) for V-direction 803 

 804 

Figure { SEQ Figure \* ARABIC }: CRSP applied to different error approaches. (A): Cluster Errors for U 805 
Winds (B): Total Errors for U Winds (C): Cluster Errors for V Winds (D): Total Errors for V Winds. 806 
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 809 

Figure { SEQ Figure \* ARABIC }: U and V winds normalized using the error characteristics developed by 810 
our methodology. 811 
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Mean: -0.02274906 
Std. Dev.: 1.00032 
 
 

Mean: -0.01627493 
Std. Dev.: 1.00947 
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