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We would like to thank the referee for the careful read of the paper and comments. Please see our responses below: 

 
 
GENERAL COMMENTS 
The second version of this paper is greatly improved. I would like to thank the authors for the substantial effort they 
made to answer referees concerns. 
I especially appreciated the addition of the Fig8-11 that illustrate the physical and geographical properties of the 
identified clusters. The general presentation of the method as a ‘proof of concept’ also improved a lot the overall 
coherency of the paper with the actual results. 
I can now accept this paper for publication. 
 
We thank the reviewer for their detailed and helpful comments on the first review of the paper. We are glad to see 
that we have met the reviewer’s acceptance for publication. 
 
SPECIFIC COMMENTS 
 
1) Line 228 
‘to the Nature Run winds within each cluster (),’ Probably missing something inside the parenthesis. 
 
Thannk you for noticing this. We have fixed it by including the figure reference needed. 
 
2) Line 274-275 
I do not understand the sentence: ‘We trained a random forest with 50 trees on a separate set of tracked winds and 
water vapor values to predict Nature 274 Run winds using the ‘randomForest’ package in R.’ What is ‘R’ ? 
 
‘R’ refers to the R programming language, a language used for statistical analysis. This has been noted in the paper. 
 
3) Line 380-381 
‘In this paper we demonstrate the application of a machine learning uncertainty modeling tool to AMVs derived 
from hyperspectral sounder water vapor profiles.’ This is not exactly correct. No data from hyperspectral sounders 
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Motion Vectors” 

Teixeira et al. 
Responses to Referee 2 

We would like to thank the referee for the careful read of the paper and for the detailed comments. Please see our 

responses below: 

1. While the manuscript has improved in several areas, I feel that some of my earlier more substantive 

comments have not been sufficiently addressed. These include comments on the usefulness of the algorithm 

in practical situations (earlier general points 1 and partially 3), the robustness of the performance 

(particularly of the clustering; general point 1, specific points 6 and 10), and the evaluation of the 

performance (specific points 16 and 17). In some of their replies to the comments the authors acknowledge 

limitations and issues of their algorithm, yet this is not reflected in the revised manuscript (especially 

general point 3, specific points 6 and 10). I therefore continue to be unconvinced that this algorithm is 

useful for the intended application. 

 

For the paper to be acceptable for publication, I think these points need to be more thoroughly addressed. 

In my view this means that the results are either more critically evaluated and the limitations more clearly 

outlined, or the algorithm has to be refined and made more robust so that applicability to real-life 

applications is indeed ensured. In my view either of this requires another major revision. I do not think that 

the present results serve as a “proof-of-concept” of a useful algorithm that could be applied to practical 

situations with real data, as the authors claim. I could accept if the paper was written from the perspective 

of introducing a novel conceptual framework which has been explored in an initial implementation, which 

shows some skill in assigning regime-specific observation errors, but has revealed a range of issues that 

would need to be addressed for this to be a viable and useful algorithm for real applications (and which 

may not be possible to address).  

We thank the reviewer for their insightful comments. We agree with the reviewer that what we intend to present is 

more of a ‘conceptual framework’ than a ‘proof-of-concept’. We never intended to present this work as a ‘ready-to-

go’ algorithm in this particular implementation; instead, we laid out the foundation for an uncertainty modelling 

approach which we plan to implement at a larger scale in subsequent work. To summarize, the conceptual 

foundations to this framework are the following: 

1. We intend to model uncertainty in the AMV algorithm relative to the underlying value it is trying to 

capture. As described in previous responses and detailed in the paper, this is a departure from most 

machine learning based approaches to uncertainty modelling. 



2. These uncertainties, and further their relationship with state vector elements, have shown to discretize 

themselves into different error regimes. We focus our approach on characterizing these regimes.  

3. Following the work by Posselt et al (2019), we believe that these uncertainties are state-dependent. As 

such, our framework explicitly intends to examine these uncertainties as function of the relationship 

between state values. This is not to say that implementations of this framework should exclude 

additional information; on the contrary, we believe that the addition of context-dependent information 

could greatly enhance an implementation of this framework. However, at its core, we attempt to model 

state-dependent uncertainties with a state-dependent model.  

4. We believe that the most versatile framework, in terms of potential application, is one which at its base 

is context-agnostic. A purely data-driven approach, as we lay out in the paper, provides the platform 

for context-dependent tuning when scaling the methodology.  

 

2. A clear path of how these issues could be addressed should be provided, including an outline how the 

algorithm could be derived without the truth being available .The latter requires recognition and 

discussion of the issues that will be encountered when substituting the truth with proxy data beyond the 

superficial suggestion that has been added in the conclusion section. These proxy data (the authors suggest 

reanalysis data or collocated reference observations) will introduce their own regime-specific errors, and 

there is no mechanism apparent in the present implementation of the algorithm that would be able to 

separate the errors in the proxy data from those in the tracked winds. The clustering may identify regime-

differences in errors in the proxy data (or the collocation errors), rather than in the AMVs. In addition, 

real-life applications would encounter errors in the humidity retrievals used for the tracking, and these will 

affect the characteristics of the errors in the tracked winds as well as the performance of the algorithm. 

We introduce our framework in an environment that is limited and well-behaved, but which nonetheless we believe 

provides insight into how such an approach would perform at a larger scale. The uncertainty model shows skill in 

discerning regime specific uncertainties in this scenario. Of course, there are issues when moving from the 

controlled environment of the simulation study to large scale applications. We understand these to be: (1) the 

existence of uncertainty on the tracked humidity values, and (2) the ability of the training dataset to adequately 

capture both the range of conditions of water vapor and wind speed, and their inherent relationship. We have 

rewritten and expanded the conclusion in the paper to include a lengthier discussion of these topics, as well as 

recommendations on how to address them. As a reference, this includes: 

1. A discussion of how humidity retrieval uncertainty would impact our model and approaches to address 

it. L417-431. 

2. A discussion of considerations future users must make when developing training data for the model. 

L432-466; L481-486. 

3. A list of specific prescriptions and recommendations for improving the regime classification approach. 

L467-480. 



4. A discussion of the random forest emulator and suggestions for future users. L487-498. 

 

Some additional specific points: 

 

1) Abstract: “… that is purely data driven and requires few tuning parameters”: I think this statement 

reflects more a limitation of the present study than a feature of the conceptual algorithm. There are 

significant tuning parameters (e.g., number of clusters, choice of predictors), but they are not explored in 

this study. I would argue that the method still requires substantial tuning of these parameters to be robust 

and useful compared to other methods, and some of the responses of the authors appear to agree with this. 

So I suggest to rephrase this statement to avoid giving the impression that this is a positive feature of the 

algorithm and that it can be run “out of the box”. 

We thank the reviewer for this comment. In order to resolve any confusion, and in light of the fact that we have 

highlighted several parts of the algorithm for future users to adjust and improve, we have removed any reference to 

‘few’ tuning parameters. 

 

2) Abstract, last sentence “… and it is shown to adequately capture the error features of the tracked 

wind.”: I don’t think it is clear what “adequate” means in this context, and I think it would be useful to be 

frank that the truth was available for training. I suggest to rephrase “…, and it is shown to capture some of 

the regime-dependent error features of the tracked wind in a setting where the truth is available for 

training the algorithm.” 

We thank the reviewer for this comment. We slightly disagree with the idea that the ‘truth’ was available for 

training. As discussed in the revised conclusions (L441-451), we trained the model on the first 1.5 months of the 

Nature Run data, and presented results applied on the last .5 months of the Nature Run; while this is a situation 

where we expect the training data to fairly accurately reflect the domain of the testing data, it is not in fact the same 

data and thus not what we would deem the ‘truth’. Nevertheless, the term ‘adequate’ is inherently subjective and we 

have replaced this with ‘provide accurate and useful error features of the tracked wind’, which is shown in the 

analysis in section 4. 

3) Reply to my earlier point 11: Thanks for providing the information on the significance of the standard 

deviation and bias statistics for the clusters included in the reply. This should be included in the revised 

manuscript, as it would help to substantiate the claim that the clusters identify statistically significantly 

different error behaviours. 

Thank you for this comment. We have included our reply to point 11 in the paper at the end of section 4, L373-392 

(as well as Figure 18) 



List of relevant changes in manuscript (in order as they appear): 
1. Abstract and Title: 

a. Rewording of final sentence of abstract. 
2. Section 4: 

a. L: 376-396. Included a discussion on the statistical significance of the bias and standard errors 
values derived from the uncertainty model.   

3. Conclusion and Discussion: 
a. Re-written and greatly expanded conclusion section to include discussion of potential problem 

areas for those wishing to implement this methodology. Including, but not limited to, a discussion 
of: 

i. A discussion of how humidity retrieval uncertainty would impact our model and 

approaches to address it. L417-431. 

ii. A discussion of considerations future users must make when developing training data for 

the model. L432-466; L481-486. 

iii. A list of specific prescriptions and recommendations for improving the regime 

classification approach. L467-480. 

iv. A discussion of the random forest emulator and suggestions for future users. L487-498. 

4. References: 
a. Included reference to (Efron and Tibshirani, 1993). 

5. Figures: 
a. New Figure 18, which accompanies the new additions to Section 4. 
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Abstract. Wind-tracking algorithms produce Atmospheric Motion Vectors (AMVs) by tracking clouds or water vapor 5 
across spatial-temporal fields. Thorough error characterization of wind-tracking algorithms is critical in properly 6 
assimilating AMVs into weather forecast models and climate reanalysis datasets. Uncertainty modelling should yield 7 
estimates of two key quantities of interest: bias, the systematic difference between a measurement and the true value, 8 
and standard error, a measure of variability of the measurement. The current process of specification of the errors in 9 
inverse modelling is often cursory and commonly consists of a mixture of model fidelity, expert knowledge, and need 10 
for expediency. The method presented in this paper supplements existing approaches to error specification by 11 
providing an error-characterization module that is purely data-driven. Our proposed error-characterization method 12 
combines the flexibility of machine learning (random forest) with the robust error estimates of unsupervised 13 
parametric clustering (using a Gaussian Mixture Model). Traditional techniques for uncertainty modeling through 14 
machine learning have focused on characterizing bias, but often struggle when estimating standard error. In contrast, 15 
model-based approaches such as k-means or Gaussian mixture modelling can provide reasonable estimates of both 16 
bias and standard error, but they are often limited in complexity due to reliance on linear or Gaussian assumptions. In 17 
this paper, a methodology is developed and applied to characterize error in tracked-wind using a high-resolution global 18 
model simulation, and it is shown to provide accurate and useful error features of the tracked wind. 19 

1. Introduction 20 

Reliable estimates of global winds are critical to science and application areas, including global chemical transport 21 
modeling and numerical weather prediction. One source of wind measurements consists of feature-tracking based 22 
Atmospheric Motion Vectors (AMVs), produced by tracking time sequences of satellite-based measurements of 23 
clouds or spatially distributed water vapor fields (Mueller et al., 2017; Posselt et al., 2019). The importance of global 24 
measurements of 3-dimensional winds was highlighted as an urgent need in the NASA Weather Research Community 25 
Workshop Report (Zeng et al., 2016) and was identified as a priority in the 2007 National Academy of Sciences Earth 26 
Science and Applications from Space (ESAS 2007) Decadal Survey and again in ESAS 2017. For instance, wind is 27 
used in the study of global CO2 transport (Kawa et al., 2004), numerical weather prediction (NWP; Cassola and 28 
Burlando, 2012), as inputs into weather and climate reanalysis studies (Swail and Cox, 2000), and for estimating 29 
current and future wind-power outputs (Staffell and Pfenninger, 2016). 30 

Thorough error characterization of wind-track algorithms is critical in properly assimilating AMVs into forecast 31 
models. Prior literature has explored the impact of ‘poor’ error-characterization in Bayesian-based approaches to 32 
remote sensing applications. Nguyen et al. (2019) proved analytically that when the input bias is incorrect in Bayesian 33 
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methods (specifically, optimal estimation retrievals), then the posterior estimates would also be biased. Moreover, 37 
they proved that when the input standard error is ‘correct’ (that is, it is as close to the unknown truth as possible), then 38 
the resulting Bayesian estimate is ‘efficient’; that is, it has the smallest error among all possible choices of prior 39 
standard error. Additionally, multiple active and passive technologies are being developed to measure 3D winds, such 40 
as Doppler wind lidar (DWL), radar, and infrared/microwave sensors that derive AMVs using feature-tracking of 41 
consecutive images. Therefore, an accurate and robust methodology for modeling uncertainty will allow for more 42 
accurate assessments of mission impacts, and the eventual propagation of data uncertainties for these instruments.   43 

Velden and Bedka (2009) and Salonen et al. (2015) have shown that height assignment contributes a large component 44 
of uncertainty in AMVs tracked from cloud movement and from sequences of infrared satellite radiance images. 45 
However, with AMVs obtained from water vapor profiling instruments (e.g., infrared and microwave sounders), 46 
height assignment error cannot be directly assessed purely through analysis of the AMV extraction algorithm. Height 47 
assignment is instead an uncertainty in the water vapor profile itself. Unfortunately, without the quantified 48 
uncertainties on the water vapor profile necessary to pursue such a study, that is well beyond the scope of this paper. 49 
As such, this study will focus on errors in the AMV estimates at a given height. Previous work has demonstrated 50 
several different approaches for characterizing AMV vector error. One common approach is to employ quality 51 
indicator thresholds, as described by Holmund et al (2001), which compare changes in AMV estimates between 52 
sequential timesteps and neighboring pixels, as well as differences from model predictions, to produce a quality 53 
indicator to which a discrete uncertainty is assigned. The Expected Error approach, developed by Le Marshal et al. 54 
(2004), builds a statistical model using linear regression against AMV-radiosonde values to estimate the statistical 55 
characteristics of AMV observation error.  56 

In this study, we outline a data-driven approach for building an AMV uncertainty model using observing system 57 
simulation experiment (OSSE) data. We build on the work by Posselt et al. (2019) in which a water vapor feature-58 
tracking AMV algorithm was applied to a high-resolution numerical simulation, thus providing a global set of AMV 59 
estimates which can be compared to the reference winds produced by the simulation. In this case, a synthetic “true” 60 
state is available with which AMVs can be compared and errors are quantified, and it is shown that errors in AMV 61 
estimates are state dependent. Our approach will use a conjunction of machine learning (random forest) and 62 
unsupervised parametric clustering (Gaussian mixture models) to build a model for the uncertainty structures found 63 
by Posselt et al. (2019). The realism and robustness of the resulting uncertainty estimates depend on the realism and 64 
representativeness of the reference dataset. This work builds upon the work of Bormann et al. (2014) and Hernandez-65 
Carrascal and Bormann (2014), who showed that wind tracking could be divided into distinct geophysical regimes by 66 
clustering based on cloud conditions. This study supplements that approach with the addition of machine learning, 67 
which, compared with traditional linear modeling approaches, should allow the model to capture more complex non-68 
linear processes in the error function.  69 

Traditional techniques for modeling uncertainty through machine learning have focused on characterizing bias but 70 
often struggle when estimating standard error. By pairing a random forest algorithm with unsupervised parametric 71 
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clustering, we propose a data-driven, cluster-based approach for quantifying both bias and standard error from 72 
experimental data. According to the theory developed by Nguyen et al. (2019), these improved error characterizations 73 
should then lead to improved error characteristics (e.g., lower bias, more accurate uncertainties) in subsequent analyses 74 
such as flux inversion or data assimilation. 75 

This paper does not purport that the specific algorithm detailed here should supplant error characterization approaches 76 
for all AMVs; indeed, most commonly assimilated AMVs are based on tracking cloud features, not water vapor 77 
profiles. In addition, this algorithm is trained and developed for a specific set of AMVs extracted from a water vapor 78 
field associated with a particular range of flow features. As such, application of our algorithm to modeled or observed 79 
AMVs will be most appropriate in situations with similar dynamics to our training set. However, we intend in this 80 
paper to demonstrate that the methodology is successful in characterizing errors for this set of water vapor AMVs and 81 
suggest that this approach— that is, capturing state-dependent uncertainties in feature-tracking algorithms through a 82 
combination of clustering and random forest— could be implemented in other feature-tracking AMV extraction 83 
methods and situations.  84 

The rest of the paper is organized as follows: In Section 2, we give an overview of the simulation which provides the 85 
training data for our machine learning approach. We then motivate and define the specific uncertainties this study 86 
aims to characterize. In Section 3, we describe the error characterization approach with the specifics of our error 87 
characterization model, including both the implementation of and motivations for employing the random forest and 88 
Gaussian mixture model. In Section 4, we provide a validation of our methods, attempting to assess the bias of our 89 
predictions. In Section 5, we discuss the implications of our error characterization approach, both on AMV estimation 90 
and data assimilation more broadly. 91 

2. Experimental Set-up 92 

2.1 Simulation and Feature-Tracking Algorithm 93 

We trained our model on the simulated data used by Posselt et al. (2019), which applied an AMV algorithm to outputs 94 
from the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office (GMAO) GEOS-5 95 
Nature Run (G5NR; Putman et al. 2014). The Nature Run is a global dataset with ~7 km horizontal grid spacing that 96 
includes, among other quantities, three-dimensional fields of wind, water vapor concentration, clouds, and 97 
temperature. Note that throughout the text we will use the term ‘Nature Run wind’ to refer to reference winds in the 98 
simulation dataset used to train the uncertainty model. The AMV algorithm is applied on four pressure levels (300hPa, 99 
500hPa, 700hPa, and 850hPa) at 6-hourly intervals, using three consecutive global water vapor fields spaced one hour 100 
apart, and for a 60-day period from 07/01/2006 to 08/30/2006. The water-vapor fields from GEOS5 were input to a 101 
local-area pattern matching algorithm that approximates wind speed and direction from movement of the matched 102 
patterns. The algorithm searches a pre-set number of nearby pixels to minimize the sum-of-absolute-differences 103 
between aggregated water vapor values across the pixels. Posselt et al. (2019) describes the sensitivity of the tracking 104 
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algorithm and the dependency of the tracked winds on atmospheric states in detail. The coordinates of the data are on 105 
a 5758 x 2879 x 240 spatio-temporal grid for the longitude, latitude, and time dimension, respectively. 106 

It is important to note that the AMV algorithm tracks water vapor on fixed pressure levels. In practice, these would be 107 
provided by satellite measurements, whereas in this paper we use simulated water vapor from the GEOS-5 Nature 108 
Run. In this simulation height assignment of the AMVs is assumed to be perfectly known. This assumption is far from 109 
guaranteed in real world applications but, as previously discussed, its implications are not pursued in this paper. As 110 
such, we focus solely on observational AMV error and not on height assignment error. We note that in practice, one 111 
approach to understanding the behavior and accuracy of the wind-tracking algorithm is to apply it to modeled data 112 
(e.g., Posselt et al., 2019). Our approach seeks to complement this approach by providing a machine-113 
learning/clustering hybrid approach that can further divide comparison domains into ‘regimes’ which may provide 114 
further insights into the behavior of the errors and/or feedback into the wind-tracking algorithm. 115 

A snapshot of the dataset at 700hPa is given in Figure 1, where we display the water vapor from Nature Run (top left 116 
panel), the wind speed from Nature Run (top right panel), the tracked wind from the AMV-tracking algorithm (bottom 117 
right panel), and the difference between the Nature Run and tracked wind (bottom left panel). Note that the wind-118 
tracking algorithm tends to have trouble in region where the Nature Run water vapor content is close to zero. It is clear 119 
that while the wind-tracking algorithm tends to perform well in most regions (we can classify these regions as areas 120 
where the algorithm is skilled), in some regions the algorithm is unable to reliably make a reasonable estimate of the 121 
wind speed (unskilled). We will examine these skilled and unskilled regimes (and their corresponding contributing 122 
factors) in section 3. 123 

2.2 Importance of Uncertainty Representation in Data Assimilation 124 

Proper error characterization for any measurement, including AMVs, is important in data assimilation. Data 125 
assimilation often uses a regularized matrix inverse method based on Bayes’ theorem, which, when all probability 126 
distributions in Bayes’ relationship are assumed to be Gaussian, reduces to minimizing a least-squares (quadratic) cost 127 
function Eq (1):  128 

! = ($ − $!)'
"#
($ − $!) + )(*+ − ,) − -[$]0

$
1"#)(*+ − ,) − -[$]0				 (1) 129 

where x represents the analysis value, xb represents the background field (first guess), B represents the background 130 
error covariance, y represents the observation, and H represents the forward operator that translates model space into 131 
observation space. This translation may consist of spatial and/or temporal interpolation if x and y are the same variable 132 
(e.g., if the observation of temperature comes from a radiosonde), or may be far more complicated (e.g., a radiative 133 
transfer model in the case of satellite observations). R represents the observation error covariance, and a represents 134 
the accuracy, or bias, in the observations. The right hand side of Eq. (1) can be interpreted as a sum of the contribution 135 
of information from the data (y – H[x] - a) and the contribution from the prior (x – xb), which are weighted by their 136 
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respective covariance matrices. In our analysis, the AMVs obtained from the wind-tracking algorithm is used as ‘data’ 138 
in subsequent analysis. That is, the tracked wind data *+  is a biased and noisy estimator of the true wind y, and might 139 
be assumed to follow the model Eq. (2): 140 

y+ = y + 	ϵ (2) 141 

where ϵ is an error term, commonly assumed to be Gaussian with mean a and covariance matrix R (i.e., ϵ	~	N(	,, 1	)), 142 
which are the same two terms that appear in Equation (1). As such, for data assimilation to function, it is essential to 143 
correctly specify the bias vector a and the standard error matrix R. Incorrect characterizations of either of these 144 
components could have adverse consequences on the resulting data assimilation analyses with respect to bias and/or 145 
the standard error (Nguyen et al., 2019). 146 

3 Methodology 147 

3.1 Generalized Error Characterization Model  148 

An overview of our approach is outlined in Figure 2. Given a set of training predictors X, training responses Ŷ, and 149 
simulated true response Y, our approach begins with two independent steps. In one step, a Gaussian mixture model is 150 
trained on the set of X, Ŷ, and Y. This clustering algorithm identifies geophysical regimes where the nonlinear 151 
relationships between the three variables differ. In the other step, a random forest is used to model Y based on X and 152 
Ŷ. This step produces an estimate of the true response (we call this :;) using only the training predictors and response. 153 
We then employ the Gaussian mixture model to estimate the clusters which the set of X, Ŷ, and :;  pertain to. 154 
Subsequently, we compute the error characteristics of each cluster of X, Ŷ, and :;  in the training dataset. Thereafter, 155 
given a new point consisting solely of X and Ŷ, we can assign it to a specific cluster and ascribe to it a set of error 156 
characteristics.  157 

In this paper, we are primarily interested in the distribution of a retrieved quantity versus the truth. That is, given a 158 
retrieved value Ŷi, we are interested in the first and second moments (i.e., E( Ŷi – Y) and var( Ŷi – Y)), respectively. 159 
We note that there is a large body of existing work on uncertainty modeling in the machine learning literature (e.g., 160 
Coulston et al., 2016; Tripathy et al., 2018; Tran et al., 2019; Kwon et al., 2020), although these approaches primarily 161 
define the uncertainty of a prediction as var( Ŷi ), or quantify how sensitive that prediction is to tiny changes in the 162 
models/inputs. Our approach, on the other hand, characterizes the error as var( Ŷi – Y), which describes how accurate 163 
a prediction is relative to the true value. For this reason, our methodology is more stringent in that it requires 164 
knowledge of the true field (which comes naturally within OSSE framework) or some proxies such as independent 165 
validation data or reanalysis data. In return, the error estimates from our methodology fit naturally within the data 166 
assimilation framework (that is, it constitutes the parameter R in Eq. (1)).  167 

What follows in this paper is an implementation of the error characterization model obtained for a subsample of the 168 
GEOS-5 Nature Run at a fixed height of 700hPa. In particular, we trained the error characterization on a random 169 
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subsample from the first 1.5 months of the Nature Run, and show the results obtained when applying it to a test 171 
subsample drawn from the subsequent 0.5 months of the Nature Run.   172 

3.2 Error Regime 173 

When examining the relationship between AMVs and Nature Run winds in Figure 3, it is clear that there are two 174 
distinct ‘error-regimes’ present in the dataset. The majority of AMV estimates can be categorized as ‘skilled’, wherein 175 
their estimate lies clearly along a one-to-one line with the Nature Run wind. However, there is also clearly an 176 
‘unskilled’ regime, for which the AMV estimate is very close to zero when there are actually moderate or large Nature 177 
Run wind values present. Our goal is to provide unique error characterizations for each error regime, because the error 178 
dynamics are different within each regime. Furthermore, when we analyze this error and its relationship to water 179 
vapor, we see that ‘unskilled’ regime correlates highly with areas of low water vapor in Figure 4. This matches the 180 
error patterns discussed in Posselt et al. (2019). We note that the division between skilled and unskilled regimes does 181 
not need to be binary. For instance, in some regions the wind-tracking algorithm might be unbiased with high-182 
correlation with the true winds, and in other regions the algorithm might still be unbiased relative to the true winds, 183 
but with higher errors. The second situation is clearly less skilled than the first, although it might still be considered 184 
‘skilled’, and this separation of the wind-tracking estimates into various ‘grades’ of skill forms the basis of our error 185 
model. 186 

3.3 Gaussian Mixture Model  187 

These distinct regimes present an opportunity to employ machine learning. Bormann et al. (2014) and Hernandez-188 
Carrascal and Bormann (2014) demonstrated that cluster (also called regime) analysis is a successful approach for 189 
wind-tracking error characterization, and so we aim to train a clustering algorithm that will cluster a given  individual 190 
AMV estimate to various ‘grades’ of skill. In particular, we use a clustering algorithm that can take advantage of the 191 
underlying geophysical dynamics. To this end, we employ a Gaussian mixture model, an unsupervised clustering 192 
algorithm based on estimating a training set as a mixture of multiple Gaussian distributions.  A mathematical overview 193 
follows: 194 

1. Define each location containing Nature Run winds, water vapor, and AMV estimates as a random variable 195 
x%	 196 

2. Define θ as the population that consists of all x%	in the training dataset 197 
3. Model the distribution of the population P(θ) as: 198 

P(θ) =?π&N)µ&, 	Σ&0

'

&
(3) 199 

Where N)µ&, 	Σ&0 is the normal distribution with mean µ& and covariance Σ& of the j-th cluster,  200 
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K	is	the	number of clusters, and  π& is the mixture proportion. 203 

4. Determine π&, µ&, 	Σ& for K clusters using the Expectation–Maximization Algorithm 204 
5. From 3. and 4., estimate the probability of a given x% belonging to the j-th cluster as P)x% ∈ k&0 = p%& 205 
6. Assign point x% to the cluster with the maximum probability p%& 206 

The mixture model clustering is based on the R package ‘Mclust’ developed by Fraley et al. (2012), which builds upon 207 
the theoretical work of Fraley and Raftery (2002) for model-based clustering and density estimation. The process uses 208 
an Expectation-Maximization algorithm to cluster the dataset, estimating a variable number of distinct multivariate 209 
Gaussian distributions from a sample dataset. Training the Gaussian mixture model on this dataset provides a 210 
clustering function which outputs a unique cluster for any data point with the same number of variables. 211 

In one dimension, a Gaussian mixture model looks like the distributions depicted in Figure 5: instead of modeling a 212 
population as a single distribution (Gaussian or otherwise), the GMM algorithm fits multiple Gaussian distributions 213 
to a population. One key aspect of this algorithm is the capability of assigning a new point to the most likely 214 
distribution. For example, in the 1-D figure, a normalized AMV estimate with a value of 10 would be more likely to 215 
originate from the broad cluster ‘2’ than the narrow cluster ‘4’. In this case, we model the population as a Gaussian 216 
mixture model in five-dimensional space, which consists of two Nature Run wind vector components (u and v), two 217 
AMV estimates of these wind components (u+	and v+), and the simulated water vapor values, all of which have been 218 
standardized to have mean 0 and standard deviation of 1. Each cluster has a 5-dimensional mean vector for the center 219 
and a 5x5 covariance matrix defining their multivariate Gaussian shape. The estimation of a covariance matrix allows 220 
for the characterization of the relationships between the different dimensions within each cluster, and as such the 221 
gaussian mixture model approach provides greater potential for understanding the geophysical basis of error regimes 222 
than other unsupervised clustering approaches. 223 

We note that the choice of inputs to the clustering methodology is limited, and that a more successful clustering may 224 
be achieved by including additional meteorological or geographic information. However, the intention of this paper 225 
is to study the ability of a purely data-driven approach, where no additional information or assumptions are passed to 226 
the machine learning model outside of the inputs and outputs to the AMV algorithm itself. Posselt et al. (2019) showed 227 
that state dependent uncertainties are a major source of error in water vapor AMVs; introducing further information 228 
may cloud our ability to discern these specific uncertainties. While scaling this methodology to other applications may 229 
incentivize tailoring to specific conditions, this paper aims to demonstrate that modifications are encouraged for 230 
improvement, but not necessary for success.  231 

Having trained the Gaussian mixture model on the 1.5 month training dataset, we applied the clustering algorithm to 232 
a testing dataset sampled from the subsequent 0.5 months of the nature run. By re-analyzing the AMV estimate in 233 
relation to the Nature Run winds within each cluster (Error! Reference source not found.), we find that the clustering 234 
approach successfully separates the AMV estimates according to their ‘skillfulness’. Essentially, we repeat Figure 3 235 
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but divide the AMV estimates by cluster. We see that, for example, clusters 4, 5, and 7 clearly represent cases in which 238 
the feature-tracking algorithm provides an accurate estimate of the Nature Run winds, with very low variance around 239 
the one-to-one line (i.e., low estimation errors). Clusters 1, 2, 3, and 9 are somewhat noisier than the low-variance 240 
clusters, with error characteristics similar to those of the entirety of the dataset. That is, they are considered less skilled, 241 
but their estimates still lie on a one-to-one line with respect to the true wind. Clusters 6 and 8, on the other hand, are 242 
clearly unskilled in different ways. Cluster 6 is a noisy regime, which captures much of the more extreme differences 243 
between the AMV estimates and the Nature Run winds. Cluster 8, on the other hand, represents the low AMV estimate, 244 
high Nature Run wind regime. This cluster is returning AMVs with values of zero where the Nature Run wind is 245 
clearly non-zero because of the very low water vapor present. We further see the stratification of the regimes when 246 
analyzing the absolute AMV error in relation to the water vapor content (Figure 7). We see that clusters that have 247 
similar behaviors in the error pattern (such as 1, 2, and 3) represent different regimes of water vapor content. 248 

We specified 9 individual clusters due to a combination of quantitative and qualitative reasons. Quantitatively, the 249 
‘Mclust’ package uses the Bayesian Information Criterion (BIC), a model selection criterion based on the likelihood 250 
function which attempts to penalize overfitting, to select the optimal number of clusters given an input range. Using 251 
an input range of one through nine, the BIC indicated the highest number of clusters would be optimal. More 252 
importantly, however, the 9 clusters can be physically distinguished and interpreted. Plots of the geophysical variables 253 
in the testing set associated with each of the clusters are shown in Figures 8-11. Specifically, Figure 8 plots the 254 
distribution of water vapor for each cluster, while Figure 9 plots the mean wind magnitude in each direction by cluster. 255 
Figure 10 plots the correlation matrix for each cluster and Figure 11 show the geographic distribution of each cluster. 256 
In looking at these in combination, we see discernable and discrete clusters with unique characteristics. For example, 257 
cluster 1 captures the very dry, high-wind regime in the southern hemisphere visible in Figure 2. Cluster 7 258 
encompasses the tropics, while cluster 3 captures mid-latitude storm systems. Clusters 6, 8, and 9 are all characterized 259 
by a much worse performance of the AMV tracking algorithm, exhibited both in Figure 7 and in Figure 8 but all 260 
encompass different geographic and geophysical regimes. We see that the clustering algorithm succeeds in capturing 261 
physically interpretable clusters without having any knowledge of the underlying physical dynamics. We note that in 262 
other applications, the optimal number of clusters will change and the researcher will need to explore various choices 263 
of this parameter in their modeling, although this tuning process should be greatly simplified by the inclusion of an 264 
information criterion (e.g., BIC) in the GMM algorithm. 265 

3.5 Random Forest 266 

The clustering algorithm requires the Nature Run wind vector component values (u and v) in order to classify the 267 
AMV error. When applying the algorithm in practice to tracked AMV wind from real observations, the true winds are 268 
unknown. To represent the fact that we will not know the true winds in practice, we develop a proxy for the Nature 269 
Run winds using only the AMV estimates and the simulated water vapor itself. This is an instance in which the 270 
application of machine learning is desirable, since machine learning excels at learning high-dimensional non-linear 271 
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relationships from large training datasets. In this case, we specifically use random forest to create an algorithm which 272 
predicts the Nature Run wind values as a function of the tracked wind values and water vapor.  273 

Random forest is a machine learning regression algorithm which, as detailed by Breiman (2001), employs an ensemble 274 
of decision trees to model a nonlinear relationship between a response and a set of predictors from a training dataset. 275 
Here, we chose random forest specifically because it possesses certain robustness properties that are more appropriate 276 
for our applications than other machine learning methods. For instance, random forest will not predict values that are 277 
outside the minimum and maximum range of the input dataset, whereas other methods such as neural networks can 278 
exceed the training range, sometimes considerably so. Random forest, due to the sampling procedure employed during 279 
training, also tends to be robust to overtraining in addition to requiring fewer tuning parameters compared with 280 
methods such as neural networks. 281 

We trained a random forest with 50 trees on a separate set of tracked winds and water vapor values to predict Nature 282 
Run winds using the ‘randomForest’ package in the R programming language. While the random forest estimate as a 283 
whole does not perform much better than the AMV values in estimating the Nature Run wind (2.89 RMSE for random 284 
forest vs 2.91 RMSE for AMVs), as shown in Figure 12, it does not display the same discrete regimentation as the 285 
AMV estimates in Figure 3. As such, the random forest estimates can act as a proxy for Nature Run wind values in 286 
our clustering algorithm — they remove the regimentation which is a critical distinction between the AMV estimates 287 
and the Nature Run wind values. 288 

3.6 Finalized Error Characterization Model 289 

The foundation of the error characterization approach is to combine the random forest and clustering algorithm. We 290 
apply the Gaussian mixture model, as trained on the Nature Run winds (in addition to the AMVs and water vapor), to 291 
each point of water vapor, AMV estimate, and associated random forest estimate. This produces a set of clusters 292 
which, when implemented, require no direct knowledge of the actual Nature Run state (Figure 13).  293 

Naturally, the clustering algorithm performs better when applied to the dataset with the Nature Run winds, as 294 
opposed to winds generated from the random forest algorithm. The former is created with direct knowledge of the 295 
Nature Run winds, and any approximation will lead to increased uncertainties. In practice, the performance of the 296 
cluster analysis can be improved by enhancing the performance of the random forest itself. As with any machine 297 
learning algorithm, the random forest contains hyperparameters that can be optimized for specific applications. In 298 
addition, performance could be improved by including additional predictor variables. Our intent is not to use the 299 
random forest as a wind tracking algorithm; rather, the random forest is presented in this paper as a proof of concept.  300 

Nonetheless, we see in Figure 13 and Figure 14 that the error characterization still discretizes the testing data set into 301 
meaningful error regimes. The algorithm manages to separate the AMV estimates into appropriate error clusters. Once 302 
again, clusters 6 and 8 manage to capture unskilled regimes, and cluster 7, and to a lesser extent clusters 4 and 5, 303 
remain skillful. By taking the mean and standard deviation of the difference between AMV estimates and Nature Run  304 
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winds in each cluster, we develop error characteristics for each cluster (Figure 15); these quantities are precisely the 307 
bias and uncertainty that we require for the cost function J in Eq (1). We see that the unskilled clusters have very high 308 
standard errors and they correspond roughly to the areas of unskilled regimes in Figure 3. Similarly, skilled clusters 309 
5, 4 and 7 have standard errors below that of the entire dataset. Since each cluster now has associated error 310 
characteristics (e.g., bias and standard deviation), it is then straightforward to assign the bias and uncertainty for any 311 
new tracked wind observation by computing which regime it is likely to belong to. 312 

3.7 Experimental Set up 313 

In this section we will describe our experimental setup for training our model on the GEOS-5 Nature Run data and  314 
testing its performance on a withheld dataset. We divide the dataset into two parts: a training set consisting of the first 315 
1.5 months of the GEOS-5 Nature Run, and a testing set consisting of the last 0.5 month of the Nature Run. Our 316 
training/testing procedure for the simulation data and tracked wind is as follows:  317 

1. Divide the simulation data and tracked wind into two sets: training set of 1,000,000 points from the first 1.5 318 
months of the Nature Run and a testing set of 1,000,000 points from the final 0.5 months of the Nature Run. 319 

2. We train a Gaussian Mixture Model on a normalized random sample of observations from the training dataset 320 
of Nature Run  winds (u and v direction), tracked winds (u and v direction), and water vapor with n=9 clusters. 321 

3. We train two separate random forests on a different random sample of 750,000 observations from the training 322 
dataset. We use tracked wind (u and v direction) and water vapor to model, separately, Nature Run  winds in 323 
both the u and v directions.  324 

4. We apply the random forests to the dataset used for the Gaussian Mixture Model. This provides a random 325 
forest estimate for each point, which is used as a substitute for Nature Run  wind values in the next step.  326 

5. We predict the Gaussian mixture component assignment for each point of water vapor, tracked winds, and 327 
random forest estimate using the GMM parameters estimated in Step 2. 328 

6. We compute the mean and standard deviation of the difference between the tracked winds and the Nature 329 
Run  winds, per direction, for each Gaussian mixture model cluster assignment. This provides a set of error 330 
characteristics that are specific to each cluster.  331 

7. We can apply the random forest, and then the cluster estimation, to any set of water vapor and tracked AMV 332 
estimates. Thusly, any set of tracked AMV estimates and water vapor can be mapped to a specific cluster, 333 
and therefore its associated error characteristics.  334 

4 Results and Validation 335 

In this section, we compare our clustering method against a simple alternative, and we quantitatively demonstrate 336 
improvements that result from our error characterization. Recall that in Section 3, we divided the wind-tracking 337 
outputs into 9 regimes, which range from very skilled to unskilled. For the i-th regime, we can quantify the predicted 338 
uncertainty estimate as a gaussian distribution with mean mi and standard deviation σ%, which has a well-defined 339 
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cumulative distribution function which we denote as Fi. To test the performance of our uncertainty forecast, we divide 341 
the dataset described in Section 2 into a training dataset (first 1.5 month) and a testing dataset (last 0.5 month). Having 342 
trained our model using the training dataset, we apply the methodology to the testing dataset, and we compare the 343 
performance of the predicted probability distributions against the actual wind error (tracked winds - Nature Run 344 
winds). This is a type of probabilistic forecast assessment, and we assess the quality of the prediction using a scoring 345 
rule called continuous ranked probability score (CRPS), which is defined as a function of a cumulative distribution 346 
function F and an observation x as follows:  347 

CRPS(F, x) = 	U 	

(

"(
(F($) − 	V(* − $))

)	W*																																																						(X)	 348 

Where V( ) is the Heaviside step function and denotes a step function along the real line that is equal to 1 if the argument 349 
is positive or zero, and it is equal zero if the argument is negative (Gneiting and Katzfuss, 2014) . The continuous rank 350 
probability score here is strictly proper, which means that the function CRPS(F, x) attains the minimum if the data x 351 
is drawn from the same probability distribution as the one implied by F. That is, if the data x is drawn from the 352 
probability distribution given by F, then CRPS(F, x) < CRPS(G, x) for all G ≠ F.  353 

The alternative error characterization method that we test against is a simple marginal mean and marginal standard 354 
deviation of the entire tracked subtract Nature Run  wind dataset. This is essentially equivalent to an error 355 
characterization scheme that utilizes one regime, where m and σ are given as the marginal mean and the marginal 356 
standard deviation of the residuals (i.e., tracked wind minus Nature Run  winds). Here, we use a negatively oriented 357 
version of the CRPS (i.e., Eq.(4) without the minus sign), which implies that lower is better. A histogram evaluating 358 
the performance of our methodology against the naive error characterization method is given in Figure 16. 359 

The relative behavior of the CRPS is consistent between u and v winds. The CRPS tends to have to wider distribution 360 
when applied to the regime-based error characterization. Compared to the alternative error characterization scheme, 361 
our methodology produces a cluster of highly accurate predictions (low CRPS scores), in addition to some cluster of 362 
very uninformative predictions (high CRPS scores). These clusters correspond to the highly skilled cluster (e.g., 363 
Cluster 3) and the unskilled clusters (Cluster 6 and 8), respectively. Overall, the mean of the CRPS is lower for our 364 
methodology than it is for the alternative method, indicating that as a whole our method produces a more accurate 365 
probabilistic forecast.  366 

Thus far we have shown that our method produces more accurate error-characterization than an alternative method 367 
based on marginal means and variance. Now, we assess whether our methodology provides valid probabilistic 368 
prediction; that is, we test whether the uncertainty estimates provided are consistent with the empirical distribution of 369 
the validation data. To assess this, we construct a metric in which we normalize the difference between the Nature 370 
Run wind and the tracked wind by the predicted variance. That is, for the i-th observation, we compute the normalized 371 
values for u* and v* using the following equations: 372 
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z+,% =
u* −	\+*
σ+,%

 374 

z-,% =
v* − ]+*
σ-,%

(5) 375 

Where u*  is the i-th Nature Run u wind from the Nature Run data, \+* is the tracked-wind, and σ+,% is the error as 376 
assessed by our model (recall that it is a function of the regime index to which \+* has been assigned). The values for 377 
the v-wind are defined similarly. The residuals in Eq (5) can be considered as a variant of the z-score, and it is 378 
straightforward to see that if our error estimates are valid (i.e., accurate), then the normalized residuals in Eq. (5) 379 
should have a standard deviation of 1. If our uncertainty estimates σ+,% and σ-,% are too large, then the standard deviation 380 
of z+,% and z-,% should be less than 1; similarly, if our uncertainty estimates are too small, then the standard deviation 381 
of z+,% and z-,% should be larger than 1. In Figure 17, we display the histogram of the normalized residuals z+ and z-. 382 
It is clear that for both types of wind, the standard deviation of z+,% and z-,% are 1.003 and 1.009, respectively, indicating 383 
that our error characterization model is highly accurate when forecasting uncertainties. 384 

A further validation of our methods encompasses an analysis of the statistical significance of the uncertainty in our 385 
model. To this end, we constructed confidence intervals for the bias and standard deviation within each regime using 386 
the bootstrap (Efron and Tibshirani, 1993). The procedure of our bootstrap is as follows 387 

1. Subset the data to retain only observations with regime index j. Let’s assume that we have Nj observation 388 
within this data subset 389 

2. Sample with replacement Nj observations from this subset. This forms a bootstrap sample 390 
3. From 2., compute an estimate of the bias and standard deviation. 391 
4. Repeat step 2-3 for 1000 times, giving us 1000 estimates of the bias and 1000 estimates of the standard 392 

deviation within regime j. 393 
5. Compute 95% confidence intervals from the 1000 estimates of bias and standard deviation from 4. 394 

The results for the confidence intervals (in graphical form in Figure 18. We note that the figure indicates that for 395 
many of the biases, they can be considered unbiased since their confidence interval includes 0 (e.g., regimes 2-8 for 396 
u-wind). However, the plot also clearly indicates that two regimes are statistically different from 0 (regime 1 and 9). 397 
We also note that for the standard deviation maps, the CI’s indicate that they are fairly stable (small narrow range) 398 
and that most of the regimes have statistically different standard deviation (denoted here visually as CI’s that do not 399 
overlap one another). We also note that u and v wind direction tend to have very similar patterns, indicating that our 400 
regime classification is persistent across u and v. To summarize, the CI plot above indicate that the differences in 401 
standard deviation between different regimes are highly statistically significant (as evidenced by the small 402 
confidence intervals and their spacing). For the biases, 3 of the regimes are statistically significantly different from 403 
the rest (i.e., regimes 1, 6, and 9), while the rest are likely relatively unbiased (i.e., bias = 0 ). 404 
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5 Conclusion and Discussion 407 

Error characterization is an important component of data validation and scientific analysis. For wind-tracking 408 
algorithms, whose outputs (tracked u and v) are often used as observations in data assimilation analyses, it is necessary 409 
to accurately characterize the bias and standard error (e.g., see Section 2.2). Nguyen et al. (2019) illustrated that 410 
incorrect specification of these uncertainties (, and R in Eq. (1)) can adversely affect the assimilation results – 411 
mischaracterization of bias will systematically offset a tracked wind, while an erroneous standard error could 412 
incorrectly weigh the cost function. 413 

In this paper we demonstrate the application of a machine learning uncertainty modeling framework to AMVs derived 414 
from water vapor profiles intended to mimic hyper-spectral sounder retrievals. The methodology, based on a 415 
combination of gaussian mixture model clustering and random forest, identified distinct geophysical regimes and 416 
provided uncertainties specific to each regime. This was achieved in a purely data-driven framework; nothing was 417 
known to the model except the specific inputs and outputs of the AMV algorithm, deducing the relationship between 418 
regime and uncertainty from the underlying multivariate distribution of water vapor, Nature Run wind, and tracked 419 
wind. Our algorithm does require one major tuning parameter in the number of clusters for the GMM algorithm, 420 
although the search for the ‘optimal’ number of clusters can be aided by the inclusion of an information criterion (e.g., 421 
the BIC) in the GMM model. This implementation is not intended as a ‘ready-to-go’ algorithm for general use. Instead, 422 
we lay the foundation of an uncertainty modelling approach which we plan to implement at a larger scale in subsequent 423 
work Nonetheless this bare bones implementation is sufficient to produce improved error estimates of state-dependent 424 
uncertainties as detailed in Posselt et al. (2019).  425 

We introduce this framework in an environment that is limited and well-behaved, but which nonetheless we believe 426 
provides insight into how such an approach would perform at a larger scale. Of course, there are issues when moving 427 
from the controlled environment of the simulation study to large scale applications. We understand these to be: (1) the 428 
existence of uncertainty on the tracked humidity values, and (2) the ability of the training dataset to adequately capture 429 
both the range of conditions of water vapor and wind speed, and their inherent relationship.  430 

The simulation used for introducing this framework was a ‘perfect-observation’ environment; that is, the water 431 
vapor was assumed to be perfectly known to the wind tracking algorithm. In real world scenarios, this is obviously 432 
not the case. However, we believe that this is mitigated by two factors. Firstly, Posselt et al (2019) also conducted a 433 
study where measurement noise was added to the water vapor measurement. This did not show to have an effect on 434 
the uncertainty in the AMV estimate, except where there was the presence of strong vertical wind shear, a situation 435 
which can be identified a larger scale application. Secondly, given quantified uncertainties on the water vapor 436 
retrievals themselves (the scope of which is decidedly outside the work of this paper), these could be assimilated 437 
into the uncertainty modelling framework in a straightforward manner by adding them as a prediction variable in 438 
both the regime classification and emulator. This would allow for the model to itself ascertain the relationship 439 

Deleted: ¶440 

Deleted: tool 441 
Deleted: hyperspectral sounder 442 

Deleted: methodology 443 
Deleted: was 444 

Formatted: Justified, Space After:  Auto

Formatted: Font color: Black



 14 

between water vapor uncertainty and AMV estimate uncertainty, without breaking the foundational aspect of being 445 
data-driven. 446 

The reliability of the training dataset is the fundamental assumption of any machine learning approach. To reiterate, 447 
we present a methodology which aims to characterize the uncertainty in the difference between a measurement _̀ 448 
and its true target _ (that is, var (_̀  – _)). As such, we require some proxy for the truth in the development of our 449 
model (call this _*). To expand further, we are modelling the relationship between _̀ and _ as a function of water 450 
vapor :, with a(:) = _̀ and b(:) = _, where a represents the AMV algorithm and b the ‘true’ relationship 451 
between wind speed and water vapor. Thus, we additionally require a proxy function b*, which is the relationship 452 
implied by the training data output of water vapor and reference winds. In the implementation presented in this 453 
paper, b* is represented by the underlying physical models that model the motion of water vapor and windspeed in 454 
the GEOS-5 Nature Run. 455 

The fidelity of our framework relies upon the assumption _*~	_ and b*~	b. In the simulation study, _* is the first 456 
1.5 months of a nature run simulation, which is used as a proxy for an _ which consists of the last .5 months of a 457 
nature run simulation. We have given the algorithm a training dataset with what we believe is a plausible range of 458 
conditions which could occur in _. To the extent that errors may be seasonally and regionally dependent, it will be 459 
more effective to train the error estimation algorithm on data that is expected to represent the specific flow regimes 460 
and water vapor features valid for a particular forecast or assimilation period. A range of model data encompassing 461 
enough seasonal variability should be a reasonable proxy for the possible range of true _. This would significantly 462 
increase the computational demands of training the model (~1 day on a single processor, per pressure level to train 463 
the current implementation of the algorithm and an average of 3 days per pressure level, on a non-optimized cluster 464 
network to run the AMV extraction on the nature run), although such concerns could be mitigated by strategic 465 
subsampling approaches. 466 

On the other hand, in this implementation b* is a perfectly known representation of b, which is the GEOS-5 model 467 
that runs the simulation. This is where the simulation approach might create the largest source of uncertainty and 468 
unreliability in the model. The true process g can only ever be approximated, and different attempts to do so will 469 
involve different tradeoffs when implementing this framework. Users could, for example, use high quality validation 470 
data such as matchups with radiosondes. In theory, this provides the best possible approximation of the true process 471 
b, but could involve a sparsity of data such that the range of,  _* supplied is too narrow for a useful model (indeed, 472 
the data might be so sparse as to— from a pure machine learning aspect— reduce the overall fidelity of the model 473 
itself). On the other hand, model or reanalysis data can provide dense and diverse training datasets, but rely on the 474 
assumption that the underlying physical models in those simulations are an adequate representation of the true 475 
process. At the core of atmospheric models such as GOES-5 are the laws of fluid dynamics and thermodynamics. In 476 
this context, water vapor is advected by the mean wind and as such the wind and water vapor are intrinsically related 477 
in these models. This has been the case since the first atmospheric weather prediction models have been developed. 478 
There are of course uncertainties associated with the discretization of the fluid dynamics equations, and sometimes 479 
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also with parameterizations depending on the physical constraints. But these uncertainties are likely small for the 480 
water vapor structures that are selected for the wind tracking algorithm.  481 

In both these cases, the model could likely be improved by the inclusion of additional variables in the clustering 482 
algorithm. These could include a variety of parameters to address different potential problem areas in the model. As 483 
mentioned previously, including quantified values of uncertainty in water vapor estimates would algorithmically 484 
link the uncertainty in the humidity retrieval with the uncertainty in the AMV tracking. Similarly, including 485 
parameters that correlate with geophysical phenomena where the AMV algorithm is known to perform poorly (such 486 
as a marker for vertical wind shear or frontal features) would enable domain knowledge to inform the clustering 487 
algorithm and emulator. Finally, it is likely that the several parameters used in formulating both the Quality 488 
Indicator (Holmlund et al. 1998) and Expected Error (Le Marshall et al. 2004) approaches would be informative in 489 
enhancing the algorithm. One critical aspect for users to consider is that these variables must be continuous 490 
parameterizations, rather than discrete markers (which are often used in quality control); discrete variables cannot be 491 
easily incorporated into a Gaussian mixture model, or indeed most clustering algorithms. Furthermore, we would 492 
recommend that users implement parameters that are readily available at the same measurement location and time as 493 
the AMV estimate itself. Part of the motivation for the purely state dependent approach in this framework is ease of 494 
implementation; colocation and interpolation could add further uncertainty to the model.  495 

Ultimately, implementing this methodology at scale requires confidence in the training dataset employed by the 496 
user. There will always be some degree of uncertainty imparted by the inability of reference dataset to perfectly 497 
reflect reality (indeed this uncertainty itself could be regime dependent, further complicating a regime dependent 498 
uncertainty framework). To some extent, this is true of all validation and uncertainty modelling endeavors. 499 
However, thoughtful and careful implementations by users, keeping in mind the prescriptions and concepts detailed 500 
above, should mitigate the training data dependent uncertainty. 501 

Future users would also be wise to consider improvements in the random forest step of the framework. The 502 
capability of this implementation in discerning accurate error regimes degrades substantially with the introduction of 503 
the random forest wind estimates. This work focused on the ability to capture regime dependent error, and as such 504 
the random forest was not studied in depth. An improved emulator would certainly increase the accuracy of the 505 
uncertainty estimates produced by this framework. There are a wide variety of ways to improve the emulator; 506 
ultimately, and even more so than the regime classification, these will be specific to the AMV extraction algorithm 507 
being used. Certainly, many of the additional variables suggested above could be useful towards improving the 508 
random forest. Users could also investigate replacing the random forest altogether with a different emulator, such as 509 
a neural net or a gaussian process. Indeed, at its most general, our methodology consists of two parts: an emulator 510 
and a clustering algorithm. In this implementation, random forest and Gaussian mixture modelling are the 511 
approaches; in theory, these two steps could be accomplished using other algorithms belonging to the appropriate 512 
class. 513 
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Thorough domain knowledge, both of the AMV extraction algorithm and the context in which it will be applied, is 515 
critical in developing methods to improve it. As discussed previously, the bare bones implementation of our 516 
methodology in this paper is intended as a structural presentation of the conceptual framework, not necessarily a 517 
finalized model. However, it is also the case that the investigation by Posselt et. al (2019) showed that the variables 518 
used in this implementation of the model are those most strongly related with AMV uncertainty in this particular 519 
application.  The state-dependent errors identified by Posselt et al. (2019) are also expected to apply to other water 520 
vapor AMVs. This is because, in general, AMV algorithms have difficulty tracking fields with very small gradients, 521 
and will produce systematic errors in situations for which isolines in the tracked field (e.g., contours of constant water 522 
vapor mixing ratio) lie parallel to the flow. To the extent that our algorithm represents a general class of errors, the 523 
results may be applicable to other geophysical scenarios and other AMV tracking methodologies. As mentioned in the 524 
introduction, robust estimates of uncertainty are important for data assimilation, and we expect that our methodology 525 
could be used to provide more accurate uncertainties for AMVs used in data assimilation for weather forecasting and 526 
reanalysis.  527 
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 604 

Figure 1: Map of Nature Run at one timestep at 700hPa (A): Water Vapor (B):  Nature Run Wind Speed 
(C): Difference between Nature Run Wind Speed and AMV Estimate (D): AMV Estimate. 
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 605 

 606 

Figure 2: Diagram of Training Approach and Diagram of Implementation steps. 607 

Training Dataset
!: Water Vapor 
"#: AMV Estimates
#: Simulated True 
Winds

Gaussian Mixture 
Model
Clustering 
Algorithm GMM 
models (!, "#, #) 
into clusters $

Random Forest
Random Forest 
function RF
generates %# ~# for 
all pairs of 
! and "#

Error Regimes
Let )$ =GMM (!, "#, %#) 
Every set of  (!, "#, #) 
has an associated 
cluster )$

Error Characteristics
For every cluster )$:
*)+ = -./0 ( "#)+ − #)+)
3)+ = 4/5 ( "#)+ − #)+)

New Output
!: Water Vapor
"#: AMV 
Estimates

Random Forest
%# = 78(!, "#)

Clustering
)$ =GMM (!, "#, %#) 

Error Values
"# has bias 9": and 
standard error ;":

Model Output

GMMRF
<=/> *)+
?@/0A/5A B55C5 3)+

1. Training

2. Implementation

1

1

1

2

2

2

3

3

3



 21 

 608 

Figure 3:  Scatter plot of the simulated Nature Run wind vs AMV estimates for u and v wind in the training 609 
dataset. 610 

 611 

Figure 4: Simulated water vapor vs the absolute value of the difference between Nature Run and tracked 612 
winds in the training dataset. 613 
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 614 

Figure 5: Example of Gaussian Mixture Model in one dimension. Density Figures for the U-Direction AMV 615 
Estimate dimension of fitted Gaussian mixture. 616 

 617 

 618 

Figure 6: Scatterplot of simulated Nature Run wind vs AMV Estimates, each sub-panel corresponding to the 619 
specific Gaussian mixture component to which each point in the testing set has been assigned. (A): U-620 
Direction Wind (B): V-Direction Wind. 621 
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 622 

 623 

Figure 7: Scatterplot of Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the 624 
specific Gaussian mixture component to which each point in the testing set has been assigned. (A): U-625 
Direction Wind (B): V-Direction Wind. 626 

 627 
Figure 8: Histogram of Nature Run water vapor for each cluster identified by the Gaussian mixture model, 628 
applied to the testing set. Each sub-panel represents the cluster each point was assigned to. 629 
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 630 
Figure 9: Mean tracked winds and Nature Run winds, in each direction, for each cluster applied to the test 631 
set. Each sub-panel represents the cluster each point was assigned to. 632 

 633 

 634 
Figure 10: Correlation matrix between each clustered element for each identified cluster in the original 635 
training dataset. Each sub-panel refers to a specific cluster. 636 
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 637 
Figure 11: Geographic distribution by cluster of AMV retrieval locations in the testing dataset. Each sub-638 
panel represents one cluster. 639 
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 640 

 641 

 642 

Figure 12: Scatterplot of Nature Run wind estimate vs random forest produced estimate. (A): U Direction 643 
(B): V Direction 644 

 645 
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 646 

Figure 13: Scatterplot of  Nature Run  wind vs AMV Estimates, each sub-panel corresponding to the specific 647 
Gaussian mixture component to which each point in the testing set has been assigned when the Nature Run  648 
wind value has been substituted by the random estimate. (A): U-Direction Wind (B): V-Direction Wind 649 

 650 

Figure 14: Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the specific 651 
Gaussian mixture component each point in the testing set has been assigned when the Nature Run wind value 652 
has been substituted by the random estimate. (A): U-Direction Wind (B): V-Direction Wind 653 
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 654 

Figure 15: (A): Bias (Left Panel) and Standard Error (Right Panel) for each Gaussian mixture cluster in 655 
figure 6, U direction. (B): Same as (A) for V-direction 656 

 657 

Figure 16: CRSP applied to different error approaches. (A): Cluster Errors for U Winds (B): Total Errors 658 
for U Winds (C): Cluster Errors for V Winds (D): Total Errors for V Winds. 659 
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 662 

Figure 17: U and V winds normalized using the error characteristics developed by our methodology. 663 
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Mean: -0.02274906 
Std. Dev.: 1.00032 
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Figure 18: Top rows (bias and std confidence intervals for u-wind), bottom rows (bias and std confidence 674 
intervals for v-winds). The interval represent a 95% confidence interval. 675 
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