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We would like to thank the referee for the careful read of the paper and comments. Please see our responses below: 

 
I am, however, surprised by the paragraph L426-430 in the discussion, which lists only two main issues for “large 
scale applications” (I read this as “applications to real satellite-derived AMVs” - I suggest to rephrase this to make 
it clear what is meant): 1) uncertainties in the humidity field, and the 2) representativeness/variability of the 
training data. I would argue that the first and foremost problem is that the truth for both the wind and the humidity 
field is not available in applications with real data. In the present study the Nature Run serves as truth (by design), 
and hence the errors of the AMVs are completely known from the differences between AMVs and Nature-Run winds. 
These “true errors” are essential input to train the algorithm from the first 1.5 months of data. As soon as the 
Nature Run is replaced with real data (for the humidity field, but more importantly the wind field), the “true errors” 
are not available anymore, and other errors will be introduced (e.g., collocation and representativeness errors if 
other observations are used as proxy of the true wind, or analysis and representativeness errors if reanalysis data is 
used as proxy for the truth). As far as I can see, the algorithm has no knowledge that would allow it to separate the 
errors in the “reference” wind data from the errors in the AMVs alone. This aspect is related, but rather different 
from the one presently listed as 2nd issue. I think it should be mentioned separately here, and it may deserve some 
more explicit discussion. The following paragraphs are touching on this aspect (esp. L496-501), but the text offers 
little in terms of addressing this. It seems to me a fundamental question that is left unanswered in the paper, ie how 
to train the machine learning algorithm in the case of real-data applications, so that it is able to separate different 
sources of error in the training data. 
 
We thank the reviewer for their insightful comments and guidance throughout the review process. The question 
raised by the reviewer is indeed a fundamental one. It is our belief that, as with most machine learning 
approaches, a thorough understanding of the relative strengths and weaknesses of the training dataset is the most 
critical consideration for users. As the reviewer notes, this means not only ensuring that the training data is 
variable and diverse enough to encapsulate the entirety of the true domain, but possessing some understanding of 
how and where portions of the training dataset might be less representative of reality. 

Assuming a user possesses the proper amount of domain knowledge, there are a few practical ways in which they 
could attempt to address this issue. One could, given the adequate resources and time, train the uncertainty model 
under various training datasets. While this would not necessarily give a user a greater understanding of the 
training data’s relationship with the truth, the differences between the produced models would provide some 
quantification of the effect of the training data on the estimated uncertainties. If values were too divergent at 
similar points, that would indicate that the model is not particularly robust to errors in the training dataset and 
should be reconsidered. Similarly, if users have some quantified understanding of areas wherein the training 
dataset might be less useful (e.g., collocation errors), they could leverage this to inform the uncertainty model. 
For example, one could selectively subsample the dataset to underrepresent (or screen out) high error areas and so 
reduce their effect on the overall model. They could also include this information in the error model itself. Either 
way, such decisions would likely manifest themselves in the final uncertainty product. 

 

None of these approaches, however, can fully resolve two inescapable truths of this machine-learning based 
approach to uncertainty modeling. First and foremost, as much as users should try to mitigate the potential for 
problems, there is always an underlying leap of faith that they have chosen a training dataset that adequately 
represents the truth in their application. Like any modeling approach, this methodology relies on a set of 
assumptions; this is one such assumption. This is why domain knowledge is critical in developing a similar 



uncertainty model. It is our belief that, under the right guidance and curation, such training data related issues 
would be outweighed by the improved contribution of the uncertainty estimates produced. Secondly, this 
approach produces an error characterization and not an error budget. This is an important distinction; we aim to 
produce an overall uncertainty of the AMV retrieval, not directly attribute that uncertainty (or components of it) 
to specific sources. While we have some physical understanding of sources of uncertainty in the AMVs, and this 
guides the development of the model, the algorithm itself is agnostic to these. As such, even if distinguishing 
between ‘real AMV error’ and ‘training data error’ were feasible in a practical sense (which, given the current 
practice in machine learning, is well beyond the scope of this work), the uncertainty model itself is not designed 
to discriminate between these.  
 
A summarized version of this discussion has been added to the manuscript in lines 476-495. 



List of relevant changes in manuscript (in order as they appear): 
1. Conclusion and Discussion: 

a. Augmented paragraph (L476-495) detailing approaches and considerations for proxy-data error.  
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Abstract. Wind-tracking algorithms produce Atmospheric Motion Vectors (AMVs) by tracking clouds or water vapor 5 
across spatial-temporal fields. Thorough error characterization of wind-tracking algorithms is critical in properly 6 
assimilating AMVs into weather forecast models and climate reanalysis datasets. Uncertainty modelling should yield 7 
estimates of two key quantities of interest: bias, the systematic difference between a measurement and the true value, 8 
and standard error, a measure of variability of the measurement. The current process of specification of the errors in 9 
inverse modelling is often cursory and commonly consists of a mixture of model fidelity, expert knowledge, and need 10 
for expediency. The method presented in this paper supplements existing approaches to error specification by 11 
providing an error-characterization module that is purely data-driven. Our proposed error-characterization method 12 
combines the flexibility of machine learning (random forest) with the robust error estimates of unsupervised 13 
parametric clustering (using a Gaussian Mixture Model). Traditional techniques for uncertainty modeling through 14 
machine learning have focused on characterizing bias, but often struggle when estimating standard error. In contrast, 15 
model-based approaches such as k-means or Gaussian mixture modelling can provide reasonable estimates of both 16 
bias and standard error, but they are often limited in complexity due to reliance on linear or Gaussian assumptions. In 17 
this paper, a methodology is developed and applied to characterize error in tracked-wind using a high-resolution global 18 
model simulation, and it is shown to provide accurate and useful error features of the tracked wind. 19 

1. Introduction 20 

Reliable estimates of global winds are critical to science and application areas, including global chemical transport 21 
modeling and numerical weather prediction. One source of wind measurements consists of feature-tracking based 22 
Atmospheric Motion Vectors (AMVs), produced by tracking time sequences of satellite-based measurements of 23 
clouds or spatially distributed water vapor fields (Mueller et al., 2017; Posselt et al., 2019). The importance of global 24 
measurements of 3-dimensional winds was highlighted as an urgent need in the NASA Weather Research Community 25 
Workshop Report (Zeng et al., 2016) and was identified as a priority in the 2007 National Academy of Sciences Earth 26 
Science and Applications from Space (ESAS 2007) Decadal Survey and again in ESAS 2017. For instance, wind is 27 
used in the study of global CO2 transport (Kawa et al., 2004), numerical weather prediction (NWP; Cassola and 28 
Burlando, 2012), as inputs into weather and climate reanalysis studies (Swail and Cox, 2000), and for estimating 29 
current and future wind-power outputs (Staffell and Pfenninger, 2016). 30 

Thorough error characterization of wind-track algorithms is critical in properly assimilating AMVs into forecast 31 
models. Prior literature has explored the impact of ‘poor’ error-characterization in Bayesian-based approaches to 32 
remote sensing applications. Nguyen et al. (2019) proved analytically that when the input bias is incorrect in Bayesian 33 
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methods (specifically, optimal estimation retrievals), then the posterior estimates would also be biased. Moreover, 34 
they proved that when the input standard error is ‘correct’ (that is, it is as close to the unknown truth as possible), then 35 
the resulting Bayesian estimate is ‘efficient’; that is, it has the smallest error among all possible choices of prior 36 
standard error. Additionally, multiple active and passive technologies are being developed to measure 3D winds, such 37 
as Doppler wind lidar (DWL), radar, and infrared/microwave sensors that derive AMVs using feature-tracking of 38 
consecutive images. Therefore, an accurate and robust methodology for modeling uncertainty will allow for more 39 
accurate assessments of mission impacts, and the eventual propagation of data uncertainties for these instruments.   40 

Velden and Bedka (2009) and Salonen et al. (2015) have shown that height assignment contributes a large component 41 
of uncertainty in AMVs tracked from cloud movement and from sequences of infrared satellite radiance images. 42 
However, with AMVs obtained from water vapor profiling instruments (e.g., infrared and microwave sounders), 43 
height assignment error cannot be directly assessed purely through analysis of the AMV extraction algorithm. Height 44 
assignment is instead an uncertainty in the water vapor profile itself. Unfortunately, without the quantified 45 
uncertainties on the water vapor profile necessary to pursue such a study, that is well beyond the scope of this paper. 46 
As such, this study will focus on errors in the AMV estimates at a given height. Previous work has demonstrated 47 
several different approaches for characterizing AMV vector error. One common approach is to employ quality 48 
indicator thresholds, as described by Holmund et al (2001), which compare changes in AMV estimates between 49 
sequential timesteps and neighboring pixels, as well as differences from model predictions, to produce a quality 50 
indicator to which a discrete uncertainty is assigned. The Expected Error approach, developed by Le Marshal et al. 51 
(2004), builds a statistical model using linear regression against AMV-radiosonde values to estimate the statistical 52 
characteristics of AMV observation error.  53 

In this study, we outline a data-driven approach for building an AMV uncertainty model using observing system 54 
simulation experiment (OSSE) data. We build on the work by Posselt et al. (2019) in which a water vapor feature-55 
tracking AMV algorithm was applied to a high-resolution numerical simulation, thus providing a global set of AMV 56 
estimates which can be compared to the reference winds produced by the simulation. In this case, a synthetic “true” 57 
state is available with which AMVs can be compared and errors are quantified, and it is shown that errors in AMV 58 
estimates are state dependent. Our approach will use a conjunction of machine learning (random forest) and 59 
unsupervised parametric clustering (Gaussian mixture models) to build a model for the uncertainty structures found 60 
by Posselt et al. (2019). The realism and robustness of the resulting uncertainty estimates depend on the realism and 61 
representativeness of the reference dataset. This work builds upon the work of Bormann et al. (2014) and Hernandez-62 
Carrascal and Bormann (2014), who showed that wind tracking could be divided into distinct geophysical regimes by 63 
clustering based on cloud conditions. This study supplements that approach with the addition of machine learning, 64 
which, compared with traditional linear modeling approaches, should allow the model to capture more complex non-65 
linear processes in the error function.  66 

Traditional techniques for modeling uncertainty through machine learning have focused on characterizing bias but 67 
often struggle when estimating standard error. By pairing a random forest algorithm with unsupervised parametric 68 



 3 

clustering, we propose a data-driven, cluster-based approach for quantifying both bias and standard error from 69 
experimental data. According to the theory developed by Nguyen et al. (2019), these improved error characterizations 70 
should then lead to improved error characteristics (e.g., lower bias, more accurate uncertainties) in subsequent analyses 71 
such as flux inversion or data assimilation. 72 

This paper does not purport that the specific algorithm detailed here should supplant error characterization approaches 73 
for all AMVs; indeed, most commonly assimilated AMVs are based on tracking cloud features, not water vapor 74 
profiles. In addition, this algorithm is trained and developed for a specific set of AMVs extracted from a water vapor 75 
field associated with a particular range of flow features. As such, application of our algorithm to modeled or observed 76 
AMVs will be most appropriate in situations with similar dynamics to our training set. However, we intend in this 77 
paper to demonstrate that the methodology is successful in characterizing errors for this set of water vapor AMVs and 78 
suggest that this approach— that is, capturing state-dependent uncertainties in feature-tracking algorithms through a 79 
combination of clustering and random forest— could be implemented in other feature-tracking AMV extraction 80 
methods and situations.  81 

The rest of the paper is organized as follows: In Section 2, we give an overview of the simulation which provides the 82 
training data for our machine learning approach. We then motivate and define the specific uncertainties this study 83 
aims to characterize. In Section 3, we describe the error characterization approach with the specifics of our error 84 
characterization model, including both the implementation of and motivations for employing the random forest and 85 
Gaussian mixture model. In Section 4, we provide a validation of our methods, attempting to assess the bias of our 86 
predictions. In Section 5, we discuss the implications of our error characterization approach, both on AMV estimation 87 
and data assimilation more broadly. 88 

2. Experimental Set-up 89 

2.1 Simulation and Feature-Tracking Algorithm 90 

We trained our model on the simulated data used by Posselt et al. (2019), which applied an AMV algorithm to outputs 91 
from the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office (GMAO) GEOS-5 92 
Nature Run (G5NR; Putman et al. 2014). The Nature Run is a global dataset with ~7 km horizontal grid spacing that 93 
includes, among other quantities, three-dimensional fields of wind, water vapor concentration, clouds, and 94 
temperature. Note that throughout the text we will use the term ‘Nature Run wind’ to refer to reference winds in the 95 
simulation dataset used to train the uncertainty model. The AMV algorithm is applied on four pressure levels (300hPa, 96 
500hPa, 700hPa, and 850hPa) at 6-hourly intervals, using three consecutive global water vapor fields spaced one hour 97 
apart, and for a 60-day period from 07/01/2006 to 08/30/2006. The water-vapor fields from GEOS5 were input to a 98 
local-area pattern matching algorithm that approximates wind speed and direction from movement of the matched 99 
patterns. The algorithm searches a pre-set number of nearby pixels to minimize the sum-of-absolute-differences 100 
between aggregated water vapor values across the pixels. Posselt et al. (2019) describes the sensitivity of the tracking 101 
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algorithm and the dependency of the tracked winds on atmospheric states in detail. The coordinates of the data are on 102 
a 5758 x 2879 x 240 spatio-temporal grid for the longitude, latitude, and time dimension, respectively. 103 

It is important to note that the AMV algorithm tracks water vapor on fixed pressure levels. In practice, these would be 104 
provided by satellite measurements, whereas in this paper we use simulated water vapor from the GEOS-5 Nature 105 
Run. In this simulation height assignment of the AMVs is assumed to be perfectly known. This assumption is far from 106 
guaranteed in real world applications but, as previously discussed, its implications are not pursued in this paper. As 107 
such, we focus solely on observational AMV error and not on height assignment error. We note that in practice, one 108 
approach to understanding the behavior and accuracy of the wind-tracking algorithm is to apply it to modeled data 109 
(e.g., Posselt et al., 2019). Our approach seeks to complement this approach by providing a machine-110 
learning/clustering hybrid approach that can further divide comparison domains into ‘regimes’ which may provide 111 
further insights into the behavior of the errors and/or feedback into the wind-tracking algorithm. 112 

A snapshot of the dataset at 700hPa is given in Figure 1, where we display the water vapor from Nature Run (top left 113 
panel), the wind speed from Nature Run (top right panel), the tracked wind from the AMV-tracking algorithm (bottom 114 
right panel), and the difference between the Nature Run and tracked wind (bottom left panel). Note that the wind-115 
tracking algorithm tends to have trouble in region where the Nature Run water vapor content is close to zero. It is clear 116 
that while the wind-tracking algorithm tends to perform well in most regions (we can classify these regions as areas 117 
where the algorithm is skilled), in some regions the algorithm is unable to reliably make a reasonable estimate of the 118 
wind speed (unskilled). We will examine these skilled and unskilled regimes (and their corresponding contributing 119 
factors) in section 3. 120 

2.2 Importance of Uncertainty Representation in Data Assimilation 121 

Proper error characterization for any measurement, including AMVs, is important in data assimilation. Data 122 
assimilation often uses a regularized matrix inverse method based on Bayes’ theorem, which, when all probability 123 
distributions in Bayes’ relationship are assumed to be Gaussian, reduces to minimizing a least-squares (quadratic) cost 124 
function Eq (1):  125 

! = ($ − $!)'
"#
($ − $!) + )(*+ − ,) − -[$]0

$
1"#)(*+ − ,) − -[$]0				 (1) 126 

where x represents the analysis value, xb represents the background field (first guess), B represents the background 127 
error covariance, y represents the observation, and H represents the forward operator that translates model space into 128 
observation space. This translation may consist of spatial and/or temporal interpolation if x and y are the same variable 129 
(e.g., if the observation of temperature comes from a radiosonde), or may be far more complicated (e.g., a radiative 130 
transfer model in the case of satellite observations). R represents the observation error covariance, and a represents 131 
the accuracy, or bias, in the observations. The right hand side of Eq. (1) can be interpreted as a sum of the contribution 132 
of information from the data (y – H[x] - a) and the contribution from the prior (x – xb), which are weighted by their 133 
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respective covariance matrices. In our analysis, the AMVs obtained from the wind-tracking algorithm is used as ‘data’ 135 
in subsequent analysis. That is, the tracked wind data *+  is a biased and noisy estimator of the true wind y, and might 136 
be assumed to follow the model Eq. (2): 137 

y+ = y + 	ϵ (2) 138 

where ϵ is an error term, commonly assumed to be Gaussian with mean a and covariance matrix R (i.e., ϵ	~	N(	,, 1	)), 139 
which are the same two terms that appear in Equation (1). As such, for data assimilation to function, it is essential to 140 
correctly specify the bias vector a and the standard error matrix R. Incorrect characterizations of either of these 141 
components could have adverse consequences on the resulting data assimilation analyses with respect to bias and/or 142 
the standard error (Nguyen et al., 2019). 143 

3 Methodology 144 

3.1 Generalized Error Characterization Model  145 

An overview of our approach is outlined in Figure 2. Given a set of training predictors X, training responses Ŷ, and 146 
simulated true response Y, our approach begins with two independent steps. In one step, a Gaussian mixture model is 147 
trained on the set of X, Ŷ, and Y. This clustering algorithm identifies geophysical regimes where the nonlinear 148 
relationships between the three variables differ. In the other step, a random forest is used to model Y based on X and 149 
Ŷ. This step produces an estimate of the true response (we call this :;) using only the training predictors and response. 150 
We then employ the Gaussian mixture model to estimate the clusters which the set of X, Ŷ, and :;  pertain to. 151 
Subsequently, we compute the error characteristics of each cluster of X, Ŷ, and :;  in the training dataset. Thereafter, 152 
given a new point consisting solely of X and Ŷ, we can assign it to a specific cluster and ascribe to it a set of error 153 
characteristics.  154 

In this paper, we are primarily interested in the distribution of a retrieved quantity versus the truth. That is, given a 155 
retrieved value Ŷi, we are interested in the first and second moments (i.e., E( Ŷi – Y) and var( Ŷi – Y)), respectively. 156 
We note that there is a large body of existing work on uncertainty modeling in the machine learning literature (e.g., 157 
Coulston et al., 2016; Tripathy et al., 2018; Tran et al., 2019; Kwon et al., 2020), although these approaches primarily 158 
define the uncertainty of a prediction as var( Ŷi ), or quantify how sensitive that prediction is to tiny changes in the 159 
models/inputs. Our approach, on the other hand, characterizes the error as var( Ŷi – Y), which describes how accurate 160 
a prediction is relative to the true value. For this reason, our methodology is more stringent in that it requires 161 
knowledge of the true field (which comes naturally within OSSE framework) or some proxies such as independent 162 
validation data or reanalysis data. In return, the error estimates from our methodology fit naturally within the data 163 
assimilation framework (that is, it constitutes the parameter R in Eq. (1)).  164 

What follows in this paper is an implementation of the error characterization model obtained for a subsample of the 165 
GEOS-5 Nature Run at a fixed height of 700hPa. In particular, we trained the error characterization on a random 166 
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subsample from the first 1.5 months of the Nature Run, and show the results obtained when applying it to a test 168 
subsample drawn from the subsequent 0.5 months of the Nature Run.   169 

3.2 Error Regime 170 

When examining the relationship between AMVs and Nature Run winds in Figure 3, it is clear that there are two 171 
distinct ‘error-regimes’ present in the dataset. The majority of AMV estimates can be categorized as ‘skilled’, wherein 172 
their estimate lies clearly along a one-to-one line with the Nature Run wind. However, there is also clearly an 173 
‘unskilled’ regime, for which the AMV estimate is very close to zero when there are actually moderate or large Nature 174 
Run wind values present. Our goal is to provide unique error characterizations for each error regime, because the error 175 
dynamics are different within each regime. Furthermore, when we analyze this error and its relationship to water 176 
vapor, we see that ‘unskilled’ regime correlates highly with areas of low water vapor in Figure 4. This matches the 177 
error patterns discussed in Posselt et al. (2019). We note that the division between skilled and unskilled regimes does 178 
not need to be binary. For instance, in some regions the wind-tracking algorithm might be unbiased with high-179 
correlation with the true winds, and in other regions the algorithm might still be unbiased relative to the true winds, 180 
but with higher errors. The second situation is clearly less skilled than the first, although it might still be considered 181 
‘skilled’, and this separation of the wind-tracking estimates into various ‘grades’ of skill forms the basis of our error 182 
model. 183 

3.3 Gaussian Mixture Model  184 

These distinct regimes present an opportunity to employ machine learning. Bormann et al. (2014) and Hernandez-185 
Carrascal and Bormann (2014) demonstrated that cluster (also called regime) analysis is a successful approach for 186 
wind-tracking error characterization, and so we aim to train a clustering algorithm that will cluster a given  individual 187 
AMV estimate to various ‘grades’ of skill. In particular, we use a clustering algorithm that can take advantage of the 188 
underlying geophysical dynamics. To this end, we employ a Gaussian mixture model, an unsupervised clustering 189 
algorithm based on estimating a training set as a mixture of multiple Gaussian distributions.  A mathematical overview 190 
follows: 191 

1. Define each location containing Nature Run winds, water vapor, and AMV estimates as a random variable 192 
x%	 193 

2. Define θ as the population that consists of all x%	in the training dataset 194 
3. Model the distribution of the population P(θ) as: 195 

P(θ) =?π&N)µ&, 	Σ&0

'

&
(3) 196 

Where N)µ&, 	Σ&0 is the normal distribution with mean µ& and covariance Σ& of the j-th cluster,  197 
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K	is	the	number of clusters, and  π& is the mixture proportion. 200 

4. Determine π&, µ&, 	Σ& for K clusters using the Expectation–Maximization Algorithm 201 
5. From 3. and 4., estimate the probability of a given x% belonging to the j-th cluster as P)x% ∈ k&0 = p%& 202 
6. Assign point x% to the cluster with the maximum probability p%& 203 

The mixture model clustering is based on the R package ‘Mclust’ developed by Fraley et al. (2012), which builds upon 204 
the theoretical work of Fraley and Raftery (2002) for model-based clustering and density estimation. The process uses 205 
an Expectation-Maximization algorithm to cluster the dataset, estimating a variable number of distinct multivariate 206 
Gaussian distributions from a sample dataset. Training the Gaussian mixture model on this dataset provides a 207 
clustering function which outputs a unique cluster for any data point with the same number of variables. 208 

In one dimension, a Gaussian mixture model looks like the distributions depicted in Figure 5: instead of modeling a 209 
population as a single distribution (Gaussian or otherwise), the GMM algorithm fits multiple Gaussian distributions 210 
to a population. One key aspect of this algorithm is the capability of assigning a new point to the most likely 211 
distribution. For example, in the 1-D figure, a normalized AMV estimate with a value of 10 would be more likely to 212 
originate from the broad cluster ‘2’ than the narrow cluster ‘4’. In this case, we model the population as a Gaussian 213 
mixture model in five-dimensional space, which consists of two Nature Run wind vector components (u and v), two 214 
AMV estimates of these wind components (u+	and v+), and the simulated water vapor values, all of which have been 215 
standardized to have mean 0 and standard deviation of 1. Each cluster has a 5-dimensional mean vector for the center 216 
and a 5x5 covariance matrix defining their multivariate Gaussian shape. The estimation of a covariance matrix allows 217 
for the characterization of the relationships between the different dimensions within each cluster, and as such the 218 
gaussian mixture model approach provides greater potential for understanding the geophysical basis of error regimes 219 
than other unsupervised clustering approaches. 220 

We note that the choice of inputs to the clustering methodology is limited, and that a more successful clustering may 221 
be achieved by including additional meteorological or geographic information. However, the intention of this paper 222 
is to study the ability of a purely data-driven approach, where no additional information or assumptions are passed to 223 
the machine learning model outside of the inputs and outputs to the AMV algorithm itself. Posselt et al. (2019) showed 224 
that state dependent uncertainties are a major source of error in water vapor AMVs; introducing further information 225 
may cloud our ability to discern these specific uncertainties. While scaling this methodology to other applications may 226 
incentivize tailoring to specific conditions, this paper aims to demonstrate that modifications are encouraged for 227 
improvement, but not necessary for success.  228 

Having trained the Gaussian mixture model on the 1.5 month training dataset, we applied the clustering algorithm to 229 
a testing dataset sampled from the subsequent 0.5 months of the nature run. By re-analyzing the AMV estimate in 230 
relation to the Nature Run winds within each cluster (Error! Reference source not found.), we find that the clustering 231 
approach successfully separates the AMV estimates according to their ‘skillfulness’. Essentially, we repeat Figure 3 232 
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but divide the AMV estimates by cluster. We see that, for example, clusters 4, 5, and 7 clearly represent cases in which 235 
the feature-tracking algorithm provides an accurate estimate of the Nature Run winds, with very low variance around 236 
the one-to-one line (i.e., low estimation errors). Clusters 1, 2, 3, and 9 are somewhat noisier than the low-variance 237 
clusters, with error characteristics similar to those of the entirety of the dataset. That is, they are considered less skilled, 238 
but their estimates still lie on a one-to-one line with respect to the true wind. Clusters 6 and 8, on the other hand, are 239 
clearly unskilled in different ways. Cluster 6 is a noisy regime, which captures much of the more extreme differences 240 
between the AMV estimates and the Nature Run winds. Cluster 8, on the other hand, represents the low AMV estimate, 241 
high Nature Run wind regime. This cluster is returning AMVs with values of zero where the Nature Run wind is 242 
clearly non-zero because of the very low water vapor present. We further see the stratification of the regimes when 243 
analyzing the absolute AMV error in relation to the water vapor content (Figure 7). We see that clusters that have 244 
similar behaviors in the error pattern (such as 1, 2, and 3) represent different regimes of water vapor content. 245 

We specified 9 individual clusters due to a combination of quantitative and qualitative reasons. Quantitatively, the 246 
‘Mclust’ package uses the Bayesian Information Criterion (BIC), a model selection criterion based on the likelihood 247 
function which attempts to penalize overfitting, to select the optimal number of clusters given an input range. Using 248 
an input range of one through nine, the BIC indicated the highest number of clusters would be optimal. More 249 
importantly, however, the 9 clusters can be physically distinguished and interpreted. Plots of the geophysical variables 250 
in the testing set associated with each of the clusters are shown in Figures 8-11. Specifically, Figure 8 plots the 251 
distribution of water vapor for each cluster, while Figure 9 plots the mean wind magnitude in each direction by cluster. 252 
Figure 10 plots the correlation matrix for each cluster and Figure 11 show the geographic distribution of each cluster. 253 
In looking at these in combination, we see discernable and discrete clusters with unique characteristics. For example, 254 
cluster 1 captures the very dry, high-wind regime in the southern hemisphere visible in Figure 2. Cluster 7 255 
encompasses the tropics, while cluster 3 captures mid-latitude storm systems. Clusters 6, 8, and 9 are all characterized 256 
by a much worse performance of the AMV tracking algorithm, exhibited both in Figure 7 and in Figure 8 but all 257 
encompass different geographic and geophysical regimes. We see that the clustering algorithm succeeds in capturing 258 
physically interpretable clusters without having any knowledge of the underlying physical dynamics. We note that in 259 
other applications, the optimal number of clusters will change and the researcher will need to explore various choices 260 
of this parameter in their modeling, although this tuning process should be greatly simplified by the inclusion of an 261 
information criterion (e.g., BIC) in the GMM algorithm. 262 

3.5 Random Forest 263 

The clustering algorithm requires the Nature Run wind vector component values (u and v) in order to classify the 264 
AMV error. When applying the algorithm in practice to tracked AMV wind from real observations, the true winds are 265 
unknown. To represent the fact that we will not know the true winds in practice, we develop a proxy for the Nature 266 
Run winds using only the AMV estimates and the simulated water vapor itself. This is an instance in which the 267 
application of machine learning is desirable, since machine learning excels at learning high-dimensional non-linear 268 
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relationships from large training datasets. In this case, we specifically use random forest to create an algorithm which 269 
predicts the Nature Run wind values as a function of the tracked wind values and water vapor.  270 

Random forest is a machine learning regression algorithm which, as detailed by Breiman (2001), employs an ensemble 271 
of decision trees to model a nonlinear relationship between a response and a set of predictors from a training dataset. 272 
Here, we chose random forest specifically because it possesses certain robustness properties that are more appropriate 273 
for our applications than other machine learning methods. For instance, random forest will not predict values that are 274 
outside the minimum and maximum range of the input dataset, whereas other methods such as neural networks can 275 
exceed the training range, sometimes considerably so. Random forest, due to the sampling procedure employed during 276 
training, also tends to be robust to overtraining in addition to requiring fewer tuning parameters compared with 277 
methods such as neural networks. 278 

We trained a random forest with 50 trees on a separate set of tracked winds and water vapor values to predict Nature 279 
Run winds using the ‘randomForest’ package in the R programming language. While the random forest estimate as a 280 
whole does not perform much better than the AMV values in estimating the Nature Run wind (2.89 RMSE for random 281 
forest vs 2.91 RMSE for AMVs), as shown in Figure 12, it does not display the same discrete regimentation as the 282 
AMV estimates in Figure 3. As such, the random forest estimates can act as a proxy for Nature Run wind values in 283 
our clustering algorithm — they remove the regimentation which is a critical distinction between the AMV estimates 284 
and the Nature Run wind values. 285 

3.6 Finalized Error Characterization Model 286 

The foundation of the error characterization approach is to combine the random forest and clustering algorithm. We 287 
apply the Gaussian mixture model, as trained on the Nature Run winds (in addition to the AMVs and water vapor), to 288 
each point of water vapor, AMV estimate, and associated random forest estimate. This produces a set of clusters 289 
which, when implemented, require no direct knowledge of the actual Nature Run state (Figure 13).  290 

Naturally, the clustering algorithm performs better when applied to the dataset with the Nature Run winds, as 291 
opposed to winds generated from the random forest algorithm. The former is created with direct knowledge of the 292 
Nature Run winds, and any approximation will lead to increased uncertainties. In practice, the performance of the 293 
cluster analysis can be improved by enhancing the performance of the random forest itself. As with any machine 294 
learning algorithm, the random forest contains hyperparameters that can be optimized for specific applications. In 295 
addition, performance could be improved by including additional predictor variables. Our intent is not to use the 296 
random forest as a wind tracking algorithm; rather, the random forest is presented in this paper as a proof of concept.  297 

Nonetheless, we see in Figure 13 and Figure 14 that the error characterization still discretizes the testing data set into 298 
meaningful error regimes. The algorithm manages to separate the AMV estimates into appropriate error clusters. Once 299 
again, clusters 6 and 8 manage to capture unskilled regimes, and cluster 7, and to a lesser extent clusters 4 and 5, 300 
remain skillful. By taking the mean and standard deviation of the difference between AMV estimates and Nature Run  301 
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winds in each cluster, we develop error characteristics for each cluster (Figure 15); these quantities are precisely the 304 
bias and uncertainty that we require for the cost function J in Eq (1). We see that the unskilled clusters have very high 305 
standard errors and they correspond roughly to the areas of unskilled regimes in Figure 3. Similarly, skilled clusters 306 
5, 4 and 7 have standard errors below that of the entire dataset. Since each cluster now has associated error 307 
characteristics (e.g., bias and standard deviation), it is then straightforward to assign the bias and uncertainty for any 308 
new tracked wind observation by computing which regime it is likely to belong to. 309 

3.7 Experimental Set up 310 

In this section we will describe our experimental setup for training our model on the GEOS-5 Nature Run data and  311 
testing its performance on a withheld dataset. We divide the dataset into two parts: a training set consisting of the first 312 
1.5 months of the GEOS-5 Nature Run, and a testing set consisting of the last 0.5 month of the Nature Run. Our 313 
training/testing procedure for the simulation data and tracked wind is as follows:  314 

1. Divide the simulation data and tracked wind into two sets: training set of 1,000,000 points from the first 1.5 315 
months of the Nature Run and a testing set of 1,000,000 points from the final 0.5 months of the Nature Run. 316 

2. We train a Gaussian Mixture Model on a normalized random sample of observations from the training dataset 317 
of Nature Run  winds (u and v direction), tracked winds (u and v direction), and water vapor with n=9 clusters. 318 

3. We train two separate random forests on a different random sample of 750,000 observations from the training 319 
dataset. We use tracked wind (u and v direction) and water vapor to model, separately, Nature Run  winds in 320 
both the u and v directions.  321 

4. We apply the random forests to the dataset used for the Gaussian Mixture Model. This provides a random 322 
forest estimate for each point, which is used as a substitute for Nature Run  wind values in the next step.  323 

5. We predict the Gaussian mixture component assignment for each point of water vapor, tracked winds, and 324 
random forest estimate using the GMM parameters estimated in Step 2. 325 

6. We compute the mean and standard deviation of the difference between the tracked winds and the Nature 326 
Run  winds, per direction, for each Gaussian mixture model cluster assignment. This provides a set of error 327 
characteristics that are specific to each cluster.  328 

7. We can apply the random forest, and then the cluster estimation, to any set of water vapor and tracked AMV 329 
estimates. Thusly, any set of tracked AMV estimates and water vapor can be mapped to a specific cluster, 330 
and therefore its associated error characteristics.  331 

4 Results and Validation 332 

In this section, we compare our clustering method against a simple alternative, and we quantitatively demonstrate 333 
improvements that result from our error characterization. Recall that in Section 3, we divided the wind-tracking 334 
outputs into 9 regimes, which range from very skilled to unskilled. For the i-th regime, we can quantify the predicted 335 
uncertainty estimate as a gaussian distribution with mean mi and standard deviation σ%, which has a well-defined 336 

(4)	
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cumulative distribution function which we denote as Fi. To test the performance of our uncertainty forecast, we divide 338 
the dataset described in Section 2 into a training dataset (first 1.5 month) and a testing dataset (last 0.5 month). Having 339 
trained our model using the training dataset, we apply the methodology to the testing dataset, and we compare the 340 
performance of the predicted probability distributions against the actual wind error (tracked winds - Nature Run 341 
winds). This is a type of probabilistic forecast assessment, and we assess the quality of the prediction using a scoring 342 
rule called continuous ranked probability score (CRPS), which is defined as a function of a cumulative distribution 343 
function F and an observation x as follows:  344 

CRPS(F, x) = 	U 	

(

"(
(F($) − 	V(* − $))

)	W*																																																						(X)	 345 

Where V( ) is the Heaviside step function and denotes a step function along the real line that is equal to 1 if the argument 346 
is positive or zero, and it is equal zero if the argument is negative (Gneiting and Katzfuss, 2014) . The continuous rank 347 
probability score here is strictly proper, which means that the function CRPS(F, x) attains the minimum if the data x 348 
is drawn from the same probability distribution as the one implied by F. That is, if the data x is drawn from the 349 
probability distribution given by F, then CRPS(F, x) < CRPS(G, x) for all G ≠ F.  350 

The alternative error characterization method that we test against is a simple marginal mean and marginal standard 351 
deviation of the entire tracked subtract Nature Run  wind dataset. This is essentially equivalent to an error 352 
characterization scheme that utilizes one regime, where m and σ are given as the marginal mean and the marginal 353 
standard deviation of the residuals (i.e., tracked wind minus Nature Run  winds). Here, we use a negatively oriented 354 
version of the CRPS (i.e., Eq.(4) without the minus sign), which implies that lower is better. A histogram evaluating 355 
the performance of our methodology against the naive error characterization method is given in Figure 16. 356 

The relative behavior of the CRPS is consistent between u and v winds. The CRPS tends to have to wider distribution 357 
when applied to the regime-based error characterization. Compared to the alternative error characterization scheme, 358 
our methodology produces a cluster of highly accurate predictions (low CRPS scores), in addition to some cluster of 359 
very uninformative predictions (high CRPS scores). These clusters correspond to the highly skilled cluster (e.g., 360 
Cluster 3) and the unskilled clusters (Cluster 6 and 8), respectively. Overall, the mean of the CRPS is lower for our 361 
methodology than it is for the alternative method, indicating that as a whole our method produces a more accurate 362 
probabilistic forecast.  363 

Thus far we have shown that our method produces more accurate error-characterization than an alternative method 364 
based on marginal means and variance. Now, we assess whether our methodology provides valid probabilistic 365 
prediction; that is, we test whether the uncertainty estimates provided are consistent with the empirical distribution of 366 
the validation data. To assess this, we construct a metric in which we normalize the difference between the Nature 367 
Run wind and the tracked wind by the predicted variance. That is, for the i-th observation, we compute the normalized 368 
values for u* and v* using the following equations: 369 

Formatted: Font: Not Bold

Formatted: Font: Not Bold, Not Italic

Deleted: Figure 16370 



 12 

z+,% =
u* −	\+*
σ+,%

 371 

z-,% =
v* − ]+*
σ-,%

(5) 372 

Where u*  is the i-th Nature Run u wind from the Nature Run data, \+* is the tracked-wind, and σ+,% is the error as 373 
assessed by our model (recall that it is a function of the regime index to which \+* has been assigned). The values for 374 
the v-wind are defined similarly. The residuals in Eq (5) can be considered as a variant of the z-score, and it is 375 
straightforward to see that if our error estimates are valid (i.e., accurate), then the normalized residuals in Eq. (5) 376 
should have a standard deviation of 1. If our uncertainty estimates σ+,% and σ-,% are too large, then the standard deviation 377 
of z+,% and z-,% should be less than 1; similarly, if our uncertainty estimates are too small, then the standard deviation 378 
of z+,% and z-,% should be larger than 1. In Figure 17, we display the histogram of the normalized residuals z+ and z-. 379 
It is clear that for both types of wind, the standard deviation of z+,% and z-,% are 1.003 and 1.009, respectively, indicating 380 
that our error characterization model is highly accurate when forecasting uncertainties. 381 

A further validation of our methods encompasses an analysis of the statistical significance of the uncertainty in our 382 
model. To this end, we constructed confidence intervals for the bias and standard deviation within each regime using 383 
the bootstrap (Efron and Tibshirani, 1993). The procedure of our bootstrap is as follows 384 

1. Subset the data to retain only observations with regime index j. Let’s assume that we have Nj observation 385 
within this data subset 386 

2. Sample with replacement Nj observations from this subset. This forms a bootstrap sample 387 
3. From 2., compute an estimate of the bias and standard deviation. 388 
4. Repeat step 2-3 for 1000 times, giving us 1000 estimates of the bias and 1000 estimates of the standard 389 

deviation within regime j. 390 
5. Compute 95% confidence intervals from the 1000 estimates of bias and standard deviation from 4. 391 

The results for the confidence intervals (in graphical form in Figure 18. We note that the figure indicates that for 392 
many of the biases, they can be considered unbiased since their confidence interval includes 0 (e.g., regimes 2-8 for 393 
u-wind). However, the plot also clearly indicates that two regimes are statistically different from 0 (regime 1 and 9). 394 
We also note that for the standard deviation maps, the CI’s indicate that they are fairly stable (small narrow range) 395 
and that most of the regimes have statistically different standard deviation (denoted here visually as CI’s that do not 396 
overlap one another). We also note that u and v wind direction tend to have very similar patterns, indicating that our 397 
regime classification is persistent across u and v. To summarize, the CI plot above indicate that the differences in 398 
standard deviation between different regimes are highly statistically significant (as evidenced by the small 399 
confidence intervals and their spacing). For the biases, 3 of the regimes are statistically significantly different from 400 
the rest (i.e., regimes 1, 6, and 9), while the rest are likely relatively unbiased (i.e., bias = 0 ). 401 
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5 Conclusion and Discussion 404 

Error characterization is an important component of data validation and scientific analysis. For wind-tracking 405 
algorithms, whose outputs (tracked u and v) are often used as observations in data assimilation analyses, it is necessary 406 
to accurately characterize the bias and standard error (e.g., see Section 2.2). Nguyen et al. (2019) illustrated that 407 
incorrect specification of these uncertainties (, and R in Eq. (1)) can adversely affect the assimilation results – 408 
mischaracterization of bias will systematically offset a tracked wind, while an erroneous standard error could 409 
incorrectly weigh the cost function. 410 

In this paper we demonstrate the application of a machine learning uncertainty modeling framework to AMVs derived 411 
from water vapor profiles intended to mimic hyper-spectral sounder retrievals. The methodology, based on a 412 
combination of gaussian mixture model clustering and random forest, identified distinct geophysical regimes and 413 
provided uncertainties specific to each regime. This was achieved in a purely data-driven framework; nothing was 414 
known to the model except the specific inputs and outputs of the AMV algorithm, deducing the relationship between 415 
regime and uncertainty from the underlying multivariate distribution of water vapor, Nature Run wind, and tracked 416 
wind. Our algorithm does require one major tuning parameter in the number of clusters for the GMM algorithm, 417 
although the search for the ‘optimal’ number of clusters can be aided by the inclusion of an information criterion (e.g., 418 
the BIC) in the GMM model. This implementation is not intended as a ‘ready-to-go’ algorithm for general use. Instead, 419 
we lay the foundation of an uncertainty modelling approach which we plan to implement at a larger scale in subsequent 420 
work Nonetheless this bare bones implementation is sufficient to produce improved error estimates of state-dependent 421 
uncertainties as detailed in Posselt et al. (2019).  422 

We introduce this framework in an environment that is limited and well-behaved, but which nonetheless we believe 423 
provides insight into how such an approach would perform at a larger scale. Of course, there are issues when moving 424 
from the controlled environment of the simulation study to large scale applications. We understand these to be: (1) the 425 
existence of uncertainty on the tracked humidity values, and (2) the ability of the training dataset to adequately capture 426 
both the range of conditions of water vapor and wind speed, and their inherent relationship.  427 

The simulation used for introducing this framework was a ‘perfect-observation’ environment; that is, the water 428 
vapor was assumed to be perfectly known to the wind tracking algorithm. In real world scenarios, this is obviously 429 
not the case. However, we believe that this is mitigated by two factors. Firstly, Posselt et al (2019) also conducted a 430 
study where measurement noise was added to the water vapor measurement. This did not show to have an effect on 431 
the uncertainty in the AMV estimate, except where there was the presence of strong vertical wind shear, a situation 432 
which can be identified a larger scale application. Secondly, given quantified uncertainties on the water vapor 433 
retrievals themselves (the scope of which is decidedly outside the work of this paper), these could be assimilated 434 
into the uncertainty modelling framework in a straightforward manner by adding them as a prediction variable in 435 
both the regime classification and emulator. This would allow for the model to itself ascertain the relationship 436 
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between water vapor uncertainty and AMV estimate uncertainty, without breaking the foundational aspect of being 437 
data-driven. 438 

The reliability of the training dataset is the fundamental assumption of any machine learning approach. To reiterate, 439 
we present a methodology which aims to characterize the uncertainty in the difference between a measurement _̀ 440 
and its true target _ (that is, var (_̀  – _)). As such, we require some proxy for the truth in the development of our 441 
model (call this _*). To expand further, we are modelling the relationship between _̀ and _ as a function of water 442 
vapor :, with a(:) = _̀ and b(:) = _, where a represents the AMV algorithm and b the ‘true’ relationship 443 
between wind speed and water vapor. Thus, we additionally require a proxy function b*, which is the relationship 444 
implied by the training data output of water vapor and reference winds. In the implementation presented in this 445 
paper, b* is represented by the underlying physical models that model the motion of water vapor and windspeed in 446 
the GEOS-5 Nature Run. 447 

The fidelity of our framework relies upon the assumption _*~	_ and b*~	b. In the simulation study, _* is the first 448 
1.5 months of a nature run simulation, which is used as a proxy for an _ which consists of the last .5 months of a 449 
nature run simulation. We have given the algorithm a training dataset with what we believe is a plausible range of 450 
conditions which could occur in _. To the extent that errors may be seasonally and regionally dependent, it will be 451 
more effective to train the error estimation algorithm on data that is expected to represent the specific flow regimes 452 
and water vapor features valid for a particular forecast or assimilation period. A range of model data encompassing 453 
enough seasonal variability should be a reasonable proxy for the possible range of true _. This would significantly 454 
increase the computational demands of training the model (~1 day on a single processor, per pressure level to train 455 
the current implementation of the algorithm and an average of 3 days per pressure level, on a non-optimized cluster 456 
network to run the AMV extraction on the nature run), although such concerns could be mitigated by strategic 457 
subsampling approaches. 458 

On the other hand, in this implementation b* is a perfectly known representation of b, which is the GEOS-5 model 459 
that runs the simulation. This is where the simulation approach might create the largest source of uncertainty and 460 
unreliability in the model. The true process g can only ever be approximated, and different attempts to do so will 461 
involve different tradeoffs when implementing this framework. Users could, for example, use high quality validation 462 
data such as matchups with radiosondes. In theory, this provides the best possible approximation of the true process 463 
b, but could involve a sparsity of data such that the range of,  _* supplied is too narrow for a useful model (indeed, 464 
the data might be so sparse as to— from a pure machine learning aspect— reduce the overall fidelity of the model 465 
itself). On the other hand, model or reanalysis data can provide dense and diverse training datasets, but rely on the 466 
assumption that the underlying physical models in those simulations are an adequate representation of the true 467 
process. At the core of atmospheric models such as GOES-5 are the laws of fluid dynamics and thermodynamics. In 468 
this context, water vapor is advected by the mean wind and as such the wind and water vapor are intrinsically related 469 
in these models. This has been the case since the first atmospheric weather prediction models have been developed. 470 
There are of course uncertainties associated with the discretization of the fluid dynamics equations, and sometimes 471 
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also with parameterizations depending on the physical constraints. But these uncertainties are likely small for the 472 
water vapor structures that are selected for the wind tracking algorithm.  473 

In both these cases, the model could likely be improved by the inclusion of additional variables in the clustering 474 
algorithm. These could include a variety of parameters to address different potential problem areas in the model. As 475 
mentioned previously, including quantified values of uncertainty in water vapor estimates would algorithmically 476 
link the uncertainty in the humidity retrieval with the uncertainty in the AMV tracking. Similarly, including 477 
parameters that correlate with geophysical phenomena where the AMV algorithm is known to perform poorly (such 478 
as a marker for vertical wind shear or frontal features) would enable domain knowledge to inform the clustering 479 
algorithm and emulator. Finally, it is likely that the several parameters used in formulating both the Quality 480 
Indicator (Holmlund et al. 1998) and Expected Error (Le Marshall et al. 2004) approaches would be informative in 481 
enhancing the algorithm. One critical aspect for users to consider is that these variables must be continuous 482 
parameterizations, rather than discrete markers (which are often used in quality control); discrete variables cannot be 483 
easily incorporated into a Gaussian mixture model, or indeed most clustering algorithms. Furthermore, we would 484 
recommend that users implement parameters that are readily available at the same measurement location and time as 485 
the AMV estimate itself. Part of the motivation for the purely state dependent approach in this framework is ease of 486 
implementation; colocation and interpolation could add further uncertainty to the model.  487 

We note that in real applications, using a proxy X* instead of the true X will result in our algorithm estimating the 488 
variability var(_̀ − _*) instead of  var(_̀ − _). Therefore, the degree to which var(_̀ − _*) approximates var(_̀ −489 
_) relies on the accuracy on the proxy data relative to the true uncertainty. Ultimately, implementing this 490 
methodology at scale requires confidence in the training dataset employed by the user. As with most machine 491 
learning approaches, a thorough understanding of the relative strengths and weaknesses of the training dataset is the 492 
most critical consideration for users. This means not only ensuring that the training data is variable and diverse 493 
enough to encapsulate the entirety of the true domain, but possessing some understanding of how and where 494 
portions of the training dataset might be less representative of reality. There are a few practical ways in which users 495 
could attempt to address this issue. Given adequate resources and time, users could train the uncertainty model under 496 
various training datasets. While this would not necessarily give a greater understanding of the training data’s 497 
relationship with the truth, the differences between the produced models would provide some quantification of the 498 
effect of the training data on the estimated uncertainties. Similarly, if users have some quantified understanding of 499 
areas wherein the training dataset might be less useful (e.g., collocation errors), they could leverage this to inform 500 
the uncertainty model. In this case, it is likely such decisions would manifest themselves in the final uncertainty 501 
product. Nonetheless, as much as users should try to mitigate the potential for problems, there is always an 502 
underlying leap of faith that they have chosen a training dataset that adequately represents the truth in their 503 
application. Like any modeling approach, this methodology relies on a set of assumptions; this is one such 504 
assumption. This is why domain knowledge is critical in developing a similar uncertainty model. Thoughtful and 505 
careful implementations by users, keeping in mind the prescriptions and concepts detailed above, should mitigate the 506 
training data dependent uncertainty.  507 
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Future users would also be wise to consider improvements in the random forest step of the framework. The 508 
capability of this implementation in discerning accurate error regimes degrades substantially with the introduction of 509 
the random forest wind estimates. This work focused on the ability to capture regime dependent error, and as such 510 
the random forest was not studied in depth. An improved emulator would certainly increase the accuracy of the 511 
uncertainty estimates produced by this framework. There are a wide variety of ways to improve the emulator; 512 
ultimately, and even more so than the regime classification, these will be specific to the AMV extraction algorithm 513 
being used. Certainly, many of the additional variables suggested above could be useful towards improving the 514 
random forest. Users could also investigate replacing the random forest altogether with a different emulator, such as 515 
a neural net or a gaussian process. Indeed, at its most general, our methodology consists of two parts: an emulator 516 
and a clustering algorithm. In this implementation, random forest and Gaussian mixture modelling are the 517 
approaches; in theory, these two steps could be accomplished using other algorithms belonging to the appropriate 518 
class. 519 

Thorough domain knowledge, both of the AMV extraction algorithm and the context in which it will be applied, is 520 
critical in developing methods to improve it. As discussed previously, the bare bones implementation of our 521 
methodology in this paper is intended as a structural presentation of the conceptual framework, not necessarily a 522 
finalized model. However, it is also the case that the investigation by Posselt et. al (2019) showed that the variables 523 
used in this implementation of the model are those most strongly related with AMV uncertainty in this particular 524 
application.  The state-dependent errors identified by Posselt et al. (2019) are also expected to apply to other water 525 
vapor AMVs. This is because, in general, AMV algorithms have difficulty tracking fields with very small gradients, 526 
and will produce systematic errors in situations for which isolines in the tracked field (e.g., contours of constant water 527 
vapor mixing ratio) lie parallel to the flow. To the extent that our algorithm represents a general class of errors, the 528 
results may be applicable to other geophysical scenarios and other AMV tracking methodologies. As mentioned in the 529 
introduction, robust estimates of uncertainty are important for data assimilation, and we expect that our methodology 530 
could be used to provide more accurate uncertainties for AMVs used in data assimilation for weather forecasting and 531 
reanalysis.  532 
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 609 

Figure 1: Map of Nature Run at one timestep at 700hPa (A): Water Vapor (B):  Nature Run Wind Speed 
(C): Difference between Nature Run Wind Speed and AMV Estimate (D): AMV Estimate. 



 20 

 610 

 611 

Figure 2: Diagram of Training Approach and Diagram of Implementation steps. 612 
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 613 

Figure 3:  Scatter plot of the simulated Nature Run wind vs AMV estimates for u and v wind in the training 614 
dataset. 615 

 616 

Figure 4: Simulated water vapor vs the absolute value of the difference between Nature Run and tracked 617 
winds in the training dataset. 618 
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 619 

Figure 5: Example of Gaussian Mixture Model in one dimension. Density Figures for the U-Direction AMV 620 
Estimate dimension of fitted Gaussian mixture. 621 

 622 

 623 

Figure 6: Scatterplot of simulated Nature Run wind vs AMV Estimates, each sub-panel corresponding to the 624 
specific Gaussian mixture component to which each point in the testing set has been assigned. (A): U-625 
Direction Wind (B): V-Direction Wind. 626 
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 627 

 628 

Figure 7: Scatterplot of Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the 629 
specific Gaussian mixture component to which each point in the testing set has been assigned. (A): U-630 
Direction Wind (B): V-Direction Wind. 631 

 632 
Figure 8: Histogram of Nature Run water vapor for each cluster identified by the Gaussian mixture model, 633 
applied to the testing set. Each sub-panel represents the cluster each point was assigned to. 634 
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 635 
Figure 9: Mean tracked winds and Nature Run winds, in each direction, for each cluster applied to the test 636 
set. Each sub-panel represents the cluster each point was assigned to. 637 

 638 

 639 
Figure 10: Correlation matrix between each clustered element for each identified cluster in the original 640 
training dataset. Each sub-panel refers to a specific cluster. 641 
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 642 
Figure 11: Geographic distribution by cluster of AMV retrieval locations in the testing dataset. Each sub-643 
panel represents one cluster. 644 
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 647 

Figure 12: Scatterplot of Nature Run wind estimate vs random forest produced estimate. (A): U Direction 648 
(B): V Direction 649 

 650 
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 651 

Figure 13: Scatterplot of  Nature Run  wind vs AMV Estimates, each sub-panel corresponding to the specific 652 
Gaussian mixture component to which each point in the testing set has been assigned when the Nature Run  653 
wind value has been substituted by the random estimate. (A): U-Direction Wind (B): V-Direction Wind 654 

 655 

Figure 14: Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the specific 656 
Gaussian mixture component each point in the testing set has been assigned when the Nature Run wind value 657 
has been substituted by the random estimate. (A): U-Direction Wind (B): V-Direction Wind 658 
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 659 

Figure 15: (A): Bias (Left Panel) and Standard Error (Right Panel) for each Gaussian mixture cluster in 660 
figure 6, U direction. (B): Same as (A) for V-direction 661 

 662 

Figure 16: CRSP applied to different error approaches. (A): Cluster Errors for U Winds (B): Total Errors 663 
for U Winds (C): Cluster Errors for V Winds (D): Total Errors for V Winds. 664 
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 667 

Figure 17: U and V winds normalized using the error characteristics developed by our methodology. 668 
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Mean: -0.02274906 
Std. Dev.: 1.00032 
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Std. Dev.: 1.00947 
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Figure 18: Top rows (bias and std confidence intervals for u-wind), bottom rows (bias and std confidence 679 
intervals for v-winds). The interval represent a 95% confidence interval. 680 
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