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Abstract. Wind-tracking algorithms produce Atmospheric Motion Vectors (AMVs) by tracking clouds or water vapor 5 
across spatial-temporal fields. Thorough error characterization (also known as uncertainty quantification) of wind-6 
tracking algorithms is critical in properly assimilating AMVs into weather forecast models and climate reanalysis 7 
datasets. Uncertainty quantification should yield estimates of two key quantities of interest: bias, the systematic 8 
difference between a measurement and the true value, and standard error, a measure of variability of the measurement. 9 
The current process of specification of the errors input into inverse modelling is often cursory and commonly consists 10 
of a mixture of model fidelity, expert knowledge, and need for expediency. The methods presented in this paper 11 
supplement existing approaches to error specification by providing an error-characterization module that is purely 12 
data-driven and requires few tuning parameters. This paper proposes an error-characterization method that combines 13 
the flexibility of machine learning (random forest) with the robust error estimates of unsupervised parametric 14 
clustering (using a Gaussian Mixture Model). Traditional techniques for uncertainty quantification through machine 15 
learning have focused on characterizing bias, but often struggle when estimating standard error. In contrast, model-16 
based approaches such as k-means or Gaussian mixture modelling can provide reasonable estimates of both bias and 17 
standard error, but they are often limited in complexity due to reliance on linear or Gaussian assumptions. In this 18 
paper, a methodology is developed and applied to characterize error in tracked-wind using a high-resolution global 19 
model simulation, and it is shown to adequately capture the error features of the tracked wind.   20 

1. Introduction 21 

Reliable estimates of global winds are critical to science and application areas, including global chemical transport 22 
modeling and numerical weather prediction. One source of wind measurements consists of feature-tracking based 23 
Atmospheric Motion Vectors (AMVs), produced by tracking time sequences of satellite-based measurements of 24 
clouds or spatially distributed water vapor fields (Mueller et al., 2017; Posselt et al., 2019). The importance of global 25 
measurements of 3-dimensional winds was highlighted as an urgent need in the NASA Weather Research Community 26 
Workshop Report (Zeng et al., 2016) and was identified as a priority in the 2007 National Academy of Sciences Earth 27 
Science and Applications from Space (ESAS 2007) Decadal Survey and again in ESAS 2017. For instance, wind is 28 
used in the study of global CO2 transport (Kawa et al., 2004), numerical weather prediction (NWP; Cassola and 29 
Burlando, 2012), as inputs into weather and climate reanalysis studies (Swail and Cox, 2000), and for estimating 30 
current and future wind-power outputs (Staffell and Pfenninger, 2016). 31 

Thorough error characterization of wind-track algorithms is critical in properly assimilating AMVs into forecast 32 
models. Prior literature has explored the impact of ‘poor’ error-characterization in Bayesian-based approaches to 33 
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remote sensing applications. Nguyen et al. (2019) proved analytically that when the input bias is incorrect in Bayesian 34 
methods (specifically, optimal estimation retrievals), then the posterior estimates would also be biased. Moreover, 35 
they proved that when the input standard error is ‘correct’ (that is, it is as close to the unknown truth as possible), then 36 
the resulting Bayesian estimate is ‘efficient’; it has the smallest possible error. Additionally, multiple active and 37 
passive technologies are being developed to measure 3D winds, such as Doppler wind lidar (DWL) and radar and 38 
infrared/microwave sensors that derive AMVs using feature-tracking of consecutive images. Therefore, an accurate 39 
and robust uncertainty quantification methodology will allow for more accurate assessments of mission impacts, and 40 
the eventual propagation of data uncertainties for these instruments.   41 

Velden and Bedka (2009) and Salonen et al. (2015) have shown that height assignment contributes a large component 42 
of uncertainty in AMVs tracked from cloud movement and from sequences of infrared satellite radiance images. 43 
However, height assignment is not the dominant portion of the error in AMVs obtained from water vapor profiling 44 
instruments (e.g., infrared and microwave sounders). As such, this study will focus on errors in the AMV estimates at 45 
a given height. Previous work has demonstrated several different approaches for characterizing AMV vector error. 46 
One common approach is to employ quality indicator thresholds, as described by Holmund et al (2001), which 47 
compare changes in AMV estimates between sequential timesteps and neighboring pixels, as well differences with 48 
model predictions, to produce a quality indicator to which a discrete uncertainty is assigned. The Expected Error 49 
approach, developed by Le Marshal et al. (2004), builds a statistical model using linear regression against AMV-50 
radiosonde values to correct AMV observation error.  51 

In this study, we detail a data-driven tool for building an AMV uncertainty model using observing system simulation 52 
experiment (OSSE) data. We build on the work by Posselt et al. (2019) in which a water vapor feature-tracking AMV 53 
algorithm was applied to a high-resolution numerical simulation, thus providing a global set of AMV estimates which 54 
can be compared to the reference winds produced by the simulation. In this case, a synthetic “true” state is available 55 
with which AMVs can be compared and errors are quantified, and it is shown that tracking errors in AMV estimates 56 
are state dependent. Our approach will use a conjunction of machine learning (random forest) and unsupervised 57 
parametric clustering (Gaussian mixture models) to build a model for the uncertainty structures found by Posselt et al. 58 
(2019). The realism and robustness of the resulting uncertainty estimates depend on the realism and representativeness 59 
of the reference dataset. This work builds upon the work of Bormann et al. (2014) and Hernandez-Carrascal and 60 
Bormann (2014), who showed that wind tracking could be divided into distinct geophysical regimes by clustering by 61 
cloud conditions. This study supplements that approach with the addition of machine learning, which, compared with 62 
traditional linear modeling approaches, should allow the model to capture more complex non-linear processes in the 63 
error function.  64 

Traditional techniques for uncertainty quantification through machine learning have focused on characterizing bias 65 
but often struggle when estimating standard error. By pairing a random forest algorithm with unsupervised parametric 66 
clustering, we propose a data-driven, cluster-based approach for quantifying both bias and standard error from 67 
experimental data. According to the theory developed by Nguyen et al. (2019), these improved error characterizations 68 
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should then lead to improved error characteristics (e.g., lower bias, more accurate uncertainties) in subsequent analyses 69 
such as flux inversion or data assimilation. 70 

The rest of the paper is organized as follows: In Section 2, we give an overview of the simulation which provides the 71 
training data for our machine learning approach and motivate and define the specific uncertainties this study aims to 72 
characterize. In Section 3, we describe the error characterization approach with the specifics of our error 73 
characterization model, including both the implementation of and motivations for employing the random forest and 74 
Gaussian mixture model. In Section 4, we provide a validation of our methods, attempting to assess the bias of our 75 
predictions. In Section 5, we discuss the implications of our error characterization approach, both on AMV estimation 76 
and data assimilation more broadly. 77 

2. Experimental Set-up 78 

2.1 Simulation and Feature-Tracking Algorithm 79 

While our methodology in principle could be used to quantify uncertainties in any measurements used in data 80 
assimilation, in this paper we devote special emphasis to the use case of wind-tracking algorithms. In particular, we 81 
trained our model on the simulated data used by Posselt et al. (2019), in which they applied an AMV algorithm to 82 
outputs from the NASA Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office (GMAO) 83 
GEOS-5 Nature Run (G5NR; Putman et al. 2014). The Nature Run is a global dataset with ~7 km horizontal grid 84 
spacing that includes, among other quantities, three-dimensional fields of wind, water vapor concentration, clouds, 85 
and temperature. The AMV algorithm is applied on four pressure levels (300hPa, 500hPa, 700hPa, and 850hPa) at 6-86 
hourly intervals, using three consecutive global water vapor fields spaced one hour apart, and for a 60-day period from 87 
07/01/2006 to 08/30/2006. The water-vapor fields from GEOS5 were input to a local-area pattern matching algorithm 88 
that approximates wind speed and direction from movement of the matched patterns. The algorithm searches a pre-89 
set number of nearby pixels to minimize the sum-of-absolute-differences between aggregated water vapor values 90 
across the pixels. Posselt et al. (2019) describes the sensitivity of the tracking algorithm and the dependency of the 91 
tracked winds on atmospheric states in detail.  92 

It is important to note that the AMV algorithm tracks water vapor on fixed pressure levels. In practice, these would be 93 
provided by satellite measurements, whereas in this paper we use simulated water vapor from the GEOS-5 Nature 94 
Run. The height assignment of the AMVs is assumed to be perfectly known (or, at the very least, the pressure level 95 
uncertainty is captured by the satellite measurement uncertainty rather than the AMV estimate). As such, we focus 96 
solely on observational AMV error and not on height assignment error. 97 

A snapshot of the dataset at 700hPa is given in Figure 1, where we display the true water vapor from Nature Run (top 98 
left panel), the true wind speed from Nature Run (top right panel), the tracked wind from the AMV-tracking algorithm 99 
(bottom right panel), and the difference between the true and tracked wind (bottom left panel). Note that the wind-100 
tracking algorithm tends to have trouble in region where the true water vapor content is close to zero. It is clear that 101 

https://doi.org/10.5194/amt-2020-95
Preprint. Discussion started: 23 April 2020
c© Author(s) 2020. CC BY 4.0 License.



 4 

while the wind-tracking algorithm tends to perform well in most regions (we can classify these regions are areas where 102 
the algorithm is skilled), in some regions the algorithm is unable to reliably make a reasonable estimate of the wind 103 
speed (unskilled). We will examine these skilled and unskilled regimes (and their corresponding contributing factors) 104 
in the section 3. 105 

2.2 Importance of Uncertainty Representation in Data Assimilation 106 

Proper error characterization for any measurement, including AMVs, is important in data assimilation. Data 107 
assimilation often uses a regularized matrix inverse method based on Bayes’ theorem, which, when all probability 108 
distributions in Bayes’ relationship are assumed to be Gaussian, reduces to minimizing a least-squares (quadratic) cost 109 
function Eq (1):  110 

𝐉 = (𝐱 − 𝐱𝐛)𝐁)*(𝐱 − 𝐱𝐛) + ,(𝐲. − 𝐚) − 𝐇[𝐱]3
4
𝐑)*,(𝐲. − 𝐚) − 𝐇[𝐱]3				 (1) 111 

where x represents the analysis value, xb represents the background field (first guess), B represents the background 112 
error covariance, y represents the observation, and H represents the forward operator that translates model space into 113 
observation space. This translation may consist of spatial and/or temporal interpolation if x and y are the same variable 114 
(e.g., if the observation of temperature comes from a radiosonde), or may be far more complicated (e.g., a radiative 115 
transfer model in the case of satellite observations). R represents the observation error covariance, and a represents 116 
the accuracy, or bias, in the observations. The right-most part of Eq. (1) can be interpreted as a sum of the contribution 117 
of information from the data (y – H[x] - a) and the contribution from the prior (x – xb), which are weighted by their 118 
respective covariance matrices. In our analysis, the AMVs obtained from the wind-tracking algorithm is used as ‘data’ 119 
in subsequent analysis. That is, the tracked wind data y.  is a biased and noisy estimator of the true wind y, and might 120 
be assumed to follow the model Eq. (2): 121 

y. = y + 	ϵ (2) 122 

where ϵ is an error term, commonly assumed to be Gaussian with mean a and covariance matrix R (i.e., ϵ	~	N(	𝐚, 𝐑	)), 123 
which are the same two terms that appear in Equation (1). As such, for data assimilation to function, it is essential to 124 
correctly specify the bias vector a and the standard error matrix R-1. Incorrect characterizations of either of these 125 
components could have adverse consequences on the resulting data assimilation analyses with respect to bias and/or 126 
the standard error (Nguyen et al., 2019). 127 

3 Methodology 128 

3.1 Generalized Error Characterization Model  129 

An overview of our approach is outlined in Figure 2. Given a set of training predictors X, training responses Ŷ, and 130 
the true response Y, our approach begins with two independent steps. In one step, a Gaussian mixture model is trained 131 
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on the set of X, Ŷ, and Y. This clustering algorithm identifies geophysical regimes where the nonlinear relationships 132 
between the three variables differ. In the other step, a random forest is used to model Y based on X and Ŷ. This step 133 
produces an estimate of the true response (we call this 𝑌?) using only the training predictors and response. We then 134 
employ the Gaussian mixture model to estimate the clusters which the set of X, Ŷ, and 𝑌?  pertain to. Subsequently, we 135 
compute the error characteristics of each cluster of X, Ŷ, and 𝑌?  in the training dataset. Therefore, given a new point 136 
consisting solely of X and Ŷ, we can assign it to a specific cluster and ascribe to it a set of error characteristics. This 137 
forms the basis for our error characterization model. 138 

What follows in this paper is an implementation of the error characterization model obtained for a subsample of the 139 
GEOS-5 Nature Run at a fixed height of 700hPa. In particular, we trained the error characterization on a random 140 
sample from the first 1.5 months of the Nature Run, and show the results obtained when applying it to a test sample 141 
drawn from the subsequent 0.5 months of the Nature Run.   142 

3.2 Error Regime 143 

When examining the relationship between AMVs and simulated true winds in Figure 3, it is clear that there are two 144 
distinct ‘error-regimes’ present in the dataset. The majority of AMV estimates can be categorized as ‘skilled’, wherein 145 
their estimate lies clearly along a one-to-one line with the simulated true wind. However, there is also clearly an 146 
‘unskilled’ regime, for which the AMV estimate is very close to zero when there are actually high or mid-level true 147 
wind values present. Our goal is to provide unique error characterizations for each error regime, because the error 148 
dynamics are different within each regime. Furthermore, when we analyze this error and its relationship to water 149 
vapor, we see that ‘unskilled’ regime correlates highly with areas of low water vapor in Figure 4. This matches the 150 
error patterns discussed in Posselt et al. (2019). 151 

3.3 Gaussian Mixture Model  152 

These distinct regimes present an opportunity to employ machine learning. Bormann et al. (2014) and Hernandez-153 
Carrascal and Bormann (2014) demonstrated that cluster (also called regime) analysis is a successful approach for 154 
wind-tracking error characterization, and so we aim to train a clustering algorithm that is capable of determining 155 
whether any individual AMV estimate belongs in the ‘skilled’ or ‘un-skilled’ cluster. In particular, we use a clustering 156 
algorithm that can take advantage of the underlying geophysical dynamics, since we see the relationship between the 157 
error-regimes and water vapor content. To this end, we employ a Gaussian mixture model, a clustering algorithm 158 
based on estimating a training set as a mixture of multiple Gaussian distributions.  A mathematical overview follows: 159 

1. Define each location containing simulated true winds, water vapor, and AMV estimates as a random 160 
variable xA	 161 

2. Define θ as the population that consists of all xA	in the training dataset 162 
3. Model the distribution of the population P(θ) as: 163 
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P(θ) =DπFN,µF, 	ΣF3
I

F

(3) 164 

Where N,µF, 	ΣF3 is the normal distribution with mean µF and covariance ΣF,  165 

K	is	the	number of clusters, and  πF is the mixture proportion. 166 

3. An Expectation–Maximization Algorithm determines πF, µF, 	ΣF for K clusters 167 
4. Density estimation gives us P,xA ∈ kF3 = pAF 168 
5. Maximum pAF is the assigned cluster for point xA 169 

The mixture model clustering is based on the R package ‘Mclust’ developed by Fraley et al. (2012), which builds upon 170 
the theoretical work of Fraley and Raftery (2002) for model-based clustering and density estimation. The process uses 171 
an Expectation-Maximization algorithm to cluster the dataset, estimating a variable number of distinct multivariate 172 
Gaussian distributions from a sample dataset. Training the Gaussian mixture model on this dataset provides a 173 
clustering function which outputs a unique cluster for any data point with the same number of variables. 174 

In one dimension, a Gaussian mixture model looks like the distributions depicted in Figure 5: instead of modelling a 175 
population as a single distribution (Gaussian or otherwise), the GMM algorithm fits multiple Gaussian distributions 176 
to a population. A key aspect is that this algorithm has the capability of assigning a new point to the most likely 177 
distribution. For example, in the 1-D figure, a normalized AMV estimate with a value of 10 would be more likely to 178 
originate from the broad cluster ‘2’ than the narrow cluster ‘4’. In this case, we model the population as a Gaussian 179 
mixture model in five-dimensional space, which consists of two simulated true wind vector components (u and v), 180 
two AMV estimates of these wind components (u.	and v.), and the simulated water vapor values, all of which have 181 
been standardized. Each cluster has a 5-dimensional mean vector for the center and a 5x5 covariance matrix defining 182 
their multivariate Gaussian shape. The estimation of a covariance matrix allows for the characterization of the 183 
relationships between the different dimensions within each cluster, and as such the gaussian mixture model approach 184 
provides greater potential for understanding the geophysical basis of error regimes than other unsupervised clustering 185 
approaches. 186 

In Figure 6, we applied the Gaussian mixture model to true u and v wind data using 9 clusters. Although Figure 4 187 
indicates that the data tends to separate roughly into ‘skilled’ and ‘unskilled’ regimes, we opted to choose 9 clusters 188 
in the Gaussian mixture model after several sensitivity tests across all pressure levels found 9 to be the minimum 189 
number of clusters needed to ensure the separation into these separate regimes, as well as allowing for further 190 
stratification of sub-regimes within the skilled and unskilled regimes 191 

By re-analyzing the AMV estimate in relation to the simulated true winds, separated into the cluster that each point 192 
has been assigned to (Figure 6), we find that the clustering approach successfully separates the AMV estimates 193 
according to their ‘skillfulness’. Essentially, we repeat Figure 3 but divide the AMV estimates by cluster. We see that, 194 
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for example, clusters 4, 5, and 7 clearly represent cases in which the feature-tracking algorithm provides an accurate 195 
estimate of the true winds, with very low variance around the one-to-one line (i.e., low estimate errors). Clusters 1, 2, 196 
3, and 9 are somewhat noisier than the low-variance clusters, with error characteristics similar to those of the entirety 197 
of the dataset. Clusters 6 and 8, on the other hand, are clearly unskilled in different ways. Cluster 6 is a noisy regime, 198 
which captures much of the more extreme differences between the AMV estimates and the simulated true winds. 199 
Cluster 8, on the other hand, represents the low AMV estimate, high true wind regime. This cluster is returning AMVs 200 
with values of zero where the true wind is clearly non-zero because of the very low water vapor present. We see that 201 
the clustering algorithm succeeds in capturing physically interpretable clusters without having any knowledge of the 202 
underlying physical dynamics. We further see the stratification of the regimes when analyzing the absolute AMV error 203 
in relation to the water vapor content (Figure 7). We see that clusters that have similar behaviors in the error pattern 204 
(such as 1, 2, and 3) represent different regimes of water vapor content. 205 

3.5 Random Forest 206 

The clustering algorithm requires the true wind vector component values (u and v) in order to classify the AMV error. 207 
When applying the algorithm in practice to tracked AMV wind from real observations, the true winds are unknown. 208 
Therefore, we develop a proxy for the true winds using only the AMV estimates and the simulated water vapor itself. 209 
This is an instance in which the application of machine learning is desirable, since machine learning excels at learning 210 
high-dimensional non-linear relationships from large training datasets. In this case, we specifically use random forest 211 
to create an algorithm which predicts the true wind values as a function of the tracked wind values and water vapor.  212 

Random forest is a machine learning regression algorithm which, as detailed by Breiman (2001), employs an ensemble 213 
of decision trees to model a nonlinear relationship between a response and a set of predictors from a training dataset. 214 
Here, we chose random forest specifically because it possesses certain robustness properties that are more appropriate 215 
for our applications than other machine learning methods. For instance, random forest will not predict values that are 216 
outside the minimum and maximum range of the input dataset, whereas other methods such as neural networks can 217 
certainty exceed the training range, sometimes considerably so. Random forest, due to the sampling procedure 218 
employed during training, also tends to be robust to overtraining in addition to requiring fewer tuning parameters 219 
compared with methods such as neural networks. 220 

We trained a random forest with 50 trees on a separate set of tracked winds and water vapor values to predict true 221 
winds using the ‘randomForest’ package in R. While the random forest estimate as a whole does not perform much 222 
better than the AMV values in estimating the true wind (2.89 RMSE for random forest vs 2.91 RMSE for AMVs), as 223 
shown in Figure 8, it does not display the same discrete regimentation as the AMV estimates in Figure 3. Relative to 224 
the AMV estimates, the error in each of the random forest estimates is closer to the mean of error of the entire dataset. 225 
As such, the random forest estimates can act as a proxy for true wind values in our clustering algorithm — they remove 226 
the regimentation which is a critical distinction between the AMV estimates and the true wind values. 227 
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3.6 Finalized Error Characterization Model 228 

The foundation of the error characterization approach is to combine the random forest and clustering algorithm. We 229 
apply the Gaussian mixture model, as trained on the true winds (in addition to the AMVs and water vapor), to each 230 
point of water vapor, AMV estimate, and associated random forest estimate. This produces a set of clusters which, 231 
when implemented, require no direct knowledge of the actual true state (Figure 9). We see that the algorithm manages 232 
to separate the AMV estimates into appropriate error clusters. Once again, clusters 6 and 8 manage to capture unskilled 233 
regimes, and clusters 4 and 5 remain extremely skillful. While there is some degradation in the performance relative 234 
to the classification algorithm on the training set, we see in Figure 9 and Figure 10 that the error characterization still 235 
discretizes the testing data set into meaningful error regimes. 236 

By taking the mean and standard deviation of the difference between AMV estimates and true winds in each cluster, 237 
we develop error characteristics for each cluster (Figure 11); these quantities are precisely the bias and uncertainty 238 
that we require for the cost function J in Eq (1). We see that the unskilled clusters have very high standard errors and 239 
they correspond roughly to the areas of unskilled regimes in Figure 3. Since each cluster now has associated error 240 
characteristics (e.g., bias and standard deviation), it is then straightforward to assign the bias and uncertainty for any 241 
new tracked wind observation by computing which regime it is likely to belong to. 242 

3.7 Experimental Set up 243 

In this section we will describe our experimental setup for training the data and testing its performance on a withheld 244 
dataset. We divide the dataset into two parts: a training set consisting of the first 1.5 months of the GEOS-5 Nature 245 
Run, and a testing set consisting of the last 0.5 month of the Nature Run. Our training/testing procedure for the 246 
simulation data and tracked wind is as follows:  247 

1. Divide the simulation data and tracked wind into two sets: training set of 1,000,000 points from the first 1.5 248 
months of the Nature Run and a testing set of 1,000,000 points from the final 0.5 months of the Nature Run. 249 

2. Using the ‘density.Mclust’ function, we train a Gaussian Mixture Model on a normalized random sample of 250 
observations from the training dataset of true winds (u and v direction), tracked winds (u and v direction), 251 
and water vapor with n=9 clusters. 252 

3. We train two separate random forests on a different random sample of 750,000 observations from the training 253 
dataset. We use tracked wind (u and v direction) and water vapor to model, separately, true winds in both the 254 
u and v directions.  255 

4. We apply the random forests to the dataset used for the Gaussian Mixture Model. This provides a random 256 
forest estimate for each point, which is used as a substitute for true wind values in the next step.  257 

5. Using the ‘predict.Mclust’ function, we predict the Gaussian mixture component assignment for each point 258 
of water vapor, tracked winds, and random forest estimate. 259 
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6. We compute the mean and standard deviation of the difference between the tracked winds and the true winds, 260 
per direction, for each Gaussian mixture model cluster assignment. This provides a set of error characteristics 261 
that are specific to each cluster.  262 

7. We can apply the random forest, and then the cluster estimation, to any set of water vapor and tracked AMV 263 
estimates. Thusly, any set of tracked AMV estimates and water vapor can be mapped to a specific cluster, 264 
and therefore its associated error characteristics.  265 

4 Results and Validation 266 

In this section, we compare our clustering method against a simple alternative, and we quantitatively demonstrate 267 
improvements that result from our error characterization. Recall that in Section 3, we divided the wind-tracking 268 
outputs into 9 regimes, which range from very skilled to unskilled. For each regime, we can quantify the uncertainty 269 
via a 95% confidence interval, which in the Gaussian case can easily be constructed as [xi - 2 σA, xi+ 2 σA], where xi 270 
the predicted mean and σA is the predicted standard deviation of the i-th cluster. To test the bias of our confidence 271 
interval, we divide the dataset described in Section 2 into a training dataset (first 1.5 month) and a testing dataset (last 272 
0.5 month). Having trained our model using the training dataset, we apply the methodology to the testing dataset, and 273 
we compare the performance of the predicted confidence intervals against the actual wind error (tracked winds - true 274 
winds). This is a type of probabilistic forecast assessment, and in this paper we assess the quality of the prediction 275 
using a scoring rule called continuous ranked probability score, which is defined as a function of a probabilistic 276 
forecast F (here represented by our confidence interval) and an observation x as follows: 277 

CPRS(	F, x) = 	[ 	

\

)\
(F(𝐱) − 	𝟙(𝐲 − 𝐱))^	𝐝𝐲	 278 

Where 𝟙( ) is the Heaviside step function and denotes a step function along the real line that is equal to 1 if the argument 279 
is positive or zero, and it is equal zero if the argument is negative. The continuous rank probability score here is strictly 280 
proper, which means that the function CPRS(F, x) attains the maximum if the data x is drawn from the same probability 281 
distribution as the probabilistic forecast F. That is, if the data x is drawn from F, then CRPS(F, x) ≤ CRPS(G, x) for 282 
all G ≠ F.  283 

The alternative error characterization method that we test against is a simple marginal mean and marginal standard 284 
deviation of the entire track - true wind datasets. This is essentially equivalent to an error characterization scheme that 285 
utilizes one regime, and its confidence interval similarly could be constructed as [x – 2 σ, x + 2 σ], where x and σ are 286 
the marginal mean and marginal standard deviation of the residuals (i.e., tracked wind minus true winds). Here, we 287 
use a negatively oriented version of the CRPS (i.e., Eq.(4) without the minus sign), which implies that lower is better, 288 
to evaluate the performance of our methodology against the naive error characterization method. We plot the histogram 289 
of the scores in Figure 12. 290 

(4)	
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The relative behavior of the CRPS is consistent between u and v winds. The CRPS tends to have to wider distribution 291 
when applied to the regime-based error characterization. Compared to the alternative error characterization scheme, 292 
our methodology produces a cluster of highly accurate predictions (low CRPS scores), in addition to some cluster of 293 
very uninformative predictions (high CRPS scores). These clusters likely correspond to the highly skilled cluster (e.g., 294 
Cluster 3) and the unskilled clusters (Cluster 5 and 8), respectively. Overall, the mean of the CRPS is lower for our 295 
methodology than it is for the alternative method, indicating that as a whole our method produces a more accurate 296 
probabilistic forecast.  297 

Thus far we have shown that our method produces more accurate error-characterization than an alternative method 298 
based on marginal means and variance. Now, we assess whether our methodology provides valid probabilistic 299 
prediction; that is, we test whether the uncertainty estimates provided are consistent with the empirical distribution of 300 
the validation data. To assess this, we construct a metric in which we normalize the difference between the true wind 301 
and the tracked wind by the predicted variance. That is, we compute the normalized values for u and v using the 302 
following equations: 303 

zd =
u − u.
σd

 304 

ze =
v − v.
σe

(5) 305 

Where u is the true u wind from the Nature Run data, u. is the tracked-wind, and σd is the error as assessed by our 306 
model. The values for the v-wind are defined similarly. The residuals in Eq (5) can be considered as a variant of the 307 
z-score, and it is straightforward to see that if our error estimates are valid (i.e., accurate), then the normalized residuals 308 
in Eq. (5) should have a standard deviation of 1. In Figure 12, we display the histogram of the normalized residuals 309 
zd and ze. It is clear that for both types of wind, our error characterization methodology produces highly accurate 310 
uncertainties (std = 1.003 and 1.009 for u and v, respectively).  311 

5 Conclusion 312 

Uncertainty quantification, which is the quantification of an imperfect or incomplete state of knowledge within a 313 
model, is an important component of data validation and scientific analysis. For wind-tracking algorithms, whose 314 
outputs (tracked u and v) are often used as observations in data assimilation analyses, it is necessary to accurately 315 
characterize the bias and standard error (e.g., see Section 2.2). Nguyen et al. (2019) illustrated that incorrect 316 
specification of these uncertainties (a and R in Eq. (1)) can adversely affect the assimilation results – 317 
mischaracterization of bias will assimilate an incorrect tracked wind, while an erroneous standard error could 318 
incorrectly weight the cost function. 319 

https://doi.org/10.5194/amt-2020-95
Preprint. Discussion started: 23 April 2020
c© Author(s) 2020. CC BY 4.0 License.



 11 

In this paper, we develop an error-characterization scheme based on random forest and mixture model clustering. 320 
Here, the mixture of a parametric approach and a machine learning method allows us to combine the flexibility of 321 
machine learning with the interpretability of mixture modelling in an entirely data-driven framework. In theory, the 322 
fidelity of our method should scale with the number of training data observations, making the methodology well-323 
suited for the massive datasets that are typical within remote sensing applications. Our error function has been applied 324 
to an AMV OSSE study using GEOS5 and its impact will be reported in a forthcoming paper. 325 

We demonstrate that our methodology produces accurate error estimates (also called validity), and that it is able to 326 
identify and remove the biases within the wind-tracking algorithm’s outputs. Particularly, the methodology is able to 327 
identify unskilled regimes that are physically meaningful — in our case, unskilled regimes related to regions of near-328 
zero water vapor content. We note that our methodology is able to find this dependence between unskilled regimes 329 
and low water content without any prior knowledge or specification from the user, deducing the relationship from the 330 
underlying multivariate distribution of water vapor, true wind, and tracked wind. While we position the methodology 331 
as an error characterization tool, this property also makes it useful as an exploratory tool to aid in understanding the 332 
distribution of multivariate and potentially complex data. 333 

Our algorithm consists of two parts: an emulator and a clustering algorithm. In this implementation, random forest 334 
and Gaussian mixture modelling are the approaches; in theory, these two steps could be accomplished using other 335 
algorithms belonging to the appropriate class. Future research includes replacing random forest with other machine 336 
learning methods such as neural networks or support vector machines, and investigating other methods of clustering, 337 
such as self-organizing networks. We note that the issue of bias removal in data assimilation and in remote sensing is 338 
certainly not limited to atmospheric motion vectors. The methods we have used to characterize uncertainties in AMVs 339 
are general, and can be applied to other inverse problems as well.  340 
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 402 

Figure 1: Map of Nature Run at one timestep at 700hPa (A): Water Vapor (B): True Wind Speed (C): 
Difference between True Wind Speed and AMV Estimate (D): AMV Estimate. 
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 403 

 404 

Figure 2: Diagram of Training Approach and Diagram of Implementation steps. 405 
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 406 

Figure 3:  Scatter plot of the simulated true wind vs AMV estimates for u and v wind. 407 

 408 

Figure 4: Simulated water vapor vs the absolute value of the difference between true and tracked winds. 409 
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 410 

Figure 5: Example of Gaussian Mixture Model in one dimension. Density Figures for the U-Direction AMV 411 
Estimate dimension of fitted Gaussian mixture. 412 

 413 

 414 

Figure 6: Scatterplot of simulated true wind vs AMV Estimates, each sub-panel corresponding to the specific 415 
Gaussian mixture component to which each point has been assigned. (A): U-Direction Wind (B): V-Direction 416 
Wind. 417 
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 418 

Figure 7: Scatterplot of Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the 419 
specific Gaussian mixture component to which each point has been assigned. (A): U-Direction Wind (B): V-420 
Direction Wind. 421 

 422 

Figure 8: Scatterplot of true wind estimate vs random forest produced estimate. (A): U Direction (B): V 423 
Direction 424 
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 425 

 426 

Figure 9: Scatterplot of simulated true wind vs AMV Estimates, each sub-panel corresponding to the specific 427 
Gaussian mixture component to which each point has been assigned when the true wind value has been 428 
substituted by the random estimate. (A): U-Direction Wind (B): V-Direction Wind 429 

 430 

Figure 10: Water Vapor vs Absolute Tracked Wind Error, each sub-panel corresponding to the specific 431 
Gaussian mixture component each point has been assigned when the true wind value has been substituted by 432 
the random estimate. (A): U-Direction Wind (B): V-Direction Wind 433 
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 434 

Figure 11: (A): Bias (Left Panel) and Standard Error (Right Panel) for each Gaussian mixture cluster in 435 
figure 6, U direction. (B): Same as (A) for V-direction 436 

 437 

Figure 12: CRSP applied to different error approaches. (A): Cluster Errors for U Winds (B): Total Errors 438 
for U Winds (C): Cluster Errors for V Winds (D): Total Errors for V Winds. 439 
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 441 

 442 

Figure 13: U and V winds normalized using Error Clusters 443 
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