10

15

20

Inpainting Radar Missing Data Regions with Deep Learning

Andrew Geiss and Joseph C. Hardin
Pacific Northwest National Laboratory, Richland, WA, USA

Correspondence: Andrew Geiss (andrew.geiss @pnnl.gov)

Abstract. Missing and low-quality data regions are a frequent problem for weather radars. They stem from a variety of sources:
beam blockage, instrument failure, near-ground blind zones, and many others. Filling-in missing data regions is often useful
for estimating local atmospheric properties and application of high-level data processing schemes without the need for prepro-
cessing and error-handling steps; feature detection and tracking for instance. Interpolation schemes are typically used for this
task, though they tend to produce unrealistically spatially-smoothed results that are not representative of the atmospheric tur-
bulence and variability that are usually resolved by weather radars. Recently, Generative Adversarial Networks (GANs) have
achieved impressive results in the area of photo inpainting. Here, they are demonstrated as a tool for infilling radar missing data
regions. These neural networks are capable of extending large-scale cloud and precipitation features that border missing data
regions into the regions while hallucinating plausible small scale variability. In other words, they can inpaint missing data with
accurate large-scale features and plausible local small-scale features. This method is demonstrated on a scanning C-band and
vertically pointing Ka-band radar that were deployed as part of the Cloud Aerosol and Complex Terrain Interactions (CACTI)
field campaign. Three missing data scenarios are explored: infilling low-level blind zones and short outage periods for the
Ka-band radar, and infilling beam blockage areas for the C-band radar. Two deep learning based approaches are tested, a Con-
volutional Neural Network (CNN) and a GAN that optimize pixel level error or combined pixel level error and adversarial loss
respectively. Both deep learning approaches significantly outperform traditional inpainting schemes under several pixel-level

and perceptual quality metrics.

Copyright statement. ©2021

1 Introduction

Missing data regions are a common problem for weather radars and can arise for many reasons. One of the most common for
scanning radars is beam blockage. This occurs when terrain or nearby objects like buildings and trees obstruct the radar beam,
resulting in a wedge-shaped blind zone behind the object. This is a particularly large problem in regions with substantial terrain
like the western potion of the United States for instance (Westrick et al., 1999; Young et al., 1999). Scanning radars can suffer
from many other data quality issues where contiguous regions of missing or low-quality data may need to be inpainted. Some

examples are: interference from solar radiation at dawn and dusk (Liu et al., 2016), ground clutter (Hubbert et al., 2009, 01

25

30

35

40

45

50

55

Jul. 2009) and super-refraction (Moszkowicz et al., 1994), and echos off of wind farms (Isom et al., 2009). Complete beam
extinction due to attenuation by large storms can similarly cause large missing data regions for high frequency radars. Several
computational approaches exist to infill partial beam blockage cases (Lang et al., 2009; Zhang et al., 2013). Another option is
to use a radar network where multiple radars are installed on opposite sides of terrain (Young et al., 1999). More recently, deep-
learning-based data fusion techniques (Veillette et al., 2018) have been developed to enhance the coverage of radar networks
by emulating radar observations based on data from satellite imagers and other instruments; these techniques have promise
for combating beam blockage and large missing data regions for scanning radars. Finally, in the absence of additional data
(from unblocked sweeps at higher elevation angles or other instruments), beam blockages can be filled in through traditional
interpolation.

In addition to beam blockage for scanning radars, we also examine simulated missing data scenarios for vertically pointing
radars. Specifically, we examine two missing data scenarios for the Department of Energy Atmospheric Radiation Measurement
(DOE-ARM) program’s Ka-band Zenith Radar (KaZR). This instrument collects cloud and precipitation information in a
vertical profile as weather passes over the radar and is used to generate time vs. height plots that are frequently used for
atmospheric research. The first scenario is a simulated instrument failure, where data is unavailable for up to several minutes.
The second scenario is a low-level blind zone. The low level blind zone is of particular relevance because the KaZR operates
with a burst and a pulse-compressed linear frequency modulated chirped pulse mode. When operating in chirped pulse mode,
data in the lower range gates is unavailable due to a receiver protection blanking region due to the longer pulse length (Widener
et al., 2012). Even the short burst pulse has a blind region near the surface based on the pulse width of the radar. Low-level
blind zones are also relevant to space-borne precipitation radars like the Tropical Rainfall Meteorology Mission (TRMM) and
the Global Precipitation Measurement mission (GPM) instruments, which can be blind at lower levels due to surface echos and
beam attenuation (Manabe and Thara, 1988; Tagawa and Okamoto, 2003).

Robust methods for inpainting missing radar data have many possible uses. Accurately inpainting can provide more useful
operational meteorology products for dissemination to the public (Zhang et al., 2011) or for use in nowcasting (Prudden et al.,
2020; Agrawal et al., 2019) or aviation (Veillette et al., 2018). Furthermore, research applications often involve sophisticated,
high-level processing of radar data: for feature detection and tracking for instance (Feng et al., 2018). Producing radar products
for research purposes where missing and low quality data regions have been repaired could significantly accelerate research
projects by reducing or eliminating the need for researchers to develop their own code for error handling and data quality
issues. Ideally, an inpainting scheme for radar data should produce results that are accurate at the pixel level, but also visually
appealing, physically consistent, and plausible.

Image inpainting has long been an area of research in the fields of computer vision and image processing. The image inpaint-
ing problem involves restoring a missing or damaged region in an image by filling it with plausible data. Common applications
include digital photo editing, restoration of damaged photographs, restoring lost information during image compression and
transmission, etc. and many approaches with a range of application-specific advantages and varying levels of complexity exist
(Jam et al., 2021). Image inpainting schemes can be broken into several categories: texture synthesis based approaches assume

self-similarity in images and copy textures found in the un-damaged region of the image into the missing-data region (Efros and

60

65

70

75

80

85

90

Leung, 1999). Structure-based methods seek to extend large-scale structures into the missing data region from its boundaries
and often focus on isophotes (lines of constant pixel intensity) that intersect the boundary (Criminisi et al., 2004). Diffusion
based methods diffuse boundary or isophote information through the missing data region, typically by solving a partial dif-
ferential equation within the region: the Laplace equation (Bertalmio et al., 2000) or the Navier-Stokes equations (Bertalmio
et al., 2001) for instance. There are also sparse-representation and multi-resolutional methods that are typically geared towards
inpainting specific image classes, pictures of faces for example (Shih et al., 2003). Finally, there are many mixed approaches,
like that used by Bugeau et al. (2010), that combine concepts of from two or more of these categories. Image inpainting is a
large sub-field of image processing and for a more detailed overview see Jam et al. (2021) or Guillemot and Le Meur (2014).

In recent years, deep Convolutional Neural Networks (CNNs) have revolutionized the area of image inpainting research.
The earliest applications of CNNs to the image inpainting problem involved using autoencoders that optimized pixel-level
loss (Jain and Seung, 2008). Research in this area began to quickly accelerate after the introduction of Generative Adversarial
Networks (GANs) for image processing and synthesis by Goodfellow et al. (2014) however. GANs allow CNN-based inpainting
schemes to hallucinate plausible small-scale variability, including textures and sharp edges, in the inpainted regions. GAN-
based algorithms can produce extremely realistic results, to the point that it may not be obvious that inpainting has been
performed. GAN-based inpainting involves training two CNNs side-by-side. One is the inpainting/generator network, which
takes a damaged image as input and attempts to fill in missing data regions. The second is a discriminator network that takes
either undamaged images or outputs from the generator and attempts to classify them as real or fake, typically optimizing
a binary cross-entropy (Goodfellow et al., 2014) or Wasserstien (Arjovsky et al., 2017) loss function. (Pathak et al., 2016)
first performed inpainting with a GAN, using a combination of /5-loss that optimizes pixel-level errors and ensures that the
inpainting CNN can reproduce large-scale structures (though they may be blurry), and an adversarial loss, enforced by a
discriminator network, that ensures the inpainted regions look realistic and forces the generator to produce realistic sharp
features and small scale variability. (Yang et al., 2017) expanded on this by using a combination of adversarial loss and feature
loss based on the internal activations of image classification CNNs (Ledig et al., 2017). There has been a significant amount of
subsequent work focusing on altered loss functions, incorporating updated CNN architectures like U-Net (Ronneberger et al.,
2015), and other applications of these CNN training paradigms. An example is the image-to-image translation introduced by
(Isola et al., 2017) whose used a combined ¢; and adversarial loss function that is used here. The research in this area is far too
broad to include a comprehensive overview here, so please refer to Elharrouss et al. (2020) for a more in-depth review of deep
learning based inpainting.

In this study, we experiment with applying state of the art deep learning based image inpainting schemes to fill in several
types of missing data regions simulated for two of the ARM program radars. The majority of past image inpainting research
is heavily focused on restoring missing regions in photographs. As a result, GAN-based methods are heavily optimized to
produce visually appealing and plausible results, are not necessarily good at reproducing the ground-truth image in terms of
pixel-level accuracy. Therefore two CNN-based inpainting paradigms are investigated, one that optimizes only the pixel level

mean absolute error (¢1-loss), and one that optimizes combined ¢; and adversarial loss.

95

100

105

110

115

120

125

2 Data

The data used here are from two US DOE Atmospheric Radiation Measurement (ARM) program radars that were deployed
as part of the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign from October 2018 to April 2019
(Varble et al., 2018). The field campaign deployed a large suite of instruments near the Sierras de Cérdoba mountain range
in Argentina, including multiple radars, lidars, imagers, rain gauges, and many others, with the primary goals of investigating
the influence of orography, surface fluxes, aerosols, and thermodynamics on boundary layer clouds and on the initiation and
development of convection. The radars were deployed in a region just east of the mountain range and were able to observe

frequent warm boundary layer cloud and a range of convective systems at various points in their lifetime.
2.1 KaZR

The Ka-band Zenith Radar (KaZR) is a 35GHz vertically pointing cloud radar that has been deployed at many of the ARM
sites around the world (Widener et al., 2012). It is a doppler radar that produces time vs height observations of cloud and
precipitation and operates in both a burst and a pulse-compressed linear frequency-modulated chirped pulse mode. Here, we
have used the quality controlled burst pulse mode reflectivity, mean doppler velocity, and spectrum width fields from the CACTI
field campaign from October 15th, 2018 to April 30th, 2019 (Hardin et al., 2020a). A minimum reflectivity of -10dBZ was used
as a mask and any reflectivity, velocity, or spectrum width observations in pixels lower than this threshold were ignored. The
CNN takes samples that have 256 time-observations and 256 vertical range gates as inputs. The radar has a sampling frequency
of 2s and vertical resolution of 30m and this corresponds to about 8.5min by 7.5km. Because there are frequent time-periods
when there is no cloud over the radar and training/evaluating the CNN on blank samples is not useful, time periods longer than
256 samples when there was no weather observed were removed from the data-set. Because there is some noise in the data and
samples without weather still contain some pixels with reflectivity greater than -10dBZ, “no weather” periods were defined as
periods that do not contain any 10x10-pixel (300m x 20s) block with all reflectivity values >-10dBZ. After this filtering, the
data-set is split into a training set containing the first 80% of the data and a test set containing the last 20% (with respect to

time). The KaZR operated continuously throughout the field campaign (Hardin et al., 2020b).
2.2 C-SAPR2

The C-band Scanning ARM Precipitation Radar 2 (C-SAPR?2) is a 5.7GHz scanning precipitation radar (Hardin et al., 2020b).
Here, we have used reflectivity, radial velocity, and spectrum width data from Plan Position Indicator (PPI) scans. The data
has a 1deg azimuth and 100m range resolution. The PPI scans used were pre-processed using the “Taranis” software package
(Hardin et al., 2021). Taranis provides quality control and produces a suite of useful geophysical parameters using the radar’s
dual-polarization observations. This dataset has not yet been made publicly available but will be in the near future. The C-
SAPR2 suffered a hardware failure in February 2019 and was no longer able to rotate in the azimuth, so PPI scans are only
available from October 15th, 2018 to March 2nd, 2019 (Hardin et al., 2020b). For the majority of the field campaign, the

C-SAPR2 scan strategy involved performing a series of PPI scans at consecutively increasing elevation angles, followed by

130

135

140

145

150

155

a vertical scan, followed by a series of range height indicator scans. The whole process takes about 15 minutes. PPI scans at
subsequent elevations are often similar because they are observed in quick succession, so the training set used here contains
only one sweep from each volume scan. The sweeps used to construct the inpainting dataset were selected randomly from the
5-sweeps in each volume scan that contained the most weather (most observations with reflectivity >0dBZ). Many of these
still did not contain weather, and inpainting empty scans is not useful, so ultimately 1500 scans that contained weather were
retained. As with the KaZR data, the first 80% were used for training and the last 20% were used for testing. Finally, pixels
with reflectivity below a threshold of 0dBZ were blanked out.

3 Methods

Two deep-learning approaches are demonstrated here to inpaint missing data regions. The first involves using a single CNN.
Radar data are intentionally degraded by removing randomly sized chunks of data. The exact manner in which the data is
handled depends on the case and more information is provided in Section 4. The CNN is tasked with taking the degraded radar
data along with a mask indicating the position of the missing data as an input and minimizing the mean absolute pixel-wise
error between its output and the original (non-degraded data). This referred to as *“/;-CNN” throughout the manuscript because
it optimizes the /1 norm of difference between its outputs and ground-truth. The second approach involves training two CNN's
adversarially: one that performs inpainting and one that discriminates between infilled radar data and ground truth radar data.
The inpainting network attempts to minimize both the mean absolute pixel error and the likelihood that the discriminator labels
its output as inpainted data. The inpainting network is provided an additional random noise seed as input and is allowed to
hallucinate plausible small scale variability in its outputs. This CNN is referred to as a Conditional Generative Adversarial
Network (“CGAN”) later in the manuscript. The exact neural networks and training procedure are described in more detail

below.
3.1 Convolutional Neural Network

Inpainting is done with a Unet++ style CNN (Zhou et al., 2018). This is based on a previous neural network architecture called
a “Unet” (Ronneberger et al., 2015). These CNNs map a 2-D gridded input to an output with the same dimensions, and were
originally developed for image segmentation tasks. A U-net is composed of a spatial down-sampling and a corresponding
up-sampling branch. The down-sampling branch is composed of a series of “blocks” consisting of multiple convolutional
layers and the input data undergoes 2x2 down-sampling as it passes through each block while the number of feature channels
is increased. This process trades spatial information for feature information. The down-sampling branch is followed by an
up-sampling branch that increases the spatial dimensions and decreases the feature dimension. A key aspect of the Unet
is that it also includes skip connections between these two branches, where the output from each down-sampling block is
provided as additional input to the upsampling block with the corresponding spatial resolution. This makes these networks
particularly good at combining large-scale contextual information with pixel-level information. The Unet++ extends this idea

by constructing each skip-connection across the U-net from a set of densely connected (Huang et al., 2017) convolutional layers

160

165

} \
/

Input
Data (NxMx3)
Mask (NxMx1)
Noise (NxMx1)

Output

(€=0)

3x3 Conv +tanh (NxMx3)
Merge with Input
Inpainted (NxMx3)

~

= 2x2 Downsampling 2 < .

3 2|

=)

(t=2) £ > S <}

2 o \I»‘ 3

= 2x2 Upsampling = g > : ~ e

=) x E >

@© [S2 IS X

..... e s ©

""" o o 2
= Skip Connection © =z

(=3

(=14

Figure 1. A diagram of the Unet++ (Zhou et al., 2018) style CNN used for inpainting. For the KaZR cases NxM = 256x256. For the C-
SAPR2 cases NxM = 1024x128. ¢ represents the number of spatial down-sampling operations, Cjy is the number of output channels from

the convolutional layers at the highest spatial resolution level, and g determines the rate at which the number of channels increases for lower

resolutions.

and including intermediate up- and down-sampling connections (the inclusion of intermediate down-sampling connections is a
slight difference from the original Unet++ as described by Huang et al. (2017)). A diagram of the inpainting CNN is shown in
Figure 1. The discriminator network consists of seven consecutive densely connected blocks (Huang et al., 2017) that consist
of four convolutional layers with rectified linear unit transfer functions followed by 2x2 down-sampling and 0.1 dropout layers.
The final output is a classification produced by a 1-neuron layer with a logistic (sigmoid) transfer function. A diagram of this

CNN is included in the supplementary material.

3.2 Data Processing

Several pre- and post-processing operations need to be applied to the radar data so that it is suitable for use with the CNNss.
Firstly, the data need to be standardized to a consistent input range of [-1,1]. The various fields used have different scales

and this ensures that they have similar weighting when computing loss. Furthermore, the CNN uses a tanh transfer function

170

175

180

185

190

195

200

after the last layer which ensures that the CNN outputs are limited to the same range as the inputs. Separate standardization
procedures were used for each of the fields. For reflectivity: data was clipped to a range of -10dBZ to 40 dBZ for KaZR data
and a range of 0dBZ to 60 dBZ for C-SAPR2 data. In practice, we found that the #;-CNN and many of the inpainting schemes
that were used as benchmarks tended to smooth reflectivity values near cloud edges. Most cloud edges in the dataset involve
a sharper gradient in reflectivity however, and this smoothing is a result of the inpainting/interpolation schemes struggling to
correctly position the cloud edge. To mitigate this, the reflectivity data was linearly mapped to a range of [-0.5,1.0], and pixels
with reflectivity below the minimum threshold were assigned a value of -1.0, leaving a gap of 0.5 between clear and cloudy
values. This gap helped the CNN and some of the diffusion- and interpolation-based inpainting schemes to produce sharp edges
at the boundaries of precipitation and cloud regions. No such gap was used for the other two fields, but as a post-processing
step, after inpainting, the other two fields were masked so that all locations with reflectivity outputs < -0.5 were considered
clear pixels. For velocity, a de-aliasing scheme was first applied (see Section 3.3), then velocity values were linearly scaled
by a factor of (8ms~!)~?! for the KaZR data and (28ms~!)~! for the C-SAPR2 data. Note that the instruments have Nyquist
velocities of 8m.s~! and 16.5ms~! respectively, and that the scanning radar is more likely to observe large velocities because
the vertical component of velocity is typically smaller than the horizontal component for atmospheric motions. Finally, a tanh
function was applied to bound all the velocity inputs in a range of [-1,1]. Note that the unfolded velocities will often exceed the
Nyquist velocity so the tanh function was used to bound the transformed velocity data to [-1,1] instead of clipping. This non-
linearly compresses the high velocity values near 1, but ensures that different large values remain unique and distinguishable
from each other. The spectrum width data were clipped to a range of [0,2.5]ms~! for KaZR and [0,5.5]ms~! for C-SAPR2
and then linearly mapped to a range of [-1,1]. The inverse of each of these operations was performed to map the CNN outputs
back to the range of the original dataset.

When degrading data for CNN training and testing, missing data regions for each field were created by setting all reflectivity
and spectrum width values in the region to -1 and all velocity values to 0. Large regions of clear pixels naturally exist in the
training data of course, so an additional mask channel is provided as an input to the CNN to indicate the regions that need to be
inpainted. The mask has values of 1 in missing data regions and O elsewhere. Because values outside the missing data region
are known, there is no point in returning CNN outputs for these areas. The final operation performed by the CNN takes the
output from the last convolutional layer (with a tanh transfer function) and uses the mask to combine the known data from the

input with the CNN outputs in the missing data region. The exact operation is:
G(xz)=mG'(z) +(1—m)z (1)

where G(x) is the CNN output for input pixel x, G’ is the output from the last convolution + tanh layer, and m is the
corresponding pixel in the mask. CNN outputs in initial experiments that used a mask with a sharp edge (transition from 1 to
0) around the inpainting region tended to contain noticeable artifacts at the edges. To help ensure that the features produced by
the CNN at the edges of the inpainting region matched with the features just outside of the region in the input data, a n-pixel
buffer region was included where the values in the mask decrease linearly from 1 to 0. During training, n is randomly selected

from a range of 1-17 to improve the robustness of the trained CNN. The result is that the final CNN outputs in this buffer

205

210

215

220

225

230

235

region are a weighted average of the CNN output and the known input data. This significantly reduced artifacts near the edge
of the inpainted region. Finally, in the CGAN case, an additional random seed was provided as a CNN input that allows the
CNN to hallucinate plausible small-scale variability. Here, this seed was included as an additional input channel containing
random values sampled from a Gaussian distribution with a standard deviation of 0.5. We found that after training the CNNs
generally did not did not rely on this random seed however, this is discussed in more detail in Section 5. In summary, the input
channels to the inpainting CNN are: [-1,1]-standardized reflectivity, velocity, and spectrum width data, a [0,1] mask indicating

the inpainting region with smoothed edges, and a channel of random seed data for the generator when training as a CGAN.
3.3 Doppler Velocity Folding

The doppler velocity data from both KaZR and C-SAPR?2 contain velocity folding. Doppler radars can only unambiguously
resolve radial velocities of plus or minus a maximum value known as the Nyquist velocity (V;,42). Vinaz 18 @ function of the
frequency and range resolution of the radar. Velocities that exceed the Nyquist velocity are mapped periodically back into this
range, so that velocities slightly larger than V,,,,,, are mapped to values slightly above (smaller magnitude) — V... The velocity
data used here has V;,,4. = 8ms~! and V.4 = 16.5ms ! for KaZR and C-SAPR2 respectively. Despite the smaller Nyquist
velocity, the KaZR data are generally less susceptible to aliasing because vertical velocities in the atmosphere are typically
smaller (in magnitude) than horizontal velocities. In practice, instances of velocity folding manifest as large jumps in velocity
near the scale of +2V/,,,,, and because real-world meteorological conditions are extremely unlikely to cause jumps in velocity
of this magnitude over such a small spatial scale, velocity folding is often easily detectable in contiguous cloud/precipitation
regions. Correcting folding is much more difficult than simply detecting it however. Many automated unfolding algorithms
exist and this is still an active area of research.

We initially attempted to train the inpainting CNN on the velocity data without applying any unfolding scheme, but it
struggled to adequately inpaint regions where folding had occurred. As noted above, the large jumps at the boundaries of
aliased regions are extreme and non-physical, and while the CNN could reproduce large velocity-folded regions in its outputs,
it tended to smooth the change in velocity at the region boundaries over several pixels leading to a smoother transition and
thus a result that most velocity un-folding algorithms that rely on detecting these jumps would fail on. We ultimately chose to
implement a 2D flood-filling based de-aliasing algorithm that is usable for both the KaZR and C-SAPR2 data. The unfolding
algorithm takes the velocity data, the Nyquist velocity, and a mask indicating clear pixels. For C-SAPR?2 one sweep is processed
at a time and for KaZR each net-CDF file retrieved from ARM is processed individually (typically about 20mins of data each,
though this is variable). The algorithm first breaks the velocity data into a set of contiguous regions that do not contain aliasing.
This is done by first detecting the edges of regions with non-aliased velocity data by flagging all pixels that have velocity
data where there is either a jump in velocity between that pixel and a neighboring pixel that exceeds 1.1V},4, or there is
a neighboring pixel that does not have velocity data. These region edge pixels are then used as seed points for a flood-fill
algorithm which is applied iteratively until no seed points remain (every time a region is filled all seed points contained in
that region get removed from the list). The regions are then processed from largest to smallest: if a region has no neighbors

its velocity remains unaltered and it is removed from the list of regions, if it does have neighbors, the largest neighboring

240

245

250

255

260

265

region is identified and the mean change in velocity across the border between the two is used to correct the smaller region’s
velocity by adding or subtracting the appropriate multiple of 2V,,,,,.. The smaller of the two regions is then integrated into the
larger. This process continues until the list of contiguous velocity regions is emptied. This approach does have some failure
modes, typically associated with contiguous regions of aliased velocity that do not have any neighboring regions. We note that
many other dealiasing schemes exist (Johnson et al. (2020) provide a KaZR specific scheme for instance) and may be worth

investigating for future work, but this approach was sufficient for the CNNs trained here.
3.4 Training

The neural networks were trained using two different loss functions. In the first case, they were trained using a pixel-level

Mean Absolute Error (MAE) loss, also known as ¢; loss. This can be written as:
L=Eqylly—G(z)]])

Here, y is the true pixel value and G(x) is the CNN output pixel value. We chose to limit the pixel-level loss so that it is only
computed on pixels that are part of the infilled region (and the buffer pixels surrounding it, see Section 3.2) because the CNN
is constructed to exactly reproduce the pixel values in the region with good data and because we used different sized missing
data regions during training and wanted them to have equal weighting when computing gradients and batch loss. The CNNs
trained with MAE loss tend to produce more conservative results within the inpainted regions than CGANSs (fewer details and
extreme pixel values), but they are still particularly good and localizing and preserving sharp edges and larger structures and
can outperform conventional inpainting and interpolation methods. In initial experiments mean squared error or /5 loss was
used but this led to extremely smoothed features in the inpainted region. We also trained CNNs as Conditional Generative

Adversarial Networks (CGANSs), using a combination of /; and adversarial loss:

Lg=AEuy:(ly— G(x,2)|] - Eq 2 [log(D(x, G(x,2)))] €)

Lp = —Eqyflog(D(z,y))] - Eq [log(1 - D(z,G(x,2)))])

Where L and L are the generator and discriminator losses respectively, « is the input radar data and mask, z is the random
seed input, y is the ground truth data, G(z, z) is the generator output, D is the discriminator classification, and X is a constant
used to weight the MAE and adversarial components of the generator loss. Refer to (Goodfellow et al., 2014) for a description

of the adversarial loss and (Isola et al., 2017) for more discussion of the conditional adversarial loss function in Eqns. 3 and 4.

An Adam optimizer was used for training with: 81 = 0.9, 82 = 0.999, and € = 10~7 for the ¢; case and 31 = 0.5 for the
CGAN case. Other training details depend on the scenario and are summarized in Table 1. Table 1 shows specific information

about the CNN hyper-parameters, the batch size and number of batches used during training, and when the learning rate was

270

275

280

Case H Loss ‘ N x M ‘ Co ‘ g ‘ Depth ‘ Batch Size | Training Batches | LR-Reduction at Batches

KaZR Outage 2 256 x 256 | 8 2 5 8 5 x 10° 4% 10°,4.75 x 10°

KaZR Outage Eq.3 | 256 x256 | 14 | 1.75 5 16 1.6 x 10° 0.3 x10%,1.25 x 10°
KaZR Blind Zone 0 256 x 256 | 8 2 5 8 5 x 10° 4% 10°, 4.75 x 10°

KaZR Blind Zone Eq3 | 256x256 | 14 | 1.75 5 16 1.3 x 10° 0.7 x 10°, 1.1 x 10°
C-SAPR2 Blockage 12 1024 x 128 | 10 | 2 6 8 5 x 10° 4% 10°, 4.75 x 10°

C-SAPR2 Blockage || Eq.3 | 1024 x 128 | 12 | 1.75 6 16 6.5 x 10* 1.9 x 10*

Table 1. Table of neural network hyper-parameters and training parameters. N x M, Co, g, and “Depth” are hyper-parameters that define
the size and shape of the CNN and are shown in Figure 1 (“Depth” refers to the number of down-sampling operations or the maximum
value of ¢ from Figure 1). “Batch Size,” “Training Batches,” and “LR-Reduction at Batches” refer to the number of samples per mini-batch,
the total number of mini-batches/weight updates during training, and the batch number after which a learning rate reduction was performed

(respectively).

decreased during training for each of the inpainting scenarios. For the ¢; cases, an initial learning rate of 5 x 10~* was used and
was reduced by a factor of 10 twice during training after a set number of batches. For the CGAN cases, an initial learning rate
of 1 x 10~* was used for the generator network and a learning rate of 1.5 x 10~* was used for the discriminator network. These
were both manually reduced by a factor of 10 during training based on monitoring the adversarial loss and sample outputs for
several randomly selected cases from the training set.

“Data augmentation” schemes involve applying random transformations to training samples and are often used to train
deep CNNs. They increase the diversity of the training samples and can improve skill and reduce overfitting. Many of the
common data augmentations used for images cannot be applied to radar data without resulting in physically impossible samples
however. Here, we have carefully selected several data augmentations that result in physically plausible samples. For KaZR,
training samples were selected from the training set using random start times (as opposed to chopping the dataset into discrete
256 x 256 samples prior to training) and the samples were randomly flipped with respect to time. For cloud features that are
embedded in the large scale flow, flipping with respect to time results in a physically plausible sample, and approximates
the same cloud feature embedded in large-scale flow in the opposite direction. For weather features whose shape is heavily
determined by the large-scale flow (e.g. fall streaks) this results in an unlikely, but still very realistic looking sample. For C-
CSAPR?2, random rotation with respect to azimuth and random flips with respect to azimuth were used during training. These
transforms approximate different start azimuths or a different coordinate convention for the sweeps and do not alter the physical

structure of the weather.

10

285

290

295

300

305

310

4 Results

In this section, the results of the CNN-based inpainting are compared to several common inpainting techniques. We first
introduce these benchmark schemes and then discuss the error metrics used. Finally, results for each of the three inpainting
scenarios are discussed separately. For space, only one sample case is shown for each of the inpainting scenarios, but many more
have been made available online !. The examples shown in the manuscript were chosen blindly but not randomly, meaning we
picked cases to include based on the ground truth but without consulting the CNN output. This was to ensure that the examples

included a sufficient amount of cloud/precipitation to be of interest.
4.1 Benchmark Inpainting Schemes

CNN output was compared to several more conventional inpainting schemes of varying complexity. Examples of each of these
schemes applied to the KaZR inpainting scenarios are shown in Figure 2. The same pre- and post-processing used for the
inpainting CNNss is used for the inpainting schemes, as described in Section 3.2. We found that, in practice, this also helped
the inpainting schemes generate sharper borders near cloud edges. Because the KaZR low-level blind zone scenario only has a
single boundary with information that can be used for inpainting (the upper boundary), a different set of benchmark schemes
were used for this case that are applicable to this type of scenario. The first three inpainting schemes below were used for both
the KaZR outage and C-SAPR2 beam blockage scenarios which have 2-3 boundaries with information, while the last three

were used for low-level inpainting.

Linear Interpolation: This is simple 1-dimensional linear interpolation between opposite boundaries of the missing data
region. For the KaZR data, it is done with respect to time, and for the C-SAPR2 data it is done with respect to azimuth angle.
Typically this approach performs well in terms of MAE but produces unrealistic results. It also does not take into account
variability with respect to height (range) for KaZR (C-SAPR2).

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>