

1 Validation of a new cavity ring-down spectrometer

2 for measuring tropospheric gaseous hydrogen

3 chloride

4 *Teles C. Furlani¹, Patrick R. Veres², Kathryn E.R. Dawe^{3, a}, J. Andrew Neuman^{2, 4}, Steven S.*
5 *Brown^{2,5}, Trevor C. VandenBoer¹, Cora J. Young¹*

6 ¹Department of Chemistry, York University, Toronto, ON, Canada

7 ² NOAA Chemical Sciences Laboratory, Boulder, CO, USA

8 ³ Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada

9 ⁴ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

10 ⁵ Department of Chemistry, University of Colorado, Boulder, CO, USA

11 ^aNow at SEM Ltd., St. John's, NL, Canada

12 Abstract

13 Reliable, sensitive, and widely available hydrogen chloride (HCl) measurements are important for
14 understanding oxidation in many regions of the troposphere. We configured a commercial HCl
15 cavity ring-down spectrometer (CRDS) for sampling HCl in the ambient atmosphere and
16 developed [calibration and](#) validation techniques to characterize the measurement uncertainties.

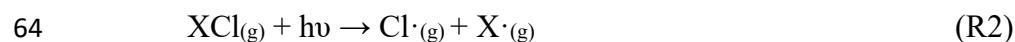
17 The CRDS makes fast, sensitive, and robust measurements of HCl in a high finesse optical cavity
18 coupled to a laser centered at 5739 cm⁻¹. The accuracy was determined to reside between 5–10%,
19 calculated from laboratory [calibrations](#) and [an](#) ambient air intercomparisons with annular
20 denuders. The precision and limit of detection (3 σ) in the 0.5 Hz measurement were below 6 pptv

21 and 18 pptv, respectively for a 30 second integration interval in zero air. The response time of this
22 method is primarily characterized by fitting decay curves to a double exponential equation and is
23 impacted by inlet adsorption/desorption, with these surface effects increasing with RH and
24 decreasing with decreasing HCl mixing ratios. The minimum 90% response time was 10 seconds
25 and tThe equilibrated response time for the tested inlet was 2–6 minutes under the most and least
26 optimal conditions, respectively. An intercomparison with the EPA compendium method for
27 quantification of acidic atmospheric gases showed good agreement, yielding a linear relationship
28 statistically equivalent to unity (slope of 0.97 ± 0.15). The CRDS from this study can detect HCl
29 at atmospherically relevant mixing ratios, often performing comparable or better in sensitivity,
30 selectivity, and response-time from previously reported HCl detection methods.

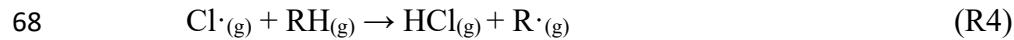
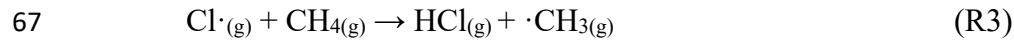
31

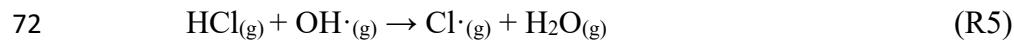
32 1. Introduction

33 Halogenated compounds that participate in catalytic cycles in the atmosphere have major
34 impacts on atmospheric chemistry. Chlorine-containing species have long been known to
35 catalytically destroy stratospheric ozone (Solomon, 1999) and can have similar impacts on
36 tropospheric ozone in polar regions (Simpson et al., 2007, 2015). In particular, early morning
37 oxidation in the troposphere can be influenced heavily by chlorine atoms released by photolabile
38 chlorine species (Osthoff et al., 2008; Thornton et al., 2010; Young et al., 2012, 2014). It is
39 estimated that reactions involving chlorine atoms account for 14–27% of global tropospheric
40 oxidation of abundant volatile organic compounds (VOCs) (Sherwen et al., 2016).


41 The role of chlorine chemistry in the troposphere remains uncertain in part due to a lack of
42 a complete understanding of the contribution of chlorine reservoir species to the tropospheric
43 chlorine inventory (Osthoff et al., 2008; Young et al., 2014). Sources of inorganic chlorine to the

44 troposphere are important because many of them are photochemically active (e.g. ClNO₂). A near-
45 complete budget of inorganic tropospheric chlorine from aircraft transects of polluted North
46 American continental outflow during the WINTER campaign demonstrated that hydrogen chloride
47 (HCl) makes up 48–62 % of total inorganic chlorine, and approximately 98% of total gaseous
48 inorganic chlorine (Haskins et al., 2018). Troposphere HCl levels are typically between 10 and
49 1000 parts per trillion by volume (pptv) (e.g. Crisp et al. (2014); Haskins et al. (2018); and Young
50 et al. (2013)). Elevated levels of HCl are typically found near marine environments polluted with
51 NO_x; where reactions involving the chloride in sea spray aerosols can be a major source of chlorine
52 to the troposphere (Crisp et al., 2014; Finlayson-Pitts et al., 1989; Haskins et al., 2018; Wang et
53 al., 2019).



54 HCl is directly emitted to the atmosphere predominantly from volcanic activity, biomass
55 burning, and industrial sources (Butz et al., 2017; Crisp et al., 2014; Keene et al., 1999). HCl is
56 also produced through heterogeneous acid displacement reactions of strong acids, such as nitric
57 acid, with particulate chloride (pCl⁻) (Bondy et al., 2017; Clegg and Brimblecombe, 1985; Gard et
58 al., 1998; Valach, 1967; Wang et al., 2019):


60 where M represents a cation in a chloride salt (often sodium). Elevated levels of chlorine atoms
61 may also be present in both indoor and outdoor environments due to the emission of photolabile
62 reactive chlorine compounds (Dawe et al., 2019; Mattila et al., 2020; Osthoff et al., 2008; Young
63 et al., 2014, 2019).

65 Secondary production of HCl predominantly occurs *via* the reaction of chlorine atoms with
66 methane or VOCs by hydrogen abstraction:

69 The loss of gas-phase HCl occurs predominantly through wet or dry deposition which are terminal
70 sinks for tropospheric chlorine (Wang et al., 2019), with minor loss by reaction with the hydroxyl
71 radical (OH) to re-form chlorine atoms:

73 The balance between loss and formation of chlorine atoms from HCl is highly dependent on factors
74 such as the presence of pCl^- , NO_x ($\text{NO}_x = \text{NO} + \text{NO}_2$), and HCl deposition rate (Finlayson-Pitts et
75 al., 1989; Roberts et al., 2008).

76 Measuring HCl in the gas phase is challenging as it readily adsorbs to surfaces. Methods
77 for atmospheric HCl detection must be sensitive, robust, and selective and address HCl interactions
78 with instrument surfaces. Mass spectrometry based measurement techniques have been developed
79 for the detection of HCl in both the stratosphere and troposphere (e.g. Huey et al. (Huey et al.,
80 1996) and Marcy et al. (2004)). Other methods include scrubbing ambient air using an annular
81 denuder and/or a tandem mist chambers to collect HCl, followed by offline analysis such as ion
82 chromatography (IC) (Keene et al., 2007, 2009; United States Environmental Protection Agency,
83 1999; Young et al., 2013). Online detection methods such as chemical ionization time of flight
84 mass spectrometry (CI-ToF-MS) (Crisp et al., 2014), negative ion proton transfer chemical
85 ionization mass spectrometry (NI-PT-CIMS) (Veres et al., 2008), and negative mode atmospheric
86 pressure chemical ionization coupled to triple quadrupole mass spectrometry (APCI-MS-MS)

87 (Karellas et al., 2003) have been shown to be reliable and sensitive methods for HCl detection.
88 Limitations to these existing HCl measurement techniques include some or all of the following;
89 detection limits that are not suitable for the low level of HCl in the troposphere, slow time response,
90 lack of portability, and calibration challenges. Spectroscopic techniques offer distinct advantages
91 over some previous methods. Spectroscopic techniques for measuring atmospheric HCl reported
92 by Hagen et al. (2014) and Wilkerson et al. (2021) have shown the precedent for fast time response,
93 as well as sensitive, selective, and robust detection. The portability and fast time response for
94 instruments is of great importance for spatial resolution and is therefore a key factor for field
95 deployment.

96 Measurements of HCl are typically calibrated using HCl from permeation devices and or
97 standards in compressed gas cylinders. Method validation for HCl measurements are rare, but can
98 reduce these uncertainties (Hagen et al., 2014; Wilkerson et al., 2021). In this paper we
99 demonstrate the versatility and validation of a new commercial cavity ring-down spectrometer
100 (CRDS) for in-situ atmospheric gas phase HCl measurements. First, we compare this CRDS with
101 existing HCl measurement techniques through lab and field intercomparisons. Finally, we describe
102 and characterize surface effects and recommend inlet configurations for best practices when
103 conducting ambient sampling.

104 **2. Materials and experimental methods**

105 **2.1 Chemicals**

106 Reagent grade hydrochloric acid (HCl, 12 M) was used in permeation device construction
107 (see Section 2.3). Potassium hydroxide (KOH) pellets were used to create scrubbing solution for
108 permeation device gas collection. Commercially available reagents were from Sigma-Aldrich
109 (Oakville, Ontario, Canada) and Ultra zero air (grade 5.0) gases were from Praxair (Toronto,

110 Ontario, Canada). Experiments used deionized water generated by a Barnstead Infinity Ultrapure
111 Water System (Thermo Fisher Scientific, Waltham, Massachusetts, USA; $18.2 \text{ M}\Omega \text{ cm}^{-1}$). Annular
112 denuder coating solution was prepared with reagent grade (>95.5%) sodium carbonate (Sigma-
113 Aldrich, St. Louis, Missouri, USA), reagent grade glycerol (Sigma-Aldrich, St. Louis, Missouri,
114 USA), HPLC grade methanol (Fisher Chemicals, Ottawa, Ontario, Canada), and $18.2 \text{ M}\Omega \text{ cm}^{-1}$
115 deionized water. Eluent for annular denuder IC analysis was prepared from sodium hydroxide
116 solution (NaOH, 50% w/w, Thermo Fisher Scientific, Sunnyvale, California, USA). IC calibration
117 standards were prepared through serial dilution of a mixed anion standard concentrate (Thermo
118 Fisher Scientific, Dionex Seven-Anion II, P/N: 057590). Nitrogen (grade 4.8).

119 **2.2. Cavity ring-down spectrometer (CRDS)**

120 The Picarro G2108 Hydrogen Chloride Gas Analyzer system was used for all analyses.
121 The basic operating principles of this CRDS are similar to analogous Picarro greenhouse gas
122 instruments that have been described in detail by Crosson et. al (2008). The CRDS consists of a
123 tunable laser, a wavelength monitor, and a heated optical cavity (80°C). All the components of
124 this analyzer and internal stainless-steel fittings are contained within a heat-regulated metal case
125 maintained at 45°C . The laser radiation (1742 nm, 5739 cm^{-1}) is directed by a fiber optic cable to
126 the wavelength monitor and optical cavity. The first overtone (2-0 absorption band) of HCl is
127 easily discernable from other absorbing species (e.g. H_2O , CH_4), has a relatively high intensity
128 [compared to the fundamental absorption transition](#), and is accessible to near-infrared (IR) diode
129 laser light sources. The optical cavity is fitted with three highly reflective dielectric-coated fused
130 silica mirrors ($R > 99.995\%$, ring down time constant of 53 μsec , equivalent to a path length of 16
131 km) oriented in an acute triangular arrangement supported by an invar housing. The reflectivity of
132 the mirrors is measured from the laser signal loss in an analyte-free optical cavity under inert gas

133 flow. The CRDS flow rate is 2 L min⁻¹ and the cavity is held at a reduced pressure of 18.70 ± 0.02
134 kPa (140 Torr) thermostated to 80.000 ± 0.005°C. One mirror is mounted on a piezoelectric
135 actuator to achieve optical resonance between the laser frequency and the longitudinal modes of
136 the cavity. The laser is shut off rapidly (< 1 μsec) once resonance is achieved. A photodetector
137 monitors the decay of the photons exiting the cavity through another mirror. Custom electronics
138 digitize the signal for fitting of an exponential decay; the time constant of the decay, τ , is converted
139 to absorbance, α , using the expression

140

$$\alpha = 1 / c\tau - 1 / c\tau_0 \quad \text{E1}$$

141 where c is the speed of light. The instrument measures 30 specific frequencies within ~1 cm⁻¹
142 centered at 5739 cm⁻¹ to fit the absorption spectra of trace species in this region (see Figure S24).
143 HCl, H₂O, and CH₄ mixing ratios are reported every 2 seconds, though the true time response of
144 the measurement method is limited by surface effects (see Section 3.4). Gaseous inorganic chlorine
145 reservoir species (e.g. ClNO₂) cannot thermally dissociate under the cavity (80 °C) conditions
146 (Thaler et al., 2011). The instrument zero measurement drift is reduced by a high precision
147 distributed feedback laser centered at 5739.2625 cm⁻¹ coupled with a custom-designed wavelength
148 monitor to determine the frequency axis of each spectrogram. To mitigate particulate matter optical
149 extinction and surface deposition on the high reflectivity mirrors, two high efficiency particulate
150 air (HEPA) filters are placed upstream of the cavity, contained within the 45 °C heat-regulated
151 compartment.

152 **2.3 In-house HCl permeation device validation**

153 The in-house assembly of HCl permeation devices (PDs) is described in detail in Lao et al.
154 (2020). Briefly, 200 μL of 12 M aqueous HCl solution was pipetted into a 7.62 cm perfluoroalkoxy
155 (PFA) tube (3 mm i.d. with 1 mm thickness) plugged at both ends with porous

156 polytetrafluoroethylene (PTFE) (1 cm length by 3.17 mm o.d.). The polymers allow a consistent
157 mass of HCl to permeate at a given temperature and pressure. An aluminum block that was
158 temperature-controlled using a cartridge heater (OmegaTM; CIR-2081/120V, Saint-Eustache, QC,
159 Canada) housed the PD and was regulated to 60.0 ± 0.1 °C by a process controller. Dry N₂ flowed
160 through a PFA tube (1.27 cm o.d.) in the block, containing the PD. Stable flows of 49 ± 2 standard
161 cubic centimeters per minute (sccm) through the oven were maintained with a 50 μ m diameter
162 critical orifice (Lenox laser, Glen Arm, Maryland, USA, 15 psi; SS-4-VCR-2-50). Flows were
163 measured using a DryCal Definer 220 (Mesa Labs, Lakewood, Colorado, USA). The mass
164 emission rate of HCl from the PD was quantified by scrubbing into a 25 mL glass impinger
165 containing 1 mM KOH over 24 h followed by analysis using IC with conductivity detection (CD).
166 Mass emission rates for the PD were determined as 140 ± 18 ng min⁻¹ (n=3, $\pm 1\sigma$) at 60 °C.

167 **2.4 Laboratory intercomparison**

168 A laboratory intercomparison between the CRDS and offline-measured HCl scrubbed into
169 a basic solution of 100 mM KOH by delivering gaseous HCl from the permeation device to the
170 sampling systems. The 140 ng min⁻¹ of HCl in dry N₂ from the PD was mixed into a zero air
171 dilution flow of 2.1 to 8.0 L min⁻¹, to provide standard addition HCl [calibrations-mixing ratios](#) that
172 ranged from 12 to 45 ppbv.

173 The dilution flow was maintained using a 10 L min⁻¹ mass flow controller (GM50A, MKS
174 instruments, Andover, Massachusetts, USA). All inlet lines and fittings were kept at ambient
175 temperature (~25 °C) and were made of PFA unless stated otherwise. The inlet mixing line
176 between the PD emissions and the humidified dilution flow was 3.17 mm i.d. and 45 cm in length.
177 Residence times for HCl in the sampling line ranged from 0.02 to 0.08 seconds. To vary relative
178 humidity (RH), a controlled flow of zero air was directed into a glass impinger at room temperature

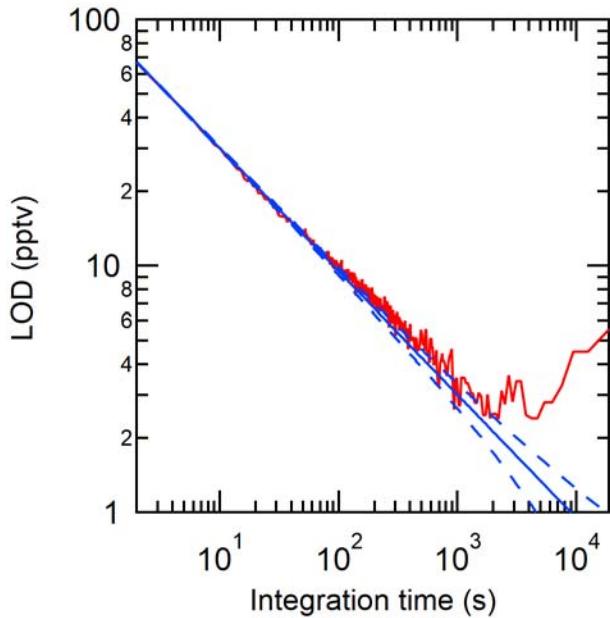
179 containing deionized water to yield a water-saturated air stream. The humidified flow was passed
180 through a 2 μm Teflon filter (TISCH scientific, North Bend, Ohio, USA) in a PFA holder to
181 prevent any aqueous droplets from entering the experimental lines. The RH was set by mixing
182 with dry zero air to generate 0, 20, 50, and 80 % RH values.

183 **2.5 Ambient intercomparison**

184 An ambient intercomparison was undertaken by measuring outdoor air with the CRDS in
185 parallel with sodium carbonate-coated annular denuders. A total of 11 denuder samples were
186 collected alongside continuous CRDS observations, each for approximately 24 hours between 4–
187 11 April 2019. The measurement site was the Air Quality Research Station, located on the roof of
188 the Petrie Science and Engineering Building at York University in Toronto, Ontario, Canada
189 (43.7738° N, 79.5071° W, 220 m above sea level). All indoor inlet lines and fittings were kept at
190 room temperature while the outdoor temperature ranged from -2 to 14 °C. All inlet lines and
191 fittings were made of PFA unless stated otherwise. A full schematic of the sampling apparatus
192 indicating the separation between the outdoor and indoor inlet positions is provided in Figure S5.
193 A 22 L min^{-1} sampling flow was pulled through a URG Teflon Coated Aluminum Cyclone (URG
194 Corporation, Chapel Hill, North Carolina, USA) with a 2.5 μm cut-off for particulate matter. The
195 inlet lines were such that each sampling setup collected HCl at equal residence time to ensure
196 equivalent wall losses of HCl. The shared inlet line was 4.65 m in length and had an i.d. of 4.76
197 mm. The flow was split between the 1.5 m denuder sampling line (20 L min^{-1}) and the 0.15 m
198 CRDS sampling line (2 L min^{-1}), yielding a 0.375 sec residence time for both methods. The
199 denuder line flow was equally divided into two multichannel etched glass annular denuders (URG
200 Corporation, Chapel Hill, North Carolina, USA, 4 channel, 242 mm length, URG-2000-30x242-
201 4CSS) at 10 L min^{-1} . The denuders collected HCl in parallel to each other with flows controlled

202 using two separate 10 L min⁻¹ mass flow controllers (GM50A, MKS instruments). Denuders were
203 coated with a solution of 2% w/w sodium carbonate and 0.1% w/w glycerol in a solution of 1:1
204 methanol:water. A 15 mL aliquot of coating solution was dispensed into a denuder and two
205 polypropylene caps affixed. The sealed denuders were inverted and rotated for a few minutes to
206 ensure an even coating. The excess coating solution was decanted, and the denuder was dried for
207 15 min with 2 L min⁻¹ of zero air. After sampling, denuders were extracted with 2 aliquots of 5.00
208 mL deionized water, following the same sealing and inversion procedure, for a total extraction
209 volume of 10.00 mL. Extracts were collected into a 15 mL polypropylene tube for storage at 4 °C
210 until analysis. Instances of flagged instrument errors in the CRDS data during ambient
211 observations were removed as standard practice in quality control procedures (see Figure S32).
212 The loss of observational data during such periods corresponds to a negative bias. The CRDS data
213 loss during a given denuder sampling period was included in setting the overall measurement error
214 when intercomparing measurements.

215 **2.6 Ion chromatography analysis**


216 Samples collected into an impinger from the HCl PD were analyzed as the chloride anion
217 by IC-CD using an ICS-2100 (Thermo Fisher Scientific, Sunnyvale, California, USA) according
218 to the method described in Place et al. (Place et al., 2018). Annular denuder extracts were analyzed
219 by IC-CD using an ICS-6000 (Thermo Fisher Scientific, Sunnyvale, California, USA). Details of
220 both separation methods can be found in the SI. Chloride was quantified using external calibration
221 with a 5-point calibration curve. Two check standards, located at the high and low ends of the
222 working range, were used to evaluate the accuracy of quantification.

223 **3. Results and discussion**

224 **3.1 Suitability for atmospheric measurements**

225 The selectivity of this CRDS analyzer arises from monitoring a high-intensity spectral line
226 (5739.2625 cm^{-1}). The absorption used by this instrument is suitable for HCl measurements in the
227 ambient atmosphere because abundant atmospheric gaseous species such as CO, CO₂, NO_x, and
228 N₂O (Gordon et al., 2017; Kochanov et al., 2019) do not have major absorption features in the
229 same region. Absorption features of H₂O and CH₄ in this spectral region are part of the fitting
230 parameters used to determine number densities of HCl, as described in Section 2.2. Most organic
231 and inorganic compounds commonly found at trace levels in the atmosphere do not absorb strongly
232 in this region (Gordon et al., 2017; Kochanov et al., 2019). For these compounds to interfere with
233 the CRDS measurement, their mixing ratios would need to be very high (>10s of parts per million
234 by volume, ppmv). Under conditions where the peak shape is compromised by the presence of
235 interfering absorbing species or instrument instabilities (e.g. cavity pressure fluctuations), the
236 instrument fitting is interrupted and the “bad” data is flagged, thereby allowing simple quality
237 control (see Figure S32).

238 The limit of detection (LOD) of the CRDS analyzer is suitable for expected HCl levels in
239 the atmosphere. Instrument LODs were calculated as three times the Allan-Werle deviation (Figure
240 1, (Hagen et al., 2014)) when overflowing a 15 cm inlet (3.17 mm i.d.) with zero air directed into
241 the CRDS for ~10 hours. The LODs determined in the CRDS measurements for 2 second, 30
242 second, 5 minute, and 1 hour integration times were 9566, 18, 5, and 2 pptv, respectively.
243 Similarly, precision was determined from the Allan-Werle deviation in the blank over the same 10
244 hours of zero air sampling. Precision in a 2 second, 30 second, 5 minute, and 1 hour integration
245 time was 3222, 6, 2, and 0.8 pptv, respectively.

246

247 **Figure 1.** Allan-Werle deviation (3σ) in the optical cavity purged with zero-air (red line) shown with the
248 ideal deviation (no drift, solid blue line) and associated error in the deviation (dashed blue line).

249 **3.2 Instrument performance**

250 This CRDS has many advantages compared to methods previously used to measure HCl
251 in the ambient atmosphere (Table 1). The LOD and precision of the instrument is comparable to
252 prior high time-resolution methods, allowing changes in HCl mixing ratio of a few pptv to be
253 measured. The accuracy/uncertainty is the hardest to compare due to the differences in assessment.
254 A particular challenge is that other methods require external calibrations to determine accuracy
255 and a stable, accurately calibrated HCl source at atmospherically relevant mixing ratios is
256 challenging to obtain (Lao et al., 2020; MacInnis et al., 2016). In contrast, spectroscopic techniques
257 offer a distinct advantage as they are absolute measurements and accuracy determinations rely on
258 propagating uncertainty in the measured parameters (i.e. wavelength and the time constant τ). In
259 the absence of determining accuracy of the CRDS from its operating parameters we use the
260 deviations in our intercomparisons to estimate the accuracy of the full system, i.e. the instrument
261 and ambient sampling inlet combined. [We assess the total method uncertainty using](#)

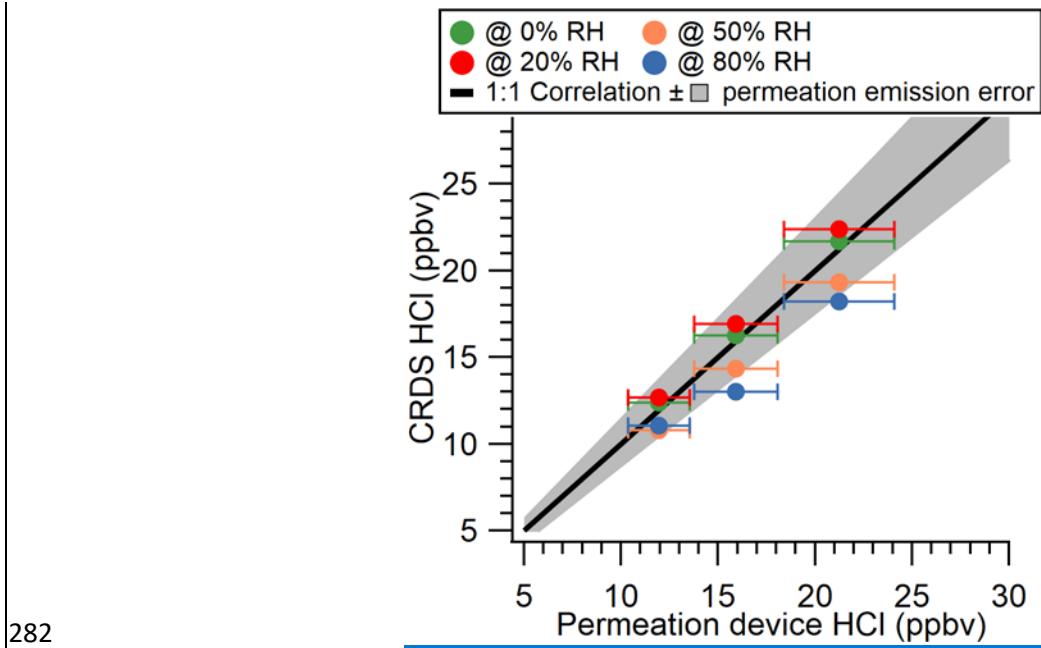
262 [intercomparisons with the gold standard for atmospheric acid detection \(EPA Compendium](#)
 263 [method IO-4.2, United States Environmental Protection Agency](#) (United States Environmental
 264 Protection Agency, 1999) [due to the greater uncertainty when considering the potential total](#)
 265 [system error from the sorption/desorption to all sampling surfaces \(i.e., instrument and inlet\)](#). We
 266 measured that the accuracy of the analyzer ranges from 5 to 15%. This is a conservative range
 267 based on the methods we used to validate the instrument, which is further described in Section 3.3.
 268 The response time of the CRDS used in this work is fast compared to most measurements; the
 269 limitation for all online-line methods compared in Table 1 is not the measurement frequency, but
 270 rather the time required for HCl to adsorb and desorb from the inlet to the sample stream, which
 271 is discussed further in Section 3.5. Lastly, instrument size and power consumption of this CRDS
 272 are much lower than many other techniques and are major advantages when considering use in the
 273 field, particularly for mobile platforms.

274 **Table 1.** Performance characteristics of CRDS HCl analyzer compared to previously reported
 275 methods.

Instrument	LOD	Accuracy/ Uncertain ty	Precision	Measurement frequency	Instrument Size	Power Consumption	Reference
<i>Near-IR CRDS</i>	<18 pptv ^a (30 sec)	5–15%	6 pptv (30 sec)	2 s ^e	31.75 kg 43.2 x 17.9 x 44.6 cm	110 W (analyzer) 75 W (pump)	This study
<i>Near-IR CRDS</i>	60 pptv ^a (1 min)	\leq 10%	20 pptv (1 min)	<15 s	NR	NR	(Hagen et al., 2014)
<i>Off-axis integrated cavity output spectrometer (OA-ICOS)</i>	<u>78 pptv</u> (30 sec)	<u><11%</u>	<u>26 pptv</u> (30 sec)	<u>1 s</u>	NR	NR	(Wilkerson et al., 2021)
<i>Aircraft laser infrared absorption spectrometer</i>	33 pptv ^b	10 %	0.1 ppbv (30 sec)	<30 s	72 kg	NR	(Voss et al., 2001; Webster et al., 1994)

<i>Quartz-enhanced photoacoustic spectroscopy (QEPAS)</i>	550 ppbv ^a	NR	526 ppbv	NR	NR	NR	(Ma et al., 2016)
<i>Acetate CI-ToF-MS</i>	97 pptv ^a	30%	32.3 pptv	<1 s	59 x 42 x 83 cm	<2000 W peak	(Crisp et al., 2014)
<i>Iodide CI-HR-ToF-MS</i>	30 pptv ^a (30 sec)	30%	<u>1053.3</u> pptv (30 sec)	0.22 s	~ 59 x 42 x 83 cm	<2000 W peak	(Lee et al., 2018)
<i>Sulfur pentafluoride ion trap CIMS</i>	66 pptv ^a	10%	22 pptv	1.6 s	NR	NR	(Jurkat et al., 2010)
<i>APCI-MS-MS</i>	335 pptv ^a	NR	NR	5 s	NR	< 17.5 kW	(Karellas et al., 2003)
<i>Tandem mist chamber and IC-CD</i>	48 pptv ^c	<u>≤</u> 25 %	24 pptv ^c	2 h	NR	NR	(Keene et al., 2007, 2009)
<i>Annular denuder and IC-CD</i>	6.9–42 pptv ^d	10%	NR	Hours–Days	>10 kg	400 W (Sampling equipment only)	This study

276 a: 3σ , b: predicted assuming a minimum detectable line-center absorption of 1×10^{-5} can be achieved in 30 s, c:

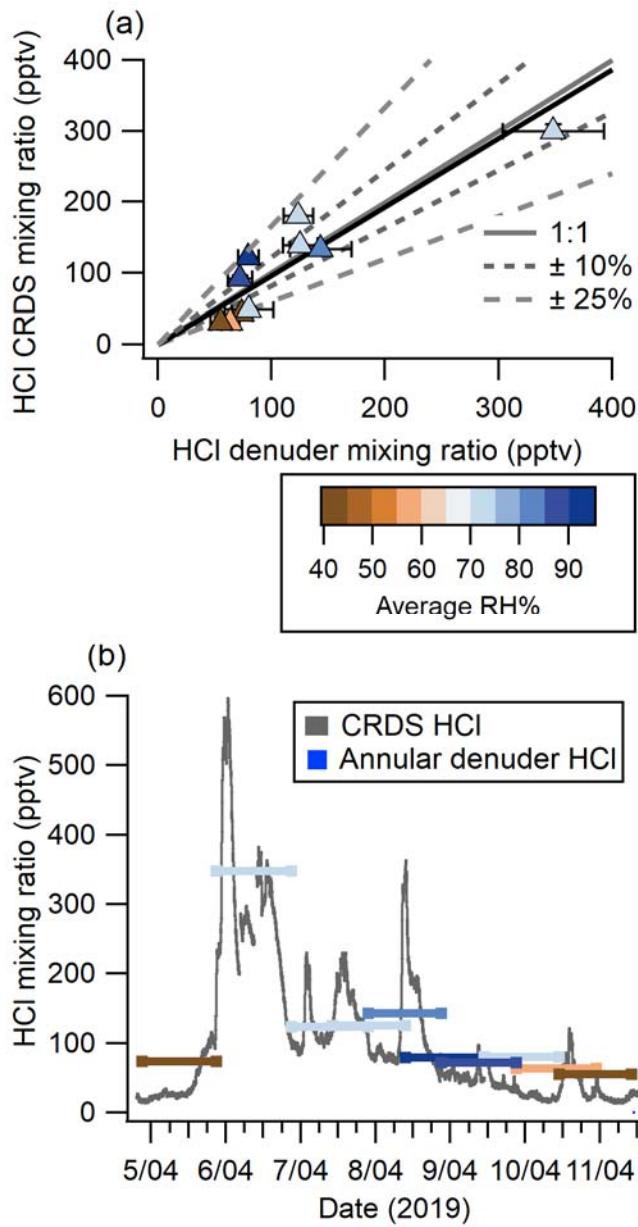

277 precision (σ) determined from averaged paired measurements in 2 h samples on IC-CD and LOD was calculated at

278 2σ , d: 3σ calculated range for a 24-hour sampling time from three denuder method blanks, e: instrument data reporting

279 frequency. The true measurement frequency will also be affected by surface effects, as described in section 3.4, and

280 NR: not reported.

281 3.3 Laboratory and ambient intercomparison



282

283 **Figure 2.** Comparison of CRDS HCl measurements and output from an HCl permeation device over a
 284 range of RHs. Error bars in the x direction represent propagated IC measurement error, while error bars in
 285 the y direction represent the standard deviation of online sampling plateau for each mixing ratio (low
 286 magnitudes mean these error bars do not extend beyond the points). A 1:1 correlation (solid black line) is
 287 shown with the uncertainty in the permeation device emission rate (shaded grey area).

288 We compared the CRDS analyzer-measured HCl with the gas standard mixing ratios
 289 provided by an IC-certified PD under dry conditions and observed a close to 1:1 correlation (Figure
 290 2). We explored 5 mixing ratios 12, 16, 21, 32, and 45 ppbv. These levels are higher than have
 291 been observed in the ambient atmosphere but demonstrate good single response linearity. When
 292 the calibration HCl gas entrained in flows of higher RH ($\geq 50\%$) a negative bias was observed,
 293 although the measurements generally remained within the quantified error in the PD output.
 294 Negative bias from the provided HCl mixing ratios at 50 % and 80 % RH were 9.6 % and 14.9 %,
 295 respectively. As described above, there is no spectroscopic water absorption interference in the
 296 HCl measurement indicating that water increased HCl losses to gas handling surfaces for
 297 experiments conducted in humidified air. Inlet surface effects are well established for gaseous
 298 strong acids and bases, as these compounds readily sorb at interfaces (e.g. Eisele and Tanner

299 (1993), Kim et al. (2008), Neuman et al. (1999), Pszenny et al. (1993), Roscioli et al. (2016)). The
300 comparison presented here is a best-case scenario because the sampled mixing ratios were much
301 greater than expected in the ambient atmosphere, and therefore less likely to be impacted by
302 surface effects. Surface effects under humid conditions necessitated the mitigation and
303 quantification efforts described further in Section 3.5. To practically validate the CRDS under real-
304 world conditions, an ambient intercomparison was performed over a period of 7 days (4–11 April
305 2019).

306

307 **Figure 3.** (a) Comparison of HCl measured 4–11 April 2019 using annular denuders and CRDS (averaged
 308 to the collection time of denuders). Denuder error bars are derived from the error in the IC calibration,
 309 standard deviation of method blanks, and extraction recovery. CRDS measurement errors are the precision
 310 in a single measurement combined with data loss for flagged instrument errors. Also shown are a 1:1
 311 correlation line (solid grey), 10 % (short grey dash) and 25 % (long grey dash) deviation from 1:1, and the
 312 orthogonal distance regression (solid black). Points are coloured by the average RH during sampling. (b)
 313 Continuous HCl mixing ratio timeseries by CRDS overlaid with averaged 24-hour denuder measurement
 314 analyzed by IC with lines coloured according to the average RH during sampling.

315

316 Online HCl detection by CRDS showed good agreement with HCl mixing ratios quantified
317 from ten annular denuder extracts collected according to EPA Compendium method IO-4.2
318 (United States Environmental Protection Agency, 1999), which is a standard offline method for
319 quantitation of acidic atmospheric gases ([see](#) Figure 32a). Measurements from the 2 instruments
320 were linearly related with a slope of 0.97 ± 0.15 , as determined by orthogonal least distance
321 regression, with a y-intercept of -0.001 ± 0.021 . Half of the measurements are within 10 % of a
322 1:1 correlation and the remaining half fall within 25 %. To further validate the comparison a linear
323 correlation coefficient (see Figure S74) of 0.93 ± 0.14 was determined for the two methods and
324 shows good agreement with the orthogonal least distance regression. Changes in RH had no
325 systematic bias on the correlation. Our intercomparison indicates that CRDS measures HCl with
326 comparable results to those obtained by carbonate-coated annular denuders. While the latter
327 requires offline analysis, the CRDS has the additional benefit of continuous high time resolution
328 measurements at 0.5 Hz and dramatically better precision.

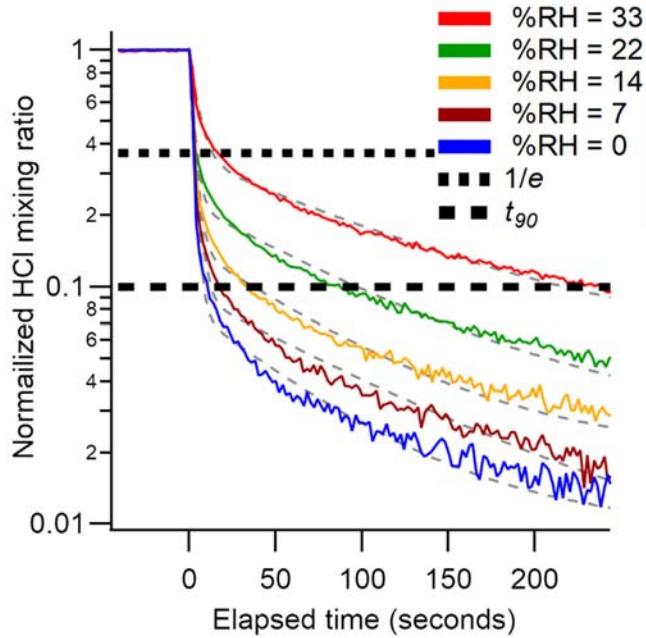
329 Although average HCl measurements between the CRDS and denuders agreed well, much
330 of the useful temporal variability were lost in the time-integrated denuder data ([see](#) Figure 32b).
331 For example, from 19:00 April 5 to 01:00 April 6 the CRDS measured mixing ratios between 91
332 and 598 pptv. This rapid change of mixing ratios is not captured by the 24-hour average denuder-
333 measured mixing ratio of 348 pptv. The fast time response of the CRDS also captured other rapidly
334 changing HCl features such as the peak observed on between 00:00–06:00 on April 7. The 6-hour
335 event started at 80 pptv and increased at a rate of $1.2 \text{ pptv min}^{-1}$ to 230 pptv over ~120 minutes,
336 followed by a decrease at a rate of $0.5 \text{ pptv min}^{-1}$ for ~240 minutes to 98 pptv. The fast time
337 response of the CRDS on the order of minutes is crucial when applying the technique to the real

338 atmosphere for the purpose of fully constraining the sources and sinks for HCl, for which many
339 precursors have similar lifetimes, and ultimately improve our understanding of the Cl budget
340 (Crisp et al., 2014).

341 Results from the laboratory and ambient intercomparisons were used to determine the
342 accuracy of the HCl analyzer as 5 to 15 %. The lower bound of uncertainty (5 %) was determined
343 from the laboratory intercomparison under the optimal dry conditions (Figure 24). The upper
344 bound of uncertainty (15 %) was consistent across the laboratory intercomparison under the
345 highest RH (80%) conditions tested (Figure 24) and the standard deviation of the orthogonal
346 distance regression slope from the ambient intercomparison (Figure 32a).

347 **3.4 Sampling line and instrument response time assessment**

348 We have thus far demonstrated the efficacy of the CRDS for accurately analyzing gas
349 standards and ambient HCl. However, the potential for sampling losses or desorption sources of
350 surface-active gases that could affect the quality of such measurements is ubiquitous, and the study
351 of these effects are well established (Crisp et al., 2014; Ellis et al., 2010; Pollack et al., 2019;
352 Roscioli et al., 2016). This makes quantification a challenge as there are typically long
353 equilibration times associated with signal stabilization. Long equilibrations make fast time
354 response detection difficult without first characterizing line sorption and desorption, followed by
355 making inlet modifications to minimize losses (Deming et al., 2019; Ellis et al., 2010; Pagonis et
356 al., 2017). To ensure accurate field measurements of HCl, a characterization of the magnitude of
357 HCl loss and desorption during sampling was made. The response time of an instrument to a rapid
358 change in HCl can be calculated by both the time it takes for the measurement to go from zero to
359 100 % of the HCl quantity being delivered, as well as the time it takes to return from the HCl
360 quantity being delivered back to zero.


361 Inlet and instrument surface effects for surface active gases such as HCl can be
362 characterized by fitting decay curves to a double exponential (Ellis et al., 2010; Moravek et al.,
363 2019; Pollack et al., 2019; Zahniser et al., 1995);

364
$$y = y_0 + A_1 e^{\left(\frac{-t-t_0}{\tau_1}\right)} + A_2 e^{\left(\frac{-t-t_0}{\tau_2}\right)} \quad \text{E2}$$

365
366 Where y is the mixing ratio of HCl, y_0 is the mixing ratio at the end of the decay, A_1 and A_2 are
367 proportionality coefficients that determine how much the decay is governed by τ_1 and τ_2
368 respectively, t is the time elapsed, and t_0 is the initial time. The first time constant (τ_1) represents
369 air exchange within the instrument, while the second (τ_2) is the surface interaction equilibrium
370 time between HCl adsorbed to surfaces and the overlying airstream mixing ratio. The only term in
371 this equation that can be optimized for the CRDS is τ_2 , which can be reduced by decreasing the
372 amount of time HCl interacts with inlet surfaces. The sampling flow rate and cavity temperatures
373 are constant for the commercial software and not adjustable, thereforefixing changing the value of
374 τ_1 was not explored in this study. In most reports τ_1 represents the largest change in signal and
375 represents instrument response time. For example, Whitehead et al. (2008) found that τ_1 values
376 governed >75% (i.e. A_1) of changes in measured NH₃. For the CRDS, measured values of τ_1 were
377 between 5 and 10 seconds under all conditions and could be improved with a faster inlet flowrate
378 for the CRDS to subsample from.

379 An additional set of experiments was undertaken in which a 24 ppbv HCl standard was
380 sampled while varying RH from 0 to 33% (Figure 4). The effect of RH on the response time of the
381 CRDS was measured using a method similar to that described in Section 2.4. The HCl standard
382 gas was sampled over three 10 min pulses at each RH ($\pm 2\%$). The HCl standard was introduced
383 into a 3.17 mm i.d. PFA tube and 10 cm long inlet line. Data was background corrected to levels

384 measured prior to the standard addition [calibration](#) and the signal was normalized to the HCl
385 enhancement during the final 10 seconds of each [calibration-HCl](#) pulse. Due to a lack of inlet
386 characterization for systems measuring HCl, we compare our decay constants to literature values
387 for compounds with similar surface-active properties (e.g. HNO₃ and NH₃). The instrument
388 exchange rate (τ_1) values for spectroscopic methods measuring HNO₃ and NH₃ are generally faster
389 than our measured values for HCl. However, it should be noted that measurements of τ_1 reflect
390 differences in sampling flow rates and internal volume and are likely affected by the internal filters
391 present in the HCl CRDS. Typically, τ_1 was <2 seconds (Ellis et al., 2010; Pollack et al., 2019;
392 Roscioli et al., 2016), but could be as high as 4.5 seconds for larger pulses (1 ppmv) of analyte
393 (Roscioli et al., 2016). We observed a highly variable surface interaction equilibrium time constant
394 (τ_2), with values ranging between 97 and 350 seconds. Reported values of τ_2 for other surface-
395 active gases are similarly variable, with values <50 seconds for heated short clean inlets (Ellis et
396 al., 2010; Pollack et al., 2019; Roscioli et al., 2016), and ~300 seconds for a contaminated inlet
397 measuring NH₃ (Pollack et al., 2019). Major differences in the surface area between our instrument
398 and the instruments [to which](#) we compare [here](#) are likely to cause τ_2 [discrepancies](#)[differences](#). Our
399 method employs the use of [three](#)[two](#) HEPA filters that increase the gas to surface interactions, [and](#)
400 [therefore increase our equilibrated response time \$\tau_2\$, by a greater degree](#).

401

402 **Figure 4.** Background corrected and normalized signal decay curves observed for pulsed HCl (24 ppbv)
 403 performed at various RHs. Dashed grey lines represent a double exponential fit to the average of three
 404 cycles at each water mixing ratio. The short and long dashed black lines indicate 37 % (1/e) and 90 % (t₉₀)
 405 decrease from the initial signal, respectively.

406

407 Another method for quantifying response time is by calculating the e-folding (1/e) signal
 408 loss with respect to time. Calculated e-folding response times demonstrated the fast exchange
 409 within the system with values comparable to τ_1 . Similarly, a signal decrease of 90% (t_{90}) illustrates
 410 the total decay of the sampling line. Using e-folding response time and t_{90} offers a better visual
 411 understanding of the relative roles for instrument and inlet responses and the impacts of increasing
 412 RH. We summarize the double exponential decay constants, e-folding response time, and t_{90} for
 413 the rise and decay of HCl mixing ratios from pulses delivered to the instrument in Table 2 and SI
 414 tables 1–4. Increasing the RH increases the response time of the inlet (Figure 4). At the highest
 415 experimental RH (33 %), τ_2 is increased by almost a factor of two compared to dry conditions,
 416 from seconds to minutes. At lower mixing ratios the higher RH increased the response times to a
 417 greater extent (Table 2 and Tables S1–S4). The increased response time at high ambient RH would

418 not compromise stationary measurements in which HCl mixing ratios changed on time scales of
419 minutes to hours but would not capture more rapid changes. The largest impact on CRDS time
420 response likely comes from unavoidable effects of partitioning on the large surface area of the
421 HEPA filters located before the optical cavity. Minimizing inlet effects for the CRDS where
422 observation of HCl mixing ratio changes over <1 min is required (e.g. aircraft or mobile
423 measurements) are most important. The wall interactions of HCl can be reduced by increasing the
424 inlet flow rate and/or decreasing the tubing length (Pagonis et al., 2017).

425 Physical approaches to improving inlet response include inlet material substitution,
426 heating, and pressure reduction, to reduce adsorption of surface-active analytes through removal
427 of surface water and promoted mass transfer of analytes to the gas phase (Sintermann et al., 2011).
428 Deming et. al. (Deming et al., 2019) found that PFA tubing had the lowest delay times for
429 semivolatile compounds and would likely extend to small polar molecules like HCl. For a clean
430 thermally-equilibrated inlet, HCl artifacts can be minimized, but if semivolatile aerosol chloride is
431 sampled (e.g. NH₄Cl), the thermodynamic equilibrium can be shifted to result in a positive bias in
432 the HCl measurement, equivalent to similar considerations when measuring HNO₃ and NH₃ (Ellis
433 et al., 2010; Sintermann et al., 2011; Whitehead et al., 2008). While HEPA filters prevent aerosol
434 from entering the cavity, their elevated temperature (45 °C) could lead to volatilization bias and
435 therefore the use of an inlet filter held at ambient temperature to reduce such effects is
436 recommended at a minimum.

437 Chemical approaches can also help mitigate adsorption of surface-active molecules to inlet
438 surfaces through derivatization or passivation. The silanization of glass or stainless-steel to form
439 an inert fluorinated or silicon coating on a virtual impactor or the introduction of a gaseous
440 fluorinated compound that adsorbs competitively to instrument surfaces in place of the analytes

441 have been demonstrated to substantially reduce surface adsorption on PFA (Ellis et al., 2010;
 442 Moravek et al., 2019; Pollack et al., 2019; Roscioli et al., 2016; Wilkerson et al., 2021).However,
 443 environmental impacts must be considered when constantly adding fluorinated compounds to
 444 sampling flows as they may have deleterious environmental consequences (Cousins et al., 2020).
 445 In particular, perfluorobutanesulfonic acid, the fluorinated chemical suggested for passivating
 446 inlets (Roscioli et al., 2016), is subject to usage restrictions in some European countries (ECHA,
 447 2020) based on potential negative human and environmental health impacts (Benskin et al., 2012;
 448 Sunderland et al., 2019). The high surface activity of perfluorobutanesulfonic acid is likely to cause
 449 issues in the analyzer used in this work because the gas sample comes into direct contact with the
 450 high reflectivity mirrors. Acid deposition onto mirrors will degrade their reflectivity. Silicon
 451 coatings on all plumbed surfaces have been successfully used for atmospheric HCl measurements
 452 (Wilkerson et al., 2021), and recommended for applications where PFA use is impractical.
 453 Although a direct comparison has not been conducted for HCl, PFA inlet material has been
 454 reported to yield better response times than silicon coatings for nitric acid (Neuman et al., 1999).Differences in instrument configurations and applications may warrant the use of different inlet
 455 materials and coatings for successful measurement of atmospheric HCl.

457 **Table 2.** Summary of the fit parameters for the double exponential decay curves as a
 458 function of mixing ratio and humidity, e-folding response time, and t_{90} .
 459

Mixing ratio (ppbv)	Residence time (seconds)	RH (%)	τ_1 (seconds)	τ_2 (seconds)	$1/e$ (seconds)	t_{90} (seconds)
12	0.021	0	10.3	123	26.5	101
16	0.028	0	9.6	200	24.7	82
21	0.037	0	10.1	300	26.4	74
		0	2.7	97	2.5	10
24	-	7	5.0	124	2.5	18
		14	5.0	114	2.5	32
		22	5.0	123	3.9	86

32	33	10.0	189	16.1	239
45	0.056	0	9.4	188	24.5
	0.079	0	9.7	350	25.6

460

461

462 4. Conclusions

463 The suitability of a CRDS analyzer for measuring ambient atmospheric HCl were explored
 464 through [laboratory and ambient air intercomparisons, assessing their inlet and analyzer sampling](#)
 465 [challenges to established atmospheric sampling techniques for strong acids](#). In comparison to other
 466 reported instrumentation, the CRDS is shown performing similar or better than the most sensitive
 467 HCl measurements reported. As with many in situ measurements of HCl, the most significant
 468 limitation is adsorption/desorption loss and release on inlet surfaces, with the deposition effects
 469 increasing with increasing RH and decreasing HCl mixing ratios. Given the longstanding
 470 knowledge of these issues for surface active gases, such as HNO₃ and NH₃, there are a variety of
 471 chemical and physical options, discussed in this study, to mitigate inlet effects and achieve faster
 472 response times for the CRDS. Increasing the flowrate of the sampling inlet, while maintaining
 473 laminar flow, is the simplest approach to reducing surface effects discussed in Section 3.4. Spectra
 474 capturing errors in the measurement of HCl for the CRDS can occur at high levels of VOCs (e.g.
 475 near emission point sources or biomass burning plumes) or instrument instabilities (e.g. pressure
 476 fluctuations), however potential instrument errors are minimal under most operating and
 477 atmospheric conditions. Finally, comparison with annular denuder observations agreed within the
 478 combined uncertainties, with the CRDS measurement rate demonstrating the power of capturing
 479 transient events that are important to constraining atmospheric chlorine chemistry (e.g. photolysis
 480 of precursors, thermodynamic partitioning, and direct emissions).

481 Acknowledgements

482 We acknowledge the Natural Sciences Engineering and Research Council of Canada and York
483 University for funding. We thank Andrea Angelucci and Sonya Daljeet for assistance with data
484 collection.

485 **References**

486 Benskin, J. P., Muir, D. C. G., Scott, B. F., Spencer, C., De Silva, A. O., Kylin, H., Martin, J. W.,
487 Morris, A., Lohmann, R., Tomy, G., Rosenberg, B., Taniyasu, S. and Yamashita, N.:
488 Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans, *Environ Sci Technol*, 46(11),
489 5815–5823, doi:10.1021/es300578x, 2012.

490 Bondy, A. L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. V., Bertman, S. B., Pratt, K. A.,
491 Shepson, P. B. and Ault, A. P.: Inland Sea Spray Aerosol Transport and Incomplete Chloride
492 Depletion: Varying Degrees of Reactive Processing Observed during SOAS, *Environ Sci
493 Technol*, (51), 9533–9542, doi:10.1021/acs.est.7b02085, 2017.

494 Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G.
495 B., Hase, F., Klappenbach, F., Kuhn, J., Lübcke, P., Tirpitz, L. and Tu, Q.: Remote sensing of
496 volcanic CO₂, HF, HCl, SO₂, and BrO in the downwind plume of Mt. Etna, *Atmos Meas Tech*,
497 10(1), 1–14, doi:10.5194/amt-10-1-2017, 2017.

498 Clegg, S. L. and Brimblecombe, P.: Potential degassing of hydrogen chloride from acidified
499 sodium chloride droplets, *Atmos Environ*, 19(3), 465–470, doi:[https://doi.org/10.1016/0004-6981\(85\)90167-2](https://doi.org/10.1016/0004-6981(85)90167-2), 1985.

500 Cousins, I. T., Dewitt, J. C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A.,
501 Scheringer, M. and Wang, Z.: The high persistence of PFAS is sufficient for their management
502 as a chemical class, *Environ Sci Process Impacts*, 22(12), 2307–2312, doi:10.1039/d0em00355g,
503 2020.

504 Crisp, T. A., Lerner, B. M., Williams, E. J., Quinn, P. K., Bates, T. S. and Bertram, T. H.:
505 Observations of gas phase hydrochloric acid in the polluted marine boundary layer, *J Geophys
506 Res*, 119, 6897–6915, doi:10.1002/2013JD020992, 2014.

507 Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels of methane,
508 carbon dioxide, and water vapor, *Appl Phys B Lasers Opt*, 92(3), 403–408, doi:10.1007/s00340-
509 008-3135-y, 2008.

510 Dawe, K. E. R., Furlani, T. C., Kowal, S. F., Kahan, T. F., Vandenboer, T. C. and Young, C. J.:
511 Formation and emission of hydrogen chloride in indoor air, , 29, 70–78, doi:10.1111/ina.12509,
512 2019.

513 Deming, B. L., Pagonis, D., Liu, X., Day, D. A., Talukdar, R., Krechmer, J. E., Gouw, J. A. De,
514 Jimenez, J. L. and Ziemann, P. J.: Measurements of delays of gas-phase compounds in a wide
515 variety of tubing materials due to gas – wall interactions, , (1), 3453–3461, 2019.

516 ECHA: Four new substances added to Candidate List, 2020.

518 Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration of H₂SO₄ and
519 methane sulfonic acid and estimates of H₂SO₄ production and loss in the atmosphere, *J Geophys*
520 *Res Atmos*, 98(D5), 9001–9010, doi:10.1029/93JD00031, 1993.

521 Ellis, R. a, Murphy, J. G., Pattey, E., Haarlem, R. Van and Brien, J. M. O.: Characterizing a
522 Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS
523) for measurements of atmospheric ammonia, *Atmos. Meas. Tech.*, 3309–3338, 2010.

524 Finlayson-Pitts, B. J., Ezell, M. J. and Pitts Jr., J. N.: Formation of chemically active chlorine
525 compounds by reactions of atmospheric NaCl particles with gaseous N₂O₅ and ClONO₂,
526 *Nature*, 337(6204), 241–244, 1989.

527 Gard, E. E., Kleeman, M. J., Gross, D. S., Hughes, L. S., Allen, J. O., Morrical, B. D.,
528 Fergenson, D. P., Dienes, T., Ga, M. E., Johnson, R. J., Cass, G. R. and Prather, K. A.: Direct
529 Observation of Heterogeneous Chemistry in the Atmosphere, , 279(February), 1998.

530 Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M.,
531 Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges,
532 J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J.,
533 Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T.,
534 Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A.
535 A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H.
536 S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W.,
537 Sung, K., Starikova, E., Tashkun, S. A., Auwera, J., Vander, Wagner, G., Wilzewski, J., Wcisło,
538 P., Yu, S. and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, *J Quant*
539 *Spectrosc Radiat Transf*, 203, 3–69, doi:<https://doi.org/10.1016/j.jqsrt.2017.06.038>, 2017.

540 Hagen, C. L., Lee, B. C., Franka, I. S., Rath, J. L., Vandenboer, T. C., Roberts, J. M., Brown, S.
541 S. and Yalin, A. P.: Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,
542 *Atmos Meas Tech*, 7(2), 345–357, doi:10.5194/amt-7-345-2014, 2014.

543 Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzano-Jost, P.,
544 Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., Jimenez,
545 J. L., Brown, S. S. and Thornton, J. A.: Wintertime gas-particle partitioning and speciation of
546 inorganic chlorine in the lower troposphere over the northeast United States and coastal ocean, *J*
547 *Geophys Res Atmos*, 123(22), 12,897–12,916, doi:10.1029/2018JD028786, 2018.

548 Huey, L. G., Villalta, P. W., Dunlea, E. J., Hanson, D. R. and Howard, C. J.: Reactions of CF₃O-
549 with atmospheric trace gases, *J Phys Chem*, 100, 190–194, doi:10.1021/jp951928u, 1996.

550 Jurkat, T., Voigt, C., Arnold, F., Schlager, H., Aufmhoff, H., Schmale, J., Schneider, J.,
551 Lichtenstern, M. and Dörnbrack, A.: Airborne stratospheric ITCIMS measurements of SO₂, HCl,
552 and HNO₃ in the aged plume of volcano Kasatochi, *J Geophys Res Atmos*, 115(D2),
553 doi:<https://doi.org/10.1029/2010JD013890>, 2010.

554 Karella, N. S., Chen, Q. F., De Brou, G. B. and Milburn, R. K.: Real time air monitoring of
555 hydrogen chloride and chlorine gas during a chemical fire, *J Hazard Mater*, 102(1), 105–120,
556 doi:[https://doi.org/10.1016/S0304-3894\(03\)00205-X](https://doi.org/10.1016/S0304-3894(03)00205-X), 2003.

557 Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T. E., Lobert, J. M.,
558 Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P., Moore, R. M., Seuzaret, C.,

559 Sturges, W. T., Benkovitz, C. M., Koropalov, V., Barrie, L. A. and Li, Y. F.: Composite global
560 emissions of reactive chlorine from anthropogenic and natural sources: Reactive chlorine
561 emissions inventory, *J Geophys Res*, 104, 8429–8440, 1999.

562 Keene, W. C., Stutz, J., Pszenny, A. A. P., Maben, J. R., Fischer, E. V., Smith, A. M., von
563 Glasow, R., Pechtl, S., Sive, B. C. and Varner, R. K.: Inorganic chlorine and bromine in coastal
564 New England air during summer, *J Geophys Res Atmos*, 112(10), 1–15,
565 doi:10.1029/2006JD007689, 2007.

566 Keene, W. C., Long, M. S., Pszenny, A. A. P., Sander, R., Maben, J. R., Wall, A. J., O'Halloran,
567 T. L., Kerkweg, A., Fischer, E. V and Schrems, O.: Latitudinal variation in the multiphase
568 chemical processing of inorganic halogens and related species over the eastern North and South
569 Atlantic Oceans, *Atmos Chem Phys*, 9(19), 7361–7385, doi:10.5194/acp-9-7361-2009, 2009.

570 Kim, S., Huey, L. G., Stickel, R. E., Pierce, R. B., Chen, G., Avery, M. A., Dibb, J. E., Diskin,
571 G. S., Sachse, G. W., McNaughton, C. S., Clarke, A. D., Anderson, B. E. and Blake, D. R.:
572 Airborne Measurements of HCl from the Marine Boundary Layer to the Lower Stratosphere over
573 the North Pacific Ocean during INTEX-B, *Atmos. Chem. Phys. Discuss.*, 8, 3563–3595, 2008.

574 Kochanov, R. V, Gordon, I. E., Rothman, L. S., Shine, K. P., Sharpe, S. W., Johnson, T. J.,
575 Wallington, T. J., Harrison, J. J., Bernath, P. F., Birk, M., Wagner, G., Le Bris, K., Bravo, I. and
576 Hill, C.: Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate,
577 environment, and atmospheric applications, *J Quant Spectrosc Radiat Transf*, 230, 172–221,
578 doi:<https://doi.org/10.1016/j.jqsrt.2019.04.001>, 2019.

579 Lao, M., R. Crilley, L., Salehpoor, L., C. Furlani, T., Bourgeois, I., Andrew Neuman, J., W.
580 Rollins, A., R. Veres, P., A. Washenfelder, R., C. Womack, C., J. Young, C. and C. Vandenboer,
581 T.: A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO),
582 *Atmos Meas Tech*, 13(11), 5873–5890, doi:10.5194/amt-13-5873-2020, 2020.

583 Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., McDuffie,
584 E. E., Fibiger, D. L., Veres, P. R., Brown, S. S., Campos, T. L., Weinheimer, A. J., Flocke, F. F.,
585 Norris, G., O'Mara, K., Green, J. R., Fiddler, M. N., Bililign, S., Shah, V., Jaeglé, L. and
586 Thornton, J. A.: Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in
587 the Exhaust of Coal-Fired Power Plants, *J Geophys Res Atmos*, 123(19), 11,225–11,237,
588 doi:10.1029/2018JD029284, 2018.

589 Ma, Y., He, Y., Yu, X., Chen, C., Sun, R. and Tittel, F. K.: HCl ppb-level detection based on
590 QEPAS sensor using a low resonance frequency quartz tuning fork, *Sensors Actuators, B Chem*,
591 233, 388–393, doi:10.1016/j.snb.2016.04.114, 2016.

592 MacInnis, J. J., VandenBoer, T. C. and Young, C. J.: Development of a gas phase source for
593 perfluoroalkyl acids to examine atmospheric sampling methods, *Analyst*, 141, 3765–3775,
594 doi:10.1039/C6AN00313C, 2016.

595 Marcy, T. P., Fahey, D. W., Gao, R. S., Popp, P. J., Richard, E. C., Thompson, T. L., Rosenlof,
596 K. H., Ray, E. A., Salawitch, R. J., Atherton, C. S., Bergmann, D. J., Ridley, B. A., Weinheimer,
597 A. J., Loewenstein, M., Weinstock, E. M. and Mahoney, M. J.: Quantifying Stratospheric Ozone
598 in the Upper Troposphere with in Situ Measurements of HCl, *Science* (80-), 304(5668), 261 LP
599 – 265, doi:10.1126/science.1093418, 2004.

600 Mattila, J. M., Lakey, P. S. J., Shiraiwa, M., Wang, C., Abbatt, J. P. D., Arata, C., Goldstein, A.
601 H., Ampollini, L., Katz, E. F., Decarlo, P. F., Zhou, S., Kahan, T. F., Cardoso-saldan, F. J., Ruiz,
602 L. H., Abeleira, A., Boedicker, E. K., Vance, M. E. and Farmer, D. K.: Multiphase chemistry
603 controls inorganic chlorinated and nitrogenated compounds in indoor air during bleach cleaning,
604 Environ Sci Technol, 54, 1730–1739, doi:10.1021/acs.est.9b05767, 2020.

605 Moravek, A., Singh, S., Pattey, E., Pelletier, L. and Murphy, J.: Measurements and quality
606 control of ammonia eddy covariance fluxes: a new strategy for high-frequency attenuation
607 correction, Atmos Meas Tech, 12, 6059–6078, doi:10.5194/amt-12-6059-2019, 2019.

608 Neuman, J. A., Huey, L. G., Ryerson, T. B. and Fahey, D. W.: Study of Inlet Materials for
609 Sampling Atmospheric Nitric Acid, Environ Sci Technol, 33(7), 1133–1136,
610 doi:10.1021/es980767f, 1999.

611 Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva,
612 R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R.
613 K., Meagher, J., Fehsenfeld, F. C. and Brown, S. S.: High levels of nitryl chloride in the polluted
614 subtropical marine boundary layer, Nat Geosci, 1(5), 324–328, 2008.

615 Pagonis, D., Krechmer, J. E., de Gouw, J., Jimenez, J. L. and Ziemann, P. J.: Effects of gas–wall
616 partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase
617 organic compounds, Atmos. Meas. Tech., 10(12), 4687–4696, doi:10.5194/amt-10-4687-2017,
618 2017.

619 Place, B. K., Young, C. J., Ziegler, S. E., Edwards, K. A., Salehpoor, L. and VandenBoer, T. C.:
620 Passive sampling capabilities for ultra-trace quantitation of atmospheric nitric acid (HNO₃) in
621 remote environments, Atmos Environ, 191(November 2017), 360–369,
622 doi:10.1016/j.atmosenv.2018.08.030, 2018.

623 Pollack, I. B., Lindaas, J., Roscioli, J. R., Agnese, M., Permar, W., Hu, L. and Fischer, E. V.:
624 Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-
625 TILDAS operated with active continuous passivation, Atmos. Meas. Tech., 12(7), 3717–3742,
626 doi:10.5194/amt-12-3717-2019, 2019.

627 Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., Zetwo, M. P., Springer-
628 Young, M. and Galloway, J. N.: Evidence of inorganic chlorine gases other than hydrogen
629 chloride in marine surface air, Geophys Res Lett, 20(8), 699–702, 1993.

630 Roberts, J. M., Osthoff, H. D., Brown, S. S. and Ravishankara, A. R.: N₂O₅ oxidizes chloride to
631 Cl₂ in acidic atmospheric aerosol, Science (80-), 321(4), 10, 2008.

632 Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C. and Kolb, C. E.: New Approaches
633 to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active
634 Passivation, J Phys Chem A, 120(9), 1347–1357, doi:10.1021/acs.jpca.5b04395, 2016.

635 Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob,
636 D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-
637 Roman, C., Mahajan, A. S. and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I)
638 on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16(18), 12239–12271,
639 doi:10.5194/acp-16-12239-2016, 2016.

640 Simpson, W. R., Glasow, R. Von, Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows,
641 J. and Carpenter, L. J.: Halogens and their role in polar boundary-layer ozone depletion, *Atmos*
642 *Chem Phys*, 4375–4418, 2007.

643 Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A. and Von Glasow, R.:
644 Tropospheric halogen chemistry: Sources, cycling, and impacts, *Chem Rev*, 115(10), 4035–
645 4062, doi:10.1021/cr5006638, 2015.

646 Sintermann, J., Spirig, C., Jordan, A., Kuhn, U., Ammann, C. and Neftel, A.: Eddy covariance
647 flux measurements of ammonia by high temperature chemical ionisation mass spectrometry,
648 *Atmos. Meas. Tech.*, 4(3), 599–616, doi:10.5194/amt-4-599-2011, 2011.

649 Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, *Rev Geophys*,
650 37(3), 275–316, doi:10.1029/1999RG900008, 1999.

651 Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C. and Allen, J. G.:
652 A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs)
653 and present understanding of health effects, *J Expo Sci Environ Epidemiol*, 29(2), 131–147,
654 doi:10.1038/s41370-018-0094-1, 2019.

655 Thaler, R. D., Mielke, L. H. and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per
656 Trillion Mixing Ratios by Thermal Dissociation Cavity Ring-Down Spectroscopy, *Anal Chem*,
657 83(7), 2761–2766, doi:10.1021/ac200055z, 2011.

658 Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W.
659 P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B. and Brown, S. S.: A large
660 atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, *Nature*,
661 464(11), 271–274, doi:10.1038/nature08905, 2010.

662 United States Environmental Protection Agency: Compendium of Methods for the Determination
663 of Inorganic Compounds in Ambient Air: Determination of reactive acidic and basic gases and
664 strong acidity of atmospheric fine particles (<2.5 μm) (Compendium Method IO-4.2),, 1999.

665 Valach, R.: The origin of the gaseous form of natural atmospheric chlorine ', *Tellus Ser B Chem*
666 *Phys Meteorol*, 1967.

667 Veres, P. R., Roberts, J. M., Warneke, C., Welsh-Bon, D., Zahniser, M., Herndon, S., Fall, R.
668 and de Gouw, J.: Development of negative-ion proton-transfer chemical-ionization mass
669 spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere,
670 *Int J Mass Spectrom*, 274, 48–55, 2008.

671 Voss, P. B., Stimpfle, R. M., Cohen, R. C., Hanisco, T. F., Bonne, G. P., Perkins, K. K.,
672 Lanzendorf, E. J., Anderson, J. G., Salawitch, R. J., Webster, C. R., Scott, D. C., May, R. D.,
673 Wennberg, P. O., Newman, P. A., Lait, L. R., Elkins, J. W. and Bui, T. P.: Inorganic chlorine
674 partitioning in the summer lower stratosphere: Modeled and measured $[\text{ClONO}_2]/[\text{HCl}]$ during
675 POLARIS, *J Geophys Res Atmos*, 106(D2), 1713–1732,
676 doi:<https://doi.org/10.1029/2000JD900494>, 2001.

677 Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B.,
678 Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A.,
679 Huey, G. L. and Liao, H.: The role of chlorine in global tropospheric chemistry, *Atmos Chem*

680 Phys, 19(6), 3981–4003, doi:10.5194/acp-19-3981-2019, 2019.

681 Webster, C. R., May, R. D., Trimble, C. A., Chave, R. G. and Kendall, J.: Aircraft (ER-2) laser
682 infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N₂O,
683 CH₄, NO₂, and HNO₃, Appl Opt, 33(3), 454–472, doi:10.1364/AO.33.000454, 1994.

684 Whitehead, J. D., Twigg, M., Famulari, D., Nemitz, E., Sutton, M. A., Gallagher, M. W. and
685 Fowler, D.: Evaluation of Laser Absorption Spectroscopic Techniques for Eddy Covariance Flux
686 Measurements of Ammonia, Environ Sci Technol, 42(6), 2041–2046, doi:10.1021/es071596u,
687 2008.

688 Wilkerson, J., Sayres, D., Smith, J., Allen, N., Rivero, M., Greenberg, M., Martin, T. and
689 Anderson, J.: In situ observations of stratospheric HCl using three-mirror integrated cavity
690 output spectroscopy, Atmos Meas Tech, 14(5), 3597–3613, doi:10.5194/amt-14-3597-2021,
691 2021.

692 Young, A. H., Keene, W. C., Pszenny, A. A. P., Sander, R., Thornton, J. A., Riedel, T. P. and
693 Maben, J. R.: Phase partitioning of double trace gases with size-resolved aerosols in near-surface
694 continental air over northern Colorado, USA, during winter, J Geophys Res, 118, 9414–9427,
695 doi:10.1002/jgrd.50655, 2013.

696 Young, C. J., Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff, H. D., Tsai, C.,
697 Pikelnaya, O., Stutz, J., Veres, P. R., Cochran, A. K., Vandenboer, T. C., Flynn, J., Grossberg,
698 N., Haman, C. L., Lefer, B., Stark, H., Graus, M., De Gouw, J., Gilman, J. B., Kuster, W. C. and
699 Brown, S. S.: Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and
700 their contribution to the urban radical budget, Environ Sci Technol, 46(20),
701 doi:10.1021/es302206a, 2012.

702 Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C.,
703 Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M.,
704 Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S.,
705 Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R. and Brown, S. S.: Chlorine as a primary
706 radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos
707 Chem Phys, 14, 3427–3440, 2014.

708 Young, C. J., Zhou, S., Siegel, J. A. and Kahan, T. F.: Illuminating the dark side of indoor
709 oxidants, Environ Sci Process Impacts, 21(8), 1229–1239, doi:10.1039/C9EM00111E, 2019.

710 Zahniser, M. S., Nelson, D. D., McManus, B., Kebabian, P. L., Lloyd, D., Fowler, D., Jenkinson,
711 D. S., Monteith, J. L. and Unsworth, M. H.: Measurement of trace gas fluxes using tunable diode
712 laser spectroscopy, Philos Trans R Soc London Ser A Phys Eng Sci, 351(1696), 371–382,
713 doi:10.1098/rsta.1995.0040, 1995.

714