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Abstract 18 

Measurement and source apportionment of atmospheric pollutants is crucial for the 19 

assessment of air quality and the implementation of policies for its improvement. In most 20 

cases, such measurements use expensive regulatory grade instruments, which makes it 21 

difficult to achieve wide spatial coverage. Low-cost sensors may provide a more affordable 22 

alternative, but their capability and reliability in separating distinct sources of particles have 23 

not been tested extensively yet. The present study examines the ability of a low-cost Optical 24 

Particle Counter (OPC) to identify the sources of particles and conditions that affect particle 25 

concentrations at an urban background site in Birmingham, UK. To help evaluate the results, 26 

the same analysis is performed on data from a regulatory-grade instrument (SMPS) and 27 

compared to the outcomes from the OPC analysis. The analysis of the low-cost sensor data 28 

manages to separate periods and atmospheric conditions according to the level of pollution 29 

at the site. It also successfully identifies a number of sources for the observed particles, which 30 

were also identified using the regulatory-grade instruments. The low-cost sensor, due to the 31 

particle size range measured (0.35 to 40 μm), performed rather well in differentiating sources 32 

of particles with sizes greater than 1 μm, though its ability to distinguish their diurnal 33 

variation, as well as to separate sources of smaller particles, at the site was limited. The 34 

current level of source identification demonstrated makes the technique useful for 35 

background site studies, where larger particles with smaller temporal variations are of 36 

significant importance. This study highlights the current capability of low-cost sensors in 37 

source identification and differentiation using clustering approaches. Future directions 38 

towards particulate matter source apportionment using low cost OPCs are highlighted.  39 

  40 
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1. Introduction 41 

 42 

Particulate matter (PM) plays a dominant role in air quality and is known to cause adverse 43 

health effects (Dockery et al., 1993; Pascal et al., 2013; Wu et al., 2016; Zeger et al., 2008). As 44 

a result, regulatory limits are set for its concentrations, especially in urban areas (US EPA, 45 

2012; WHO, 2006). For the implementation of such regulations, the identification of the 46 

sources of PM is required. To accomplish this, measurements of the concentrations of PM, 47 

typically alongside PM composition, in the area of study are conducted. Until recent years 48 

these measurements were typically made using regulatory-grade instruments which, while 49 

providing high quality data, are rather expensive thereby limiting the number that could be 50 

deployed and consequently the spatial resolution of any measurement network. This 51 

increases the spatial interpolation uncertainty (Kanaroglou et al., 2005) and can result in 52 

inadequate connection between the levels of air pollution exposures and health effects 53 

(Holstius et al., 2014), especially in complex urban environments (Harrison, 2017; Mueller et 54 

al., 2016). Additionally, many low and middle income countries are unable to invest the large 55 

economic assets currently required for source apportionment, even though in many of these 56 

countries, the air quality is poor (Ghosh and Parida, 2015; Kan et al., 2009; Petkova et al., 57 

2013; Pope et al., 2018; Singh et al., 2020). 58 

In the past decade, the development of new and cheaper sensors for air quality monitoring 59 

has intensified. Many different sensors were introduced measuring either the number 60 

concentration or surface area of PM, or the gas phase species (Jovašević-Stojanović et al., 61 

2015; Lewis et al., 2018; Popoola et al., 2018). Overall, the low-cost PM sensors currently offer 62 

better comparison with regulatory grade equipment compared to their gas phase 63 

counterparts (Lewis et al., 2018). However, many shortcomings have been identified in their 64 

application, with the most common being the loss of accuracy in the measurements due to 65 

environmental conditions such as relative humidity (RH) variations or high PM concentrations 66 

(Castell et al., 2017; Crilley et al., 2018; 2020; Di Antonio et al., 2018; Hagan and Kroll, 2020, 67 

Miskell et al., 2017; Zheng et al., 2018). Measurements in ambient conditions also lead to 68 

discrepancies with research-grade instruments, which often measure in controlled 69 

environments that are air conditioned (U.S. Environmental Protection Agency, 2016). The 70 

reproducibility and variability of the outputs from sensors of the same type can also be 71 
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problematic (Austin et al., 2015; Sousan et al., 2016; Wang et al., 2015). Therefore, the need 72 

for constant and careful calibration is repeatedly highlighted in many studies that evaluate 73 

the potential of low cost sensors (Rai et al., 2017; Spinelle et al., 2015, 2017). When these 74 

calibration steps are implemented, low-cost sensors have been shown to provide reliable 75 

near-real time measurements, maintaining high correlations with research-grade instruments 76 

(Kelly et al., 2017; Malings et al., 2020; Sayahi et al., 2019) with the added advantages of the 77 

lower cost and portability.  78 

Consequently, low-cost sensors have been successfully deployed in many studies for which 79 

the use of more expensive instruments was not feasible. There is a number of applications in 80 

low and middle income countries (e.g. Nagendra et al., 2019; Pope et al., 2018), in studies 81 

which included mobile measurements within the urban environment (Ionascu et al., 2018; 82 

Jerrett et al., 2017; Miskell et al., 2018), or studies of indoor air quality from multiple sites, 83 

such as the SKOMOBO project conducted in New Zealand, in which the air quality in schools 84 

was assessed (Weyers et al., 2018). The greatest advantage though is likely, as their name 85 

implies, their lower cost which made possible the formation of a network of measuring 86 

stations (Feinberg et al., 2019; Kotsev et al., 2016; Moltchanov et al., 2015), increasing the 87 

spatial resolution and through new data analysis methods improve the mapping of air 88 

pollution up to a sub-neighbourhood level (Schneider et al., 2017, Shindler, 2019). Therefore, 89 

it is suggested that the development and use of low-cost sensors, either used individually or 90 

in conjunction with research-grade instruments (Snyder et al., 2013), have the potential to 91 

radically change the conventional approach of both pollution measuring and policy making 92 

(Borrego et al., 2018; Kumar et al., 2015; Lagerspetz et al., 2019, Morawska et al., 2018), 93 

providing a more effective general public information and enhanced environmental 94 

awareness (Penza et al., 2014), even for countries with smaller budgets (Amegah, 2018). 95 

As yet, studying the different sources of particles at a site with the use of data from low-cost 96 

sensors has not been widely attempted yet. Pope et al., (2018) managed to identify major 97 

pollution sources studying the ratios of PM of different sizes provided by low-cost sensors, 98 

while Popoola et al., (2018) using a network of sensors identified the sources of pollution near 99 

Heathrow airport in London, UK. Hagan et al., (2019) applying a statistical method (Non-100 

negative Matrix Factorisation) on low-cost sensor data, identified a combustion factor in a 101 

three-factor solution in New Delhi, India. The present study investigates the ability of low-102 

cost sensors to provide measurements that can be used to identify the sources of pollution 103 
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at a background site in Birmingham, UK, using clustering of particle composition profiles. This 104 

method was successfully used in a number of previous studies, though with the use of 105 

measurements from research-grade instruments (Beddows et al., 2009, 2015; Von Bismarck-106 

Osten and Weber, 2014; Dall’Osto et al., 2011; 2012; Sabaliauskas et al., 2013). To support 107 

the clustering method, chemical composition data from both research-grade and low-cost 108 

sensor instruments were used, as well as meteorological data from a closely located 109 

measurement station. Apart from attempting the source differentiation with low-cost sensor 110 

data, a direct comparison with the results from a similar analysis using research-grade 111 

instruments is also conducted to not only validate the results but find the strengths and 112 

weaknesses of such an application. 113 

 114 

2. Methods 115 

2.1 Location of the site and instruments 116 

The measurement site (fig. 1), characterised as an urban background, is the Birmingham Air 117 

Quality Supersite (BAQS) located at the grounds of the University of Birmingham (52.45oN; 118 

1.93oW), about 3 km southwest from the city centre (Alam et al., 2015). In the present study, 119 

measurements from the following instruments for the period 24/01/2020 to 12/3/2020 (the 120 

date range was chosen to avoid the effect of the lockdown due to COVID-19) were used (Table 121 

1, a picture of the low-cost sensors used at BAQS is found in figure S1): 122 

The Alphasense OPC-N3, which is an optical particle counter, measuring particle number 123 

concentrations in the size range between 0.35 to 40 μm at rates up to about 10000 particles 124 

per second. As the sample air stream enters the instrument with a sample flow rate of 210 125 

mL m-1 (dynamically monitored and corrected by the sensor) it passes through a laser beam 126 

(wavelength at 658 nm). The OPC-N3 measures the light scattered by individual particles 127 

carried in a sample air stream through a laser beam. These measurements are used to 128 

determine the particle size, related to the intensity of light scattered via a calibration based 129 

on Mie scattering theory, and particle number concentration. Particle mass loadings (PM1, 130 

PM2.5 and PM10) are then calculated from the particle size spectra and concentration data, 131 

assuming a particle density and refractive index (default density is 1.65 g/ml and refractive 132 

index is 1.5+i0.). Particles of larger size are lost to impaction in the tubing prior to the OPC 133 
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and thus are not considered. The OPC is located within the air conditioned station, so 134 

measurements represent PM dry mass. 135 

The AethLabs MA200 (microAeth MA200) which provides black carbon (BC) information (0-1 136 

mg BC/m3). The sample is deposited onto an internal filter, and an IR light (880 nm) is directed 137 

through the sample on the filter and into a detector on the other side of the sample. The 138 

amount of light absorbed from the sample is proportional to the BC concentration.   139 

Two Naneos Partectors (Naneos Particle Solutions GmbH) which provide the lung deposited 140 

surface area metric (LDSA, µm2/cm3) in the particle diameter range 10 nm to 10 μm. In 141 

general, the provided data is dictated by the particle number concentration and diameter 142 

(Nd1.1) for both semi-volatile and solid particles. A catalytic stripper (Catalytic Instruments 143 

CS015) was used to remove the semi-volatile particles entering one of the two Naneos 144 

Partectors. The other Naneos Partector was not subject to the catalytic stripper and therefore 145 

measured the surface of all particles. In the present study, apart from the values provided 146 

directly from the sensors, the ratio between the measurements of the two Naneos Partectors 147 

was also considered according to: 148 

 149 

𝐿𝐷𝑆𝐴𝑟𝑎𝑡𝑖𝑜 =  
𝐿𝐷𝑆𝐴 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

𝐿𝐷𝑆𝐴 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟 
 150 

 151 

This was done to resolve whether such a configuration can also provide information such as 152 

the level of pollution or the age of the incoming air masses, as increased concentrations of 153 

semi-volatile compounds are usually associated with anthropogenic sources, especially in the 154 

urban environment (Harkov, 1989; Mahbub et al., 2011, Schnelle-Kreis et al., 2007, Xu and 155 

Zhang, 2011). Thus, a high LDSAratio is expected to be associated with fresher pollution which 156 

usually has a higher content of volatile compounds (i.e., pollution sources at a close distance 157 

from the site), while lower ratios are probably associated with either cleaner conditions or 158 

more regional and aged pollution with higher concentrations of semi-volatile compounds, 159 

usually associated with sources at a greater distance from the measuring site. The specific 160 

metric though should be considered with caution, as it can be biased by the absolute surface 161 

areas measured.  162 

The sensors monitoring nitrogen dioxide (NO2) and ozone (O3) concentrations are part of an 163 

Alphasense Box Of Clustered Sensors (BOCS) (Smith et al., 2019), which is a low-power 164 
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instrument based on the clustering of multiple low-cost air pollution sensors allocated in two 165 

independent circuits to redundantly measure concentrations and other airflow parameters. 166 

The air is driven by a pump through the cell (air flow is about 4 L min-1) that hosts the 167 

electrochemical sensors (EC) and the nondispersive infrared sensors (NDIR). While the EC 168 

sensors redundantly (6 sensors per gas) measure carbon monoxide, NO2, nitrogen monoxide, 169 

oxidizing gases (Ox), the NDIR sensors measure carbon dioxide. EC sensors are based on 170 

recording the current generated by redox reactions that occur at the electrode-electrolyte 171 

interface in an electrochemical cell composed of three electrodes (working electrode (WE), 172 

counter electrode (CE) and reference electrode (RE)). While the gas of interest reacts on the 173 

WE surface, the CE completes the redox reaction and the RE ensures that the WE potential 174 

remains in the proper range. In the present study, measurements of O3 (deriving from a linear 175 

regression of the values of the six Ox sensors with the measurements from the reference 176 

instrument also located at BAQS) and NO2 were only used from the specific sensor. 177 

The Aethalometer model AE33 by Magee Scientific, collects aerosol particles continuously 178 

by drawing the aerosol-laden air stream through a spot on the filter tape. It analyses the 179 

aerosol by measuring the transmission of light through one portion of the filter tape 180 

containing the sample, versus the transmission through an unloaded portion of the filter 181 

tape acting as a reference area. This analysis is done at seven optical wavelengths spanning 182 

the range from the near-infrared to the near-ultraviolet. The Aethalometer calculates the 183 

instantaneous concentration of optically absorbing aerosols from the rate of change of the 184 

attenuation of light transmitted through the particle-laden filter.  185 

For the same period data from regulatory-grade instruments were also available. Thus, 186 

particle size composition data from a model TSi3082 Scanning Mobility Particle Sizer (SMPS) 187 

in the size range 12 – 552 nm, along with PM data for the sizes of 1, 2.5, 4 and 10 μm acquired 188 

using a Fidas 200E were used. Additionally, chemical composition data for NO2, O3, as well as 189 

SO4
2-, NO3

- and organic content (size range 40 nm to 1 μm) from an Aerodyne Aerosol 190 

Chemical Speciation Monitor (ACSM) were also available. Meteorological data (wind speed 191 

and direction, temperature, RH and rain level) from the Birmingham Air Quality Supersite 192 

were also used in the characterisation of the clusters formed from both methods. 193 
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Planetary Boundary Layer (PBL) height data were downloaded from ECMWF’s ERA5 194 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels - last 195 

access 20/3/2021). Back trajectory data calculated using the HYSPLIT model (Draxler and 196 

Hess, 1998), were extracted by the NOAA Air Resources Laboratory 197 

(https://ready.arl.noaa.gov/READYtransp.php - last access 17/8/2020). Data was processed 198 

using the Openair package for R (Carslaw and Ropkins, 2012). 199 

 200 

2.2 k-means clustering 201 

In this study, two size spectra are considered, one deriving from the OPC and one from the 202 

regulatory-grade SMPS. It is noted that the size spectra from the two instruments only briefly 203 

overlap in the size range 350 – 552 nm, with the SMPS mostly measuring smaller particles and 204 

the OPC mostly measuring larger particles.  For the period studied (24/1/2020 – 12/3/2020), 205 

874 hours of available data (averaged from 10 second intervals - 76% coverage) from the OPC 206 

and 732 hours from the SMPS (66% coverage) were exposed to k-means clustering. k-means 207 

clustering is a method successfully used in many studies of particle source differentiation 208 

(Beddows et al., 2015; Brines et al., 2015, Von Bismarck-Osten and Weber, 2014; Giorio et al., 209 

2015; Wegner et al., 2012) and was proven to have better performance compared to other 210 

clustering techniques (Beddows et al., 2009; Salimi et al., 2014), as it was found to produce 211 

clusters with the highest similarity between their elements and the highest separation against 212 

the other clusters formed (Hennig, 2007). It is a method of vector quantisation which aims to 213 

partition observations (x1, x2, …, xn) into k sets, minimising within-clusters variances (squared 214 

Euclidean distances) as: 215 

𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ∑‖𝑥 − 𝜇𝑖‖
2 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑|𝑆𝑖| 𝑉𝑎𝑟 𝑆𝑖

𝑘

𝑖=1𝑥∈𝑆𝑖

𝑘

𝑖=1

 216 

where Si are the sets (clusters) formed and μi are the centroid point of the cluster (Likas et al., 217 

2003). K-means clustering in this study was performed using the “stats” library for R. The 218 

optimal number of clusters was chosen using two metrics, the Dunn Index and the Silhouette 219 

width as proposed by Beddows et al., 2009. The Dunn Index provides a measure of the ratio 220 

of the minimum cluster separation to the maximum cluster (providing a metric of the 221 

compactness and separation of the clusters formed within the space – Pakhira et al., (2004)). 222 

The larger the Dunn Index the better separated are the clusters formed. The Silhouette width 223 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels - last access 20/3/2021
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels - last access 20/3/2021
https://ready.arl.noaa.gov/READYtransp.php
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is a measure of the similarity of the spectra within each cluster (Rousseeuw, 1987). Both the 224 

Dunn index and Silhouette width were calculated using the “fpc” library for R. In the present 225 

study the best statistically fitted solution was chosen (the solution for which both metrics 226 

maximised), though in source differentiation studies such a solution may not always provide 227 

with the best separation of all the available sources. Using the aforementioned statistical 228 

tests, a six-cluster solution was independently suggested for both the OPC and SMPS datasets. 229 

Though the clustering process could be applied for the FIDAS data, which are comparable in 230 

size range, it was not performed in this study. 231 

 232 

 233 

3. Results 234 

3.1 General conditions, sources of particles and pollution at the site 235 

Being an urban background, the site studied presents relatively low concentrations of most 236 

pollutants (the average atmospheric conditions for each cluster formed by both methods is 237 

presented in table 2), without the effect of direct sources of pollution, such as traffic. Wind 238 

rose and polar plots illustrating the conditions in the period studied are found in figure S2. 239 

The main source of pollution lies on the north and northeast sectors, where the city centre is 240 

located, as well as in the southern and eastern sectors where a populous residential area is 241 

located. As a result, the main sources of NO2 and BC as well as the smaller sized PM are 242 

associated with easterly winds (this though is not reflected in particles observed in the SMPS 243 

size range). For the PM10 apart from the aforementioned, increased concentrations are also 244 

found with southwestern winds likely associated with marine sources. Typical for the UK, the 245 

average wind profile for the period consists mainly of western and southwestern winds 246 

(McIntosh and Thom, 1969), reducing the effect of the pollution sources in the east of the 247 

site. Finally, the secondary pollutants NO3
- and SO4

2- which are in most cases associated aged 248 

pollution and long-distance transport, have less consistent profiles, though they both seem 249 

to be mainly associated with southern wind directions. Finally, for the period studied no New 250 

Particle Formation events were observed. This is consistent with the general trend in the area 251 

as found by Alam et al., (2003) for Birmingham (as well as in a more recent studies by Bousiotis 252 

et al., (2019; 2021) at nearby sites in Oxford and London), in which NPF events in Southern 253 
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UK are more frequent during the summer months and barely occurring during winter and 254 

early spring, mainly due to unfavourable meteorological conditions.  255 

 256 

3.2 Clustering of the OPC data 257 

Due to the larger particle sizes measured by the OPC-N3, the differences in the cluster profiles 258 

are mainly associated with the particle number concentrations and to a lesser extent on the 259 

different peaks, which are less distinct due to the smaller variation found as particle diameter 260 

increases.  The frequency of the clusters formed, and their diurnal occurrence is shown in 261 

figure 2. The average particle size distribution spectra and wind roses for the clusters formed 262 

are found in figures S3 and S4. 263 

The six clusters formed from the OPC data are: 264 

OPC.1: A rather polluted group with the highest NO2 concentrations and average secondary 265 

pollutants, PM and LDSA ratio. Its fresher polluted character is further confirmed using the 266 

SMPS data which showed higher than average particle concentrations for particles with 267 

diameter smaller than 50 nm. This group presents low average temperature, RH, PBL height 268 

and slower than average southwestern winds, which is explained, to an extent, by the cluster 269 

being slightly more frequent during night-time.  270 

OPC.2: The second group refers mainly to a single midday event on 12/3/2020 (which explains 271 

the highest PBL height found) with high-speed southwestern winds, which are associated with 272 

lower pollution levels in the area (McGregor and Bamzelis, 1995), high temperature and very 273 

low RH. On this day the concentrations of all the pollutants were rather low, though due to 274 

the high wind speeds (an increase in the wind speed is observed at the start of the occurrence 275 

of this cluster – at 10:00 AM - which affects the particle distribution profile as can be seen in 276 

Figure S5) the PM10 were close to average (when PM1 and PM2.5 were rather low) indicating 277 

the stronger presence of coarser particles, possible of marine origin as shown by the back 278 

trajectories, a source with an increasing importance at larger size PM at this area (Harrison et 279 

al., 2004; Taiwo et al., 2014). This group presents the highest LDSA ratio, which is in 280 

agreement with the low concentrations of the secondary pollutants. 281 

OPC.3: A group occurring mainly during some of the midday periods in January, with the 282 

lowest temperature and wind speed averages, as well as the highest average RH, containing 283 

both southwestern and southern winds. While the concentrations of the measured pollutants 284 
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are close to average, high sulphate and ozone concentrations were found, with the former 285 

pointing to air masses with higher concentrations of aged pollutants assisted by the lowest 286 

PBL found for this cluster. The LDSA ratio though, was found to be very high despite the higher 287 

concentrations of sulphate and nitrate. The near average NO2 concentrations may point to 288 

the effect of a nearby pollution source that may resulted to the increased LDSA ratio found. 289 

OPC.4: A group with low concentrations of NO2, BC and PM, but close to average secondary 290 

pollutants’ concentrations. It is associated with close to average temperature, RH, PBL height 291 

and wind speed of mainly southwestern directions. It is slightly more frequent during daytime 292 

and has lower than average concentrations of particles in the SMPS range. 293 

OPC.5: This group includes the most polluted conditions in the area throughout the day. It is 294 

associated with western and southwestern winds of average speed, high temperature and 295 

lower than average RH. Most pollutant concentrations, including PM, are rather high while 296 

O3 is low. Similarly, it presents the highest concentrations of particles in all SMPS size ranges 297 

which is probably due to the reduced atmospheric mixing in the lowest average PBL height 298 

among the OPC clusters. This cluster also includes the more polluted conditions found with 299 

north-eastern winds. 300 

OPC.6: A group associated with rather clean conditions, presenting the lowest concentrations 301 

of NO2, BC, NO3
- and organic content. It is associated with higher than average temperature, 302 

PBL height and wind speed and lower than average RH, and has low concentrations of PM1 303 

and PM2.5, while PM10 concentration is close to average. Its association with cleaner 304 

conditions (lower concentrations of the pollutants with available data) probably explains the 305 

highest O3 concentrations. The fast-moving southwestern air masses, which this group is 306 

associated with, are probably of marine origin that have not passed through any significant 307 

pollution sources, which can be further suggested by both the low LDSA values and the 308 

highest LDSA ratio. 309 

 310 

3.3 Clustering of the SMPS data 311 

In the past, a number of studies on the sources of particles were conducted for both the 312 

greater area of Birmingham and specifically the site in the University (Harrison et al., 1997; 313 

Taiwo, 2016; Yin et al., 2010). As, these studies mainly focused on the chemical composition 314 

of coarser particles, to the authors’ knowledge this is the first study that uses ultrafine particle 315 
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size distribution data to study the sources of particles in Birmingham, UK. The frequency and 316 

hourly occurrence of the six clusters formed from the SMPS data is found in figure 3. The 317 

average particle size distributions and wind roses for the clusters formed are found in figures 318 

S6 and S7.  319 

SMPS.1: This group contains averagely polluted hours and is associated with fresher 320 

pollutants (such as NO2 or NO) and PM, while secondary pollutants such as NH4
+, NO3

- and 321 

SO4
2- are relatively low. Due to being associated with fresher emissions this group presents 322 

higher than average concentrations of particles below 50 nm and a low LDSA ratio. It is 323 

associated with average speed southwestern winds (it also includes the small portion of 324 

north-eastern winds) and temperature, higher than average RH and occurs more frequently 325 

during late night and early morning hours, which explains the low PBL height among the SMPS 326 

clusters. 327 

SMPS.2: Similar to the first group, average pollutants’ concentrations are found in this group 328 

with low concentrations of secondary pollutants. It is associated with slow western and 329 

southwestern winds, lower than average temperatures, RH and PBL height and is more 330 

frequent during early morning hours. It has the highest concentrations of particles with 331 

diameter smaller than 20 nm, but the particle concentrations become relatively smaller as 332 

their size increase. 333 

SMPS.3: This is a small group containing very clean night hours mainly in February, with higher 334 

than average temperature, lower than average RH, strong western and southwestern winds 335 

and a remarkably great PBL height for the time of the day. It has low concentrations of 336 

pollutants and PM apart from O3 (despite the time of day), though PM10 concentration is 337 

enhanced, probably associating this group with stronger marine origins. The particle 338 

concentrations of all size ranges below 500 nm are the lowest among the groups formed and 339 

along with the high LDSA ratio are in agreement with the very clean conditions associated 340 

with this cluster. This cluster, contrary to all other, presents two peaks: one peaking just 341 

below 30 nm and another one just over 100 nm, which indicates that it is probably associated 342 

with at least two different sources.  343 

SMPS.4: This group presents near average concentrations of all the pollutants studied. PM1 344 

average concentration is rather low while PM10 is higher than the average. It is associated 345 

with average speed southwestern winds, higher average temperature and PBL height and low 346 
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RH. It is more frequent during midday and evening hours and it appears to represent the most 347 

common conditions in the area, hence having the highest frequency of all clusters. 348 

SMPS.5: This is a unique group associated with southern winds, the side at which the central 349 

part of the University resides. This is the most polluted group, probably affected by emissions 350 

from the University and the residential area found in that direction assisted by the very low 351 

PBL height, with very high concentrations of all the pollutants (apart from O3), PM and 352 

ultrafine particles with available data. The LDSA ratio is very high and this is probably due to 353 

the great surface area of the involatile component found. It is associated with very slow wind 354 

speeds, low temperature, very high RH and occurred evenly throughout the day, mainly on 355 

the first weeks of the campaign when pollution levels were rather high, probably due to 356 

increased heating emissions. 357 

SMPS.6: This group presents low concentrations of all pollutants (apart from O3), PM and 358 

ultrafine particles with available data and is associated with western winds with higher than 359 

average speed, near average temperatures and PBL height and low RH. It occurred more 360 

frequently during evening hours and almost equally frequently throughout the whole study 361 

period apart from the first 2 weeks when pollution levels were rather high. 362 

 363 

3.4 Direct comparison between the methods 364 

 365 

Due to the difference in the size ranges measured by the SMPS and OPC instruments, it is 366 

evident that a direct comparison between the two methods would provide mixed results as 367 

some clusters found using the SMPS data are not detectable with the OPC, and vice versa. 368 

The particle size range that is common between the two instruments lies at about 350 – 550 369 

nm. Therefore, many particle sources associated with particles in the size range below the 370 

minimum detectable size of the OPC are not expected to be found using its data and vice 371 

versa. At a background site though, many of the sources of smaller sized particles play a less 372 

important role as they are usually associated with fresher emissions, which are not common 373 

to such sites.  374 

The clustering process attempts to separate the particle size distributions into groups with as 375 

similar spectral profiles as possible, while being as different to the other groups as possible. 376 

As expected, the SMPS is more capable in separating different cluster profiles at the size range 377 
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smaller than 500 nm, a size range in which the cluster profiles (using the SMPS data) formed 378 

by the groups from the OPC are almost uniform (fig. 4). This shows the limitation of the OPC 379 

data to distinguish ultrafine particle variations and thus it does not provide insight for the 380 

sources of particles within this size range. On the other hand, the OPC performs much better 381 

in identifying different sources when considering larger particles in the range between 1 – 10 382 

μm, for which it manages to clearly distinguish variations between the groups formed (fig. 5). 383 

The clusters formed using the OPC data appear to be better associated with different sources 384 

of PM1 (fig. 6), compared to those deriving from the SMPS data (fig. S8), as distinct “hot spots” 385 

of PM1 are more clearly defined on the polar plots from the OPC compared to the less clear 386 

and mainly associated with calm (or almost calm) conditions from the SMPS (providing no 387 

separation among possible sources of PM1).  388 

Table 3 contains the cluster relationships between the two methods, while Table S1 contains 389 

the conditions observed when pairs of clusters from both methods are considered. The OPC.2 390 

and OPC.3 clusters appear infrequently, and it would be nonsensical to directly associate 391 

them with SMPS groups, as they appear under very specific conditions, that either are not 392 

detected or are not identified as separate cases by the SMPS. As a result, they will be 393 

separately studied later in this study. 394 

The OPC.1 was mainly associated with SMPS.4 and SMPS.6 and to a lesser extend with 395 

SMPS.1. OPC.1 has a somehow higher frequency during night times and it shares many of 396 

these hours with groups SMPS.4 and SMPS.6, while with SMPS.1 it mainly shares early 397 

morning hours. It includes the more polluted portion of the rather clean SMPS.6 and a portion 398 

with lower PM10 (though not much difference from average pollutants’ concentrations) from 399 

the more polluted SMPS.4. It is interesting that the variation between the subgroups (in 400 

relation to SMPS clusters) of the OPC.1 is very small for the NO2 concentrations, a pollutant 401 

for which its variations are not expected to be directly “visible” at the size range of the OPC 402 

as it is mainly associated to fresher emissions. No great variation was found for the wind 403 

direction in the subgroups of OPC.1, though it includes the lower temperature and higher RH 404 

conditions of the SMPS clusters it is associated with. The OPC.1 includes the relatively clean 405 

part of the more polluted SMPS.1 and the more polluted portion of the cleaner SMPS.6. While 406 

this does not provide a clear connection between the OPC and SMPS results, it shows that 407 

there is consistency in the results provided by the former in identifying particle sources of 408 

specific qualities. 409 
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Similarly, OPC.4 was mainly associated with SMPS.4 and SMPS.6. As the OPC.4 occurs under 410 

cleaner conditions, it includes the less polluted hours of both the SMPS clusters it is mainly 411 

associated with, though the concentrations of the secondary pollutants such as NO3
- and SO4

2- 412 

are closer to the average. The OPC.4 is associated with the cleaner portion of the 413 

aforementioned SMPS clusters with higher average temperature and RH though with variable 414 

wind speeds.  415 

OPC.5 represents a polluted group of hours associated mainly with SMPS.4, SMPS.5 and 416 

SMPS.6. Being a group of hours associated with higher concentrations of pollutants, it 417 

includes the more polluted portions of SMPS.4 and SMPS.6 with average meteorological 418 

conditions, though lower wind speeds. It also coincides with the largest portion of SMPS.5, 419 

mainly in the sixth week when the temperature was the lowest, including the portion with 420 

the higher concentrations organic content and NO3
-. SMPS.5 is the group that is associated 421 

with southern wind directions, a side from which a source of secondary pollutants (NO3
-, SO4

2-422 

, NH4
+), organic content and particles of diameter greater than 100 nm occurs. The OPC.5 is 423 

associated with the part of SMPS.5 which is more burdened from secondary pollutants, hence 424 

very large concentrations are observed for them. 425 

Finally, OPC.6 is mainly associated with SMPS.2, SMPS.4 and SMPS.6. Being a cleaner group 426 

of hours, it includes the portion of these SMPS clusters with lower pollutant concentrations 427 

but higher PM10 concentrations (though with lower PM1 concentrations). These rather clean 428 

conditions, along with the western and southwestern high-speed winds in average and the 429 

large PM10 concentrations, further enhance the possible marine character of this cluster. Due 430 

to the size range of these particles such variation is not clearly identified by the SMPS, 431 

resulting to them not being clearly separated when its data is considered. 432 

The weekly contribution of each cluster group from the analysis of either dataset is found in 433 

Figure 7 and the conditions on each week studied in Table S2. It is evident that the variation 434 

from the SMPS is greater than that of the OPC, as the latter is less affected by the diurnal 435 

variations. It is apparent that it is easier to comprehend the clusters’ variation in association 436 

with the levels of pollution in the site (the more polluted weeks have a greater portion of 437 

SMPS.1 and SMPS.5), while for those with lower concentrations of pollutants the SMPS.4 and 438 

SMPS.6 are more enhanced. These variations are harder to distinguish using the OPC data, as 439 

they are less apparent in the size range measured by the sensor. To further understand the 440 

possible sources using the latter, information from other instrument which provide chemical 441 
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composition data are needed, though it is still hard to pinpoint exact sources, due to the OPC’s 442 

weakness in explaining distinct particle sources within the day. 443 

 444 

3.5 Case studies 445 

 446 

OPC.2 447 

OPC.2 occurs mainly on a single day in March (12th) with higher than average temperature 448 

and strong western winds. This was the cluster with the lowest concentrations of NH4
+, NO3

- 449 

(about an order of magnitude compared to average conditions) and SO4
2-, rather low 450 

concentrations of NO2, BC and high O3, which is probably the result of the strong winds and 451 

the very high PBL height assisting in the removal of the pollutants from the site. Using the 452 

SMPS data, this group of hours seems to follow the trends of BC, associating it with SMPS.6 453 

for low, SMPS.1 and SMPS.2 for medium and SMPS.4 for higher concentrations of BC. This 454 

cluster has very low PM1 and PM2.5 and near average PM10 concentrations, probably 455 

associating it with marine sources (due to the high wind speed). Due to this, it is not clearly 456 

separated using the SMPS data, which does so for the hours of this group according to the 457 

level of fresher pollutants, the variation of which is smaller in this type of environments. This 458 

cluster seems to be the result of the change in the wind profile which greatly affected the 459 

coarser particles at the site (figure S5). 460 

 461 

OPC.3 462 

The third cluster formed using the OPC data, was a rather small group of hours in late January 463 

(25,27 and 28th), with the lowest average temperature, wind speed and PBL height compared 464 

to the rest of the clusters. The wind direction profile for this group contains both western and 465 

southern winds, the latter being associated with high concentrations of pollutants (as found 466 

by the study of the SMPS data). The majority of the hours in this group (65%) were 467 

characterised as freshly polluted when using the SMPS data, mainly associated with SMPS.2. 468 

Unfortunately, data of NO2, BC, O3 and PM for this group were very scarce from regulatory-469 

grade instruments (due to instrument error – the results provided in table 2 for the OPC.3 are 470 

only from 2 hours of data that were available from the regulatory grade instrument). The 471 

ACSM data, which were available for the hours of this cluster pointed to marginally lower 472 
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than average values of organic content, nitrate and ammonium, while the sulphate 473 

concentrations were rather high. Using the low-cost sensor data, it is found that this group 474 

has the highest BC (data from this low-cost sensor is not included), and involatile component 475 

of LDSA. This group also had the highest average particle concentration in the size range of 476 

the OPC, which is in agreement with the highest PM concentrations in all ranges (PM1, PM2.5, 477 

PM10), and is probably the result of the low wind speed and PBL height. As this is not visible 478 

from the SMPS, the cluster associated with this group has nearly average particle 479 

concentrations in the SMPS particle ranges. This group was not distinctively detected by the 480 

SMPS due to presenting variation in larger sized particles, which can be one of the weaknesses 481 

of studying the sources of such particles using SMPS data alone. The OPC.3 appears to contain 482 

the more polluted slow-moving portion of SMPS.2 with enhanced SO4
2-, BC and PM 483 

concentrations. 484 

 485 

SMPS.3 486 

The third cluster from the analysis of SMPS data presented a unique profile with two peaks, 487 

one below 30 nm and one a bit over 100 nm. This unique group was associated with very 488 

clean conditions, with very low concentrations for all the pollutants with available data (apart 489 

from O3), as well as low particle concentrations for all the ranges in the SMPS and OPC range 490 

as well as PM1 and PM2.5. The concentrations of PM10 and SO4
2- were somehow higher but 491 

still lower than the average in the area for the period of the study. This group is associated 492 

with high average temperature and wind speed and rather low RH, with wind directions being 493 

mainly southwestern and western. This group occurred solely at night hours during a number 494 

of relatively warm nights mainly in February and to a lesser extend in March. Even with very 495 

low particle concentrations (as found by both the SMPS and OPC) the presence of two 496 

separate peaks in the size range of the ultrafine particles is indicative of more than one 497 

simultaneous source. Due to these sources of particles occurring at the ultrafine particle 498 

range, the OPC was not able to distinguish this special condition and grouped the hours of 499 

this cluster to a number of clusters (mainly OPC.5 and to a lesser extend OPC.1 and OPC.6), 500 

occurring either during night-time or throughout the day. The inability of the OPC to 501 

distinguish complicated conditions in the ultrafine range is a weakness of the OPC that should 502 

be considered when such conditions are anticipated. 503 
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 504 

4. Discussion 505 

 506 

As the SMPS measures smaller particle sizes and with better accuracy, compared to the OPC, 507 

it managed to better separate the different sources of fresher pollution with the main 508 

differentiating factor being the time of the day, for which the variability of such sources is 509 

more prominent. The differences in NO2 concentrations, which are mainly associated with 510 

fresher emissions are more distinct between the groups and using this data better separation 511 

of very clean (SMPS.3) and very polluted conditions from a distinct source (SMPS.5) was 512 

achieved, while the other groups described mostly average conditions with lesser variability 513 

(as expected in this range at a background site). Additionally, using the SMPS data it is possible 514 

to distinguish multiple sources of ultrafine particles (SMPS.3), as they can appear as multiple 515 

peaks within the SMPS spectra. This is not possible using the OPC data as the size range 516 

measured by this instrument cannot identify such cases. 517 

Contrary to the SMPS, using the OPC data provided less distinct separation of fresher 518 

emissions (as expected due to the lack of data of small sized particles). Additionally, the OPC 519 

data is less sensitive to diurnal variations due to the range of particles covered, which are in 520 

a size range that does not vary significantly through the day but between days. This results in 521 

the less distinct diurnal variations found between the groups formed.  The analysis of the OPC 522 

data though managed to adequately separate conditions and/or sources associated with 523 

larger particles, such as aged pollution (for which it also managed to separate a small time-524 

window with very strong sulphate presence – OPC.3) which has the greatest contribution in 525 

the particle chemical composition for the study area (Harrison et al., 2003; Taiwo, 2016; Yin 526 

et al., 2010), RH variations or air masses of marine origin. To an extent, this might be due to 527 

the number of clusters chosen as there is a possibility that a larger number of clusters from 528 

the SMPS may separate sources of larger particles better, though with the risk of also 529 

separating similar sources. Additionally, the pollution levels of the clusters formed directly 530 

follow the trends of the PBL height in the area, a variation captured by both instruments, 531 

showing the importance of this variable in the air quality of an area.  532 

To sum up, the study of SMPS data with k-means clustering is far superior at separating 533 

complex pollution sources within urban environments in which the variation of very small 534 
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particles is crucial for identifying particle and emission sources. This advantage of the SMPS 535 

will not be overcome even with a denser measuring network of OPCs that could be acquired 536 

for the same cost of the SMPS. However, clustering of the OPC data can provide useful 537 

information to assess the sources of air pollution at background sites in which the direct 538 

(smaller) particle sources are few. The method managed to find sources of greater pollution 539 

associated with higher concentrations of particles of greater sizes (which are mainly 540 

associated with aged pollution though), showing that the footprint of pollution in the ultrafine 541 

particle range can have a detectable effect in coarser particle distributions as well. While not 542 

as precise as the SMPS, a denser network of such instruments in background sites can be 543 

more beneficial and more cost efficient in studying multiple pollution sources or “hot spots” 544 

within the urban environment. 545 

The current inability of low-cost PM sensors in measuring particle size spectra at small sizes 546 

(<300 nm) is the greatest drawback in their application for separating particle sources, since 547 

much information is contained in these smaller sizes.  OPCs using shorter wavelength light 548 

sources and hence smaller particle detection could be beneficial here.  Also, there are several 549 

low-cost sensors that provide insight for the surface area or the total number of particles in 550 

the ultrafine particle size range (such as the LDSA sensor used in this study). The combined 551 

use of the OPC with these instruments, along with sophisticated statistical techniques, may 552 

provide possibilities for more precise source differentiation than shown in the present study. 553 

It is noted that while clustering of particle number size distributions is one approach in the 554 

study of the source assessment of particles, other alternative methods, such as the Positive 555 

Matrix Factorisation (PMF), may also provide useful results.  556 

 557 

5. Conclusions 558 

 559 

The present study investigates the capabilities of a low-cost OPC sensor for source 560 

differentiation at an urban background site in Birmingham, UK. It is used alongside a 561 

regulatory-grade SMPS instrument, which has previously been used successfully for source 562 

differentiation.  The clustering approach identified optimal solutions of six clusters for both 563 

the SMPS and OPC data. There were similarities between the SMPS and OPC solutions, which 564 

provide insights into periods of low and high pollution. However, large differences were also 565 
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observed. A more distinct separation of direct emission sources was achieved using the SMPS 566 

data, which identified sources with time windows that correlated with extreme NO2 567 

concentrations (either high or low), as well as periods with more complex sources. The OPC 568 

was able to distinguish time periods with greater variation of super micron sized particle 569 

sources (e.g. marine sources). There seems to be a clearer distinction of the diurnal variability 570 

of sources using the SMPS data, while the OPC seems to be able to only distinguish the 571 

variability within periods of days rather than hours, as found by the less variable diurnal and 572 

weekly variation. This though might not be a great drawback when considering background 573 

sites, as this variability is smaller in such environments which are mainly affected by regional 574 

pollution, while the local emissions are less and more distinct. Low-cost sensors can be a 575 

reliable alternative for source identification studies in environments with less complex 576 

sources, which present smaller alterations within the span of the day. Still, such instruments 577 

cannot be used for scientific analyses which require greater precision. Their application will 578 

probably be adequate when studying the sources of particles with a more regional character 579 

(e.g. marine sources) rather than direct and variable sources (e.g. traffic or cooking emissions) 580 

and can provide enough information for the air quality levels, sources and conditions these 581 

are anticipated from. Such studies may include the analysis of mineral dust events resulting 582 

from either anthropogenic activities or meteorological events (e.g. dust storms), bioaerosol 583 

events in forested areas and other sources which affect mainly the composition of coarser 584 

particles. 585 

This study demonstrates that single low-cost sensor PM units can provide sensible source 586 

differentiation of large sized PM pollution sources. This allows for the prospect of source 587 

apportionment via networks of low-cost sensors in the near future, thereby allowing 588 

triangulation of sources. The development of more sophisticated low-cost sensors in 589 

conjunction with their low cost ensures the prospect of the application of a denser 590 

measurement network, making better air quality monitoring and control feasible in the near 591 

future. This though, requires more similar studies which can further elucidate the strengths 592 

and weaknesses of those sensors compared to the regulatory-grade ones, as they develop.  593 
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Table 1:    List of the measuring instruments used in the present study. 967 
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Table 2:  Average atmospheric conditions for the clusters formed by both methods. 969 
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Table 3:  Simultaneous occurrences of the clusters formed by both the OPC and SMPS. 971 
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FIGURE LEGENDS 973 

 974 

Figure 1:  Map of the location of the Birmingham Air Quality Supersite (BAQS) site in the 975 

U.K. (Map by ©HERE). 976 

 977 

Figure 2:   Frequency and diurnal variation of the clusters formed by the OPC data. 978 

 979 

Figure 3:   Frequency and diurnal variation of the clusters formed by the SMPS data. 980 

 981 

Figure 4:   Particle contributions in the range 12 – 550 nm (using the SMPS data), for the 982 

clusters formed using the OPC data (top) and the SMPS data (bottom). 983 

 984 

Figure 5: Particle contributions in the range up to 10 μm (using the FIDAS data), for the 985 

clusters formed using the OPC data (top) and the SMPS data (bottom). 986 

 987 

Figure 6:  Polar plots for the PM1 (μg m-3) for the clusters formed by the OPC data. 988 

 989 

Figure 7:  Weekly contribution (week number refers to week of year 2020) of the clusters 990 

formed by the OPC (top) and SMPS (bottom). 991 
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Table 1: List of the measuring instruments used in the present study. 993 

 994 

Monitoring Model Manufacturer 
Regulatory 

grade 
Approximate 

cost (£) 

NO2 NO2-B43F Alphasense No 250 
Ox Ox-B43I Alphasense No 160 

Black Carbon MA200 Aethlabs No 5,700 

Lung Deposited Surface Area  Naneos No 8,500 
OPC OPC-N3 Alphasense No 250 

SMPS TSi3082 TSi Yes 80,000 
ACSM Quad - ACSM Aerodyne Yes 170,000 

PM Fidas 200E Palas Yes 25,000 
NO2 T500U Teledyne Yes 15,000 

Black Carbon 
AE33 

Aethalometer 
Magee 

Scientific 
Yes 25,000 

O3 49i Thermo Yes 3,000 

 995 

 996 
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Table 2: Average atmospheric conditions for the clusters formed by both methods. 

 

NO2 

(ppb) 

BC 

(ng m-3) 

PM1 

(μg m-3) 

PM2.5 

(μg m-3) 

PM10 

(μg m-3) 

O3 

(ppb) 

Organic content 

(μg m-3) 

SO4
2- 

(μg m-3) 

NO3
- 

(μg m-3) 

LDSA  

ratio 

RH 

(%) 

WS 

(m s-1) 

T 

(oC) 

PBL height 

(m) 

OPC.1 18.6±13.9 555±630 4.32±4.08 6.53±4.62 9.97±5.81 31.9±9.81 0.254±0.231 4.12Ε-02±5.42Ε-02 8.90Ε-02±1.15Ε-01 0.443 83.9±13.1 4.16±2.50 5.20±3.11 852±568 

OPC.2 9.64±1.90 233±32.8 2.56±0.72 5.61±1.58 10.7±2.97 38.6±1.34 0.142±0.082 2.98Ε-02±5.67Ε-02 1.64Ε-02±5.53Ε-03 0.847 65.1±10.5 7.1±1.01 7.16±1.53 1622±264 

OPC.3 13.1±8.20 278±153 2.95±0.78 5.80±1.98 9.70±2.69 37.6±6.79 0.241±0.254 6.73Ε-02±6.25Ε-02 8.41Ε-02±1.54Ε-01 0.830 91.8±8.73 3.47±1.11 4.60±1.95 732±312 

OPC.4 11.5±7.15 281±191 2.51±1.55 4.84±3.20 8.33±5.35 36.5±5.17 0.192±0.235 4.53Ε-02±6.62Ε-02 1.08Ε-01±2.53Ε-01 0.536 83.5±11.5 4.37±2.09 6.26±2.73 930±430 

OPC.5 18.3±16.3 659±879 6.27±6.56 9.10±7.18 13.3±8.37 31.5±11.9 0.338±0.558 4.10Ε-02±6.49Ε-02 1.31Ε-01±2.62Ε-01 0.417 82.6±11.5 4.38±2.50 6.68±3.31 835±485 

OPC.6 8.58±6.72 197±155 2.85±1.12 5.96±2.51 10.3±4.30 40.0±4.69 0.116±0.152 3.50Ε-02±5.08Ε-02 3.50Ε-02±1.18Ε-01 0.588 81.2±12.3 4.87±2.07 6.42±2.89 1135±408 

Average 15.9±13.7 498±673 4.53±4.93 7.11±5.61 11.0±6.94 33.6±9.95 0.252±0.403 4.19Ε-02±6.05Ε-02 1.00Ε-01±2.08Ε-01 0.499 83.1±12.3 4.37±2.37 6.05±3.11 901±504 

 

 

NO2 

(ppb) 

BC 

(ng m-3) 

PM1 

(μg m-3) 

PM2.5 

(μg m-3) 

PM10 

(μg m-3) 

O3 

(ppb) 

Organic content 

(μg m-3) 

SO4
2- 

(μg m-3) 

NO3
- 

(μg m-3) 

LDSA  

ratio 

RH 

(%) 

WS 

(m s-1) 

T 

(oC) 

PBL height 

(m) 

SMPS.1 16.0±14.9 485±852 3.35±2.64 5.70±3.89 9.52±6.05 32.2±10.3 0.215±0.300 3.06Ε-02±4.80Ε-02 5.47Ε-02±7.76Ε-02 0.331 85.1±10.7 4.1±2.70 5.53±3.06 771±558 

SMPS.2 16.8±12.0 406±539 2.70±1.57 5.11±2.33 8.91±3.75 32.9±8.10 0.132±0.156 2.53Ε-02±4.11Ε-02 2.56Ε-02±4.31Ε-02 0.501 83.2±9.71 3.74±1.67 4.64±2.86 831±441 

SMPS.3 4.38±2.91 88.1±62.2 2.64±1.62 5.57±3.62 9.26±5.87 41.6±3.24 0.062±0.063 3.74Ε-02±5.75Ε-02 2.07Ε-02±7.15Ε-02 0.555 80.1±8.93 7.19±2.48 7.43±2.72 1378±290 

SMPS.4 14.3±12.3 452±592 3.77±2.56 6.71±3.75 11.1±5.67 35.6±9.32 0.249±0.306 4.68Ε-02±6.27Ε-02 8.12Ε-02±1.53Ε-01 0.499 79.4±13.9 4.74±2.38 6.97±2.62 1022±540 

SMPS.5 29.8±17,2 1389±838 17.95±7.89 21.1±8.08 25.1±7.95 16.1±10.6 1.066±0.562 1.41Ε-01±7.58Ε-02 5.74Ε-01±3.60Ε-01 0.833 93.9±7.49 2.6±1.63 4.90±2.94 454±330 

SMPS.6 13.2±10.8 340±395 2.68±1.58 5.23±3.12 9.12±5.42 36.0±6.54 0.164±0.189 2.93Ε-02±4.31Ε-02 3.86Ε-02±7.17Ε-02 0.467 81.0±12.7 4.73±2.11 6.1±3.11 1092±426 

Average 15.1±13.2 460±649 4.12±4.72 6.78±5.48 10.8±6.90 33.8±9.84 0.280±0.403 4.61Ε-02±6.40Ε-02 1.07Ε-02±2.23Ε-01 0.499 82.8±12.4 4.41±2.42 5.95±2.99 929±517 
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Table 3: Simultaneous occurrences of the clusters formed by both the OPC and 
SMPS. 

 
OPC/SMPS SMPS.1 SMPS.2 SMPS.3 SMPS.4 SMPS.5 SMPS.6 Total OPC 

OPC.1 48 30 9 71 13 66 237 

OPC.2 1 3 
 

5 
 

3 12 

OPC.3 
 

15 
 

2 4 2 23 

OPC.4 25 27 6 52 19 50 179 

OPC.5 24 26 17 39 40 38 184 

OPC.6 7 25 9 28 3 25 97 

Total SMPS 105 126 41 197 79 184 732 
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 Figure 1: Map of the location of the Birmingham Air Quality Supersite 

(BAQS) site in the U.K. (Map by ©HERE). 
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 Figure 2: Frequency and diurnal variation of the clusters formed by the OPC 

data. 
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 Figure 3: Frequency and diurnal variation of the clusters formed by the 

SMPS data. 
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 Figure 4: Particle contributions in the range 12 – 550 nm (using the SMPS 

data), for the clusters formed using the OPC data (top) and the SMPS data 

(bottom). 
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 Figure 5: Particle contributions up to 10 μm (using the FIDAS data), for the 

clusters formed using the OPC data (top) and the SMPS data (bottom). 
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 Figure 6: Polar plots for the PM1 (μg m-3) for the clusters formed by the OPC 

data. 
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Figure 7: Weekly contribution (week number refers to week of year 2020) of 

the clusters formed by the OPC (top) and SMPS (bottom). 
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