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Abstract

Measurement and source apportionment of atmospheric pollutants is crucial for the
assessment of air quality and the implementation of policies for its improvement. In most
cases, such measurements use expensive regulatory grade instruments, which makes it
difficult to achieve wide spatial coverage. Low-cost sensors may provide a more affordable
alternative, but their capability and reliability in separating distinct sources of particles have
not been tested extensively yet. The present study examines the ability of a low-cost Optical
Particle Counter (OPC) to identify the sources of particles and conditions that affect particle
concentrations at an urban background site in Birmingham, UK. To help evaluate the results,
the same analysis is performed on data from a regulatory-grade instrument (SMPS) and
compared to the outcomes from the OPC analysis. The analysis of the low-cost sensor data
manages to separate periods and atmospheric conditions according to the level of pollution
at the site. It also successfully identifies a number of sources for the observed particles, which
were also identified using the regulatory-grade instruments. The low-cost sensor, due to the
particle size range measured (0.35 to 40 um), performed rather well in differentiating sources
of particles with sizes greater than 1 um, though its ability to distinguish their diurnal
variation, as well as to separate sources of smaller particles, at the site was limited. The
current level of source identification demonstrated makes the technique useful for
background site studies, where larger particles with smaller temporal variations are of
significant importance. This study highlights the current capability of low-cost sensors in
source identification and differentiation using clustering approaches. Future directions

towards particulate matter source apportionment using low cost OPCs are highlighted.



41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

1. Introduction

Particulate matter (PM) plays a dominant role in air quality and is known to cause adverse
health effects (Dockery et al., 1993; Pascal et al., 2013; Wu et al., 2016; Zeger et al., 2008). As
a result, regulatory limits are set for its concentrations, especially in urban areas (US EPA,
2012; WHO, 2006). For the implementation of such regulations, the identification of the
sources of PM is required. To accomplish this, measurements of the concentrations of PM,
typically alongside PM composition, in the area of study are conducted. Until recent years
these measurements were typically made using regulatory-grade instruments which, while
providing high quality data, are rather expensive thereby limiting the number that could be
deployed and consequently the spatial resolution of any measurement network. This
increases the spatial interpolation uncertainty (Kanaroglou et al., 2005) and can result in
inadequate connection between the levels of air pollution exposures and health effects
(Holstius et al., 2014), especially in complex urban environments (Harrison, 2017; Mueller et
al., 2016). Additionally, many low and middle income countries are unable to invest the large
economic assets currently required for source apportionment, even though in many of these
countries, the air quality is poor (Ghosh and Parida, 2015; Kan et al., 2009; Petkova et al.,
2013; Pope et al., 2018; Singh et al., 2020).

In the past decade, the development of new and cheaper sensors for air quality monitoring
has intensified. Many different sensors were introduced measuring either the number
concentration or surface area of PM, or the gas phase species (Jovasevi¢-Stojanovi¢ et al.,
2015; Lewis et al., 2018; Popoola et al., 2018). Overall, the low-cost PM sensors currently offer
better comparison with regulatory grade equipment compared to their gas phase
counterparts (Lewis et al., 2018). However, many shortcomings have been identified in their
application, with the most common being the loss of accuracy in the measurements due to
environmental conditions such as relative humidity (RH) variations or high PM concentrations
(Castell et al., 2017; Crilley et al., 2018; 2020; Di Antonio et al., 2018; Hagan and Kroll, 2020,
Miskell et al., 2017; Zheng et al., 2018). Measurements in ambient conditions also lead to
discrepancies with research-grade instruments, which often measure in controlled
environments that are air conditioned (U.S. Environmental Protection Agency, 2016). The

reproducibility and variability of the outputs from sensors of the same type can also be
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problematic (Austin et al., 2015; Sousan et al., 2016; Wang et al., 2015). Therefore, the need
for constant and careful calibration is repeatedly highlighted in many studies that evaluate
the potential of low cost sensors (Rai et al., 2017; Spinelle et al., 2015, 2017). When these
calibration steps are implemented, low-cost sensors have been shown to provide reliable
near-real time measurements, maintaining high correlations with research-grade instruments
(Kelly et al., 2017; Malings et al., 2020; Sayahi et al., 2019) with the added advantages of the
lower cost and portability.

Consequently, low-cost sensors have been successfully deployed in many studies for which
the use of more expensive instruments was not feasible. There is a number of applications in
low and middle income countries (e.g. Nagendra et al., 2019; Pope et al., 2018), in studies
which included mobile measurements within the urban environment (lonascu et al., 2018;
Jerrett et al., 2017; Miskell et al., 2018), or studies of indoor air quality from multiple sites,
such as the SKOMOBO project conducted in New Zealand, in which the air quality in schools
was assessed (Weyers et al., 2018). The greatest advantage though is likely, as their name
implies, their lower cost which made possible the formation of a network of measuring
stations (Feinberg et al., 2019; Kotsev et al., 2016; Moltchanov et al., 2015), increasing the
spatial resolution and through new data analysis methods improve the mapping of air
pollution up to a sub-neighbourhood level (Schneider et al., 2017, Shindler, 2019). Therefore,
it is suggested that the development and use of low-cost sensors, either used individually or
in conjunction with research-grade instruments (Snyder et al., 2013), have the potential to
radically change the conventional approach of both pollution measuring and policy making
(Borrego et al., 2018; Kumar et al., 2015; Lagerspetz et al., 2019, Morawska et al., 2018),
providing a more effective general public information and enhanced environmental
awareness (Penza et al., 2014), even for countries with smaller budgets (Amegah, 2018).

As yet, studying the different sources of particles at a site with the use of data from low-cost
sensors has not been widely attempted yet. Pope et al., (2018) managed to identify major
pollution sources studying the ratios of PM of different sizes provided by low-cost sensors,
while Popoola et al., (2018) using a network of sensors identified the sources of pollution near
Heathrow airport in London, UK. Hagan et al., (2019) applying a statistical method (Non-
negative Matrix Factorisation) on low-cost sensor data, identified a combustion factor in a
three-factor solution in New Delhi, India. The present study investigates the ability of low-

cost sensors to provide measurements that can be used to identify the sources of pollution
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at a background site in Birmingham, UK, using clustering of particle composition profiles. This
method was successfully used in a number of previous studies, though with the use of
measurements from research-grade instruments (Beddows et al., 2009, 2015; Von Bismarck-
Osten and Weber, 2014; Dall’Osto et al., 2011; 2012; Sabaliauskas et al., 2013). To support
the clustering method, chemical composition data from both research-grade and low-cost
sensor instruments were used, as well as meteorological data from a closely located
measurement station. Apart from attempting the source differentiation with low-cost sensor
data, a direct comparison with the results from a similar analysis using research-grade
instruments is also conducted to not only validate the results but find the strengths and

weaknesses of such an application.

2. Methods

2.1 Location of the site and instruments

The measurement site (fig. 1), characterised as an urban background, is the Birmingham Air
Quality Supersite (BAQS) located at the grounds of the University of Birmingham (52.45°N;
1.93°W), about 3 km southwest from the city centre (Alam et al., 2015). In the present study,
measurements from the following instruments for the period 24/01/2020 to 12/3/2020 (the
date range was chosen to avoid the effect of the lockdown due to COVID-19) were used (Table
1, a picture of the low-cost sensors used at BAQS is found in figure S1):

The Alphasense OPC-N3, which is an optical particle counter, measuring particle number
concentrations in the size range between 0.35 to 40 um at rates up to about 10000 particles
per second. As the sample air stream enters the instrument with a sample flow rate of 210
mL m™* (dynamically monitored and corrected by the sensor) it passes through a laser beam
(wavelength at 658 nm). The OPC-N3 measures the light scattered by individual particles
carried in a sample air stream through a laser beam. These measurements are used to
determine the particle size, related to the intensity of light scattered via a calibration based
on Mie scattering theory, and particle number concentration. Particle mass loadings (PMy,
PM_.s and PMjg) are then calculated from the particle size spectra and concentration data,
assuming a particle density and refractive index (default density is 1.65 g/ml and refractive

index is 1.5+i0.). Particles of larger size are lost to impaction in the tubing prior to the OPC
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and thus are not considered. The OPC is located within the air conditioned station, so
measurements represent PM dry mass.

The AethLabs MA200 (microAeth MA200) which provides black carbon (BC) information (0-1
mg BC/m3). The sample is deposited onto an internal filter, and an IR light (880 nm) is directed
through the sample on the filter and into a detector on the other side of the sample. The
amount of light absorbed from the sample is proportional to the BC concentration.

Two Naneos Partectors (Naneos Particle Solutions GmbH) which provide the lung deposited
surface area metric (LDSA, um?/cm3) in the particle diameter range 10 nm to 10 um. In
general, the provided data is dictated by the particle number concentration and diameter
(Nd*1) for both semi-volatile and solid particles. A catalytic stripper (Catalytic Instruments
CS015) was used to remove the semi-volatile particles entering one of the two Naneos
Partectors. The other Naneos Partector was not subject to the catalytic stripper and therefore
measured the surface of all particles. In the present study, apart from the values provided
directly from the sensors, the ratio between the measurements of the two Naneos Partectors

was also considered according to:

LDSA after the catalytic stripper
LDSArqatio =

LDSA before the catalytic stripper

This was done to resolve whether such a configuration can also provide information such as
the level of pollution or the age of the incoming air masses, as increased concentrations of
semi-volatile compounds are usually associated with anthropogenic sources, especially in the
urban environment (Harkov, 1989; Mahbub et al., 2011, Schnelle-Kreis et al., 2007, Xu and
Zhang, 2011). Thus, a high LDSAr.tic is expected to be associated with fresher pollution which
usually has a higher content of volatile compounds (i.e., pollution sources at a close distance
from the site), while lower ratios are probably associated with either cleaner conditions or
more regional and aged pollution with higher concentrations of semi-volatile compounds,
usually associated with sources at a greater distance from the measuring site. The specific
metric though should be considered with caution, as it can be biased by the absolute surface
areas measured.

The sensors monitoring nitrogen dioxide (NO2) and ozone (Os) concentrations are part of an

Alphasense Box Of Clustered Sensors (BOCS) (Smith et al., 2019), which is a low-power
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instrument based on the clustering of multiple low-cost air pollution sensors allocated in two
independent circuits to redundantly measure concentrations and other airflow parameters.
The air is driven by a pump through the cell (air flow is about 4 L min) that hosts the
electrochemical sensors (EC) and the nondispersive infrared sensors (NDIR). While the EC
sensors redundantly (6 sensors per gas) measure carbon monoxide, NO3, nitrogen monoxide,
oxidizing gases (Ox), the NDIR sensors measure carbon dioxide. EC sensors are based on
recording the current generated by redox reactions that occur at the electrode-electrolyte
interface in an electrochemical cell composed of three electrodes (working electrode (WE),
counter electrode (CE) and reference electrode (RE)). While the gas of interest reacts on the
WE surface, the CE completes the redox reaction and the RE ensures that the WE potential
remains in the proper range. In the present study, measurements of Os (deriving from a linear
regression of the values of the six Ox sensors with the measurements from the reference

instrument also located at BAQS) and NO; were only used from the specific sensor.

The Aethalometer model AE33 by Magee Scientific, collects aerosol particles continuously
by drawing the aerosol-laden air stream through a spot on the filter tape. It analyses the
aerosol by measuring the transmission of light through one portion of the filter tape
containing the sample, versus the transmission through an unloaded portion of the filter
tape acting as a reference area. This analysis is done at seven optical wavelengths spanning
the range from the near-infrared to the near-ultraviolet. The Aethalometer calculates the
instantaneous concentration of optically absorbing aerosols from the rate of change of the

attenuation of light transmitted through the particle-laden filter.

For the same period data from regulatory-grade instruments were also available. Thus,
particle size composition data from a model TSi3082 Scanning Mobility Particle Sizer (SMPS)
in the size range 12 — 552 nm, along with PM data for the sizes of 1, 2.5, 4 and 10 um acquired
using a Fidas 200E were used. Additionally, chemical composition data for NO;, O3, as well as
S04%, NOs3™ and organic content (size range 40 nm to 1 pm) from an Aerodyne Aerosol
Chemical Speciation Monitor (ACSM) were also available. Meteorological data (wind speed
and direction, temperature, RH and rain level) from the Birmingham Air Quality Supersite

were also used in the characterisation of the clusters formed from both methods.
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Planetary Boundary Layer (PBL) height data were downloaded from ECMWF’s ERA5

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels - last

access 20/3/2021). Back trajectory data calculated using the HYSPLIT model (Draxler and

Hess, 1998), were extracted by the NOAA Air Resources Laboratory

(https://ready.arl.noaa.gov/READYtransp.php - last access 17/8/2020). Data was processed

using the Openair package for R (Carslaw and Ropkins, 2012).

2.2 k-means clustering

In this study, two size spectra are considered, one deriving from the OPC and one from the
regulatory-grade SMPS. It is noted that the size spectra from the two instruments only briefly
overlap in the size range 350 — 552 nm, with the SMPS mostly measuring smaller particles and
the OPC mostly measuring larger particles. For the period studied (24/1/2020 —12/3/2020),
874 hours of available data (averaged from 10 second intervals - 76% coverage) from the OPC
and 732 hours from the SMPS (66% coverage) were exposed to k-means clustering. k-means
clustering is a method successfully used in many studies of particle source differentiation
(Beddows et al., 2015; Brines et al., 2015, Von Bismarck-Osten and Weber, 2014; Giorio et al.,
2015; Wegner et al., 2012) and was proven to have better performance compared to other
clustering techniques (Beddows et al., 2009; Salimi et al., 2014), as it was found to produce
clusters with the highest similarity between their elements and the highest separation against
the other clusters formed (Hennig, 2007). It is a method of vector quantisation which aims to
partition observations (x1, X2, ..., Xn) into k sets, minimising within-clusters variances (squared

Euclidean distances) as:
k k

arg minz 2 llx — p;||? = arg min EISiI VarS;

i=1 X€S; i=1
where S; are the sets (clusters) formed and W are the centroid point of the cluster (Likas et al.,
2003). K-means clustering in this study was performed using the “stats” library for R. The
optimal number of clusters was chosen using two metrics, the Dunn Index and the Silhouette
width as proposed by Beddows et al., 2009. The Dunn Index provides a measure of the ratio
of the minimum cluster separation to the maximum cluster (providing a metric of the
compactness and separation of the clusters formed within the space — Pakhira et al., (2004)).

The larger the Dunn Index the better separated are the clusters formed. The Silhouette width
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is a measure of the similarity of the spectra within each cluster (Rousseeuw, 1987). Both the
Dunn index and Silhouette width were calculated using the “fpc” library for R. In the present
study the best statistically fitted solution was chosen (the solution for which both metrics
maximised), though in source differentiation studies such a solution may not always provide
with the best separation of all the available sources. Using the aforementioned statistical
tests, a six-cluster solution was independently suggested for both the OPC and SMPS datasets.
Though the clustering process could be applied for the FIDAS data, which are comparable in

size range, it was not performed in this study.

3. Results

3.1 General conditions, sources of particles and pollution at the site

Being an urban background, the site studied presents relatively low concentrations of most
pollutants (the average atmospheric conditions for each cluster formed by both methods is
presented in table 2), without the effect of direct sources of pollution, such as traffic. Wind
rose and polar plots illustrating the conditions in the period studied are found in figure S2.
The main source of pollution lies on the north and northeast sectors, where the city centre is
located, as well as in the southern and eastern sectors where a populous residential area is
located. As a result, the main sources of NO, and BC as well as the smaller sized PM are
associated with easterly winds (this though is not reflected in particles observed in the SMPS
size range). For the PMo apart from the aforementioned, increased concentrations are also
found with southwestern winds likely associated with marine sources. Typical for the UK, the
average wind profile for the period consists mainly of western and southwestern winds
(McIntosh and Thom, 1969), reducing the effect of the pollution sources in the east of the
site. Finally, the secondary pollutants NOs” and SO4? which are in most cases associated aged
pollution and long-distance transport, have less consistent profiles, though they both seem
to be mainly associated with southern wind directions. Finally, for the period studied no New
Particle Formation events were observed. This is consistent with the general trend in the area
as found by Alam et al., (2003) for Birmingham (as well as in a more recent studies by Bousiotis

et al., (2019; 2021) at nearby sites in Oxford and London), in which NPF events in Southern
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UK are more frequent during the summer months and barely occurring during winter and

early spring, mainly due to unfavourable meteorological conditions.

3.2 Clustering of the OPC data

Due to the larger particle sizes measured by the OPC-N3, the differences in the cluster profiles
are mainly associated with the particle number concentrations and to a lesser extent on the
different peaks, which are less distinct due to the smaller variation found as particle diameter
increases. The frequency of the clusters formed, and their diurnal occurrence is shown in
figure 2. The average particle size distribution spectra and wind roses for the clusters formed
are found in figures S3 and S4.

The six clusters formed from the OPC data are:

OPC.1: A rather polluted group with the highest NO, concentrations and average secondary
pollutants, PM and LDSA ratio. Its fresher polluted character is further confirmed using the
SMPS data which showed higher than average particle concentrations for particles with
diameter smaller than 50 nm. This group presents low average temperature, RH, PBL height
and slower than average southwestern winds, which is explained, to an extent, by the cluster
being slightly more frequent during night-time.

OPC.2: The second group refers mainly to a single midday event on 12/3/2020 (which explains
the highest PBL height found) with high-speed southwestern winds, which are associated with
lower pollution levels in the area (McGregor and Bamzelis, 1995), high temperature and very
low RH. On this day the concentrations of all the pollutants were rather low, though due to
the high wind speeds (an increase in the wind speed is observed at the start of the occurrence
of this cluster —at 10:00 AM - which affects the particle distribution profile as can be seen in
Figure S5) the PM1p were close to average (when PM; and PMys were rather low) indicating
the stronger presence of coarser particles, possible of marine origin as shown by the back
trajectories, a source with an increasing importance at larger size PM at this area (Harrison et
al., 2004; Taiwo et al., 2014). This group presents the highest LDSA ratio, which is in
agreement with the low concentrations of the secondary pollutants.

OPC.3: A group occurring mainly during some of the midday periods in January, with the
lowest temperature and wind speed averages, as well as the highest average RH, containing

both southwestern and southern winds. While the concentrations of the measured pollutants

10
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are close to average, high sulphate and ozone concentrations were found, with the former
pointing to air masses with higher concentrations of aged pollutants assisted by the lowest
PBL found for this cluster. The LDSA ratio though, was found to be very high despite the higher
concentrations of sulphate and nitrate. The near average NO; concentrations may point to
the effect of a nearby pollution source that may resulted to the increased LDSA ratio found.
OPC.4: A group with low concentrations of NO,, BC and PM, but close to average secondary
pollutants’ concentrations. It is associated with close to average temperature, RH, PBL height
and wind speed of mainly southwestern directions. It is slightly more frequent during daytime
and has lower than average concentrations of particles in the SMPS range.

OPC.5: This group includes the most polluted conditions in the area throughout the day. It is
associated with western and southwestern winds of average speed, high temperature and
lower than average RH. Most pollutant concentrations, including PM, are rather high while
O3 is low. Similarly, it presents the highest concentrations of particles in all SMPS size ranges
which is probably due to the reduced atmospheric mixing in the lowest average PBL height
among the OPC clusters. This cluster also includes the more polluted conditions found with
north-eastern winds.

OPC.6: A group associated with rather clean conditions, presenting the lowest concentrations
of NO3, BC, NOs™ and organic content. It is associated with higher than average temperature,
PBL height and wind speed and lower than average RH, and has low concentrations of PM;
and PM;s, while PMip concentration is close to average. Its association with cleaner
conditions (lower concentrations of the pollutants with available data) probably explains the
highest O3 concentrations. The fast-moving southwestern air masses, which this group is
associated with, are probably of marine origin that have not passed through any significant
pollution sources, which can be further suggested by both the low LDSA values and the

highest LDSA ratio.

3.3 Clustering of the SMPS data

In the past, a number of studies on the sources of particles were conducted for both the
greater area of Birmingham and specifically the site in the University (Harrison et al., 1997
Taiwo, 2016; Yin et al., 2010). As, these studies mainly focused on the chemical composition

of coarser particles, to the authors’ knowledge this is the first study that uses ultrafine particle
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size distribution data to study the sources of particles in Birmingham, UK. The frequency and
hourly occurrence of the six clusters formed from the SMPS data is found in figure 3. The
average particle size distributions and wind roses for the clusters formed are found in figures
S6 and S7.

SMPS.1: This group contains averagely polluted hours and is associated with fresher
pollutants (such as NO; or NO) and PM, while secondary pollutants such as NH4*, NO3 and
SO4* are relatively low. Due to being associated with fresher emissions this group presents
higher than average concentrations of particles below 50 nm and a low LDSA ratio. It is
associated with average speed southwestern winds (it also includes the small portion of
north-eastern winds) and temperature, higher than average RH and occurs more frequently
during late night and early morning hours, which explains the low PBL height among the SMPS
clusters.

SMPS.2: Similar to the first group, average pollutants’ concentrations are found in this group
with low concentrations of secondary pollutants. It is associated with slow western and
southwestern winds, lower than average temperatures, RH and PBL height and is more
frequent during early morning hours. It has the highest concentrations of particles with
diameter smaller than 20 nm, but the particle concentrations become relatively smaller as
their size increase.

SMPS.3: This is a small group containing very clean night hours mainly in February, with higher
than average temperature, lower than average RH, strong western and southwestern winds
and a remarkably great PBL height for the time of the day. It has low concentrations of
pollutants and PM apart from O3 (despite the time of day), though PM1p concentration is
enhanced, probably associating this group with stronger marine origins. The particle
concentrations of all size ranges below 500 nm are the lowest among the groups formed and
along with the high LDSA ratio are in agreement with the very clean conditions associated
with this cluster. This cluster, contrary to all other, presents two peaks: one peaking just
below 30 nm and another one just over 100 nm, which indicates that it is probably associated
with at least two different sources.

SMPS.4: This group presents near average concentrations of all the pollutants studied. PM;
average concentration is rather low while PMjg is higher than the average. It is associated

with average speed southwestern winds, higher average temperature and PBL height and low

12



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

363

364

365
366
367
368
369
370
371
372
373
374
375
376
377

RH. It is more frequent during midday and evening hours and it appears to represent the most
common conditions in the area, hence having the highest frequency of all clusters.

SMPS.5: This is a unique group associated with southern winds, the side at which the central
part of the University resides. This is the most polluted group, probably affected by emissions
from the University and the residential area found in that direction assisted by the very low
PBL height, with very high concentrations of all the pollutants (apart from Os), PM and
ultrafine particles with available data. The LDSA ratio is very high and this is probably due to
the great surface area of the involatile component found. It is associated with very slow wind
speeds, low temperature, very high RH and occurred evenly throughout the day, mainly on
the first weeks of the campaign when pollution levels were rather high, probably due to
increased heating emissions.

SMPS.6: This group presents low concentrations of all pollutants (apart from Os), PM and
ultrafine particles with available data and is associated with western winds with higher than
average speed, near average temperatures and PBL height and low RH. It occurred more
frequently during evening hours and almost equally frequently throughout the whole study

period apart from the first 2 weeks when pollution levels were rather high.

3.4 Direct comparison between the methods

Due to the difference in the size ranges measured by the SMPS and OPC instruments, it is
evident that a direct comparison between the two methods would provide mixed results as
some clusters found using the SMPS data are not detectable with the OPC, and vice versa.
The particle size range that is common between the two instruments lies at about 350 — 550
nm. Therefore, many particle sources associated with particles in the size range below the
minimum detectable size of the OPC are not expected to be found using its data and vice
versa. At a background site though, many of the sources of smaller sized particles play a less
important role as they are usually associated with fresher emissions, which are not common
to such sites.

The clustering process attempts to separate the particle size distributions into groups with as
similar spectral profiles as possible, while being as different to the other groups as possible.

As expected, the SMPS is more capable in separating different cluster profiles at the size range

13
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smaller than 500 nm, a size range in which the cluster profiles (using the SMPS data) formed
by the groups from the OPC are almost uniform (fig. 4). This shows the limitation of the OPC
data to distinguish ultrafine particle variations and thus it does not provide insight for the
sources of particles within this size range. On the other hand, the OPC performs much better
in identifying different sources when considering larger particles in the range between 1 - 10
um, for which it manages to clearly distinguish variations between the groups formed (fig. 5).
The clusters formed using the OPC data appear to be better associated with different sources
of PM (fig. 6), compared to those deriving from the SMPS data (fig. S8), as distinct “hot spots”
of PM; are more clearly defined on the polar plots from the OPC compared to the less clear
and mainly associated with calm (or almost calm) conditions from the SMPS (providing no
separation among possible sources of PM1).

Table 3 contains the cluster relationships between the two methods, while Table S1 contains
the conditions observed when pairs of clusters from both methods are considered. The OPC.2
and OPC.3 clusters appear infrequently, and it would be nonsensical to directly associate
them with SMPS groups, as they appear under very specific conditions, that either are not
detected or are not identified as separate cases by the SMPS. As a result, they will be
separately studied later in this study.

The OPC.1 was mainly associated with SMPS.4 and SMPS.6 and to a lesser extend with
SMPS.1. OPC.1 has a somehow higher frequency during night times and it shares many of
these hours with groups SMPS.4 and SMPS.6, while with SMPS.1 it mainly shares early
morning hours. It includes the more polluted portion of the rather clean SMPS.6 and a portion
with lower PMjo (though not much difference from average pollutants’ concentrations) from
the more polluted SMPS.4. It is interesting that the variation between the subgroups (in
relation to SMPS clusters) of the OPC.1 is very small for the NO, concentrations, a pollutant
for which its variations are not expected to be directly “visible” at the size range of the OPC
as it is mainly associated to fresher emissions. No great variation was found for the wind
direction in the subgroups of OPC.1, though it includes the lower temperature and higher RH
conditions of the SMPS clusters it is associated with. The OPC.1 includes the relatively clean
part of the more polluted SMPS.1 and the more polluted portion of the cleaner SMPS.6. While
this does not provide a clear connection between the OPC and SMPS results, it shows that
there is consistency in the results provided by the former in identifying particle sources of

specific qualities.
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Similarly, OPC.4 was mainly associated with SMPS.4 and SMPS.6. As the OPC.4 occurs under
cleaner conditions, it includes the less polluted hours of both the SMPS clusters it is mainly
associated with, though the concentrations of the secondary pollutants such as NO3 and SO4%
are closer to the average. The OPC.4 is associated with the cleaner portion of the
aforementioned SMPS clusters with higher average temperature and RH though with variable
wind speeds.

OPC.5 represents a polluted group of hours associated mainly with SMPS.4, SMPS.5 and
SMPS.6. Being a group of hours associated with higher concentrations of pollutants, it
includes the more polluted portions of SMPS.4 and SMPS.6 with average meteorological
conditions, though lower wind speeds. It also coincides with the largest portion of SMPS.5,
mainly in the sixth week when the temperature was the lowest, including the portion with
the higher concentrations organic content and NOs~. SMPS.5 is the group that is associated
with southern wind directions, a side from which a source of secondary pollutants (NO3", SO4*
, NH2*), organic content and particles of diameter greater than 100 nm occurs. The OPC.5 is
associated with the part of SMPS.5 which is more burdened from secondary pollutants, hence
very large concentrations are observed for them.

Finally, OPC.6 is mainly associated with SMPS.2, SMPS.4 and SMPS.6. Being a cleaner group
of hours, it includes the portion of these SMPS clusters with lower pollutant concentrations
but higher PM1p concentrations (though with lower PMj concentrations). These rather clean
conditions, along with the western and southwestern high-speed winds in average and the
large PM1o concentrations, further enhance the possible marine character of this cluster. Due
to the size range of these particles such variation is not clearly identified by the SMPS,
resulting to them not being clearly separated when its data is considered.

The weekly contribution of each cluster group from the analysis of either dataset is found in
Figure 7 and the conditions on each week studied in Table S2. It is evident that the variation
from the SMPS is greater than that of the OPC, as the latter is less affected by the diurnal
variations. It is apparent that it is easier to comprehend the clusters’ variation in association
with the levels of pollution in the site (the more polluted weeks have a greater portion of
SMPS.1 and SMPS.5), while for those with lower concentrations of pollutants the SMPS.4 and
SMPS.6 are more enhanced. These variations are harder to distinguish using the OPC data, as
they are less apparent in the size range measured by the sensor. To further understand the

possible sources using the latter, information from other instrument which provide chemical
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composition data are needed, though it is still hard to pinpoint exact sources, due to the OPC’s

weakness in explaining distinct particle sources within the day.

3.5 Case studies

OPC.2

OPC.2 occurs mainly on a single day in March (12t") with higher than average temperature
and strong western winds. This was the cluster with the lowest concentrations of NH4*, NOs
(about an order of magnitude compared to average conditions) and SO.%, rather low
concentrations of NO;, BC and high Os, which is probably the result of the strong winds and
the very high PBL height assisting in the removal of the pollutants from the site. Using the
SMPS data, this group of hours seems to follow the trends of BC, associating it with SMPS.6
for low, SMPS.1 and SMPS.2 for medium and SMPS.4 for higher concentrations of BC. This
cluster has very low PMi and PM,s and near average PMip concentrations, probably
associating it with marine sources (due to the high wind speed). Due to this, it is not clearly
separated using the SMPS data, which does so for the hours of this group according to the
level of fresher pollutants, the variation of which is smaller in this type of environments. This
cluster seems to be the result of the change in the wind profile which greatly affected the

coarser particles at the site (figure S5).

OPC.3

The third cluster formed using the OPC data, was a rather small group of hours in late January
(25,27 and 28t"), with the lowest average temperature, wind speed and PBL height compared
to the rest of the clusters. The wind direction profile for this group contains both western and
southern winds, the latter being associated with high concentrations of pollutants (as found
by the study of the SMPS data). The majority of the hours in this group (65%) were
characterised as freshly polluted when using the SMPS data, mainly associated with SMPS.2.
Unfortunately, data of NO,, BC, O3 and PM for this group were very scarce from regulatory-
grade instruments (due to instrument error — the results provided in table 2 for the OPC.3 are
only from 2 hours of data that were available from the regulatory grade instrument). The

ACSM data, which were available for the hours of this cluster pointed to marginally lower
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than average values of organic content, nitrate and ammonium, while the sulphate
concentrations were rather high. Using the low-cost sensor data, it is found that this group
has the highest BC (data from this low-cost sensor is not included), and involatile component
of LDSA. This group also had the highest average particle concentration in the size range of
the OPC, which is in agreement with the highest PM concentrations in all ranges (PM1, PMys,
PM1o), and is probably the result of the low wind speed and PBL height. As this is not visible
from the SMPS, the cluster associated with this group has nearly average particle
concentrations in the SMPS particle ranges. This group was not distinctively detected by the
SMPS due to presenting variation in larger sized particles, which can be one of the weaknesses
of studying the sources of such particles using SMPS data alone. The OPC.3 appears to contain
the more polluted slow-moving portion of SMPS.2 with enhanced SO4*, BC and PM

concentrations.

SMPS.3

The third cluster from the analysis of SMPS data presented a unique profile with two peaks,
one below 30 nm and one a bit over 100 nm. This unique group was associated with very
clean conditions, with very low concentrations for all the pollutants with available data (apart
from O3), as well as low particle concentrations for all the ranges in the SMPS and OPC range
as well as PM; and PMys. The concentrations of PM1g and SO4* were somehow higher but
still lower than the average in the area for the period of the study. This group is associated
with high average temperature and wind speed and rather low RH, with wind directions being
mainly southwestern and western. This group occurred solely at night hours during a number
of relatively warm nights mainly in February and to a lesser extend in March. Even with very
low particle concentrations (as found by both the SMPS and OPC) the presence of two
separate peaks in the size range of the ultrafine particles is indicative of more than one
simultaneous source. Due to these sources of particles occurring at the ultrafine particle
range, the OPC was not able to distinguish this special condition and grouped the hours of
this cluster to a number of clusters (mainly OPC.5 and to a lesser extend OPC.1 and OPC.6),
occurring either during night-time or throughout the day. The inability of the OPC to
distinguish complicated conditions in the ultrafine range is a weakness of the OPC that should

be considered when such conditions are anticipated.
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4. Discussion

As the SMPS measures smaller particle sizes and with better accuracy, compared to the OPC,
it managed to better separate the different sources of fresher pollution with the main
differentiating factor being the time of the day, for which the variability of such sources is
more prominent. The differences in NO2 concentrations, which are mainly associated with
fresher emissions are more distinct between the groups and using this data better separation
of very clean (SMPS.3) and very polluted conditions from a distinct source (SMPS.5) was
achieved, while the other groups described mostly average conditions with lesser variability
(as expected in this range at a background site). Additionally, using the SMPS data it is possible
to distinguish multiple sources of ultrafine particles (SMPS.3), as they can appear as multiple
peaks within the SMPS spectra. This is not possible using the OPC data as the size range
measured by this instrument cannot identify such cases.

Contrary to the SMPS, using the OPC data provided less distinct separation of fresher
emissions (as expected due to the lack of data of small sized particles). Additionally, the OPC
data is less sensitive to diurnal variations due to the range of particles covered, which are in
a size range that does not vary significantly through the day but between days. This results in
the less distinct diurnal variations found between the groups formed. The analysis of the OPC
data though managed to adequately separate conditions and/or sources associated with
larger particles, such as aged pollution (for which it also managed to separate a small time-
window with very strong sulphate presence — OPC.3) which has the greatest contribution in
the particle chemical composition for the study area (Harrison et al., 2003; Taiwo, 2016; Yin
et al., 2010), RH variations or air masses of marine origin. To an extent, this might be due to
the number of clusters chosen as there is a possibility that a larger number of clusters from
the SMPS may separate sources of larger particles better, though with the risk of also
separating similar sources. Additionally, the pollution levels of the clusters formed directly
follow the trends of the PBL height in the area, a variation captured by both instruments,
showing the importance of this variable in the air quality of an area.

To sum up, the study of SMPS data with k-means clustering is far superior at separating

complex pollution sources within urban environments in which the variation of very small
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particles is crucial for identifying particle and emission sources. This advantage of the SMPS
will not be overcome even with a denser measuring network of OPCs that could be acquired
for the same cost of the SMPS. However, clustering of the OPC data can provide useful
information to assess the sources of air pollution at background sites in which the direct
(smaller) particle sources are few. The method managed to find sources of greater pollution
associated with higher concentrations of particles of greater sizes (which are mainly
associated with aged pollution though), showing that the footprint of pollution in the ultrafine
particle range can have a detectable effect in coarser particle distributions as well. While not
as precise as the SMPS, a denser network of such instruments in background sites can be
more beneficial and more cost efficient in studying multiple pollution sources or “hot spots”
within the urban environment.

The current inability of low-cost PM sensors in measuring particle size spectra at small sizes
(<300 nm) is the greatest drawback in their application for separating particle sources, since
much information is contained in these smaller sizes. OPCs using shorter wavelength light
sources and hence smaller particle detection could be beneficial here. Also, there are several
low-cost sensors that provide insight for the surface area or the total number of particles in
the ultrafine particle size range (such as the LDSA sensor used in this study). The combined
use of the OPC with these instruments, along with sophisticated statistical techniques, may
provide possibilities for more precise source differentiation than shown in the present study.
It is noted that while clustering of particle number size distributions is one approach in the
study of the source assessment of particles, other alternative methods, such as the Positive

Matrix Factorisation (PMF), may also provide useful results.

5. Conclusions

The present study investigates the capabilities of a low-cost OPC sensor for source
differentiation at an urban background site in Birmingham, UK. It is used alongside a
regulatory-grade SMPS instrument, which has previously been used successfully for source
differentiation. The clustering approach identified optimal solutions of six clusters for both
the SMPS and OPC data. There were similarities between the SMPS and OPC solutions, which

provide insights into periods of low and high pollution. However, large differences were also
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observed. A more distinct separation of direct emission sources was achieved using the SMPS
data, which identified sources with time windows that correlated with extreme NO;
concentrations (either high or low), as well as periods with more complex sources. The OPC
was able to distinguish time periods with greater variation of super micron sized particle
sources (e.g. marine sources). There seems to be a clearer distinction of the diurnal variability
of sources using the SMPS data, while the OPC seems to be able to only distinguish the
variability within periods of days rather than hours, as found by the less variable diurnal and
weekly variation. This though might not be a great drawback when considering background
sites, as this variability is smaller in such environments which are mainly affected by regional
pollution, while the local emissions are less and more distinct. Low-cost sensors can be a
reliable alternative for source identification studies in environments with less complex
sources, which present smaller alterations within the span of the day. Still, such instruments
cannot be used for scientific analyses which require greater precision. Their application will
probably be adequate when studying the sources of particles with a more regional character
(e.g. marine sources) rather than direct and variable sources (e.g. traffic or cooking emissions)
and can provide enough information for the air quality levels, sources and conditions these
are anticipated from. Such studies may include the analysis of mineral dust events resulting
from either anthropogenic activities or meteorological events (e.g. dust storms), bioaerosol
events in forested areas and other sources which affect mainly the composition of coarser
particles.

This study demonstrates that single low-cost sensor PM units can provide sensible source
differentiation of large sized PM pollution sources. This allows for the prospect of source
apportionment via networks of low-cost sensors in the near future, thereby allowing
triangulation of sources. The development of more sophisticated low-cost sensors in
conjunction with their low cost ensures the prospect of the application of a denser
measurement network, making better air quality monitoring and control feasible in the near
future. This though, requires more similar studies which can further elucidate the strengths

and weaknesses of those sensors compared to the regulatory-grade ones, as they develop.
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Figure 7:

Map of the location of the Birmingham Air Quality Supersite (BAQS) site in the
U.K. (Map by ©HERE).

Frequency and diurnal variation of the clusters formed by the OPC data.

Frequency and diurnal variation of the clusters formed by the SMPS data.

Particle contributions in the range 12 — 550 nm (using the SMPS data), for the
clusters formed using the OPC data (top) and the SMPS data (bottom).

Particle contributions in the range up to 10 um (using the FIDAS data), for the
clusters formed using the OPC data (top) and the SMPS data (bottom).

Polar plots for the PM; (ug m3) for the clusters formed by the OPC data.

Weekly contribution (week number refers to week of year 2020) of the clusters

formed by the OPC (top) and SMPS (bottom).
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Table 1: List of the measuring instruments used in the present study.

Regulatory | Approximate
Monitoring Model Manufacturer grade cost (£)
NO; NO2-B43F Alphasense No 250
O« Ox-B43I Alphasense No 160
Black Carbon MA200 Aethlabs No 5,700
Lung Deposited Surface Area Naneos No 8,500
OPC OPC-N3 Alphasense No 250
SMPS TSi3082 TSi Yes 80,000
ACSM Quad - ACSM Aerodyne Yes 170,000
PM Fidas 200E Palas Yes 25,000
NO; T500U Teledyne Yes 15,000
Black Carbon AE33 I\{Iagge. Yes 25,000
Aethalometer Scientific
O3 49ij Thermo Yes 3,000
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Table 2: Average atmospheric conditions for the clusters formed by both methods.

NO, BC PM, PM,ys PMyo 0; Organic content SO0, NO3 LDSA | RH WS T PBL height

(ppb) (ngm?) | (ngm?) (g m?) (ng m?) (ppb) (ngm?) (g m?) (ng m?) ratio | (%) (ms?) (°Q) (m)
OPC.1 18.6+13.9 | 555#630 | 4.32+4.08 | 6.53#4.62 | 9.97#5.81 | 31.9+9.81 | 0.254+0.231 4.12E-0245.42E-02 8.90E-02+1.15E-01 | 0.443 | 83.9+13.1 | 4.16+2.50 | 5.20#3.11 | 852568
OPC.2 9.64+1.90 | 233%32.8 | 2.56+0.72 | 5.61+1.58 | 10.7+2.97 | 38.6x1.34 | 0.142+0.082 2.98E-02+5.67E-02 1.64E-02+5.53E-03 0.847 | 65.1+10.5 | 7.1¥1.01 | 7.16%1.53 | 1622+264
OPC.3 13.1#8.20 | 278+153 | 2.95:0.78 | 5.80+1.98 | 9.70£2.69 | 37.6%6.79 | 0.2410.254 6.73E-02+6.25E-02 8.41E-02+1.54E-01 | 0.830 | 91.848.73 | 3.47+1.11 | 4.60£1.95 | 732312
OPC.4 11.5¢7.15 | 281+191 | 2.51+155 | 4.84+3.20 | 8.33#5.35 | 36.5%5.17 | 0.192£0.235 4.53E-0216.62E-02 1.08E-01#2.53E-01 | 0.536 | 83.5¢11.5 | 4.374#2.09 | 6.26+2.73 | 9302430
OPC.5 18.3+16.3 | 6594879 | 6.27+#6.56 | 9.10#7.18 | 13.3#8.37 | 31.5#11.9 | 0.338+0.558 4.10E-02+6.49E-02 1.31E-01#2.62E-01 | 0.417 | 82.6+11.5 | 4.38+2.50 | 6.68+3.31 | 8351485
OPC.6 8.58%6.72 | 197+155 | 2.85#1.12 | 5.96+2.51 | 10.334.30 | 40.0#4.69 | 0.116%0.152 3.50E-02+5.08E-02 3.50E-02#1.18E-01 | 0.588 | 81.2#12.3 | 4.87+2.07 | 6.42+2.89 | 1135t408
Average | 15.9+13.7 | 498+673 | 4.53+4.93 | 7.11#5.61 | 11.0+6.94 | 33.6%9.95 | 0.252+0.403 4.19E-02+6.05E-02 | 1.00E-01+2.08E-01 | 0.499 | 83.1#¥12.3 | 4.37+2.37 | 6.05¢3.11 | 901504

NO, BC PM; PM,s PMyo (o Organic content SO~ NO;s LDSA RH WS T PBL height

(ppb) (ng m?) (g m?) (ng m?) (ng m?) (ppb) (ng m?) (ng m?) (g m?) ratio (%) (ms?) (°Q) (m)
SMPS.1 | 16.0+14.9 | 485:852 | 3.35:2.64 | 5.70£+3.89 | 9.52+6.05 | 32.2¢+10.3 | 0.215%0.300 3.06E-02+4.80E-02 5.47E-02+7.76E-02 0.331 85.1410.7 | 4.1#2.70 | 5.53+3.06 | 771558
SMPS.2 | 16.8+12.0 | 406539 | 2.70+1.57 | 5.11#2.33 | 8.91#3.75 | 32.9+8.10 | 0.1320.156 2.53E-02+4.11E-02 2.56E-02+4.31E-02 0.501 83.249.71 | 3.74%1.67 | 4.64+2.86 | 831441
SMPS.3 | 4.38+2.91 | 88.1#62.2 | 2.64+1.62 | 5.57+3.62 | 9.26+5.87 | 41.6%3.24 | 0.062+0.063 3.74E-02+5.75E-02 2.07E-02+7.15E-02 0.555 80.1+8.93 | 7.19+2.48 | 7.43+2.72 | 1378+290
SMPS.4 | 14.3+12.3 | 4524592 | 3.77+2.56 | 6.71#3.75 | 11.1#5.67 | 35.6£9.32 | 0.249+0.306 4.68E-0246.27E-02 8.12E-02+1.53E-01 0.499 79.4+13.9 | 4.74+2.38 | 6.97+2.62 | 10224540
SMPS.5 | 29.8+17,2 | 1389£838 | 17.95+7.89 | 21.1#8.08 | 25.1¢7.95 | 16.1+10.6 | 1.0660.562 1.41E-01+7.58E-02 5.74E-01£3.60E-01 0.833 93.9+7.49 | 2.6+1.63 | 4.90+2.94 | 4544330
SMPS.6 | 13.2+10.8 | 340+395 | 2.68+1.58 | 5.23%#3.12 | 9.12¢5.42 | 36.0£6.54 | 0.164+0.189 2.93E-02+4.31E-02 3.86E-02+7.17E-02 0.467 81.0¢12.7 | 4.73+2.11 | 6.1#3.11 | 1092426
Average | 15.1%#13.2 | 460:649 | 4.12+4.72 | 6.78+5.48 | 10.8+6.90 | 33.8+9.84 | 0.280+0.403 4.61E-02+6.40E-02 | 1.07E-02+2.23E-01 0.499 82.8+12.4 | 4.41%¥2.42 | 5.95%2.99 | 929517
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Table 3: Simultaneous occurrences of the clusters formed by both the OPC and

SMPS.

OPC/SMPS | SMPS.1 | SMPS.2 | SMPS.3 | SMPS.4 | SMPS.5 | SMPS.6 | Total OPC
OPC.1 48 30 9 71 13 66 237
OPC.2 1 3 5 3 12

OPC.3 15 2 4 2 23

OPC.4 25 27 6 52 19 50 179
OPC.5 24 26 17 39 40 38 184
OPC.6 7 25 9 28 3 25 97

Total SMPS | 105 126 41 197 79 184 732
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Figure 1: Map of the location of the Birmingham Air Quality Supersite

(BAQS) site in the U.K. (Map by ©HERE).
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Figure 2: Frequency and diurnal variation of the clusters formed by the OPC

data.
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Figure 3: Frequency and diurnal variation of the clusters formed by the

SMPS data.
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Figure 4: Particle contributions in the range 12 — 550 nm (using the SMPS
data), for the clusters formed using the OPC data (top) and the SMPS data

(bottom).
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Figure 5: Particle contributions up to 10 um (using the FIDAS data), for the
clusters formed using the OPC data (top) and the SMPS data (bottom).
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Figure 6: Polar plots for the PM; (ug m?3) for the clusters formed by the OPC

data.
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Figure 7: Weekly contribution (week number refers to week of year 2020) of

the clusters formed by the OPC (top) and SMPS (bottom).
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