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Abstract 18 

Measurement and source apportionment of atmospheric pollutants is crucial for the 19 

assessment of air quality and the implementation of policies for its improvement. In most 20 

cases, such measurements use expensive regulatory grade instruments, which makes it 21 

difficult to achieve wide spatial coverage. Low-cost sensors may provide a more affordable 22 

alternative, but their capability and reliability in separating distinct sources of particles have 23 

not yet been tested extensively. The present study examines the ability of a low-cost Optical 24 

Particle Counter (OPC) to identify the sources of particles and conditions that affect particle 25 

concentrations at an urban background site in Birmingham, UK. To help evaluate the results, 26 

the same analysis is performed on data from a regulatory-grade instrument (SMPS) and 27 

compared to the outcomes from the OPC analysis. The analysis of the low-cost sensor data 28 

manages to separate time periods and atmospheric conditions according to the level of 29 

pollution at the site. It also successfully identifies a number of particle sources, which were 30 

also identified using the regulatory-grade instruments. The low-cost sensor, due to the 31 

particle size range measured (0.35 to 40 μm), performed rather well in differentiating sources 32 

of particles with sizes greater than 1 μm.  However, the ability of the low cost sensor to 33 

distinguish diurnal variations and separate sources of smaller particles was more limited. This 34 

study highlights the current capability of low-cost sensors in source identification and 35 

differentiation using clustering approaches. The current level of source identification 36 

demonstrated in this paper indicates the combination of hardware and analytical technique 37 

is useful for background site studies, where larger particles with smaller temporal variations 38 

are of significant importance. Future directions towards particulate matter source 39 

apportionment using low cost OPCs are highlighted.  40 

  41 
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1. Introduction 42 

 43 

Particulate matter (PM) plays a dominant role in air quality and is known to cause adverse 44 

health effects (Dockery et al., 1993; Pascal et al., 2013; Wu et al., 2016; Zeger et al., 2008). As 45 

a result, regulatory limits are set for its concentrations, especially in urban areas (US EPA, 46 

2012; WHO, 2006). For the implementation of such regulations, the identification of the 47 

sources of PM is required. To accomplish this, measurements of the concentrations of PM, 48 

typically alongside PM composition, in the area of study are conducted. Until recent years 49 

these measurements were usually made using regulatory-grade instruments which, while 50 

providing high quality data, are rather expensive thereby limiting the number that could be 51 

deployed and consequently the spatial resolution of any measurement network. This 52 

increases the spatial interpolation uncertainty (Kanaroglou et al., 2005) and can result in 53 

inadequate connection between the levels of air pollution exposures and health effects 54 

(Holstius et al., 2014), especially in complex urban environments (Harrison, 2017; Mueller et 55 

al., 2016). Additionally, many low and middle income countries are unable to invest the large 56 

economic assets currently required for source apportionment, even though in many of these 57 

countries, the air quality is poor (Ghosh and Parida, 2015; Kan et al., 2009; Petkova et al., 58 

2013; Pope et al., 2018; Singh et al., 2020). 59 

In the past decade, the development of new and cheaper sensors for air quality monitoring 60 

has intensified. Many different sensors were introduced measuring either the number 61 

concentration or surface area of PM, or the gas phase species (Jovašević-Stojanović et al., 62 

2015; Lewis et al., 2018; Popoola et al., 2018). Overall, low-cost PM sensors currently offer 63 

better comparison with regulatory grade equipment compared to their gas phase 64 

counterparts (Lewis et al., 2018). However, many shortcomings have been identified in their 65 

application, with the most common being the loss of measurement accuracy due to 66 

environmental conditions such as relative humidity (RH) variations or high PM concentrations 67 

(Castell et al., 2017; Crilley et al., 2018; 2020; Di Antonio et al., 2018; Miskell et al., 2017; 68 

Zheng et al., 2018). Measurements in ambient conditions also lead to discrepancies with 69 

research-grade instruments, which often measure in controlled environments that are air 70 

conditioned (U.S. Environmental Protection Agency, 2016). The reproducibility and variability 71 

of the outputs from sensors of the same type can also be problematic (Austin et al., 2015; 72 
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Sousan et al., 2016; Wang et al., 2015). Therefore, the need for constant and careful 73 

calibration is repeatedly highlighted in many studies that evaluate the potential of low cost 74 

sensors (Rai et al., 2017; Spinelle et al., 2015, 2017). When these calibration steps are 75 

implemented, low-cost sensors have been shown to provide reliable near-real time 76 

measurements, maintaining high correlations with research-grade instruments (Kelly et al., 77 

2017; Malings et al., 2020; Sayahi et al., 2019) with the added advantages of lower cost and 78 

portability.  79 

Consequently, low-cost sensors have been successfully deployed in many studies for which 80 

the use of more expensive instruments was not feasible. There is a number of applications in 81 

low and middle income countries (e.g. Nagendra et al., 2019; Pope et al., 2018), in studies 82 

which included mobile measurements within the urban environment (Ionascu et al., 2018; 83 

Jerrett et al., 2017; Miskell et al., 2018), or studies of indoor air quality from multiple sites, 84 

such as the SKOMOBO project conducted in New Zealand, in which the air quality in schools 85 

was assessed (Weyers et al., 2018). The greatest advantage though is likely, as their name 86 

implies, their lower cost which made possible the formation of a network of measuring 87 

stations (Feinberg et al., 2019; Kotsev et al., 2016; Moltchanov et al., 2015), increasing the 88 

spatial resolution and through new data analysis methods improve the mapping of air 89 

pollution up to a sub-neighbourhood level (Schneider et al., 2017). Therefore, it is suggested 90 

that the development and use of low-cost sensors, either used individually or in conjunction 91 

with research-grade instruments (Snyder et al., 2013), have the potential to radically change 92 

the conventional approach of both pollution measuring and policy making (Borrego et al., 93 

2018; Kumar et al., 2015; Lagerspetz et al., 2019), providing a more effective general public 94 

information and enhanced environmental awareness (Penza et al., 2014), even for countries 95 

with smaller budgets (Amegah, 2018). 96 

As yet, studying the different sources of particles at a site with the use of data from low-cost 97 

sensors has not been widely attempted yet. Pope et al., (2018) managed to identify major 98 

pollution sources studying the ratios of PM of different sizes provided by low-cost sensors, 99 

while Popoola et al., (2018) using a network of sensors identified the sources of pollution near 100 

Heathrow airport in London, UK. Hagan et al., (2019) applying a statistical method (Non-101 

negative Matrix Factorisation) on low-cost sensor data, identified a combustion factor in a 102 

three-factor solution in New Delhi, India. The present study investigates the ability of low-103 

cost sensors to provide measurements that can be used to identify the sources of pollution 104 
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at a background site in Birmingham, UK, using clustering of particle composition profiles. This 105 

method was successfully used in a number of previous studies, though with the use of 106 

measurements from research-grade instruments (Beddows et al., 2009, 2015; Von Bismarck-107 

Osten and Weber, 2014; Dall’Osto et al., 2011; Sabaliauskas et al., 2013). To support the 108 

clustering method, chemical composition data from both research-grade and low-cost sensor 109 

instruments were used, as well as meteorological data from a closely located measurement 110 

station. Apart from attempting the source differentiation with low-cost sensor data, a direct 111 

comparison with the results from a similar analysis using research-grade instruments is also 112 

conducted to not only validate the results but find the strengths and weaknesses of such an 113 

application. 114 

 115 

2. Methods 116 

2.1 Location of the site and instruments 117 

The measurement site (fig. 1), characterised as an urban background, is the Birmingham Air 118 

Quality Supersite (BAQS) located at the grounds of the University of Birmingham (52.45oN; 119 

1.93oW), about 3 km southwest from the city centre (Alam et al., 2015). In the present study, 120 

measurements from the following instruments for the period 24/01/2020 to 12/3/2020 (the 121 

date range was chosen to avoid the effect of the lockdown due to COVID-19) were used (Table 122 

1): 123 

The Alphasense OPC-N3, which is an optical particle counter, measuring particle number 124 

concentrations in the size range between 0.35 to 40 μm at rates up to about 10000 particles 125 

per second. As the sample air stream enters the instrument, it passes through a laser beam 126 

and the particle size and number concentrations are derived from the light scattered by the 127 

particles, based on the Mie scattering theory. It can also provide data for particle mass 128 

loadings (PM1 to PM10) assuming a particle density, shape and refractive index. The OPC is 129 

located within the air conditioned station, so measurements represent PM dry mass. 130 

The AethLabs MA200 (microAeth MA200) which provides black carbon (BC) information (0-1 131 

mg BC/m3). The sample is deposited onto an internal filter, and an IR light (880 nm) is directed 132 

through the sample on the filter and into a detector on the other side of the sample. The 133 

amount of light absorbed from the sample is proportional to the BC concentration.   134 
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Two Naneos Partectors (Naneos Particle Solutions GmbH) which provide the lung deposited 135 

surface area metric (LDSA, µm2/cm3) in the particle diameter range 10 nm to 10 μm. In 136 

general, the provided data is dictated by the particle number concentration and diameter 137 

(Nd1.1) for both semi-volatile and solid particles. A catalytic stripper (Catalytic Instruments 138 

CS015) was used to remove the semi-volatile particles entering one of the two Naneos 139 

Partectors. The other Naneos Partector was not subject to the catalytic stripper and therefore 140 

measured the surface of all particles. In the present study, apart from the values provided 141 

directly from the sensors, the ratio between the measurements of the two Naneos Partectors 142 

was also considered according to: 143 

 144 

𝐿𝐷𝑆𝐴𝑟𝑎𝑡𝑖𝑜 =  
𝐿𝐷𝑆𝐴 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

𝐿𝐷𝑆𝐴 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟 
 145 

 146 

This was done to resolve whether such a configuration can also provide information such as 147 

the level of pollution or the age of the incoming air masses, as increased concentrations of 148 

semi-volatile compounds are usually associated with anthropogenic sources, especially in the 149 

urban environment (Harkov, 1989; Schnelle-Kreis et al., 2007). Thus, a high LDSAratio is 150 

expected to be associated with fresher pollution (i.e., pollution sources at a close distance 151 

from the site), while lower ratios are probably associated with either cleaner conditions or 152 

more regional and aged pollution, usually associated with sources at a greater distance from 153 

the measuring site. The specific metric though should be considered with caution, as it can be 154 

biased by the absolute surface areas measured.  155 

The sensors monitoring nitrogen dioxide (NO2) and ozone (O3) concentrations are part of a 156 

Box Of Clustered Sensors (BOCS) (Smith et al., 2019), which is a low-power instrument based 157 

on the clustering of multiple low-cost air pollution sensors allocated in two independent 158 

circuits to redundantly measure concentrations and other airflow parameters. The air is 159 

driven by a pump through the cell that hosts the electrochemical sensors (EC) and the 160 

nondispersive infrared sensors (NDIR). While the EC sensors redundantly (6 sensors per gas) 161 

measure carbon monoxide, NO2, nitrogen monoxide, oxidizing gases (Ox), the NDIR sensors 162 

measure carbon dioxide. EC sensors are based on recording the current generated by redox 163 

reactions that occur at the electrode-electrolyte interface in an electrochemical cell 164 

composed of three electrodes (working electrode (WE), counter electrode (CE) and reference 165 
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electrode (RE)). While the gas of interest reacts on the WE surface, the CE completes the 166 

redox reaction and the RE ensures that the WE potential remains in the proper range. In the 167 

present study, measurements of Ox and NO2 were only used from the specific sensor. 168 

For the same period data from regulatory-grade instruments were also available. Thus, 169 

particle size composition data from a Scanning Mobility Particle Sizer (SMPS) in the size range 170 

12 – 552 nm, along with PM data for the sizes of 1, 2.5, 4 and 10 μm acquired using a Fidas 171 

200E were used. Additionally, chemical composition data for NO2, O3, as well as SO4
2-, NO3

- 172 

and organic content (size range 40 nm to 1 μm) from an Aerosol Chemical Speciation Monitor 173 

(ACSM) were also available. Meteorological data (wind speed and direction, temperature, RH 174 

and rain level) from the Birmingham Air Quality Supersite were also used in the 175 

characterisation of the clusters formed from both methods. 176 

Back trajectory data calculated using the HYSPLIT model (Draxler and Hess, 1998), were 177 

extracted by the NOAA Air Resources Laboratory 178 

(https://ready.arl.noaa.gov/READYtransp.php). Data was processed using the Openair 179 

package for R (Carslaw and Ropkins, 2012). 180 

 181 

2.2 k-means clustering 182 

In this study, two size spectra are considered, one deriving from the OPC and one from the 183 

regulatory-grade SMPS. It is noted that the size spectra from the two instruments only briefly 184 

overlap in the size range 350 – 552 nm, with the SMPS mostly measuring smaller particles and 185 

the OPC mostly measuring larger particles.  For the period studied (24/1/2020 – 12/3/2020), 186 

874 hours of available data (averaged from 10 second intervals - 76% coverage) from the OPC 187 

and 732 hours from the SMPS (66% coverage) were exposed to k-means clustering. k-means 188 

clustering is a method successfully used in many studies of particle source differentiation 189 

(Beddows et al., 2015; Von Bismarck-Osten and Weber, 2014; Giorio et al., 2015; Wegner et 190 

al., 2012) and was proven to have better performance compared to other clustering 191 

techniques (Beddows et al., 2009; Salimi et al., 2014), as it was found to produce clusters with 192 

the highest similarity between their elements and the highest separation against the other 193 

clusters formed (Hennig, 2007). The optimal number of clusters was chosen using two 194 

metrics, the Dunn Index and the Silhouette width as proposed by Beddows et al., 2009. The 195 

Dunn Index provides a measure of the ratio of the minimum and the maximum cluster. The 196 
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larger the Dunn Index the better separated are the clusters formed. The Silhouette width is a 197 

measure of the similarity of the spectra within each cluster. In the present study the best 198 

statistically fitted solution was chosen, though in source differentiation studies such a 199 

solution may not always provide with the best separation of all the available sources. Using 200 

the aforementioned statistical tests, a six-cluster solution was independently suggested for 201 

both the OPC and SMPS datasets. 202 

 203 

 204 

3. Results 205 

3.1 General conditions, sources of particles and pollution at the site 206 

Being an urban background, the site studied presents relatively low concentrations of most 207 

pollutants (Table 2), without the effect of direct sources of pollution, such as traffic. Wind 208 

rose and polar plots illustrating the conditions in the period studied are found in figure S1. 209 

The main source of pollution lies on the north and northeast sectors, where the city centre is 210 

located, as well as in the southern and eastern sectors where a populous residential area is 211 

located. As a result, the main sources of NO2 and BC as well as the smaller sized PM are 212 

associated with easterly winds (this though is not reflected in particles observed in the SMPS 213 

size range). For the PM10 apart from the aforementioned, increased concentrations are also 214 

found with southwestern winds likely associated with marine sources. Typical for the UK, the 215 

average wind profile for the period consists mainly of western and southwestern winds 216 

(McIntosh and Thom, 1969), reducing the effect of the pollution sources in the east of the 217 

site. Finally, the secondary pollutants NO3
- and SO4

2- which are in most cases associated aged 218 

pollution and long-distance transport, have less consistent profiles, though they both seem 219 

to be mainly associated with southern wind directions. 220 

 221 

3.2 Clustering of the OPC data 222 

Due to the larger particle sizes measured by the OPC-N3, the differences in the cluster profiles 223 

are mainly associated with the particle number concentrations and to a lesser extent on the 224 

different peaks, which are less distinct due to the smaller variation found as particle diameter 225 

increases.  The frequency of the clusters formed, and their diurnal occurrence is shown in 226 
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figure 2. The average particle size distribution spectra and wind roses for the clusters formed 227 

are found in figures S2 and S3. 228 

The six clusters formed from the OPC data are: 229 

OPC.1: A rather polluted group with the highest NO2 concentrations and average secondary 230 

pollutants, PM and LDSA ratio. Its fresher polluted character is further confirmed using the 231 

SMPS data which showed higher than average particle concentrations for particles with 232 

diameter smaller than 50 nm. This group presents low average temperature, RH and slower 233 

than average southwestern winds, which is explained, to an extent, by the cluster being more 234 

frequent during night-time.  235 

OPC.2: The second group refers mainly to a single midday event on 12/3/2020 with high-236 

speed southwestern winds, high temperature and very low RH. On this day the concentrations 237 

of all the pollutants were rather low, though due to the high wind speeds (an increase in the 238 

wind speed is observed at the start of the occurrence of this cluster – at 10:00 AM - which 239 

affects the particle distribution profile as can be seen in Figure S4) the PM10 were close to 240 

average (when PM1 and PM2.5 were rather low) indicating the stronger presence of coarser 241 

particles, possible of marine origin as shown by the back trajectories, a source with an 242 

increasing importance at larger size PM at this area (Harrison et al., 2004; Taiwo et al., 2014). 243 

This group presents the highest LDSA ratio, which is in agreement with the low concentrations 244 

of the secondary pollutants. 245 

OPC.3: A group occurring mainly during some of the midday periods in January, with the 246 

lowest temperature and wind speed averages, as well as the highest average RH, containing 247 

both southwestern and southern winds. While the concentrations of the measured pollutants 248 

are close to average, high sulphate and ozone concentrations were found, with the former 249 

pointing to air masses with higher concentrations of aged pollutants. The LDSA ratio though, 250 

was found to be very high despite the higher concentrations of sulphate and nitrate. The near 251 

average NO2 concentrations may point to the effect of a nearby pollution source that may 252 

resulted to the increased LDSA ratio found. 253 

OPC.4: A group with low concentrations of NO2, BC and PM, but close to average secondary 254 

pollutants’ concentrations. It is associated with close to average temperature, RH and wind 255 

speed of mainly southwestern directions. It is slightly more frequent during daytime and has 256 

lower than average concentrations of particles in the SMPS range. 257 
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OPC.5: This group includes the most polluted conditions in the area throughout the day. It is 258 

associated with western and southwestern winds of average speed, high temperature and 259 

lower than average RH. Most pollutant concentrations, including PM, are rather high while 260 

O3 is low. Similarly, it presents the highest concentrations of particles in all SMPS size ranges. 261 

This cluster also includes the more polluted conditions found with north-eastern winds. 262 

OPC.6: A group associated with rather clean conditions, presenting the lowest concentrations 263 

of NO2, BC, NO3
- and organic content. It is associated with higher than average temperature 264 

and wind speed and lower than average RH, and has low concentrations of PM1 and PM2.5, 265 

while PM10 concentration is close to average. It is more frequent during daytime, which 266 

probably explains the highest O3 concentrations. The fast-moving southwestern air masses, 267 

which this group is associated with, are probably of marine origin that have not passed 268 

through any significant pollution sources, which can be further suggested by both the low 269 

LDSA values and the highest LDSA ratio. 270 

 271 

3.3 Clustering of the SMPS data 272 

In the past, a number of studies on the sources of particles were conducted for both the 273 

greater area of Birmingham and specifically the site in the University (Harrison et al., 1997; 274 

Taiwo, 2016; Yin et al., 2010). As, these studies mainly focused on the chemical composition 275 

of coarser particles, to the authors’ knowledge this is the first study that uses ultrafine particle 276 

size distribution data to study the sources of particles in Birmingham, UK. The frequency and 277 

hourly occurrence of the six clusters formed from the SMPS data is found in figure 3. The 278 

average particle size distributions and wind roses for the clusters formed are found in figures 279 

S5 and S6.  280 

SMPS.1: This group contains averagely polluted hours and is associated with fresher 281 

pollutants (such as NO2 or NO) and PM, while secondary pollutants such as NH4
+, NO3

- and 282 

SO4
2- are relatively low. Due to being associated with fresher emissions this group presents 283 

higher than average concentrations of particles below 50 nm and a low LDSA ratio. It is 284 

associated with average speed southwestern winds (it also includes the small portion of 285 

north-eastern winds) and temperature, higher than average RH and occurs more frequently 286 

during late night and early morning hours. 287 
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SMPS.2: Similar to the first group, average pollutants’ concentrations are found in this group 288 

with low concentrations of secondary pollutants. It is associated with slow western and 289 

southwestern winds, lower than average temperatures and RH and is more frequent during 290 

early morning hours. It has the highest concentrations of particles with diameter smaller than 291 

20 nm, but the particle concentrations become relatively smaller as their size increase. 292 

SMPS.3: This is a small group containing very clean night hours mainly in February, with higher 293 

than average temperature, lower than average RH and strong western and southwestern 294 

winds. It has low concentrations of pollutants and PM apart from O3 (despite the time of day), 295 

though PM10 concentration is enhanced, probably associating this group with stronger marine 296 

origins. The particle concentrations of all size ranges below 500 nm are the lowest among the 297 

groups formed and along with the high LDSA ratio are in agreement with the very clean 298 

conditions fassociated with this cluster. This cluster, contrary to all other, presents two peaks: 299 

one peaking just below 30 nm and another one just over 100 nm, which indicates that it is 300 

probably associated with at least two different sources.  301 

SMPS.4: This group presents near average concentrations of all the pollutants studied. PM1 302 

average concentration is rather low while PM10 is higher than the average. It is associated 303 

with average speed southwestern winds, higher average temperature and low RH. It is more 304 

frequent during midday and evening hours and it appears to represent the most common 305 

conditions in the area, hence having the highest frequency of all clusters. 306 

SMPS.5: This is a unique group associated with southern winds, the side at which the central 307 

part of the University resides. This is the most polluted group, probably affected by emissions 308 

from the University and the residential area found in that direction, with very high 309 

concentrations of all the pollutants (apart from O3), PM and ultrafine particles with available 310 

data. The LDSA ratio is very high and this is probably due to the great surface area of the 311 

involatile component found. It is associated with very slow wind speeds, low temperature, 312 

very high RH and occurred evenly throughout the day, mainly on the first weeks of the 313 

campaign when pollution levels were rather high, probably due to increased heating 314 

emissions. 315 

SMPS.6: This group presents low concentrations of all pollutants (apart from O3), PM and 316 

ultrafine particles with available data and is associated with western winds with higher than 317 

average speed, near average temperatures and low RH. It occured more frequently during 318 
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evening hours and almost equally frequently throughout the whole study period apart from 319 

the first 2 weeks when pollution levels were rather high. 320 

 321 

3.4 Direct comparison between the methods 322 

 323 

Due to the difference in the size ranges measured by the SMPS and OPC instruments, it is 324 

evident that a direct comparison between the two methods would provide mixed results as 325 

some clusters found using the SMPS data are not detectable with the OPC, and vice versa. 326 

The particle size range that is common between the two instruments lies at about 350 – 550 327 

nm. Therefore, many particle sources associated with particles in the size range below the 328 

minimum detectable size of the OPC are not expected to be found using its data and vice 329 

versa. At a background site though, many of the sources of smaller sized particles play a less 330 

important role as they are usually associated with fresher emissions, which are not common 331 

to such sites.  332 

The clustering process attempts to separate the particle size distributions into groups with as 333 

similar spectral profiles as possible, while being as different to the other groups as possible. 334 

As expected, the SMPS is more capable in separating different cluster profiles at the size range 335 

smaller than 500 nm, a size range in which the cluster profiles formed by the OPC are almost 336 

uniform (fig. 4). This shows the limitation of the OPC data to distinguish ultrafine particle 337 

variations and thus it does not provide insight for the sources of particles within this size 338 

range. On the other hand, the OPC performs much better in identifying different sources 339 

when considering larger particles in the range between 1 – 10 μm, for which it manages to 340 

clearly distinguish variations between the groups formed (fig. 5). The clusters formed using 341 

the OPC data were also better associated with different sources of PM1 (fig. 6), compared to 342 

those deriving from the SMPS data (fig. S7). 343 

Table 3 contains the cluster relationships between the two methods, while Table S1 contains 344 

the conditions observed when pairs of clusters from both methods are considered. The OPC.2 345 

and OPC.3 clusters appear infrequently, and it would be nonsensical to directly associate 346 

them with SMPS groups, as they appear under very specific conditions, that either are not 347 

detected or are not identified as separate cases by the SMPS. As a result, they will be 348 

separately studied later in this study. 349 
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The OPC.1 was mainly associated with SMPS.4 and SMPS.6 and to a lesser extend with 350 

SMPS.1. OPC.1 has higher frequency during night times and it shares many of these hours 351 

with groups SMPS.4 and SMPS.6, while with SMPS.1 it mainly shares early morning hours. It 352 

includes the more polluted portion of the rather clean SMPS.6 and a portion with lower PM10 353 

(though not much difference from average pollutants’ concentrations) from the more 354 

polluted SMPS.4. It is interesting that the variation between the subgroups (in relation to 355 

SMPS clusters) of the OPC.1 is very small for the NO2 concentrations, a pollutant for which its 356 

variations are not expected to be directly “visible” at the size range of the OPC as it is mainly 357 

associated to fresher emissions. No great variation was found for the wind direction in the 358 

subgroups of OPC.1, though it includes the lower temperature and higher RH conditions of 359 

the SMPS clusters it is associated with. The OPC.1 includes the relatively clean part of the 360 

more polluted SMPS.1 and the more polluted portion of the cleaner SMPS.6. While this does 361 

not provide a clear connection between the OPC and SMPS results, it shows that there is 362 

consistency in the results provided by the former in identifying particle sources of specific 363 

qualities. 364 

Similarly, OPC.4 was mainly associated with SMPS.4 and SMPS.6. As the OPC.4 occurs under 365 

cleaner conditions, it includes the less polluted hours of both the SMPS clusters it is mainly 366 

associated with, though the concentrations of the secondary pollutants such as NO3
- and SO4

2- 367 

are closer to the average. The OPC.4 is associated with the cleaner portion of the 368 

aforementioned SMPS clusters with higher average temperature and RH though with variable 369 

wind speeds.  370 

OPC.5 represents a polluted group of hours associated mainly with SMPS.4, SMPS.5 and 371 

SMPS.6. Being a group of hours associated with higher concentrations of pollutants, it 372 

includes the more polluted portions of SMPS.4 and SMPS.6 with average meteorological 373 

conditions, though lower wind speeds. It also coincides with the largest portion of SMPS.5, 374 

mainly in the sixth week when the temperature was the lowest, including the portion with 375 

the higher concentrations organic content and NO3
-. SMPS.5 is the group that is associated 376 

with southern wind directions, a side from which a source of secondary pollutants (NO3
-, SO4

2-377 

, NH4
+), organic content and particles of diameter greater than 100 nm occurs. The OPC.5 is 378 

associated with the part of SMPS.5 which is more burdened from secondary pollutants, hence 379 

very large concentrations are observed for them. 380 
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Finally, OPC.6 is mainly associated with SMPS.2, SMPS.4 and SMPS.6. Being a cleaner group 381 

of hours, it includes the portion of these SMPS clusters with lower pollutant concentrations 382 

but higher PM10 concentrations (though with lower PM1 concentrations). These rather clean 383 

conditions, along with the western and southwestern high-speed winds in average and the 384 

large PM10 concentrations, further enhance the possible marine character of this cluster. Due 385 

to the size range of these particles such variation is not clearly identified by the SMPS, 386 

resulting to them not being clearly separated when its data is considered. 387 

The weekly contribution of each cluster group from the analysis of either dataset is found in 388 

Figure 7 and the conditions on each week studied in Table S2. It is evident that the variation 389 

from the SMPS is greater than that of the OPC, as the latter is less affected by the diurnal 390 

variations. It is apparent that it is easier to comprehend the clusters’ variation in association 391 

with the levels of pollution in the site (the more polluted weeks have a greater portion of 392 

SMPS.1 and SMPS.5), while for those with lower concentrations of pollutants the SMPS.4 and 393 

SMPS.6 are more enhanced. These variations are harder to distinguish using the OPC data, as 394 

they are less apparent in the size range measured by the sensor. To further understand the 395 

possible sources using the latter, information from other instrument which provide chemical 396 

composition data are needed, though it is still hard to pinpoint exact sources, due to the OPC’s 397 

weakness in explaining distinct particle sources within the day. 398 

 399 

3.5 Case studies 400 

 401 

OPC.2 402 

OPC.2 occurs mainly on a single day in May (12th) with higher than average temperature and 403 

strong western winds. This was the cluster with the lowest concentrations of NH4
+, NO3 (about 404 

an order of magnitude compared to average conditions) and SO4
2-, rather low concentrations 405 

of NO2, BC and high O3. Using the SMPS data, this group of hours seems to follow the trends 406 

of BC, associating it with SMPS.6 for low, SMPS.1 and SMPS.2 for medium and SMPS.4 for 407 

higher concentrations of BC. This cluster has very low PM1 and PM2.5 and near average PM10 408 

concentrations, probably associating it with marine sources (due to the high wind speed). Due 409 

to this, it is not clearly separated using the SMPS data, which does so for the hours of this 410 

group according to the level of fresher pollutants, the variation of which is smaller in this type 411 

https://doi.org/10.5194/amt-2021-11
Preprint. Discussion started: 9 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 15 

of environments. This cluster seems to be the result of the change in the wind profile which 412 

greatly affected the coarser particles at the site (figure S4). 413 

 414 

OPC.3 415 

The third cluster formed using the OPC data, was a rather small group of hours in late January 416 

(25,27 and 28th), with the lowest average temperature and wind speed compared to the rest 417 

of the clusters. The wind direction profile for this group contains both western and southern 418 

winds, the latter being associated with high concentrations of pollutants (as found by the 419 

study of the SMPS data). The majority of the hours in this group (65%) were characterised as 420 

freshly polluted when using the SMPS data, mainly associated with SMPS.2. Unfortunately, 421 

data of NO2, BC, O3 and PM for this group were very scarce from regulatory-grade instruments 422 

(due to instrument error). The ACSM data, which were available for the hours of this cluster 423 

pointed to marginally lower than average values of organic content, nitrate and ammonium, 424 

while the sulphate concentrations were rather high. Using the low-cost sensor data, it is found 425 

that this group has the highest BC, O3 and involatile component of LDSA while NO2, and CO 426 

were the lowest among the groups. This group also had the highest average particle 427 

concentration in the size range of the OPC, which is in agreement with the highest PM 428 

concentrations in all ranges (PM1, PM2.5, PM10). As this is not visible from the SMPS, the cluster 429 

associated with this group has nearly average particle concentrations in the SMPS particle 430 

ranges. This group was not distinctively detected by the SMPS due to presenting variation in 431 

larger sized particles, which can be one of the weaknesses of studying the sources of such 432 

particles using SMPS data alone. The OPC.3 appears to contain the more polluted slow-433 

moving portion of SMPS.2 with enhanced SO4
2-, BC and PM concentrations. 434 

 435 

SMPS.3 436 

The third cluster from the analysis of SMPS data presented a unique profile with two peaks, 437 

one below 30 nm and one a bit over 100 nm. This unique group was associated with very 438 

clean conditions, with very low concentrations for all the pollutants with available data (apart 439 

from O3), as well as low particle concentrations for all the ranges in the SMPS and OPC range 440 

as well as PM1 and PM2.5. The concentrations of PM10 and SO4
2- were somehow higher but 441 

still lower than the average in the area for the period of the study. This group is associated 442 
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with high average temperature and wind speed and rather low RH, with wind directions being 443 

mainly southwestern and western. This group occurred solely at night hours during a number 444 

of relatively warm nights mainly in February and to a lesser extend in March. Even with very 445 

low particle concentrations (as found by both the SMPS and OPC) the presence of two 446 

separate peaks in the size range of the ultrafine particles is indicative of more than one 447 

simultaneous source. Due to these sources of particles occurring at the ultrafine particle 448 

range, the OPC was not able to distinguish this special condition and grouped the hours of 449 

this cluster to a number of clusters (mainly OPC.5 and to a lesser extend OPC.1 and OPC.6), 450 

occurring either during night-time or throughout the day. The inability of the OPC to 451 

distinguish complicated conditions in the ultrafine range is a weakness of the OPC that should 452 

be considered when such conditions are anticipated. 453 

 454 

4. Discussion 455 

 456 

As the SMPS measures smaller particle sizes and with better accuracy, compared to the OPC, 457 

it managed to better separate the different sources of fresher pollution with the main 458 

differentiating factor being the time of the day, for which the variability of such sources is 459 

more prominent. The differences in NO2 concentrations, which are mainly associated with 460 

fresher emissions are more distinct between the groups and using this data better separation 461 

of very clean (SMPS.3) and very polluted conditions from a distinct source (SMPS.5) was 462 

achieved, while the other groups described mostly average conditions with lesser variability 463 

(as expected in this range at a background site). Additionally, using the SMPS data it is possible 464 

to distinguish multiple sources of ultrafine particles (SMPS.3), as they can appear as multiple 465 

peaks within the SMPS spectra. This is not possible using the OPC data as the size range 466 

measured by this instrument cannot identify such cases. 467 

Contrary to the SMPS, using the OPC data provided less distinct separation of fresher 468 

emissions (as expected due to the lack of data of small sized particles). Additionally, the OPC 469 

data is less sensitive to diurnal variations due to the range of particles covered, which are in 470 

a size range that does not vary significantly through the day but between days. This results in 471 

the less distinct diurnal variations found between the groups formed.  The analysis of the OPC 472 

data though managed to adequately separate conditions and/or sources associated with 473 
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larger particles, such as aged pollution (for which it also managed to separate a small time-474 

window with very strong sulphate presence – OPC.3) which has the greatest contribution in 475 

the particle chemical composition for the study area (Harrison et al., 2003; Taiwo, 2016; Yin 476 

et al., 2010), RH variations or air masses of marine origin. To an extent, this might be due to 477 

the number of clusters chosen as there is a possibility that a larger number of clusters from 478 

the SMPS may separate sources of larger particles better, though with the risk of also 479 

separating similar sources.  480 

To sum up, the study of SMPS data with k-means clustering is far superior at separating 481 

complex pollution sources within urban environments in which the variation of very small 482 

particles is crucial for identifying particle and emission sources. This advantage of the SMPS 483 

will not be overcome even with a denser measuring network of OPCs that could be acquired 484 

for the same cost of the SMPS. However, clustering of the OPC data can provide useful 485 

information to assess the sources of air pollution at background sites in which the direct 486 

(smaller) particle sources are few. The method managed to find sources of greater pollution 487 

associated with higher concentrations of particles of greater sizes (which are mainly 488 

associated with aged pollution though), showing that the footprint of pollution in the ultrafine 489 

particle range can have a detectable effect in coarser particle distributions as well. While not 490 

as precise as the SMPS, a denser network of such instruments in background sites can be 491 

more beneficial and more cost efficient in studying multiple pollution sources or “hot spots” 492 

within the urban environment. 493 

The current inability of low-cost PM sensors in measuring particle size spectra at small sizes 494 

(<300 nm) is the greatest drawback in their application for separating particle sources, since 495 

much information is contained in these smaller sizes.  OPCs using shorter wavelength light 496 

sources and hence smaller particle detection could be beneficial here.  Also, there are several 497 

low-cost sensors that provide insight for the surface area or the total number of particles in 498 

the ultrafine particle size range (such as the LDSA sensor used in this study). The combined 499 

use of the OPC with these instruments, along with sophisticated statistical techniques, may 500 

provide possibilities for more precise source differentiation than shown in the present study. 501 

It is noted that while clustering of particle number size distributions is one approach in the 502 

study of the source assessment of particles, other alternative methods, such as the Positive 503 

Matrix Factorisation (PMF), may also provide useful results.  504 
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 505 

5. Conclusions 506 

 507 

The present study investigates the capabilities of a low-cost OPC sensor for source 508 

differentiation at an urban background site in Birmingham, UK. It is used alongside a 509 

regulatory-grade SMPS instrument, which has previously been used successfully for source 510 

differentiation.  The clustering approach identified optimal solutions of six clusters for both 511 

the SMPS and OPC data. There were similarities between the SMPS and OPC solutions, which 512 

provide insights into periods of low and high pollution. However, large differences were also 513 

observed. A more distinct separation of direct emission sources was achieved using the SMPS 514 

data, which identified sources with time windows that correlated with extreme NO2 515 

concentrations (either high or low), as well as periods with more complex sources. The OPC 516 

was able to distinguish time periods with greater variation of super micron sized particle 517 

sources (e.g. marine sources). There seems to be a clearer distinction of the diurnal variability 518 

of sources using the SMPS data, while the OPC seems to be able to only distinguish the 519 

variability within periods of days rather than hours, as found by the less variable diurnal and 520 

weekly variation. This though might not be a great drawback when considering background 521 

sites, as this variability is smaller in such environments which are mainly affected by regional 522 

pollution, while the local emissions are less and more distinct. Low-cost sensors can be a 523 

reliable alternative for source identification studies in environments with less complex 524 

sources, which present smaller alterations within the span of the day. Still, such instruments 525 

cannot be used for scientific analyses which require greater precision. Their application will 526 

probably be adequate when studying the sources of particles with a more regional character 527 

(e.g. marine sources) rather than direct and variable sources (e.g. traffic or cooking emissions) 528 

and can provide enough information for the air quality levels, sources and conditions these 529 

are anticipated from. Such studies may include the analysis of mineral dust events resulting 530 

from either anthropogenic activities or meteorological events (e.g. dust storms), bioaerosol 531 

events in forested areas and other sources which affect mainly the composition of coarser 532 

particles. 533 

This study demonstrates that single low-cost sensor PM units can provide sensible source 534 

differentiation of large sized PM pollution sources. This allows for the prospect of source 535 
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apportionment via networks of low-cost sensors in the near future, thereby allowing 536 

triangulation of sources. The development of more sophisticated low-cost sensors in 537 

conjunction with their low cost ensures the prospect of the application of a denser 538 

measurement network, making better air quality monitoring and control feasible in the near 539 

future. This though, requires more similar studies which can further elucidate the strengths 540 

and weaknesses of those sensors compared to the regulatory-grade ones, as they develop.  541 
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Table 1: List of the measuring instrument used in the present study. 810 

 811 

Monitoring Model Manufacturer 
Regulatory 

grade 
Approximate 

cost (£) 

NO2 NO2-B43F Alphasense No 250 

Ox Ox-B43I Alphasense No 160 

Black Carbon MA200 Aethlabs No 5,700 

Lung Deposited Surface Area  Naneos No 8,500 

OPC OPC-N3 Alphasense No 250 

SMPS TSi3082 TSi Yes 80,000 

ACSM Quad - ACSM Aerodyne Yes 170,000 

PM Fidas 200E Palas Yes 25,000 
NO2 T500U Teledyne Yes 15,000 

Black Carbon 
AE33 

Aethalometer 
Magee 

Scientific 
Yes 25,000 

O3 49i Thermo Yes 3,000 

 812 

 813 
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Table 2: Cluster conditions for both methods. 
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Table 3: Cluster relationships between OPC and SMPS clusters. 

 
OPC/SMPS SMPS.1 SMPS.2 SMPS.3 SMPS.4 SMPS.5 SMPS.6 Total OPC 

OPC.1 48 30 9 71 13 66 237 

OPC.2 1 3 
 

5 
 

3 12 

OPC.3 
 

15 
 

2 4 2 23 

OPC.4 25 27 6 52 19 50 179 

OPC.5 24 26 17 39 40 38 184 

OPC.6 7 25 9 28 3 25 97 

Total SMPS 105 126 41 197 79 184 732 

 

  

 30 

https://doi.org/10.5194/amt-2021-11
Preprint. Discussion started: 9 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 

 

  

 Figure 1: Map of the location of the Birmingham Air Quality Supersite 

(BAQS) site in the U.K. (Map by ©HERE). 
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 Figure 2: Frequency and diurnal occurrence of the clusters formed by the 

OPC data. 
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 Figure 3: Frequency and diurnal occurrence of the clusters formed by the 

SMPS data. 
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 Figure 4: Particle contributions in the range 12 – 550 nm, for the clusters 

formed using the OPC data (top) and the SMPS data (bottom). 
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 Figure 5: Particle contributions up to 10 μm, for the clusters formed using 

the OPC data (top) and the SMPS data (bottom). 
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 Figure 6: PM1 polar plots of the clusters formed by the OPC data. 
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Figure 7: Cluster percentage contribution per week (week number refers to 

week of year 2020). 
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