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Abstract: The quality of the zenith hydrostatic delay (ZHD) could significantly affect the accuracy of the zenith wet delay 

(ZWD) of the Global Navigation Satellite System (GNSS) signal, and from the ZWD precipitable water vapor (PWV) can be 

obtained. The ZHD is usually obtained from a standard model – a function of surface pressure over the GNSS station. When 

PWV is retrieved from the GNSS stations that are not equipped with dedicated meteorological sensors for surface pressure 15 

measurements, blind models, e.g., the Global Pressure and Temperature (GPT) models, are commonly used to determine the 

pressures for these GNSS stations. Due to the limited accuracies of the GPT models, the ZHD obtained from the model-

derived pressure value is also of low accuracy, especially in mid- and high-latitude regions. To address this issue, a new 

ZHD model, named as GZHD, was investigated for real-time retrieval of GNSS-PWV in this study. The ratio of the ZHD to 

the zenith total delay (ZTD) was first calculated using sounding data from 505 globally distributed radiosonde stations 20 

selected from the stations that had over 5,000 samples. It was found that the temporal variation in the ratio was dominated by 

the annual and semiannual components, and the amplitude of the annual variation was dependent upon the geographical 

location of the station. Based on the relationship between the ZHD and ZTD, the new model, GZHD, was developed using 

the back propagation artificial neural network (BP-ANN) method which took the ZTD as an input variable. The 20-year 

(2000−2019) radiosonde data at 558 global stations and the 9-year (2006−2014) COSMIC-1 data, which were also globally 25 

distributed, were used as the training samples of the new model. The GZHD model was evaluated using two sets of 

references: the integrated ZHD obtained from sounding data and ERA5 reanalysis data. The performance of the new model 

was also compared with GPT3. Results showed the new model outperformed GPT3, especially in mid- and high-latitude 

regions. When radiosonde-derived ZHD was used as the reference, the accuracy, which was measured by the root mean 

square error (RMSE) of the samples, of the GZHD-derived ZHD, was about 21% better than the GTP3-derived ones. When 30 

ERA5-derived ZHD was used as the reference, the accuracy of the GZHD-derived ZHD was about 30% better than GPT3-

derived ZHD. In addition, the real-time PWV derived from 41 GNSS stations resulting from GZHD-derived ZHD was also 

evaluated and the result indicated that the accuracy of the PWV was improved by 21%. 
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1. Introduction 

Water vapor plays an important role in both Earth’s energy budget and hydrological cycle, although it only makes up 35 

0.1 ~ 4% of the atmosphere. Therefore, accurate acquisition of water vapor is critical for both weather forecasting and 

climatology. During the last three decades, Global Navigation Satellite System (GNSS) has been used to retrieve 

precipitation water vapor (PWV), due to its high spatial-temporal resolution, all-weather, nearly real-time, high accuracy, 

and low cost feature. The usual procedure for obtaining GNSS-derived PWV is as following (Bevis et al., 1992): 1) 

Estimating the zenith total delay (ZTD) of GNSS signals for each GNSS station; 2) Using an empirical or standard model 40 

together with surface meteorological measurements to calculate the ZHD for the GNSS station, then subtracting it from the 

ZTD to obtain the zenith wet delay (ZWD) of the GNSS signals for the station; 3) Converting the ZWD into PWV by 

multiplying the ZWD with a conversion factor which is a function of the water-vapor-weighted mean temperature (Tm) over 

the station. Tm can be calculated by the approximation introduced by Askne and Nordius (1987), or from a Bevis-type model 

(Bevis et al., 1992; Ross and Rosenfeld, 1997; Singh et al., 2014; Yao et al., 2014) and a blind model (Ding, 2018; He et al., 45 

2017; Yao et al., 2012; Sun et al., 2021a). The accuracies of the three types of models were analyzed in several literatures 

(Wang et al., 2016; Zhang et al., 2017). 

Usually, the ZHD can be determined at a millimeter-level by a standard model such as the most common model: the 

Saastamoinen model, under the condition that the surface pressure used in the model is measured by meteorological sensors 

(Bosser et al., 2007). However, not all GNSS stations are equipped with meteorological sensors and the majority of GNSS 50 

stations are not close to any weather stations. In this case, two alternative methods are used (Wang et al., 2017): 1) using a 

blind model, e.g., Global Pressure and Temperature models (GPT) (Böhm et al., 2007), to obtain surface meteorological 

parameters for the GNSS stations; 2) using reanalysis data (e.g., ERA-Interim (Wang et al., 2017), ERA5 (Zhang et al., 2019) 

or NCEP (Jiang et al., 2016)) to interpolate surface meteorological parameters for the GNSS stations. In real-time retrieval of 

GNSS-PWV, the forecast pressures from reanalysis data need to be downloaded in advance, which increases the complexity 55 

of data processing, not to mention the fact that the forecast data may not be available due to various reasons, e.g. problems of 

some servers or agencies. In contrast, blind models such as the GPT models, which are commonly adopted, are simple and 

effective (Charoenphon and Satirapod, 2020; Gurbuz et al., 2020). 

GPT, first proposed for geodetic applications by Böhm in 2007, can provide pressure and temperature at any 

geographical location on the earth’s surface and at any time (Böhm et al., 2007). Lagler et al. developed GPT2 by combining 60 

GPT with the Global Mapping Function (GMF), which can provide the values for more parameters than GPT, e.g., the 

coefficients of the GMF (Lagler et al., 2013). In 2015, based on GPT2, Böhm et al. developed GPT2w by adding the 

determination of the ZWD (Böhm et al., 2015). The latest version, i.e. GPT3, was developed by Landskron in 2017, which 

can provide not only the parameters from GPT2w but also an empirical gradient grid (Landskron and Böhm, 2018). 

Since these models can provide pressure and temperature at any location on the earth’s surface and at any time, the 65 

blind models have been widely applied to real-time retrieval of GNSS-PWV. However, the main issue using the blind 
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models to determine the ZHD is their limited accuracy. Wang et al. (2017) evaluated the accuracy of pressure derived from 

GPT2w at 108 global GNSS stations, and found the root mean square errors (RMSE) of the pressure samples were above 7 

hPa in mid- and high-latitudes regions, which resulted in large errors in PWV. A similar conclusion was made by Zhang Di 

(2016). 70 

The abovementioned blind models, similar to any other empirical models, are based on the trend of the spatial-temporal 

variation of pressure (or the corresponding ZHD). Thus, the accuracies of the models are limited due to the dynamic feature 

of most atmospheric parameters. In fact, during GNSS data processing for the estimation of the ZTD and other unknown 

parameters, although a model-derived ZHD is sometimes used as the approximate value, it does not need to be highly 

accurate as the approximate value does not affect the accuracy of the final ZTD estimation results. However, when the PWV 75 

is converted from the ZWD, which is obtained from the subtraction of the ZHD from the ZTD, the ZHD needs to be as 

accurate as possible for an accurate ZWD. Due to the high accuracy of the ZTD estimate, it may be used to improve the 

ZHD models, if the relationship between the ZHD and ZTD over the same station is known. 

As is mentioned in literatures (e.g., (Luo et al., 2013; Zhang et al., 2016)), the ZHD and ZWD account for about 90% 

and 10% of the ZTD, respectively. However, the ratio of the ZHD to ZTD cannot be assumed about 0.9:1. In this study, the 80 

ratio of the ZHD to ZTD was investigated using sounding data at 505 globally distributed radiosonde stations during 20-year 

period 2000−2019. Then, based on the relationship between the ZHD and ZTD, a new ZHD model with a good temporal 

resolution required by real-time retrieval of PWV was developed using the back propagation artificial neural network (BP-

ANN) technique. The new model took into account not only the spatial-temporal variation in the ZHD, as current blind 

models do, but also the ratio of the ZHD to ZTD (i.e., the GNSS-derived ZTD was used as an input variable of the new 85 

model). This study mainly aims to provide such a new method that is more accurate than blind models and more convenient 

in applications than reanalysis data for the determination of the ZHD. The ZHD can be applied to the retrieval of GNSS-

PWV. 

The outline of this paper is as follows. The data used in this study are briefly introduced in section 2.1. The 

investigation into the ratio of the ZHD to ZTD based on sounding data at 505 globally distributed radiosonde stations is 90 

presented in section 2.2, followed by a new ZHD model developed based on the ratio of the ZHD to ZTD in the section. In 

section 3, the new model is validated using two sets of references: ZHDs derived from radiosonde data and ERA5 data; and 

the performance of the new model is also compared with that of GPT3. The influence of the new model on real-time PWV is 

also evaluated in this section. Conclusions are given in the last section. 

2. Data and Methodologies 95 

2.1 Data 

Four types of data were used in this study, including sounding data from radiosonde stations, radio occultation (RO) 

data from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) project, ERA5 
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reanalysis data from the European Centre for Medium-Range Weather Forecast (ECMWF), and GNSS data provided by the 

International GNSS Service (IGS). The radiosonde data were mainly used to estimate the ratio of the ZHD to ZTD and train 100 

the BP-ANN for the new ZHD model. The RO data were for improving the performance of the new model, especially over 

the ocean areas. The ERA5 reanalysis data were used as a reference for the evaluation of the new ZHD model developed. 

The GNSS data were used to evaluate the influence of the new ZHD model on GNSS-derived PWV. The distribution of the 

four datasets and some associated information were shown in Fig. 1. 

 105 

Fig. 1 (a) Radiosonde stations for the development of the new model; (b) Radiosonde stations for testing the new model; (c) GNSS 

stations for evaluating the effect of the new model on real-time GNSS-derived PWV; (d) Profiles selected from COSMIC RO data. 

The color bars in (a), (b) and (c) indicate the number of samples at each station, and the color bar in (d) denotes the penetration 

depth of each profile. 

2.1.1 Radiosonde 110 

The 20-year (2000-2019) sounding data were from the Integrated Global Radiosonde Archive (IGRA), a high-quality 

radiosonde data set provided by the National Climate Data Center (NCDC). The temporal resolution of the data is usually 

twice per day (or four times at a few stations) and the distribution of the stations included in the data set is nonuniform (only 

about 1500 unevenly distributed stations are available around the world). The data set includes the observations of pressure, 

temperature, geopotential height, and pressure for water vapor at the standard, surface, tropopause, and significant levels 115 

(Durre et al., 2006). These observations form basic atmospheric profiles, based on which, the ZHD and ZTD can be 

calculated by the following approximation to the definition of integral (Davis et al., 1985): 
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where ℎ𝑠 and ℎ𝑡 are the heights of the bottom and top layers respectively (in unit of mm, the same as the ZTD or ZHD); 𝑃𝑑 120 

(in hPa) is the partial pressure of the dry constituent; 𝑃𝑤 (in hPa) is the partial pressure of water vapor; 𝑇 (in K) is the partial 

temperature; 𝑘1, 𝑘2, and 𝑘3 are the ideal gas constants from Thayer (1974). 

Although a strict quality control process has been conducted on the radiosonde data from the IGRA, there still exist 

some missing or/and gross data in the dataset; Thus, further quality control schemes were carried out, according to the 

experiments and literatures (He et al., 2017; Li et al., 2020), a profile must satisfy the following seven criteria: 1) the number 125 

of pressure levels in the profile must be over 10; 2) the pressure of water vapor at the top level of the profile must be under 

0.1 hPa; 3) the maximum height of the profile must be over 10 km; 4) the difference in pressures between any two adjacent 

layers of the profile must be over 0 hPa and under 200 hPa; 5) the difference in heights between any two adjacent layers 

must be over 0 km and under 10 km; 6) the pressure levels in the profile must contain the mandatory and significant levels; 7) 

the number of all profiles at the radiosonde station at which the profile was obtained must be above 2,000. As a result, 695 130 

unevenly distributed radiosonde stations over the world were identified and used in this study. Of the 695 stations, 558 

stations were used as sample data, see Fig. 1(a), to develop the new ZHD model, while the other stations, shown in Fig. 1(b), 

were used to test the model developed. In addition, from the above 695 stations, 505 stations had more than 5,000 profiles, 

thus the data from the 505 stations were used to analyze the ratio of the ZHD to ZTD. Finally, 371 of the 695 radiosonde 

stations had over 500 profiles in the one-year period of 2020, during which no data were used in the construction (or training) 135 

of the new model. These out-of-sample data were also used to evaluate the performance of the new model. 

2.1.2 COSMIC RO 

The COSMIC initiative is one of the main RO missions, and contains COSMIC-1 and COSMIC-2 constellations. In 

this study, data from the COSMIC-1, which consists of six low-earth-orbit satellites at an 800 km altitude, were adopted. 

During the period of 2006 to 2014, more than 4 million profiles were acquired, and the data included temperature, pressure 140 

and atmospheric density at various altitudes. Those profiles together with Eq.1 and Eq.2 were used to calculate the ZTD and 

ZHD. 

Traditional ZHD models such as blind models are based on harmonic functions, which need long time series data from 

the same station. However, RO profiles from COSMIC are unevenly distributed over the globe, i.e., long time series data 

from the same site are unavailable. Hence, the traditional models are not applicable. To overcome this problem, in this study, 145 

based on the BP-ANN technique, the RO profiles were used to improve the new model, especially over the ocean regions. 

Considering the gross error and penetration depth (i.e., the bottom altitude) of the profiles, two criteria for the selection of 

valid profiles were applied. First, the penetration depth of the profile must be under 8 km, since the new model was mainly 

for the earth’s surface. Secondly, if the difference between the ZHDs derived from COSMIC RO data and from reanalysis 

data (i.e., ERA5) was above three times the standard deviation of the mean of the differences, the profile was rejected. 150 
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Consequently, 3,405,763 profiles were selected to develop the new ZHD model, see Fig. 1(d) for their distribution and 

penetration depth (indicated by the color bar). 

2.1.3 ERA5 

ERA5 is the latest reanalysis data set provided by ECMWF and contains various hourly atmospheric variable values, 

including pressure, temperature, geopotential height and relative humidity at 37 pressure levels from 1000 hPa to 1 hPa, at a 155 

specific horizontal resolution. Similar to radiosonde data, this dataset can be also used to calculate the ZTD and ZHD using 

Eq.1 and Eq.2. 

In this study, the atmospheric data related to the ZTD and ZHD at the 37 pressure levels during the 20-year period from 

2000 to 2019 over the globe were downloaded from https://climate.copernicus.eu/climate-reanalysis, and the horizontal 

resolution of the data is 2.5 degrees. As a relatively accurate data set, it was used as a reference to evaluate the performance 160 

of the new model developed in this study and also that of GPT3 through a comparison of the two models. In addition, the 

ZHDs derived from ERA5 in the 9-year period from 2006 to 2014 were also used as the reference of the ZHDs derived from 

the selected COSMIC RO data for the gross error identification of the RO data. The ERA5 data in the one-year period of 

2020, which was different from the period of the training data (i.e. out-of-sample data), over the globe were also used to 

evaluate the accuracy of the new model . 165 

2.1.4 GNSS 

In April 2013, the IGS formally released the IGS Real Time Service (RTS) for provision of GNSS data, orbit and clock 

products with latencies of a few seconds. The real-time data can be obtained and processed freely using the BKG NTRIP 

Client (BNC) software, which is a client software package allowing Precise Point Positioning (PPP) in real-time. In this 

study, the modified BNC software used in (Sun et al., 2021b) was used to receive GNSS data stream from IGS data centres 170 

and process the GNSS data real-timely for acquirement of real-time ZTD. 

Since the PWV derived from sounding data is commonly regarded to be of high accuracy, the 41 IGS stations (shown 

in Fig. 1(c)) that are close to radiosonde stations (e.g. within 10 km), the so-called co-located stations, were selected as the 

samples to evaluate the effect of GZHD on PWV derived from GNSS in real-time. The real-time ZTDs in the 154-day period 

from 1 Jan 2020 to 30 Jun 2020 (note: ZTD data in some days were not received due to network problems) at the 41 IGS 175 

stations were converted into PWVs, and then these PWVs were compared against the PWVs derived from the sounding data 

of their co-located radiosonde stations (as the reference) for performance assessment. 

2.2 Methodologies 

In the section, the relationship between the ZHD and ZTD was first analyzed using the Lomb-Scargle periodogram at 

the aforementioned 505 globally distributed radiosonde stations. Then, a new ZHD model for real-time retrieval of GNSS-180 

PWV was constructed based on the relationship and the BP-ANN technique. 

https://climate.copernicus.eu/climate-reanalysis
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2.2.1 Ratio of the ZHD to ZTD 

As mentioned in literatures (Luo et al., 2013; Zhang et al., 2016), the ratio of the ZHD to ZTD is commonly regarded as 

a constant around 90%, which may not be true in some areas or cases. To investigate this, the ratios of the ZHD to ZTD 

derived from sounding data at the 505 selected globally distributed radiosonde stations during the period of 20 years from 185 

2000 to 2019 were analyzed. 

Fig. 2 shows the ratio results of six radiosonde stations located in different latitude regions and their power spectral 

density obtained from the Lomb-Scargle periodogram. We can see significant annual periodicity with large peaks from all 

the six examples, and semiannual periodicity from three time series (see CAM00071082, CAM00071913 and 

CHM00051463) with the peaks much smaller than that of the annual periodicity. This implies that the temporal variation in 190 

the ratio is dominated by the annual periodicity. Different from the ZTD time series (Li et al., 2012b) and ZHD time series 

(Wang et al., 2017), the ratio time series reached the maximum in winter, and the minimum in summer, which agreed well 

with the fact that PWV is higher in summer than winter, leading to larger ZWD in summer. In addition, the inter-annual 

variations were obvious at the three stations that are located in the equator region and southern hemisphere, possibly due to 

the change in the trend of PWV (climate change) in these areas. 195 

 

Fig. 2 Time series of the ratio of the ZHD to ZTD at six radiosonde stations located in different latitude regions. 
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In order to estimate the annual and semiannual components in the ratio time series, the following model fitting the ratio 

time series at each radiosonde station was adopted: 

 𝑅 = 𝑎0 + 𝑎1 ∙ 𝑡 + 𝑎2 ∙ cos (
2𝜋

365.25
∙ 𝑡 − 𝐷1) + 𝑎3 ∙ cos(

4𝜋

365.25
∙ 𝑡 − 𝐷2) (3) 200 

where R is the ratio of the ZHD to ZTD; a0 is the mean of the ratio; a1 is the linear trend of the ratio; a2 and a3 are the 

amplitudes of the annual and semiannual components, respectively; D1 and D2 are the phases of the annual and semiannual 

components, respectively; t is the number of the days starting from January 1, 2000. The six unknown parameters: ai (i = 0, 1, 

2, 3), D1 and D2 would be estimated using the least-squares method. 

Fig. 3 shows the annual amplitude at each of the 505 stations. One can see that the annual amplitude of a station was 205 

more dependent upon the climatic type rather than latitude of the station. Most of the large annual amplitudes were found in 

mid-latitude regions (near 30° in both north and south hemispheres), and small annual amplitudes were found in high-

latitude and the equator regions. The annual amplitudes over the eastern Atlantic and the northeast Pacific coast were small, 

which was likely due to the effect of the ocean (Jin et al., 2007). The annual amplitudes at all the 505 stations ranged from 

0.1% to 5.7% with the mean of 2.2%. Based on the mean of the ratio of 2.2%, if the ZTD is assumed to be 2,000 mm, then 210 

the mean of the annual amplitudes in the ZHD variation is 44 mm. This is a large value, and thus to considerably affect the 

accuracy of GNSS-derived PWV. 

 

Fig. 3 Annual amplitude of the ratio of total and hydrostatic zenith delays at each of 505 global radiosonde stations. 

The fact that the noticeable annual periodicity and the large annual amplitudes in the ratio time series are related to the 215 

climatic type suggests that the ratio is not always a constant, e.g., the commonly regarded 90% or any other values. Based on 

this characteristic, the ZHD can be obtained after the ZTD is obtained from the GNSS data processing. Thus, a new ZHD 

model was developed mainly for real-time retrieval of GNSS-PWV and its validation will be presented in the following 

sections. 
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2.2.2 The New ZHD Model 220 

Similar to the biological neural system, the Artificial Neural Network (ANN) is a complex network composed of many 

neurons or nodes connecting with each other (Katsougiannopoulos and Pikridas, 2009). Its working principle is to produce 

the target value according to the input data after being trained by the training data set. As one of the most common ANNs, 

the BP-ANN is a multi-layer feedbackward network trained according to the error back propagation algorithm (Li et al., 

2012a). It has been applied to several fields e.g., functional approximation, pattern recognition, classification and data 225 

compression. Due to its ability of multi-parameters nonlinear regression, this study used the BP-ANN to investigate a new 

ZHD model, named GZHD, mainly for the real-time retrieval of GNSS-PWV. 

The output of GZHD is the ZHD, which is required in the conversion of the GNSS-ZTD into PWV, while the input 

variables must be independent with each other and also related to the output. Therefore, in this study, in addition to the 

common five variables, i.e. the day of year (DoY), the hours of day (HoD), latitude (𝜑), longitude (𝜆) and ellipsoidal height 230 

(H) of the station, the ZTD was also used as an input variable of GZHD based on the analysis in section 2.2.1. Using the 

sample data for the input variables and the output ZHD, and the BP-ANN technique, the GZHD model can be developed. 

The BP-ANN used in this study contained three hidden layers, and the network for the new model was trained for 

thousands of times, depending on the number of the neurons and the activation function used in each hidden layer. From our 

tests, we found that the RMSE of the new model derived ZHD varied slightly (at a sub-millimeter-level) with the increase in 235 

the number of the neurons and the selection of the active function. Then, in consideration of both accuracy and efficiency of 

the network, the structure with 20, 20, 12 neurons and the active functions of tansig, tansig and logsig for the three hidden 

layers were adopted. The structure of the BP-ANN including the input variables, output ZHD and three hidden layers is 

shown in Fig. 4. 

 240 
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Fig. 4 Structure of BP-ANN used in this study. 

For the development of GZHD, two data sets were used to train the network: one was the sounding data in a period of 

20 years at the aforementioned 558 global radiosonde stations, and the other was the COSMIC-1 RO data around the globe 

in a period of 9 years. The former was taken as the main training data due to its high accuracy, while the latter was taken as 

auxiliary training data since the radiosonde stations were mainly deployed in continents. As mentioned before, COSMIC-1 245 

RO profiles unevenly distribute around the globe, which are not suitable for harmonic functions used in the traditional 

models since long time series data from the same site are not available. However, the uneven distribution of the RO data is 

beneficial for the BP-ANN technique, and the usage of the RO data means an increase in the number of the training samples, 

which is likely to improve the performance of GZHD, especially over the ocean regions. A total of 3,405,763 RO profiles 

were used to train the network. 250 

3 Result of GZHD 

The performance of the GZHD model was assessed using the sounding data from 137 global radiosonde stations and 

also global ERA5 data as two reference datasets. In addition, GZHD was also evaluated using the souding data and ERA5 

data in 2020, which were different from the training period and thus to be out-of-sample data. For convenience, the ZHDs 

obtained from the integration expressed by Eq.2 and the data from the above two data sources were named ZHD-RS and 255 

ZHD-ERA5, respectively hereafter. The performance of GZHD was also compared with that of GPT3 by comparing the 

biases and RMSEs of the two model-derived ZHDs, named ZHD-GPT3 and ZHD-GZHD, respectively, based on the same 

reference dataset. The formulas for the bias and RMSE of the differences between the model-derived ZHDs and the 

references are: 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑍𝐻𝐷𝑖

𝑟 − 𝑍𝐻𝐷𝑖
𝑚)𝑛

𝑖=1  (4) 260 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑍𝐻𝐷𝑖

𝑟 − 𝑍𝐻𝐷𝑖
𝑚)2𝑛

𝑖=1  (5) 

where n is the number of the samples used for the evaluation; i is the index of the sample; r and m denote the reference and 

model-derived, respectively. It was expected that the GZHD would outperform GPT3 since GPT3 is based on the global 

ZHD variation trend rather than using any actual measurements like the GZHD does (GNSS-derived ZTD is used as the 

input of GZHD). 265 

3.1 Result using ZHD-RS as reference 

ZHD-GZHD and ZHD-GPT3 calculated for each site of the above mentioned 137 global radiosonde stations during the 

20-year period from 2000 to 2019 were compared against the reference of the ZHD-RS over the same station. The bias and 

RMSE of the ZHD-GZHD and ZHD-GPT3 over each station are shown in Fig.5. 
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 270 

Fig. 5 Bias (a1) and RMSE (b1) of ZHD-GPT3; and bias (a2) and RMSE (b2) of ZHD-GZHD over each of the 137 radiosonde 

stations during the 20-year period 2000−2019 (reference: ZHD-RS). 

In Fig. 5, subfigure (a1) indicates that the biases of ZHD-GPT3 over most stations were negative, and the bias values 

were under 6 mm at 122 stations. However, the bias values at the radiosonde stations located in Australia were over 10 mm 

(negative) (which will be discussed later). Subfigure (a2) shows that the bias values of ZHD-GZHD varied within ±6 mm at 275 

132 radiosonde stations, while at the other stations the bias values were over 6 mm. Compared (a1) with (a2), there are 111 

radiosonde stations where the biases of ZHD-GZHD were smaller than the ones of ZHD-GPT3. Therefore, the new model 

significantly outperformed GPT3, in terms of biases. 

In subfigure (b1), the RMSE of ZHD-GPT3 appeared to be dependent upon latitude, and generally, the higher the 

latitude, the larger the RMSE. Most of the RMSEs in mid- and high-latitude regions were over 20 mm, which was different 280 

from the small values in the low-latitude region. Subfigure (b2) also shows the latitude-dependent feature of the RMSE of 

ZHD-GZHD. However, the RMSE was smaller than that of ZHD-GPT3 at each of 117 stations, and at the other 20 stations, 

which mainly distributed in the low-latitude region (a total of 45 stations), the RMSE was slightly larger than that of ZHD-

GPT3. In conclusion, the accuracy of GZHD was significantly better than that of GPT3, especially in mid- and high-latitude 

regions. 285 

The maximum, minimum, and mean of the biases and RMSEs of all the 137 stations shown in the four subfigures in 

Fig. 5 are listed in Table 1. The result indicates that the mean of ZHD-GZHD was much smaller than that of ZHD-GPT3. 

This manifests significant improvements made by GZHD in comparison with GPT3. In addition, the mean bias of −4.0 mm 

of GPT3 implies an underestimation of the ZHD from the GPT3 model, and the mean bias of −0.5 mm from GZHD means a 

slight underestimation of the new model. 290 

Table 1 Maximum, minimum, and mean of the biases and RMSEs of all the 137 stations shown in the four subfigures in Fig. 5. 
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Model 
Bias (mm) RMSE (mm) 

Mean Min Max Mean Min Max 

GZHD −0.5 −13.1 12.9 12.3 3.0 23.5 

GPT3 −4.0 −29.7 6.2 15.5 2.6 35.5 

For further comparison of the two model-predicted ZHD time series with the ZHD-RS time series, six radiosonde 

stations were selected as examples. It is worth mentioning that the six stations are located in six continents, i.e., one 

radiosonde station in each of the six continents, except for Antarctica due to its very small population. The results are shown 

in Fig. 6, and Fig. 7 shows the correlations between the model-predicted ZHDs and ZHD-RS, named R-GZHD and R-GPT3, 295 

respectively, of the six stations. 

 

Fig. 6 Time series of ZHD-RS (red), ZHD-GZHD (blue) and ZHD-GPT3 (green) at six radiosonde stations located in six continents. 

All the ZHD-GZHD (blue) time series in the six subfigures of Fig. 6 show not only annual and semiannual periodic 

variation characteristics but also high-frequency variations, which was closer to the observed (the truth) ones, compared with 300 
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the ZHD-GPT3. This was because the GZHD model used the ZTD derived from sounding data as its input. In contrast, the 

reason for the ZHD-GPT3 time series only reflecting the annual and semiannual variations by smooth curves was that the 

model was constructed based on a harmonic function that only contains two periodic terms (Landskron and Böhm, 2018). 

Moreover, the high-frequency variations were more significant at the stations that are located in mid- and high-latitude 

regions (see the first three and the last panes) than the other two, which are located in low-latitude regions. This was why 305 

GZHD significantly outperformed GPT3, especially in mid- and high-latitude regions. 

 

Fig. 7 Correlation between the two model-predicted ZHD time series: ZHD-GZHD (blue) or ZHD-GPT3 (green) shown in the 

vertical axis, and ZHD-RS (i.e., observed, in the abscissa axis) at the six radiosonde stations shown in Fig. 6. 

From Fig. 7, we can see that in each pane the blue dots (ZHD-GZHD) distributed around the red line and much closer 310 

to the red line than the green ones (ZHD-GPT3). The result indicates that the ZHD-GZHD agreed with ZHD-RS better than 

ZHD-GPT3. The correlation coefficient values of R-GZHD shown in the five panes, except for the middle one in the bottom 

row (which is located in Africa where only a few stations were used to construct the new model (see Fig. 1(a))), were larger 

than R-GPT3. This means an improvement was made by the new model. Furthermore, the improvement in a high-latitude 

region was more significant than a low-latitude region. For example, the R-GPT3 and R-GZHD at CAM00071926 (high-315 

latitude) were 0.32 and 0.74, respectively, whilst the corresponding values at BRM00083362 (low-latitude) were 0.62 and 

0.64, respectively. 
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3.2 Result using ZHD-ERA5 as reference 

In this section, both ZHD-GZHD and ZHD-GPT3 calculated for each global grid point (with the horizontal resolution 

of 2.5° × 2.5°) during the 20-year period 2000−2019 were compared against the ZHD-ERA5 (which was not used in the 320 

construction of the new model) over the same grid. The statistical results of the 20-year data over the globe are shown in Fig. 

8. 

 

Fig. 8 Bias (a1) and RMSE (b1) of ZHD-GPT3; and bias (a2) and RMSE (b2) of ZHD-GZHD over each global grid point (the 

horizontal resolution: 2.5° × 2.5°) during the 19-year period 2000−2019 (reference: ZHD-ERA5). 325 

In Fig. 8, subfigure (a1) shows noticeable biases in ZHD-GPT3. In most regions, the biases were negative, which was 

different from the fact that most biases in Antarctica and mountainous regions were positive, such as the Tibet Plateau, 

Andes Mountains, Rocky Mountains etc. This may be caused by the underestimation of pressure by GPT3 above the earth 

surface (Li et al., 2021) and the overestimation of pressure below the earth surface. Note that the lowest height of the grid 

points of ERA5 over the globe ranged from about −200 m to 200 m, which is different from the true topography. Subfigure 330 

(a2) indicates that small ZHD-GZHD biases were in most regions, while large biases were in Antarctica and its surrounding 

regions (latitude between 30°S and 90°S). Compared to ZHD-GPT3 in (a1), the biases of ZHD-GZHD in (a2) were 

significantly smaller in most regions over the globe; In Antarctica, the poor performance of GZHD may be also due to the 

fact that not only the number of the samples in the southern hemisphere was considerably smaller than that in the northern 

hemisphere, but also ZHD-ERA5 was of low accuracy in Antarctica (Tetzner et al., 2019; Zhang et al., 2019). 335 

In subfigure (b1), the RMSEs of ZHD-GPT3 appeared to be latitude-dependent, and generally, the RMSEs were higher 

in mid- and high-latitude regions than that in low-latitude regions. Similar to the ZHD-GPT3 biases, the RMSEs were also 

very large in complex mountainous terrain. The poor performance of GPT3 in complex mountainous terrain is mainly 
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because of the mismatch between the model and actual terrain (Zhang et al., 2013; Wang et al., 2017). In subfigure (b2), 

although the RMSEs were slightly dependent upon latitude, the RMSEs of ZHD-GZHD were smaller than that of ZHD-340 

GPT3 in most regions, except for Australia and its surrounding regions (which will be discussed later). In a summary, the 

accuracy of the new ZHD model was higher than GPT3 in most regions when ZHD-ERA5 was used as the reference, 

especially in mid- and high-latitude regions. 

For further evaluation of the performance of the two models in different latitudes, the mean biases and RMSEs in 12 

latitude regions (with a 15° interval) were compared and corresponding results are listed in Table 2. Fig. 9 is for a better 345 

resolution (with a 2.5° interval) result. We can see that in most latitude ranges, the biases and RMSEs of ZHD-GZHD were 

smaller than that of ZHD-GPT3. In summary, the accuracy of ZHD-GZHD was improved 29% in comparison with ZHD-

GPT3 when ZHD-ERA5 was used as the reference. 

Table 2 Mean of the biases and RMSEs of ZHD-GZHD and ZHD-GPT3 during the 19-year period 2000−2018 in different latitude 

ranges (with a 15° interval). 350 

Latitude 
GZHD GPT3 

Bias (mm) RMSE (mm) Bias (mm) RMSE (mm) 

75°N < φ <= 90°N −2.5 11.4 −5.7 25.8 

60°N < φ <= 75°N −3.2 14.9 −5.1 25.1 

45°N < φ <= 60°N −3.0 17.1 −5.2 23.4 

30°N < φ <= 45°N −4.3 15.3 −2.3 18.1 

15°N < φ <= 30°N −5.0 9.7 −4.9 9.8 

0° < φ <= 15°N −2.3 6.1 −5.9 7.3 

15°S < φ <= 0° −1.9 6.1 −5.7 7.3 

30°S < φ <= 15°S −1.2 10.3 −5.1 9.0 

45°S < φ <= 30°S −7.4 17.3 −5.6 17.5 

60°S < φ <= 45°S −11.8 21.0 −5.7 28.8 

75°S < φ <= 60°S −6.9 17.8 −3.1 29.8 

90°S <= φ <= 75°S −1.2 19.8 14.3 32.8 

Mean −4.2 13.9 −3.3 19.6 
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Fig. 9 Mean biases (a) and RMSEs (b) of two model-derived ZHDs during the 20-year period 2000−2019 in different latitude 

ranges (with a 2.5° interval). 

It is worth mentioning that, from the results of the above two sections, in Australia, when ZHD-ERA5 was used as the 355 

reference, the bias and RMSE of ZHD-GZHD were larger than that of ZHD-GPT3. However, when ZHD-RS was used as 

the reference, the result was completely different. To investigate the cause of the difference, the two sets of ZHD reference 

values at 32 radiosonde stations located in Australia were compared and results are shown in Fig. 10. It can be seen that both 

the bias (in a) and RMSE (in b) were large, and over most stations the biases were negative with a (absolute) value above 10 

mm, and the RMSEs over all stations were above 10 mm. The mean of all biases and RMSEs were −16.9 mm and 24.1 mm, 360 

respectively. The large negative biases suggest a significant underestimation of ZHD-ERA5 in the region. This might be 

caused by the assimilation algorithm and/or other assimilated data, although radiosonde data have been assimilated into 

ERA5. When ZHD-ERA5 was used as the reference, ZHD-GPT3 agreed well with ZHD-ERA5, and much better than the 

new model developed in this study, since GPT3 was based on ERA-Interim data (the last generation of reanalysis data set 

provided by ECMWF). 365 
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Fig. 10 Bias (a) and RMSE (b) between ZHD-ERA5 and ZHD-RS during the 19-year period 2000−2019 over each of 32 radiosonde 

stations located in Australia. 

3.3 Results in different period 

To evaluate the accuracy of the GZHD model, the ZHD-GZHD and ZHD-GPT3 at 371 radiosonde stations and each 370 

global grid point (with the horizontal resolution of 2.5° × 2.5°) during the one-year period of 2020 were compared against 

the references of ZHD-RS and ZHD-ERA5, respectively. Results are shown in Figs. 11 and 12. 

 

Fig. 11 Bias (a1) and RMSE (b1) of ZHD-GPT3; and bias (a2) and RMSE (b2) of ZHD-GZHD over each of the 371 radiosonde 

stations during the one-year period 2020 (reference: ZHD-RS, the dots stand for the radiosonde stations that were used in the 375 
construction of GZHD, while the tringles stand for the radiosonde stations that were not used in the construction of GZHD). 
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Fig. 12 Bias (a1) and RMSE (b1) of ZHD-GPT3; and bias (a2) and RMSE (b2) of ZHD-GZHD over each global grid point (the 

horizontal resolution: 2.5° × 2.5°) during the one-year period of 2020 (reference: ZHD-ERA5). 

In Fig. 11, the biases and RMSEs of ZHD-GZHD were smaller than that of ZHD-GPT3 at most radiosonde stations, 380 

which was similar to the results of Section 3.1, and Fig. 12 also shows the same results with Fig. 8. These results indicate 

that GZHD outperformed GPT3 in 2020 during which no data were used in the construction or training of the new model, i.e. 

the test data were out-of-sample data. In summary, when ZHD-RS was used as the reference, the mean RMSE of ZHD-

GZHD in 2020 was 13.2 mm, while that of ZHD-GPT3 was 17.0 mm. When ZHD-ERA5 was used as the reference, the 

mean RMSE of ZHD-GZHD in 2020 was 13.4 mm, while that of ZHD-GPT3 was 20.6 mm. 385 

3.4 Result of PWV 

The effect of GZHD on PWV derived from GNSS in real-time was assessed using data from 41 global IGS??  stations 

in the 154-day period from 1 Jan 2020 to 30 Jun 2020 since co-located radiosonde stations could be found for these GNSS 

stations. The PWV derived from sounding data of these radiosonde stations, named PWV-RS, was used as the reference in 

the evaluation of the PWVs resulting from the ZHDs derived from the two previously tested models – GZHD and GPT3, 390 

named PWV-GZHD and PWV-GPT3, respectively. It is noted that the ZTD estimated in real-time and Tm derived from 

GNTm (Sun et al., 2021a) were used to retrieve the GNSS-derived PWVs. The bias and RMSE of the PWV-GZHD and 

PWV-GPT3 over each station are shown in Fig. 11. 
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Fig. 13 Bias (a1) and RMSE (b1) of PWV-GPT3; and bias (a2) and RMSE (b2) of PWV-GZHD in the 154-day period from 1 Jan 395 
2020 to 30 Jun 2020 over each of 41 global IGS stations (reference: PWV-RS). 

Subfigure (a1) shows the biases of PWV-GPT3 ranged from −4.3 mm to 3.3 mm with the mean of −0.6 mm; and the 

biases of PWV-GZHD in (a2) ranged from −3.2 mm to 4.0 mm with the mean of 0.2 mm. Comparing the two subfigures, 

one can find that at some stations the bias of PWV-GZHD was slightly larger than that of PWV-GPT3, and such a small 

difference can be neglected.  400 

Subfigure (b1) shows the RMSEs of PWV-GPT3 varied from 1.5 mm to 5.6 mm with the mean of 3.4 mm; and the 

stations where the RMSEs were large mainly distributed in mid- and high-latitude regions. Subfigure (b2) shows the RMSEs 

of PWV-GZHD varied from 0.8 mm to 5.6 mm with the mean of 2.7 mm. The RMSE of PWV-GZHD hardly had a 

dependency upon latitude, and it was less than that of PWV-GPT3 at most stations (33, of the 41 stations). In addition, at 28 

stations of the 41 stations, the RMSEs of PWV-GZHD were less than 3 mm, which is the threshold suggested by the 405 

EUMETNET EIG GNSS water vapor program for the accuracy of PWV required for meteorological research (Offiler et al., 

2010). However, there were only 11 stations where the RMSEs of PWV-GPT3 were less than the threshold. The 

improvement in the accuracy of the GNSS-derived PWV made by GZHD was 21%, in comparison with GPT3, which is a 

significant improvement. 

Conclusion 410 

The accuracy of the ZHD could significantly affect the quality of the ZWD from which PWV is converted using a 

conversion factor. The ZHD is usually obtained from a standard model – a function of the surface pressure measured by a 

meteorological sensor at the site of the GNSS station, and the accuracy of the ZHD is generally as high as a millimeter-level. 

However, not all GNSS stations are equipped with such a meteorological sensor. In addition, majority of GNSS stations are 
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not close to any weather stations, thus there are none surface pressure measurements available for these stations. In this case, 415 

blind models, such as a series of GPT models, are often used to obtain surface pressures. As a result, the accuracy of the 

model-derived ZHD is limited, especially in mid- and high-latitude regions. To address this issue, a new ZHD model was 

developed in this study using the following technique. 

First, the ratio of the ZHD to ZTD was analyzed using the Lomb-Scargle periodogram at 505 global radiosonde stations 

at each of which the number of samples was over 5,000. Their ratio time series showed significant annual and semiannual 420 

periodicities, and the annual amplitude was related to the geolocation of the station. Then, a new ZHD model, GZHD, was 

developed using the BP-ANN technique and sounding data from 558 global radiosonde stations together with RO data from 

COSMIC-1. In the GZHD model, not only the seasonal and spatial variation in the ZHD, but also the relationship between 

the ZHD and ZTD, were taken into consideration. More specifically, the ZTD was used as an input variable for the network 

for the modelling. 425 

The newly developed GZHD model was assessed using two sets of references: ZHD-RS and ZHD-ERA5, and the 

performance of the model was also compared with GPT3. Results showed that the new model significantly outperformed 

GPT3, especially in mid- and high-latitude regions; and the improvements in the accuracy of the ZHD-GZHD were about 21% 

and 30% in comparison with ZHD-GPT3 based on the references of ZHD-RS and ZHD-ERA5, respectively. In addition, the 

effect of the ZHD-GZHD on PWV retrieved from 41 global GNSS stations that are equipped with meteorological sensors 430 

was also evaluated using PWV-RS as the reference. Results showed that, compared with PWV-GPT3, the accuracy of the 

PWV-GZHD was improved by 21%, which is significant. These results suggest the promising potential of the GZHD model 

for a better GNSS-derived PWV for the GNSS stations that are not equipped with meteorological sensors, especially for the 

real-time mode. 

Our future work will be using ERA5 data in the construction of the new model to improve the performance of the new 435 

model in the southern hemisphere. 

Data availability： 

Radiosonde data: http://weather.uwyo.edu/upperair/ 

COSMIC RO: https://cdaac-www.cosmic.ucar.edu/cdaac/index.html 

ERA5 reanalysis: https://climate.copernicus.eu/climate-reanalysis 440 

GNSS: https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/GNSS_data_and_product_archive.html  

http://weather.uwyo.edu/upperair/
https://cdaac-www.cosmic.ucar.edu/cdaac/index.html
https://climate.copernicus.eu/climate-reanalysis
https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/GNSS_data_and_product_archive.html
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