
The Berkeley Environmental Air-quality and CO2 Network: field
calibrations of sensor temperature dependence and assessment of
network scale CO2 accuracy
Erin R. Delaria1, Jinsol Kim2, Helen L. Fitzmaurice2, Catherine Newman1, Paul J. Wooldridge1,
Kevin Worthington1, and Ronald C. Cohen1,2

1Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
2Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA

Correspondence: Ronald C. Cohen (rccohen@berkeley.edu)

Abstract.

The majority of global anthropogenic CO2 emissions originate in cities. We have proposed that dense networks are a strategy

for tracking changes to the processes contributing to urban CO2 emissions and suggested that a network with ∼2 km measure-

ment spacing and ∼1 ppm node-to-node precision would be effective at constraining point, line and area sources within cities.

Here we report on an assessment of the accuracy of the Berkeley Environmental Air-quality and CO2 Network (BEACO2N)5

CO2 measurements over several years of deployment. We describe a new procedure for improving network accuracy that ac-

counts for and corrects the temperature dependent zero offset of the Vaisala CarboCap GMP343 CO2 sensors used. With this

correction we show that a total error of 1.6 ppm or less can be achieved for networks that have a calibrated reference location

and 3.6 ppm for networks without a calibrated reference.

1 Introduction10

The atmosphere has warmed approximately 1± 0.2 °C since pre-industrial times, which is unequivocally due to anthropogenic

emissions of CO2 and other greenhouse gases (GHGs) (IPCC, 2013). Global initiatives are needed to limit warming to 1.5 °C

by achieving net zero GHG emissions by 2050 and a 45% emissions decline from 2010 levels by 2030 (Rogelj et al., 2018).

As over 70% of global anthropogenic CO2 emissions originate from cities (United Nations, 2011) , effective CO2 monitoring

strategies in urban regions are needed to assess progress toward emissions commitments.15

Monitoring trends in CO2 emissions by tracking ambient CO2 in urban environments is challenging because of the large

diversity of emissions sources, complex spatial and temporal patterns of emission rates, varied topography and the effects

of meteorology on the observed concentrations (e.g. Vardoulakis et al., 2003; Lateb et al., 2016). As a result, most cities rely

exclusively on economics and social data and do not check that their reported emissions match the observed CO2 enhancements

in the air over their city. To date, most efforts to assess CO2 emissions from cities have relied upon a small number of high-20

cost CO2 instruments that provide precise and accurate representations of regional signals. Other approaches include use of

correlations between CO2 and other gases, measurements of 14C in annual grasses, and use of satellite column CO2 observations
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such as from OCO-2 (e.g. Pataki et al., 2006; Riley et al., 2008; Thompson et al., 2009; Kort et al., 2013; Andrews et al., 2014;

Fu et al., 2019; Ye et al., 2020). Most of these efforts have used as a target metric an annual average of fossil fuel-related CO2

emissions from an entire city (e.g. McKain et al., 2012; Kort et al., 2013; Bréon et al., 2015; Verhulst et al., 2017). Simultaneous25

measurements of CO and 14CO2 have also provided information about sector-specific emission sources (Turnbull et al., 2015).

Other methods of evaluating urban emissions have relied on emissions inventories (e.g. Gurney et al., 2009; Gately et al., 2013,

2017). These emissions inventories are frequently applied to inverse modelling approaches in combination with either short-

term mobile measurements or a small number of long-term measurement sites to extract regional emissions (e.g. Brondfield

et al., 2012; Sargent et al., 2018; Nathan et al., 2018; Turnbull et al., 2019). Several studies have also combined a network of30

CO2 observations with inverse modelling approaches to evaluate the accuracy of emissions inventories and CO2 sources (e.g.

Lauvaux et al., 2016, 2020).

We are pursuing a distinct approach aimed at process level understanding of the components of an urban emissions inventory.

To do so, we are developing tools for deployment of spatially dense networks of CO2 measurements, in combination with

gases and aerosols that are co-emitted and that affect air quality. The result is an ability to map emissions with ∼1 km or35

"neighborhood scale" fidelity. The Berkeley Environmental Air-quality and CO2 Network (BEACO2N) (Turner et al., 2020;

Kim et al., 2018; Shusterman et al., 2018, 2016; Turner et al., 2016) is our platform for research and development of tools

for dense networks. New deployments in Glasgow, Scotland, and Los Angeles, California are bringing new collaborators and

experience in different cities to the project. BEACO2N has been operating since 2012 in the San Francisco Bay area and

consists of over 70 nodes separated by approximately 2 km (Fig. 1). The nodes incorporate commercially available, low-cost40

sensors for measuring CO, NO, NO2, O3, particulates, and CO2.

Turner et al. (2016) assessed the performance of a hypothetical BEACO2N-like observing system coupled to an inverse

model and demonstrated that a random measurement uncertainty of 1 ppm between nodes was adequate to meaningfully

constrain CO2 emissions from a point, line, or area source of 147, 45, and 9 tC hr−1, respectively. With 1 ppm mismatch error,

weekly CO2 emissions in the San Francisco Bay area could be estimated to within 5% error. In this paper we describe advances45

in our approach to maintaining stable, multi-year comparability among BEACO2N nodes in a city and evaluate the accuracy

achieved with these new procedures. Our emphasis in the revised approach to sensor accuracy is on tracking and correcting

the temperature dependence of the Vaisala CarboCap GMP343 CO2 instruments. We present development and evaluation of

the methods using observations from the San Francisco Bay Area BEACO2N deployment and then apply these ideas to the

BEACO2N network in Houston, Texas.50

2 Development of a CO2 field calibration method for Vaisala temperature dependence

The efficacy of a network of a large number of low cost non-dispersive infrared (NDIR) CO2 sensors to evaluate CO2 emissions

has been previously discussed (Shusterman et al., 2016; Turner et al., 2016; Martin et al., 2017; Shusterman et al., 2018; Müller

et al., 2020). Martin et al. (2017) showed that after correcting six SenseAir K30 carbon dioxide NDIR sensors (with off-the-

shelf reported errors of 5-20 ppm) for environmental variables, the median root mean square error could be reduced to below55
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2 ppm, making the sensors potentially useful for ambient air-quality monitoring. Recently, Müller et al. (2020) evaluated the

potential applications of a low-cost CO2 NDIR sensor network for resolving site-specific CO2 signals in Switzerland. The

calibration method of Müller et al. (2020) involved laboratory chamber calibrations of over 300 low-cost NDIR CO2 sensors

and ambient co-location with a reference instrument prior to deployment, as well as regular monitoring and drift correction

during a 2-year deployment period. Shusterman et al. (2016) developed an in situ method for calibrating and correcting for60

individual instrument biases and temporal drifts of the Vaisala CarboCap GMP343 CO2 instruments deployed in the BEACO2N

nodes. Using this method, Shusterman et al. (2018) demonstrated that the BEACO2N network could provide highly sensitive

detection of changes to traffic emissions at a scale relevant to policy concerns. Shusterman et al. (2018) also illustrated the

efficacy of the BEACO2N network in showing both regional CO2 emissions and local CO2 enhancements at the scale of a

single neighborhood. In an analysis of the BEACO2N observations for 6 weeks before and after the COVID-19 shutdown,65

Turner et al. (2020) showed that a 25% change in emissions is easily derived by an inverse model and that hourly variations in

emissions can be inferred.

The use of a large number of low-cost CO2 sensors introduces challenges regarding accuracy and inconsistent behavior

between instruments that often requires labor-intensive regular calibration, data correction and filtering, and validation with

comparison to a smaller number of frequently calibrated high-accuracy instruments. In particular, the low-cost NDIR absorp-70

tion sensor used in each BEACO2N node (Vaisala CarboCap GMP343) is susceptible to temporal drift and fluctuations due to

environmental variables that present challenges to achieving a goal of 1 ppm network error (van Leeuwen, 2010; Shusterman

et al., 2016). Correction of the Vaisala CarboCap GMP343 instruments (Vaisala, hereafter) for changes in pressure, tempera-

ture, and humidity is required for accurate measurements (Vaisala, 2013). The typical correction for pressure and temperature

accounts for changes in the number density of CO2 according to the ideal gas law (van Leeuwen, 2010; Vaisala, 2013; Shus-75

terman et al., 2016). The humidity effect on measured CO2 is accounted for by considering the dilution effect of water vapor

according to Dalton’s law of partial pressures (van Leeuwen, 2010; Vaisala, 2013; Shusterman et al., 2016). However, even

after accounting for these factors, reported corrected CO2 concentrations for the Vaisala instrument have been observed to ex-

hibit a strong temperature dependence of up to 1 ppm/°C (van Leeuwen, 2010). Using a laboratory calibration procedure, van

Leeuwen (2010) found that a linear correction was necessary to account for the residual temperature dependence. However,80

correcting for the temperature dependence using lab calibrations is labor intensive, as the temperature dependence is unique

for each Vaisala sensor. Regular laboratory temperature calibration would also be required to account for temporal variations

in the temperature correction as sensors age. For a high-density urban network like BEACO2N, this would require substantial

time investment by trained personnel. The associated high labor costs defeat the purpose of using low-cost sensors. In situ field

calibration of the Vaisala sensors thus presents a more attractive method for correcting for the temperature dependence of the85

CO2 measurements.

2.1 BEACO2N network

The Berkeley Environmental Air-quality and CO2 Network (BEACO2N) Bay Area deployment currently consists of 73 nodes

spaced at∼2 km intervals with locations in Alameda, San Francisco, Contra Costa, Sonoma, Sacramento, and Solano counties.
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A full description of a BEACO2N node can be found in Kim et al. (2018). Briefly, each node contains a non-dispersive infrared90

Vaisala CarboCap GMP343 CO2 sensor, along with a Shinyei PPD42NS nephelometric particulate matter sensor and several

Alphasense electrochemical sensors for measuring CO, NO, NO2, and O3 (CO-B4, NO-B4, either NO2-B42F or NO2-B43F,

and either Ox-B421 or Ox-B431). The most recent version adds a Plantower PMS 5003 aerosol sensor. Sensors are assembled

into compact, weatherproof enclosures with air flow through the enclosure provided by two 30 mm fans. Data is compiled with

a Raspberry Pi microprocessor and an Adafruit Metro Mini microcontroller. Data is acquired every 5 or 10 s and is transferred95

to a central server via an Ethernet or Wi-Fi connection. Observations are posted on the BEACO2N website within a few hours

of measurement time (http://beacon.berkeley.edu).

The Vaisala CarboCap GMP343 instrument uses pulsed light from a filament lamp, which is reflected and refocused on an

IR detector located behind a Fabry-Perot Interferometer (FPI). The FPI is electrically tuned so that its passband corresponds

to either the absorption wavelength of CO2 or a reference band (Vaisala, 2013). The calibration procedure for the Vaisala100

CarboCap GMP343 CO2 sensor is as outlined in Shusterman et al. (2016, 2018). Briefly, deployed Vaisala sensors operate with

the internal relative humidity (RH), temperature, and pressure compensation set to "off" and the oxygen correction set to "on",

with oxygen input as 20.95%. A post hoc multiplicative scale factor is applied to convert the raw CO2 outputs to the mole

fraction of CO2 that would be measured if the observed air parcel were dried and brought to standard temperature and pressure

(STP) ([CO2]STP ). Raw CO2 data is adjusted using temperature (T ) measured by the internal thermometer of the Vaisala.105

Water vapor pressure (PH2O) and air pressure (Ptot) are obtained from the pressure and dew point temperature measured inside

each node enclosure by a Bosch Sensortec Adafruit BME280 sensor. The [CO2]STP is then adjusted to account for temporal

drift in the instrument "zero" by comparing the background signal of the Vaisala CO2 measurement at each node to a reference

Picarro G2301 system, located at the Richmond Field Station in Richmond, CA (Fig. 1). A moving 3-week window of the

10th percentile of Vaisala CarboCap CO2 data
(
V aisala[CO2]10%

)
is generated and compared with the 10th percentile of the110

reference Picarro instrument
(
Picarro[CO2]10%

)
. The difference between V aisala[CO2]10% and Picarro[CO2]10% is used to

define the offset of the Vaisala instrument (
(
[CO2]

drift
offset

)
). A linear correlation between

(
[CO2]

drift
offset

)
and time is generated

and used to calculate the drift-corrected CO2 data,
(
[CO2]

drift
corrected

)
(Eq. 1—2).(

[CO2]
drift
offset

)
=mt× days+ b (1)

115

[CO2]
drift
corrected = [CO2]STP −mt× days− b (2)

where mt is the temporal drift (ppm day−1]) and b is a constant atemporal bias.

2.2 Picarro reference instrument

A "supersite" with reference grade instruments is operated within the BEACO2N Bay Area network to provide a reference

for the network calibration. Instruments are installed within a temperature-controlled instrument shelter at the U.C. Berkeley120

Richmond Field Station. Measurements include basic meterology, NOx (Thermo 42CTL with a molybdenum NO2 to NO
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convertor), O3 (Teledyne/API T400), CO2, CH4, and CO (Picarro G2401 cavity ring down analyzer). Air is sampled through

Teflon tubes mounted to a small tower affixed to the trailer roof, for a combined height of 6 meters above the ground. The

co-located BEACO2N node is attached outside of the trailer to the same tower.

The NOx and Picarro analyzer calibrations are checked against reference gases every two to three weeks. The reference gas125

cylinders for NOx, CO, and CH4 are Certified Standard grade from Praxair, and for CO2 are from the NOAA Global Monitoring

Laboratory (two levels: 403.61 and 687.47 ppm). The Picarro checks are made by flowing the sequence of references gases

into a tee at the inlet of the instrument for 15 minutes per step. The sequence of steps is performed twice during a check. The

flow rate is set to be larger than the instrument sample flow (0.4 liters/minute) to overflow the inlet. The O3 analyzer is checked

against a photometric calibrator (Teledyne/API 703E).130

2.3 Identification of a temperature-dependent error in Vaisala measurements

There exists an additional temperature dependence among the Vaisala CarboCap GMP343 instruments that varies between

instruments. The temperature dependence was first identified from observations of CO2 diurnal cycles at certain Bay Area

BEACO2N sites that were out of phase or larger in magnitude than the diurnal cycles at near-by nodes or measured by the

Picarro. The presence of a temperature dependence in suspect Vaisala instruments was confirmed by examining the relationship135

between temperature in the node and the difference between baseline CO2 signals measured by the Vaisala and the Picarro

reference instrument.

Diurnal cycles of urban CO2 typically exhibit a daily maximum at night or mid-morning (depending on influence from traffic

emissions) due to mixing in a shallow nighttime planetary boundary layer (PBL), and reach a minimum during the day as PBL

height increases and vegetation takes up CO2 (Idso et al., 2002; Coutts et al., 2007; Turnbull et al., 2015; Shusterman et al.,140

2016). The presence of an additional temperature dependence in the Vaisala CO2 instrument is particularly pronounced and

obvious in the measurements obtained with the sensor located at the East Bay Municipal Utility District (EBMUD) BEACO2N

site during 2020 (Fig. 2). The magnitude of the diurnal cycle at EBMUD is larger and out of phase with the Picarro reference

instrument (Fig. 2a). The result of this temperature dependence at EBMUD (Fig. 2c) is a diurnal cycle that peaks midday (Fig.

2b). Figure 2b compares the CO2 diurnal cycle at EBMUD with the nearby urban site Laney College (Fig. 1). In contrast to145

EBMUD, Laney College exhibits a daily maximum in the mid-morning–a pattern more consistent with typical urban CO2

behavior (Idso et al., 2002; Coutts et al., 2007; Turnbull et al., 2015; Shusterman et al., 2016).

The Vaisala temperature dependence varies in magnitude and sign. Figure 3 shows the CO2 mixing ratios and temperature

dependence at the Montclair Elementary School site. Compared to the Picarro instrument, this site also demonstrates higher

amplitude diurnal cycles (Fig. 3a), but these diurnal cycles are in phase with the reference instrument. Unlike EBMUD, the150

Montclair site exhibits a negative temperature dependence (Fig. 3c). Figure 3b shows the diurnal cycles at Montclair and the

nearby node located at College Preparatory School (CPS). The comparison of these two sites suggests there may indeed be an

amplification of the diurnal cycle at Montclair caused by a negative temperature dependence of the Vaisala instrument.
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2.4 Temperature correction method

The goal of our approach to accounting for temperature dependence of the Vaisala instruments is to rely exclusively on the155

network itself and, if available, supplementary reference instruments, such as a Picarro, for derivation of correction factors to

null sensor temperature dependence.

The method we developed builds on our method for accounting for drift in the instrument zero. To derive a temperature

factor, we use hourly averaged [CO2]STP and node measurements of temperature (T ). It is important to note that a major

factor contributing to the temperature inside the node is whether the node is placed in the sun or shade. As a result, direct160

correlation with meteorological temperature measured outside the node is not strong. For a moving three week window, at each

hour (h), the lowest 10th percentile of [CO2]STP within ± 1 °C of T (h) is calculated. A running array of temperature-based

10th percentile data is created for both the Picarro supersite
(
Picarro[CO2]

T
10%

)
at the Richmond Field Station and each Vaisala

instrument
(
V aisala[CO2]

T
10%

)
using the temperature (T ) of the Vaisala instrument. The Vaisala temperature is assumed to be

the temperature that the instrument is responding to.
(

∆[CO2]
T
10%

)
is then calculated, where:165

∆[CO2]
T
10% =V aisala [CO2]

T
10%−

Picarro [CO2]
T
10% (3)

A linear regression for ∆[CO2]
T
10% against T provides a slope (mT ) and intercept (bT ) for a moving three-week time

window. We considered the possibility that the instrument response to temperature could be a zero shift and/or a change in

the response to CO2. We were able to achieve similar results assuming the temperature effect is entirely due to one or the

other of these possibilities. As there is already substantial drift in the instrument zero, we proceed under the assumption that170

the effect can be entirely attributed to the temperature dependence of the instrument zero. The median of mT (medmT )is

calculated for the deployment period of the Vaisala sensor to determine the temperature-corrected offset and CO2 mixing

ratios of Vaisala CO2 measurements, based on an additive error correction (Eq 4—5). When it is observed that either the

offset bias, the temperature-dependent slope, or the time-dependent drift in the instrument zero shifts dramatically during a

deployment period, the deployment is manually separated into different periods that are calibrated separately. The occurrence175

and magnitude of this varies between instruments (0—3 times during a two year-long deployment), and is typically identified

by routine checks for agreement between neighboring sensors. Shifts in the offset bias, the temperature-dependent slope, or

the time-dependent drift appear as sudden or gradual offsets in mixing ratios measured by a sensor and its neighbors. Typical

identified shifts in the offset bias, the temperature-dependent slope, or the time-dependent drift are on the order of 10 ppm, 0.5

ppm/C, and 1× 10−6 ppm/s, respectively.180

[CO2]
T
offset =

∆ [CO2]
T
10%−

medmT ×T (4)

[CO2]
T
corrected = [CO2]STP −medmT ×T (5)
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An example calibration, demonstrating mT and [CO2]
T
offset over time at EBMUD 2020, is shown in Figure S1. Following

calculation of the temperature-corrected offset, the temporal drift slope and intercept of this corrected offset are calculated and

corrected using the methods described above, resulting in the generation of the temperature- and drift-corrected CO2 offset185 (
[CO2]

T,drift
offset

)
.

The final temperature- and drift-corrected CO2

(
[CO2]

T,drift
corrected

)
is then calculated as:

[CO2]
T,drift
corrected = [CO2]STP −medmT ×T − [CO2]

T,drift
offset (6)

The majority of the BEACO2N nodes examined demonstrated a strong linear relationship between
(

∆[CO2]
T
10%

)
and node

temperature. However, the node at Elsa Widenmann Elementary School appeared to show a strong negative temperature de-190

pendence only on particularly warm days (Fig. 4a,c). The temperature dependence of
(

∆[CO2]
T
10%

)
for this node better fit

a quadratic than an linear relationship. To account for nodes with a non-linear temperature dependence, in cases where a

quadratic fit improves the R2 of the fit by more than 0.2, the
(
[CO2]

T
offset

)
and

(
[CO2]

T,drift
corrected

)
are calculated via Eq.7—8.

[CO2]
T
offset =

∆ [CO2]
T
10%−

medm1
T ×T −medm2

T ×T 2 (7)

[CO2]
T,drift
corrected = [CO2]STP −medm1

T ×T −medm2
T ×T 2− [CO2]

T,drift
offset (8)195

m1
T and m2

T are the first and second terms of the quadratic fit of ∆[CO2]
T
10% against T .

We attempted to determine a relationship between Vaisala sensor age and temperature-dependence slope, but mT was only

weakly correlated with sensor age (r ≈ 0.3). We did, however find some evidence that older sensors had a larger likelihood of

having a larger temperature-dependence. For sensors less than 3 years since their initial deployment, 90% had mT < 1 ppm/°C

and 64% had mT < 0.5 ppm/°C. For sensors older than 3 years, 75% had mT < 1 ppm/°C. and 47% had mT < 0.5 ppm/°C.200

3 Evaluation of calibration

Figures 5b, 5e, and 4c show the temperature dependence of ∆[CO2]
T
10% nodes located at at EBMUD, Montclair, and Elsa

Widenmann, respectively. Figures 5a, 5d, and 4b show a comparison of the data at EBMUD, Montclair, and Elsa, respectively,

with and without adjustment for a temperature-dependent zero offset. With the application of the temperature correction, the

magnitudes of the diurnal cycles are reduced and demonstrate much better agreement in amplitude and phase with the Picarro205

instrument. The resulting diurnal cycle at EMBUD shows a much more typical diurnal cycle for an urban site, with a maximum

occuring in the mid-morning (Fig. 5c). At Montclair, the magnitude of the diurnal cycle is reduced, reaching a maximum of ∼
430 ppm CO2 during the early morning, and a minimum of ∼ 412 ppm CO2 during midday–a pattern much more aligned with

the diurnal cycle exhibited at CPS (Fig. 3b, Fig. 5c).
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Following confirmation of the effectiveness of the temperature correction method on the sensors deployed at EBMUD in210

2020 (EBMUD 2020, hereafter sensors will be referred to following the notation: site year) and Montclair 2018, we examined

the temperature-corrected CO2 data at the Laney College BEACO2N site during the spring (March—June) of three different

years when different Vaisala CarboCap GMP343 instruments were deployed. Given the hypothesis that the observed temper-

ature dependence is due to temperature-dependent errors in the Vaisala CO2 signal, a successful calibration should be sensor

specific, rather than site specific. Figure 6b demonstrates the different ∆[CO2]
T
10% temperature dependence during three differ-215

ent years with different instrument deployments. Each deployment has a distinct offset and slope of ∆[CO2]
T
10% vs temperature.

During all deployment years, the temperature correction results in better agreement between the reference instruments and the

Vaisala data (e.g. 6/15/2018), while preserving local signals (e.g. 4/14/2020) (Fig: 6a). The correction is also effective for the

data record before deployment of the Picarro reference instrument in August 2017, when the Exploratorium CO2 Buoy, located

in the San Francisco Bay, was used as a reference instrument (Fig. 6a). The correction of the CO2 diurnal cycle at Laney220

College is most notable during 2017, although midday levels of CO2 are reduced in the corrected data for 2018 and 2020 as

well (Fig 6c).

The temperature correction method was further validated by examining neighboring sites in two regions of the Bay Area

during and before periods of high CO2 during September 2020 northern California fires. The Richmond sites of Washington

Elementary School, Nystrom Elementary School, Dejean Middle School, and Peres Elementary and the Vallejo sites of Bev-225

erly Hills Elementary School, Mare Island Health and Fitness Academy, Grace Patterson Elementary School, and Highland

Elementary School were compared. The resulting temperature dependent percent differences of CO2 between adjacent sites

are reduced to approximately 0–2% from 1–5% (Fig. S3, S6). Temperature corrections also result in better agreement in CO2

mixing ratios between adjacent sites in Richmond (Fig. 7 and Fig. S2) and in Vallejo (Fig. S4, S5). The results were identical

when a multiplicative correction term, rather than additive, was considered (e.g. if the temperature effect was assumed to be on230

the CO2 signal magnitude rather than entirely on the instrument zero).

3.1 Comparison of nearest-neighbor sites

To assess the improvement in the network precision following application of the temperature-dependence correction, we com-

bined observations from the entire Bay Area network using data from all of 2020. All sites with available data for more than

one month of 2020 were included. Nearest neighbor pairs of each site were identified, where nearest neighbors to an individual235

site were considered as the closest BEACO2N sites within a 2 km radius of the site. There are 53 unique nearest neighbor pairs.

For each nearest neighbor pair X and Y , an array of the fractional differences between sites were calculated as: ([CO2]X −
[CO2]Y )/[CO2]X . This was done using both the measurements before and after correction for temperature-dependent instru-

ment zero
(
[CO2]

drift
corrected and [CO2]

T,drift
corrected

)
. Figures 8a and 8d show the fractional differences of each nearest neighbor

pair as a histogram calculated using [CO2]
drift
corrected and [CO2]

T,drift
corrected, respectively. Most nearest neighbor site pairs exhibit240

a distribution of fractional differences centered close to zero, with both positive and negative tails (Fig. 8a,d). The tempera-

ture correction results in a clear improvement of agreement between nearest neighboring sites, with the mean of the absolute

value of the average fractional differences of all nearest neighbor pairs decreasing by a factor of 2 from 0.025 to 0.013. For
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[CO2]
T,drift
corrected, this represents an average difference of 6.5 ppm at [CO2] = 500 ppm. Figures 8b and 8e express the fractional

differences of nearest neighbor pairs as a single distribution calculated using [CO2]
drift
corrected and [CO2]

T,drift
corrected, respectively.245

Fit to a Lorentz distribution, the mean and scale parameter of the distribution of nearest neighbor pairs using [CO2]
drift
corrected

is 0.0026 and 0.014, respectively, without accounting for temperature dependence and there is a substantial narrowing of the

distribution, resulting in a mean and scale parameter of 0.005 and 0.007, respectively, after accounting for the effect of a

temperature dependent offset.

Further analysis was performed to confirm that the temperature correction method eliminates any temperature-dependent250

disagreement between nearest neighboring sites. The nearest neighbor fractional differences of CO2 data were separated into

2 °C temperature bins. For each temperature bin, the absolute value of the mean fractional difference between each nearest

neighbor pair, using either [CO2]
drift
corrected or [CO2]

T,drift
corrected, was calculated. We then averaged the mean fractional difference

in each temperature bin over all nearest neighbor pairs. A plot of the resulting network mean percent difference vs. temperature

is shown in Figures 8c and 8f, using [CO2]
drift
corrected and [CO2]

T,drift
corrected data, respectively. In the original data, the mean percent255

differences were greatest at both high and low temperatures. In the temperature-corrected data, there is no clear dependence of

nearest neighbor mean percent differences on temperature. The mean percent difference at all temperatures is also reduced.

4 Assessment of the network error

Turner et al. (2016) suggested that a mismatch error of ∼1 ppm CO2 would be compatible with relevant constraints on point,

line, and area CO2 sources of 147, 45, and 9 tC hr−1, respectively. Minimizing the network measurement error to close to 1 ppm260

is desirable, as at this measurement uncertainty the error in emissions estimates from inverse modeling becomes dominated by

model uncertainties (Turner et al., 2016). Assessing network error in the field is, however, a complex problem. We approach

the problem by exploring differences between adjacent nodes, which should be an upper limit to the uncertainty. Although the

site-to-site variation is strongly influenced by local emissions sources, there are also strong correlations with changes in urban-,

synoptic-, and global-scale CO2 signals that are spatially coherent across pairs of adjacent nodes. Variances between adjacent265

nodes are due to a combination of true site-specific signals and instrument biases. It is therefore difficult to know the minimum

variance in adjacent nodes for a hypothetical "perfect" measurement. For nearest neighbor sites, the majority of the CO2 signal

should show near zero difference, representing the background signal. In the observation record we would also expect moments

when either site in a pair has a larger signal, driven by local emission sources and meteorology. Sites closer to the highway also

typically have larger CO2 signals (Shusterman et al., 2018). In the following section we describe a procedure for evaluating270

network error and summarize the improvements following inclusion of the temperature-correction described above.

4.1 Site variance and correlation lengthscales

To evaluate the network error, a semivariogram of γnn vs distance was constructed for [CO2]
T,drift
corrected (Fig. 9). Using data from

all sites with more than three days of available data during the summer of 2020, we calculated the semivariance between CO2
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measurements at each BEACO2N node, i, and all other sites in the Bay Area network (Eq. 9)275

γnn =

∑N
j ([CO2]i− [CO2]j)

2

2N
(9)

Summer months were chosen because the average and diurnal variability of CO2 mixing ratios are reduced, meaning that

measured site variances are relatively more influenced by instrument error, rather than by "true" atmospheric variance, than in

the winter. In Figure 9 the square root of the semivariance is plotted against the distance separating the BEACO2N nodes and

fitted with an exponential model. The Picarro reference instrument at the Richmond Field Station was included in this analysis.280

Using the root semivariance as a correlation metric, in temperature-corrected data, the e-folding length scale for variation is

1.2 ± 0.3 km (1.7 km ± 0.7 km using semivariance as a correlation metric, not shown), supporting the BEACO2N hypothesis

that 2 km node spacing in a dense network will capture important elements of local variability. The temperature-correction

results in a maximum root semivariance of 5.5 ± 2 ppm (reduced from 8 ppm in the uncorrected data). Extrapolated to a

distance of zero, the temperature correction method has a predicted root semivariance of 1.3 ± 0.9 ppm, representing the285

network error. This analysis suggests that the temperature correction method provides a meaningful reduction of network

measurement uncertainties toward our desired ∼1 ppm network error.

Length scales for correlations (r2) between sites calculated by Shusterman et al. (2018) during the summer 2017 were larger

than the 1.2 km length scale identified here for root semivariance (1.7 km for semivariance). To more directly compare, we

also performed the method of Shusterman et al. (2018) on the temperature-corrected CO2 data for the summer of 2020. We290

examined the correlation of CO2 concentrations for every pairing of Bay Area sites during this period for all hours, during the

day, and during the night (Fig. S7). The e-folding distance for the decay of r2 correlation coefficients was 2.8 km for all times,

3.7 km during the day, and 2.8 km at night. This is in good agreement with the length scales of 2.9 km at all times, 3.6 km

during the day, and 2.2 km at night found by Shusterman et al. (2018). The base-line correlation for sites separated by more

than 20 km was found to be 0.46, larger than the correlation background of∼ 0.3 of Shusterman et al. (2018). The temperature295

correction does not affect the characteristic length scale of BEACO2N sites, but improves the overall base-line correlations and

variances.

4.2 Contribution of instrument error to site variance

We can represent the network instrument error also by examining the sources contributing to the semivariance between nearest

neighboring sites. The semivariance (γnn) of nearest neighboring sites can be expected to have contributions from both "true"300

variations in emissions and meteorology and erroneous differences caused by instrument error. "True" variations in emissions

and meteorology are reflected in temporal changes in CO2 concentrations due to emissions plumes and changes in wind

speed and direction. Here we used temporal changes in CO2 concentrations at a certain site a a proxy for "true" atmospheric
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variations in CO2. To estimate the portion of the semivariance resulting from atmospheric phenomena, an analogous quantity

for the hourly variations in CO2 was calculated for each site according to Eq. 10:305

γhh =
1

2N

N−1∑
1

([CO2]h− [CO2]h+1)
2 (10)

N is the number of hours of data and [CO2]h , and [CO2]h+1 are the measured mixing ratios of CO2 at each hour and one hour

later, respectively. The individual instrument error was then calculated as:

εinst =
√
γnn− γhh (11)

The resulting upper-bound instrument error from the median of individual instrument errors for the Bay Area network is 2.5 ±310

0.5 ppm. (This estimate for non-temperature corrected data is 4.5± 0.9 ppm). We consider this an upper bound because hourly

variations in the CO2 signal reflects the atmospheric changes at an individual site, which may not match with the atmospheric

changes at the nearest neighbor sites. Variations in emissions or wind velocity, may result in larger "true" differences between

a site and its nearest neighbor than are represented by the site’s hourly variability.

To reduce the influence from short-term atmospheric variations, the network error was also estimated using an individ-315

ual site’s root mean squared error (RMSEi) as a metric for "true" atmospheric variation (Eq. 12) and a "paired" RMSE

(RMSEpaired) using the mean CO2 signal of its nearest neighbor site (nn[CO2]) as a measure of total variation (Eq. 13).

The site error was then calculated according to Eq. 14

RMSEi =

√∑N
h=1([CO2]h− [CO2]i

N
(12)

320

RMSEpaired =

√∑N
h=1([CO2]h− nn[CO2]

N
(13)

εinst =
√
RMSE2

paired−RMSE2
i (14)

The resulting network instrument errors were between 0.5 ppm and 4 ppm, with a median of 1.6± 0.4 ppm, in good agreement

with the error calculated from the semivariogram fit. Based on these analyses, we estimate the network error of the Bay Area325

BEACO2N network to be less than 1.6 ppm, close to our goal of 1 ppm network error.

5 Application to other city networks

The BEACO2N network has recently been extended to several other cities, and will further expand to additional locations in

coming years. Currently, locations where BEACO2N nodes are deployed (in addition to the Bay Area) are Houston (19 nodes,
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network start 11/2017), Glasgow in collaboration with the University of Strathclyde (>20 nodes, network start 5/2021), New330

York City (8 nodes, network start 4/2018), and Los Angeles, in collaboration with the University of Southern California (12

nodes, network start 5/2021). The goal of the network is to be self-calibrated, as not all locations at which the nodes will be

deployed have a highly precise and frequently calibrated reference instrument. As such, an alternative method of obtaining a

reference for the determination of drift, offset, and temperature dependence is needed.

We find that the network median [CO2]STP

(
[CO2]

med
STP

)
can be used as a reference. To begin, we define the network median335 (

[CO2]
med
STP

)
as the median [CO2]STP of sites having a temperature dependent slope (mT ) less than 1 ppm/°C. [CO2]

med
STP is

used as a "reference site" from which a temperature-based 10th percentile data
(
med[CO2]

T
10%

)
is calculated for determination

of ∆[CO2]
T
10%:

∆[CO2]
T
10% =V aisala [CO2]

T
10%−

med [CO2]
T
10% (15)

5.1 Bay Area Tests340

We observe good agreement between the Picarro reference instrument during 2020 and [CO2]
med
STP (Fig. 10). The mean percent

difference considering all 2020 data is 0.46%, representing an accuracy error of 2 ppm at 420 ppm CO2 (Fig. 10d). We also do

not see evidence of a temperature-dependent offset between the Picarro reference instrument and [CO2]
med
STP .

The precision of the Bay Area network is negligibly affected when the network median is used as the reference, with

the mean of the absolute value of the average fractional differences of all nearest neighbor pairs equal to 0.015 ± 0.008345

(compared to 0.013± 0.007 with the Picarro as reference) (Fig. S8). The resulting maximum root semivariance is 5.5± 2 ppm

and extrapolated root semivariance at zero km separation is 0.8 ± 0.9 ppm, respectively, approximately equal to the values

calculated when the Picarro is used as a reference. The network accuracy is however, more appreciably altered. Figure 11

shows the fractional difference between [CO2]
T,drift
corrected determined using the Picarro and [CO2]

med
STP as a reference at each site.

The resulting mean percent difference is 0.51 ± 0.02 %, representing a network accuracy error of 2 ppm at 420 ppm CO2.350

This accuracy error is mainly driven by small differences in the offsets (2 ppm on average) and mT (0.2 ppm/°C on average,

see Supporting Information) between [CO2]
T,drift
corrected calculated using the Picarro and [CO2]

med
STP as a reference. These results

suggest that the network precision can be expected to remain near 1 ppm CO2 with the use of [CO2]
med
STP as a reference, but

additional accuracy error of 2 ppm may be introduced. The influence of a sea-breeze in the Bay Area makes the median tenth

percentile CO2 measured by Bay Area nodes a regional background. Although the median tenth percentile of other inland355

sensor networks may not represent a regional background, it can be expected to represent the overall network regional average

baseline.

Analysis of the Bay Area network was performed on the 36 nodes with sufficient data availability for 2020. However, the

newly established networks have fewer nodes than in the Bay Area. To use [CO2]
med
STP as a reference, we must have sufficient

nodes from which to calculate the network median. To evaluate this, for n= 1—26, a random subset of n Bay Area nodes360

was selected 100 times. For each of the 100 random subsets of n nodes, the mean fraction difference was calculated between

the network median CO2 and the median calculated using the subset. The average and standard error of the 100 mean fraction
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differences was then calculated. The results of this analysis are presented in Figure 12. We suggest that a minimum of 7 nodes

with mT less than 1 ppm/°C is required for the accuracy error to be lower than 2%. For less than 1% error, at least 12 nodes

are required.365

5.2 Houston

Data from the Houston network was subsequently calibrated using [CO2]
med
STP as a reference for determination of temperature

dependence, drift, and offset. Temperature dependence calibration of each site in the Houston network was performed twice. All

sites were first included in [CO2]
med
STP and sites withmT greater than 1 ppm/ °C were identified. These sites were then excluded

from [CO2]
med
STP and each site was re-calibrated. Histograms of the fraction differences between nearest neighbor sites are370

shown in Figure 13. The average mean percent difference between nearest neighbors was 2± 1 %. Though considerably larger

than the differences between nearest neighbors in the Bay Area network, it is not immediately clear whether this difference

is caused by greater precision error in Houston, or differing meteorology and CO2 sources that cause greater differences

between CO2 mixing ratios at adjacent sites. We attempted to perform a similar instrumental error analysis, but there are

currently insufficient overlapping CO2 data in Houston for uncertainty analysis. However, we do not have reason to expect the375

instrument errors would be any larger in the Houston network.

6 Conclusions

We have assessed the accuracy of the BEACO2N network following in situ calibration of the temperature-dependence in Vaisala

CO2 sensors. We report meaningful reductions in network uncertainties following application of a temperature-dependence

correction, and a resulting network instrument error of 1.6 ppm CO2 or less.380

A method for correcting Vaisala instrument temperature dependence in BEACO2N has been established and evaluated using

sites across the San Francisco Bay Area network. The method corrects observations from individual instruments so that they

exhibit a temperature dependence in their lowest temperature-based 10th percentile of CO2 data that is equivalent to that of

a reference site, thus correcting erroneous instrument temperature dependence while preserving true diurnal cycles and local

signals. This field calibration of temperature dependence can be entirely internal to the network and does not necessarily require385

a reference instrument, although the addition of a reference instrument provides greater network accuracy. The implementation

of the temperature correction method produces more reasonable diurnal cycles, diurnal cycles that are maintained for sites

influenced by similar emissions sources, and better agreement between adjacent sites. We additionally describe methods for

characterizing network scale uncertainties and site-to-site biases. The average variation between adjacent sites was found to

be 1.3% following implementation the temperature correction (compared to 2.5% prior to the correction). The temperature390

correction greatly improves the precision of CO2 measurements in the BEACO2N network.

We show that the network precision can be maintained at 1.3% even in locations without a high-cost reference instrument,

using the network median as a reference, provided that there are at least 12 sites with small temperature dependencies. This has
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important implications for the expansion of BEACO2N to additional cities globally, as well as for other dense low-cost CO2

networks. However, without a reference instrument, the network accuracy error is larger and is ∼± 2 ppm.395
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Figure 1. a) Map of all Bay Area BEACO2N sites (small red dots), BEACO2N sites discussed in this work (large blue dots), and the

Richmond Field Station (star).
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Figure 2. a) CO2 mixing ratios from April 2020 at EBMUD and measured with a Picarro instrument at the Richmond Field Station supersite.

b) EBMUD 2020 diurnal cycle compared with Laney College. c) Temperature dependence of the CO2 signal at EBMUD.

19



400

450

500

4/18 4/25 5/02 5/09

20

30

C
O

2
 (p

p
m

)

te
m

p
e

ra
tu

re
 (

o
C

)

original
Picarro

temperature

date

420

440

460

10 20
Hour

C
O

2
 (p

p
m

)

0

a)

b) c)

500

420

440

480

460

20 30

temperature (oC)

C
O

2
 (p

p
m

)

10

College Preparatory School

Montclair

10

40

Figure 3. a) CO2 mixing ratios from May 2018 at Montclair and measured with a Picarro instrument at the Richmond Field Station supersite.

b) Montclair 2018 diurnal cycle compared with College Preparatory School. c) Temperature dependence of of CO2 signal at Montclair.
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a)

b)

c)

Figure 4. a) CO2 mixing ratios measured by the Picarro instrument at the Richmond Field Station (blue solid), uncorrected CO2 measured

at Elsa Widenmann Elementary School (orange solid), and node temperature measured at Elsa (green dashed). (b) CO2 mixing ratios at Elsa

Widenmann Elementary School with no temperature correction (green), temperature correction applied (green) and measured with a Picarro

instrument at the Richmond Field Station (blue). c) Temperature dependence at Elsa Widenmann Elementary School of ∆[CO2]
T
10%.
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Figure 5. CO2 mixing ratios at (a) EBMUD and (d) Montclair with no temperature correction (orange), temperature correction applied

(green) and measured with a Picarro instrument at the Richmond Field Station supersite (blue). Temperature dependence of ∆[CO2]
T
10% at

(b) EBMUD and (e) Montclair. Diurnal cycle with and without temperature correction at (c) EBMUD and (f) Montclair.
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Figure 6. Data from 2017 are in top panels, 2018 are in middle panels, 2020 are in bottom panels. a) CO2 mixing ratios at Laney College

with no temperature correction (green), temperature correction applied (blue) and measured with a Picarro instrument at the Richmond Field

Station supersite (2018 and 2020) or with the Exploratorium Buoy (2017). b) Temperature dependence at Laney College of ∆[CO2]
T
10%. c)

Laney College diurnal CO2 cycle with (green) and without (orange) temperature correction.
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Figure 7. CO2 mixing ratios during and before 2020 September wildfires at four adjacent sites in Richmond without (a) and with (b)

temperature correction.
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Figure 8. Histogram of the fractional differences between nearest neighbors sites a) without and d) with the temperature correction applied.

Different colors represent different pairs of neighboring sites. Histogram of the fractional differences between all aggregated nearest neigh-

bors sites b) without and e) with the temperature correction applied fit to a Lorentz distribution. Network mean of the percent difference for

each nearest neighbor pair averaged by 2 °C bins c) without and d) with temperature correction applied.
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Figure 9. Semivariogram of BEACO2N sites for data with temperature correction applied. Data are averaged by 0.1 km bins. Plot includes

data from the Picarro instrument at Richmond Field Station.
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Figure 10. a) CO2 mixing ratios measured by the Picarro instrument at the Richmond Field Station (blue) and the median CO2 of all Bay Area

nodes having a temperature dependent slope less than an absolute value of 1 ppm/°C (orange). b) The difference in the tenth percentile of

CO2 mixing ratios measured by the Picarro instrument and the network median plotted versus date and (c) versus temperature. (d) Histogram

of the fractional differences between Picarro CO2 mixing ratios and the network median. Data for (c) and (d) include all of 2020.
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Figure 11. (a) Histogram of the fractional differences between sites with temperature-corrected CO2 calculated using the Picarro instrument

and the Bay Area network median as a reference. Different colors represent different sites. The mean indicated is the average of the abso-

lute values of each neighboring pair’s mean fractional difference. b) Histogram of the aggregated fractional differences between sites with

temperature-corrected CO2 calculated using the Picarro instrument and the Bay Area network median as a reference. The mean and error

indicated is the mean and 95% confidence interval of the distribution.
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Figure 12. Fractional difference between the Bay Area network median calculated from all Bay Area sites and the network median calculated

from a subset of between one and 26 nodes. A random subset of n= 1—26 nodes were selected to calculate the mean fractional difference

between the network median CO2 and the median calculated using the subset. This was repeated 100 times for each of n= 1—26 nodes.

The reported fractional difference and error bars are the average and 95% confidence interval of the mean fractional difference from the 100

random samples.

29



|mean| = 0.02 ± 0.01 

mean = 1e-4 ± 4e-4 

Figure 13. a) Histogram of the fractional differences between nearest neighbors sites in the Houston network with the temperature correction

applied using the network median as a reference. Different colors represent different pairs of neighboring sites. The mean and error indicated

is the average and 95% confidence interval of the absolute values of each neighboring pair’s mean fractional difference. b) Histogram of the

fractional differences between all aggregated nearest neighbors sites with the temperature correction applied. The mean and error indicated

is the mean and 95% confidence interval, respectively, of the distribution.
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