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Supplement 
… 

2 Materials and methodologies 

2.1 ORS-CT and beam geometry 

The area of the test field is 40 m × 40 m. open-path TDL is used as the ORS analyzer, which is installed on a scanner and aims 5 

at multiple retroreflectors by scanning periodically and continuously. To compare with the results of GT-MG algorithm, we 

used an overlapping beam configuration similar to the one used in Verkruysse and Todd (2005). As shown in Fig. 1, four TDL 

analyzers are located at the four corners of the test field. The retroreflectors are evenly distributed along the edges of the field. 

The total number of retroreflectors is 20. Each retroreflector reflects the laser beams coming from two different directions. 

Neglecting the overlapped beams along the diagonals, total beam number is 38. For traditional pixel-based algorithm, the pixel 10 

number should be no more than the beam number. Therefore, we divide the test field into 6 × 6 = 36 pixels. The concentration 

within each pixel is assumed to be uniform. 

 
Figure 1. The beam configuration and grid division. The field is divided into 6 × 6 grid pixels. Four open-path TDL analyzers locate at four 
corners. 20 retroreflectors are distributed on the edges of the field. 15 

For each laser beam, the path-integrated concentration (PIC) is measured by the analyzer. The predicated PIC for one beam 

equals to the sum of the multiplication of the pixel concentration and the length of the beam inside the pixel. In generality, let 

us assume that the site is divided into Nc=m×n pixels, which are arranged as a vector according to the left-to-right and top-to-

bottom sequence and indexed by j. The average concentration for j-th pixel is cj. The total number of laser beams is Nb which 
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are indexed by i. The length of the i-th laser beam inside the j-th pixel is Lij. Then for the i-th beam, the measured PIC bi is 20 

contributed by all the pixels. We have the following linear equation 

𝑏𝑏𝑖𝑖 = ∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗
𝑁𝑁𝑐𝑐
𝑗𝑗=1                                                                                                                                                                       (1) 

A system of linear equations can be set up for all the beams  

𝒃𝒃 = 𝑳𝑳𝑳𝑳                                                                                                                                                                                   (2) 

where L is the kernel matrix that incorporates the specific beam geometry with the pixel dimensions, c is the unknown 25 

concentration vector of the pixels, b is a vector of the measured PIC data.  Using least square approach, the reconstruction is 

to minimize the following problem 

min
𝒄𝒄

  ||𝑳𝑳𝑳𝑳 − 𝒃𝒃||22, subject to 𝒄𝒄 ≥ 0                                                                                                                                       (3) 

where ||·||2 denotes the Euclidean norm. This non-negative constrained linear least square problem can be solved by the widely 

used NNLS optimization algorithm (Lawson and Janson, 1995), which is an active-set optimization method using an iterative 30 

procedure to converge to the best fit of positive values. The realization in MATLAB software as the routine “lsqnonneg” was 

used in this study. The optimal least square solution is not smooth because the minimizing process does not introduce smooth 

a priori information. In this paper, the “NNLS algorithm” to the tomographic reconstruction refers to solve the original problem 

using the NNLS optimization algorithm without adding additional a priori information. When the system of linear equations 

is underdetermined, the solution is not unique. Additional information needs to be introduced to choose the appropriate 35 

solution. 

2.2 LTD algorithm and Tikhonov regularization 

The LTD algorithm introduces the smoothness a priori information through setting the third-order derivative of the 

concentration to be zero at each pixel in both x and y directions, which will generate solutions that are locally quadratic (Price 

et al., 2001). We have defined cj as an element of one-dimensional (1-D) concentration vector of the pixels, but the pixels also 40 

have two-dimensional (2-D) structure according to the grid division of the site area and can be indexed by the row number k 

and column number l, where j=(k-1)n+l. We use Ck,l denotes the pixel concentration at pixel located at k-th row and l-th column 

of the grids. The third-derivative prior equations at (k, l) pixel is define as  
𝑑𝑑3𝐶𝐶
𝑑𝑑𝑥𝑥3

= (𝐶𝐶𝑘𝑘+2,𝑙𝑙 − 3𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 3𝐶𝐶𝑘𝑘,𝑙𝑙 − 𝐶𝐶𝑘𝑘−1,𝑙𝑙)
1
∆𝑑𝑑

= 0                                         

𝑑𝑑3𝐶𝐶
𝑑𝑑𝑦𝑦3

= (𝐶𝐶𝑘𝑘,𝑙𝑙+2 − 3𝐶𝐶𝑘𝑘,𝑙𝑙+1 + 3𝐶𝐶𝑘𝑘,𝑙𝑙 − 𝐶𝐶𝑘𝑘,𝑙𝑙−1) 1
∆𝑑𝑑

= 0                                                                                                                 (4) 45 

where Δd=Δx=Δy is the grid length in x, y direction. Therefore, two additional linear equations are introduced at each pixel 

defined by Eq. (4). There will be 2Nc linear equations appended to the original linear equations defined by Eq. (2), resulting in 

a new over-determined system of linear equations which has (2Nc +Nb) equations and Nc unknowns.  

A weight needs to be assigned to each equation depending on the uncertainty of the observation. Assuming the analyzers have 

the same performance, the uncertainty is mainly related to the path length. Therefore, equations are assigned weights inversely 50 
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proportional to path length to make sure different paths have equal influences. In this study, the lengths of the laser paths are 

approximately equal to each other. So their weights were set to be the same value and scaled to be 1. The weights for the third-

derivative prior equations were assigned to be the same value of w because they were all based on the same grid length. The 

determination of w follows the scheme of determining the regularization parameter described in the following text. Using least 

square approach, the reconstruction is to minimize the following problem 55 

min
𝒄𝒄
�� 𝑳𝑳𝑤𝑤𝑻𝑻�𝒄𝒄 − �𝒃𝒃0� �2

2
 , subject to 𝒄𝒄 ≥ 0                                                                                                                                   (5)                                                                                         

where T is the kernel matrix for the third-derivative prior equations. Assuming the new augmented kernel matrix is A, 

observation vector is p, then the new system of linear equations is Ac=p. The non-negative least square solution was also found 

by the NNLS optimization algorithm. If the non-negative constrains are ignored, the least square solution can be found 

analytically as 𝒄𝒄� = (𝑨𝑨𝑻𝑻𝑾𝑾𝑾𝑾)−𝟏𝟏𝑨𝑨𝑻𝑻𝑾𝑾𝑾𝑾, where W is a diagonal matrix whose diagonal elements are the weights (Price et al., 60 

2001). 

The process of the LTD algorithm actually constructs a regularized inverse problem. It can be viewed as one special case of 

the well-known Tikhonov regularization technique. The Tikhonov L2 regularization can be written as the following 

minimization problem (Gholami and Hosseini, 2013) 

𝑚𝑚𝑚𝑚𝑚𝑚
𝒄𝒄

   ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 + 𝜇𝜇‖𝑫𝑫𝑘𝑘𝒄𝒄‖22                                                                                                                                                 (6) 65 

where the first term represents the discrepancy between the measured and predicated values, the second term is the 

regularization term adding a smoothness penalty to the solution, μ is the regularization parameter controlling the conditioning 

of the problem, matrix Dk is the regularization operator, which is typically a kth-order difference operator. The first- and the 

second-order difference operators are commonly used. We can see that the LTD algorithm uses the third-order forward 

difference operator 70 

𝑫𝑫3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−1 3 −3 1

−1 3 −3 1

⋱

1 3 −3 1
1 3 −3 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

1
∆𝑑𝑑
∈ ℝ(𝑚𝑚−3)×𝑛𝑛                                                                                                         (7) 

For pixels on the edges, the second-order and first-order difference operators can be used. The regularization parameter is 

analog to the weight parameter for the prior equations in the LTD algorithm.  

The regularization parameter determines the balance between data fidelity and regularization terms. Determination of optimum 

regularization parameter is an important step of the regularization method. However, the regularization parameter is problem 75 

and data dependent. There is no general-purpose parameter-choice algorithm which will always produce a good parameter. 

For simplicity, we use the method based on discrepancy principle (Hamarik et al., 2012). The regularization parameter μ is 

chosen from a finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by solving the inverse 
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problem. Then the discrepancy can be calculated. The regularization parameter is determined to be the highest value that makes 

the discrepancy ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 equal to Nbσ2, where σ is the standard deviation of the noise. In this study, the reconstructions 80 

varied only slowly with the regularization parameters. Therefore, precise selection of the parameter was not necessary. For 

computational efficiency, the regularization parameter was selected from four widely varying values. The one produced the 

smallest discrepancy was used.   

2.3 Variational interpolation and minimum curvature algorithm 

Splines are special types of piecewise polynomials, which have proved to be very useful in numerical analysis and have 85 

founded in many applications in science and engineering problems. They match given values at some points (called knots) and 

have continuous derivatives up to some order at these points (Champion et al., 2000). Spline interpolation is preferred over 

polynomial interpolation by fitting low-degree polynomials between each of the pairs of the data points instead of fitting a 

single high-degree polynomial. Normally, the spline functions can be found by solving a system of linear equations with 

unknown coefficients of the low-degree polynomials defined by the given boundary conditions.  90 

The variational approach gives a new way to find the interpolating splines and opens up directions for theoretical developments 

and new applications (Champion et al., 2000). The variational interpolation was motivated by the minimum curvature property 

of natural cubic splines, i.e., the interpolated surface minimizes an energy functional which corresponds to a physical bending 

energy. This principle provides a lot of flexibility in controlling the behavior of the generated spline. Given an observation zk 

(k=1, …, N) measured at k-th point whose position vector is rk, a spline function F(r) interpolating the data points can be found 95 

through variational approach by minimizing the sum of the deviation from the measured points and the smoothness seminorm 

of the spline function 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹

  ∑ |𝐹𝐹(𝒓𝒓𝑘𝑘) − 𝑧𝑧𝑘𝑘|2𝑁𝑁
𝑘𝑘=1 +  𝜔𝜔𝐼𝐼(𝐹𝐹)                                                                                                                                      (8) 

where 𝜔𝜔 is a positive weight, I(F) denotes the smoothness seminorm. The seminorm can be defined in various forms. The 

commonly used ones are the first, second, third derivatives or their combinations. The solution of the minimizing problem is 100 

spline functions, which can also be found by solving a Euler-Lagrange differential equation corresponding to the given 

seminorm (Briggs, 1974). 

We can see that the minimizing problem of Eq. (8) has a similar form to the Tikhonov regularization, but with a more flexible 

regularization term. The problem is that the variational interpolation is based on given data points, while the tomographic 

reconstruction is based on measured line integrals. However, we show in this study that the variational approach for 105 

interpolation can also be applied to the latter problem to produce a smoothness solution having similar effect of spline 

interpolation. Also, based on different seminorms, we can formulate many different reconstruction algorithms. In this way, a 

new minimum curvature (MC) algorithm was proposed in this study. 

Assuming the unknown concentration distribution is described by a function f(x,y), (xk, yl) is the lowest coordinates of the j-th 

pixel at row k and column l of the 2-D grids, then the concentration cj equals to the average concentration of the pixel 110 
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𝑐𝑐𝑗𝑗 = 1
(∆𝑑𝑑)2 ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑙𝑙+1

𝑦𝑦𝑙𝑙

𝑥𝑥𝑘𝑘+1
𝑥𝑥𝑘𝑘

                                                                                                                                           (9) 

The minimization problem according to the variational approach is formulated as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓

  ∑ ∑ ||𝑁𝑁𝑐𝑐
𝑗𝑗=1 𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗

𝑁𝑁𝑏𝑏
𝑖𝑖=1 − 𝑏𝑏𝑖𝑖||22 +  𝜔𝜔𝐼𝐼(𝑓𝑓)                                                                                                                                  (10) 

For MC algorithm, we define seminorm according to the minimum curvature approach, which is used in the geographic data 

interpolation to seek a 2-D surface having continuous second derivatives and minimal total squared curvature (Briggs, 1974). 115 

The minimum-curvature surface has an analogy in elastic plate flexure and approximates the shape adopted by a thin plate 

flexed to pass through the observation data points with a minimum amount of bending. This method generates the smoothest 

possible surface while attempting to honor the observation data as closely as possible. The seminorm in the MC algorithm is 

defined to be equal the total square curvature  

𝐼𝐼(𝑓𝑓) = ∫∫ �𝜕𝜕
2𝑓𝑓

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑦𝑦2
�
2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                                                                                            (11) 120 

This integral needs to be discretized according to the grid division. The discrete total square curvature is 

𝐼𝐼 = ∑ ∑ (𝐼𝐼𝑘𝑘,𝑙𝑙
𝑚𝑚
𝑙𝑙=1

𝑛𝑛
𝑘𝑘=1 )2                                                                                                                                                               (12) 

where Ik,l is the curvature at the (k,l) pixel, which is a function of Ck,l and its neighboring pixel values. In two dimensions the 

approximation to the curvature is 

𝐼𝐼𝑘𝑘,𝑙𝑙 = (𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘,𝑙𝑙−1 − 4𝐶𝐶𝑘𝑘,𝑙𝑙)/(∆𝑑𝑑)2                                                                                                      (13) 125 

To minimize the total squared curvature, we need 
𝜕𝜕𝜕𝜕

𝜕𝜕𝐶𝐶𝑘𝑘,𝑙𝑙
= 0                                                                                                                                                                                  (14) 

Combining Eq. (11), (12), and (13), we get the following difference equation  
[𝐶𝐶𝑘𝑘+2,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙+2 + 𝐶𝐶𝑘𝑘−2,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙−2

+2(𝐶𝐶𝑘𝑘+1,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘+1,𝑙𝑙−1 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙−1)
−8�𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙−1 + 𝐶𝐶𝑘𝑘,𝑙𝑙+1� + 20𝐶𝐶𝑘𝑘,𝑙𝑙]/(∆𝑑𝑑)2  = 0

                                                                                               (15) 

This equation is appended at each pixel as a smoothness regularization. Therefore, there is only one prior equation at each grid 130 

instead of two equations in the LTD algorithm. For pixels on the edges, we set the approximation of the first and second 

derivatives to be zeros. Assuming M is the kernel matrix of the prior equations, the reconstruction is to minimize the following 

problem  

𝑚𝑚𝑚𝑚𝑚𝑚
𝒄𝒄

   ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 + λ‖𝑴𝑴𝑴𝑴‖22, subject to 𝒄𝒄 ≥ 0                                                                                                                      (16)                                                                                                                                                         

where the parameter 𝜆𝜆 is determined in the same way as determining the regularization parameter in the Tikhonov 135 

regularization method. Similar to the LTD approach, the resulted constrained system of linear equations is also over-

determined and is solved by the NNLS optimization algorithm. 
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Figure 2. The Beam geometry and a 30 × 30 grid division of the site. 

For conventional pixel-based reconstruction algorithms, the number of pixels (unknowns) should be no more than the number 140 

of beams (equations) in order to get a well-posed problem. Because only tens of beams are usually used in the ORS-CT 

applications, the resulted spatial resolution is very coarse. The GT algorithm is one way to increase the resolution. But it needs 

several steps to complete the whole translation because each translation uses a different grid division and the reconstruction 

process needs to be conducted for each grid division. In the MC algorithm, we use only one division of high-resolution grids 

directly during the reconstruction. The resulted system of linear equations is still determined because of the smoothness 145 

restriction at each pixel. As shown in Fig. 2, 30 × 30 pixels are used in the MC algorithm instead of the 6 × 6 pixels in the 

NNLS approach. Under this configuration, the number of linear equations for the LTD algorithms is approximately 

38+30×30×2=1838. While the number for the MC algorithm is about 38+30×30 = 938. We can see that the MC approach 

reduced the number of linear equations by approximately half comparing to the LTD algorithm. The smoothness seminorm of 

the MC algorithm will guarantee a smooth solution. This smooth effect is similar to the spline interpolation applied after the 150 

reconstruction process, except that it is achieved during the inverse process. This is important because an interpolation after 

the reconstruction cannot correct the error resulting from the reconstruction based on coarse spatial resolution. While the MC 

approach evaluates the discrepancy based on the high-resolution values that are the same as the reconstruction outcomes. 

Errors due to coarse spatial resolution are corrected during the process.  

… 155 

2.5 Evaluation of reconstruction quality 

… 

In this paper, a measure using the resolution matrix is also used to predicate the reconstruction error due to different 

regularizations approaches. Resolution matrices are commonly used to determine whether model parameters can be 

0 5 10 15 20 25 30 35 40

x (m)

0

5

10

15

20

25

30

35

40

y 
(m

)



7 
 
 

independently predicted or resolved and how regularization limits reconstruction accuracy (Twynstra and Daun, 2012; von 160 

Clarmann et al., 2009). Ignoring the non-negative constrains, the generalized inverse matrices for the NNLS, LTD, and MC 

algorithms can be found by  

𝑮𝑮𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑳𝑳𝑇𝑇𝑳𝑳)−1𝑳𝑳𝑇𝑇  

𝑮𝑮𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑳𝑳𝑇𝑇𝑳𝑳 − 𝜇𝜇2𝑫𝑫3
𝑇𝑇𝑫𝑫3)−1𝑳𝑳𝑇𝑇    

𝑮𝑮𝑀𝑀𝑀𝑀 = (𝑳𝑳𝑇𝑇𝑳𝑳−𝜆𝜆2𝑴𝑴𝑇𝑇𝑴𝑴)−1𝑳𝑳𝑇𝑇                                                                                                                                                (21) 165 

The resolution matrix is defined as R=GL. The reconstruction error is given by 

𝛿𝛿𝒄𝒄 = 𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒄𝒄𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 = (𝑹𝑹 − 𝑰𝑰)𝒄𝒄𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝑮𝑮𝛿𝛿𝒃𝒃                                                                                                                    (22) 

where cmodel, cexact is the model-predicated and the exact concentrations respectively, δb is the perturbation of the observation, 

I is the identity matrix, (𝑹𝑹 − 𝑰𝑰)𝒄𝒄𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 is the regularization error caused by the inconsistency between the measurement data 

equations and the prior information equations, 𝑮𝑮𝛿𝛿𝒃𝒃 is the perturbation error.  170 

For the LTD and MC approaches using high-resolution grids, the kernel matrix L is rank-deficient, and the regularized solution 

is robust to perturbation error over a wide range of regularization parameter. Thus, the perturbation error is negligible, and the 

reconstruction error is dominated by regularization error (Twynstra and Daun, 2012). Because the resolution matrix is only 

determined by the beam configuration and the regularization approach, it is independent of the actual concentration 

distribution. Due to this reason, it is better to be used to evaluate different beam configurations which have considerable 175 

influence on the reconstruction accuracy. However, in this study the beam configurations are fixed. We can therefore use the 

resolution matrix to measure different regularization approaches. In an ideal experiment, R=I, which implies that each 

unknown pixel value can be independently resolved from the measurement data. The regularization term forces the off-

diagonal terms in R to be nonzero, making the estimated concentration of each pixel a weighted average of the concentration 

of the surrounding pixels. We can use the Frobenius distance between R and I defining a measure of fitness to predicate the 180 

reconstruction error (Twynstra and Daun, 2012). 

𝜀𝜀 = 𝟏𝟏
𝑁𝑁𝑐𝑐
‖𝑹𝑹 − 𝑰𝑰‖𝐹𝐹𝟐𝟐                                                                                                                                                                     (23) 

3 Results and discussions 

…  

3.5 Fitness 185 

The contour plots of the resolution matrices for the LTD and MC algorithms are shown in Fig. 4. (a) and (b). The fitness values 

are 1.4411 and 1.3878 for the LTD and MC algorithm respectively. The MC algorithm shows slightly better performance. The 

off-diagonal elements are not zeros. The reconstructed concentration at each pixel is a weighted average of the concentrations 

of the surrounding pixels because of the smoothness regularization. Each row of the resolution matrix can be regarded as 
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smoothing weights. As the pixels have a 2-D arrangement, we show the 2-D display of the row of the 106th pixel (row and 190 

column indices are 4,16 in 2-D pixels) in the resolution matrix for the LTD and MC algorithms in Fig. 4. (c) and (d) as an 

example, from which we clearly see the dependence on the beam geometry. In this study, the beam configuration is fixed, thus 

the difference between the fitness values is mainly due to the use of different regularization approaches. The fitness difference 

between the LTD and MC algorithms is very small, which may indicate that they have similar smoothness effects. This result 

coincides with results from other measures discussed above. The 2-D display of the diagonal elements of the resolution matrix 195 

are shown in Fig. 4. (e) and (f), which are not much useful in this case. 

 (a)  (b)   

(c)  (d)   

(e)  (f)   
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Figure 4. Contour plot of the resolution matrix for (a) the LTD algorithm (b) the MC algorithm. 2-D display of the row vector of the 106th 200 
pixel in the resolution matrix for (c) the LTD algorithm (d) the MC algorithm. 2-D display of the diagonal elements of the resolution matrix 
for (e) the LTD algorithm (f) the MC algorithm. 

3.6 Influence of the grid size 

The derivatives are approximated by the finite differences during the discretization process. The finite grid length causes 

discretization error and affects the reconstruction results. We studied the influences of different grid divisions by investigating 205 

the changes of the nearness, peak location error, exposure error, and computation time with respect to the pixel number. Five 

different grid divisions were used: 6 × 6, 12 × 12, 18 × 18, 24 × 24, and 30 × 30. The peak number was five. 100 maps were 

tested for each grid division. The results of the averaged values are shown in Fig. 5.  

(a)  (b)  

(c)  (d)  210 
Figure 5. The change of (a) nearness (b) peak location error (c) exposure error percentage (d) computation time with respect to the pixel 

number. 

We can see that the nearness, peak location error, and exposure error generally illustrate decreasing trends with the increase 

of the pixel number. The MC algorithm shows slightly better performance than the LTD algorithm with the increase of the 

pixel number. The performance improvements become slow for both algorithms when the division is finer than 24 × 24. On 215 

the other hand, the computation time shows approximately exponential growth trend with the increase of the pixel number. 

The LTD algorithm has a faster increasing rate than the MC algorithm. To conclude, the reconstruction performances are 
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improved for both LTD and MC algorithms with the increase of the pixel numbers, but at the cost of exponential growth of 

the computation time. And the improvement becomes small when the resolution is higher than certain threshold value (24×24 

in this study). So there should be a balance between the performance and the computation time. 220 

 

… 
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