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Response to comments of reviewer 1 

We thank the reviewer for the helpful comments and suggestions, and for careful reading of the manuscript. Listed below are 
our itemized responses, with the original comment/question displayed in italics.  

 

General comments 5 

The paper faces the problem to introduce the “smoothness” a priori information in the tomographic reconstruction of 
atmospheric chemicals based on optical remote sensing. In particular, a new minimum curvature (MC) algorithm is 
proposed and applied to multiple test maps. The performance of the new algorithm is compared with that of other existing 
algorithms. The MC algorithm shows almost the same performance as the low third derivative (LTD) algorithm but with 
significantly less computation time. 10 

I think that the subject is correctly presented in the introduction and sufficiently put in the context of the existing literature 
on the argument; instead, I find that the description of the method is not given in all needed details. I suggest to improve the 
description of the method and below I give some suggestions. 

I think that the paper deserves the publication on AMT after that the following issues are considered. 

Thank you for this comment. We have improved the description according to your suggestions. Please see the responses 15 
below for specific changes we have made to the manuscript. 

 

Specific comments: 

(1) In the Tikhonov approach, an important issue is the choice of the value that is given to the regularization parameter, 
because this value determines how much a priori information goes into the results. In the paper, it is specified only “the 20 
regularization parameter is set to be inversely proportional to the grid length”. I suggest describing the criterion that it 
has been followed for the choice of this parameter. 

This is a good suggestion. A weight needs to be assigned to each equation depending on the uncertainty of the observation. 
Assuming the analyzers have the same performance, the uncertainty is mainly related to the path length. Therefore, equations 
are assigned weights inversely proportional to path length to make sure different paths have equal influences. In this study, 25 
the lengths of the laser paths are approximately equal to each other. So their weights were all set to be the same value which 
is scaled to be 1. The weights for the third-derivative prior equations were assigned to be the same value of w because they 
were all based on the same grid lengths. w was determined in the same way of determining the regularization parameter μ in 
the Tikhonov regularization  

The regularization parameter determines the balance between data fidelity and regularization terms. Determination of 30 
optimum regularization parameter is an important step of the regularization method. But the regularization parameter is 
problem and data dependent. There is no general-purpose parameter-choice algorithm which will always produce a good 
parameter. For simplicity, we use the method based on discrepancy principle. The regularization parameter is chosen from a 
finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by solving the inverse problem. 
Then the discrepancy can be calculated. The regularization parameter is determined to be the highest value that makes the 35 
discrepancy equal to Nbσ2, where Nb is the number of beams, σ is the standard deviation of the noise. In this study, the 
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reconstructions varied only slowly with the regularization parameters. Therefore, precise selection of the parameter was not 
necessary. The regularization parameter was selected from four widely varying values. The one produced the smallest 
discrepancy was used.  

We have added a separate paragraph at the end of section 2.3 to discuss how the weights and regularization parameter are 40 
determined.  

 

(2) It would be interesting to know if the algorithm is able also to produce a diagnostics of the results. Generally, a 
procedure that solves an inverse problem provides also an estimation of the errors (more in general of the covariance 
matrix) of the products. Furthermore, it would be useful to have quantities (such as the averaging kernel matrices 45 
obtained in the case of retrieval of atmospheric vertical profiles) that provide the sensitivity of the result to the true state, 
which are useful also to estimate the spatial resolution of the result. 

This is a very good idea. The averaging kernel matrix is not much meaningful for inversion without prior information. But it 
can be used for the regularized problem. In the 2-D tomographic reconstruction, the averaging kernel is considerably affected 
by the beam geometry and is better to be used as a measure to evaluate the beam configuration. But it also reflects the 50 
regularization error given the same beam geometry in this study.  

A new measure based on the averaging kernel matrix have been added to the manuscript to determine whether the 
concentration can be independently predicted and how regularization limits reconstruction accuracy. The new fitness 
measure is defined as the average Frobenius distance between the resolution matrix and the identity matrix to predict the 
reconstruction error. The MC algorithm shows slightly better performance than the LTD algorithm with a value of 1.3878 55 
comparing to 1.4411. The off-diagonal elements are not zeros. The reconstructed concentration at each pixel is a weighted 
average of the concentration of the surrounding pixels because of the smoothness regularization. Each row of the resolution 
matrix can be regarded as smoothing weights. The 2-D display of the row of the averaging matrix gives a clear dependence 
of the beam configuration.  

Section 2.5 and 3.5 have been revised for detailed description. 60 

 

(3) Line 43: I suggest to put a reference for the Radon transformation. 

The reference has been added.  

 

(4) Line 141-149: In the description of the LTD algorithm it is not clear which are the equations of the system that has to be 65 
solved. I understand that for each cell we have two equations obtained setting to zero the third derivatives (in both 
direction x and y, I suppose, but it is not specified). Then, which are the other equations? Those obtained to look for the 
minimum of Eq. (3)? Please explain in detail which are the equations of the system that has to be solved. 

At each grid pixel, two additional third-derivative priori equations are set up by setting the approximations of the third-order 
derivatives to zero. This results in a new system of linear equations Tc=0 for all the pixels, where T is the prior kernel matrix. 70 
These prior equations are appended to the original system of linear equations defined by the PIC observations, resulting a 
new augmented system of linear equations. Assuming the new augmented kernel matrix is A, observation vector is p, then 
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the new system of linear equations is Ac=p. The inverse problem is to solve the new system of linear equations with non-
negative constraints.  

We have rewritten the contents describing LTD algorithm in Sec. 2.2.  75 

 

(5) Line 159-160: From Eq. (7) I understand that the seminorm is a number relative to the whole field, therefore, I do not 
understand the meaning that “the seminorm can be calculated at each pixel”. Then, which is the summation mentioned 
in the text? I think that a more clear explanation is needed. 

Thank you for pointing this out. It is correct that the seminorm, which is the total squared curvature, is defined on the whole 80 
field. The total square curvature is the sum of the squared curvature at each grid pixel. To minimize the seminorm, we need 
its partial derivative with respect to the concentration at each grid pixel to be equal to zero. Thus, we get a difference 
equation at each grid, which is appended into the original linear equation to form a new system of linear equations.  

A revised description including the derivation process has been added to section 2.3.  

 85 

Technical corrections: 

(1) The authors introduce many acronyms, but not all of them are then used. I suggest introducing only the acronyms that 
are used several times in the paper. 

Thanks for this good suggestion. We have checked the acronyms and removed those used only once. 

 90 

(2) Line 26: equality ---> quality 

Corrected. 

 

(3) Line 85: necessary ---> need 

Corrected. 95 

 

(4) Line 136: what is the superscript 21 after “problem”? 

The number has been replaced with a reference. 

 

(5) Line: 174: well-posted ---> well-posed. 100 

Corrected. 
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(6) Line 212: It ---> it 

Corrected. 

 105 

(7) Line 242: increase ---> increases 

Corrected. 

 

(8) Line 286: equality ---> quality 

Corrected. 110 
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Response to comments of reviewer 2 

We thank the reviewer for the helpful comments and suggestions, and for careful reading of the manuscript. Listed below are 115 

our responses, with the original comment/question displayed in italics. 

 

GENERAL COMMENTS 

==== 

The paper describes a minimum curvature based regularization schemed for deriving 2-D trace gas concentrations from 120 

optical remote sensing and tomography. The chosen regularization scheme is sensible and the method seems to be an 

improvement over the state of the art in the field The topic fits the journal. 

The textual description is severely lacking and a rewrite to better guide the reader through the numerous methods is 

necessary. The description of the compared methods is severly lacking mathematical rigour and precise definitions causing 

the research to be not replicable in its current state. 125 

I believe that the paper can only be published after a major revision and restructuring. See below for some general 

guidelines and a number of specific issues. 

Thank you for the comments. We have done a major revision following your suggestions and addressed the issues. Please 

see the responses below for specific changes we have made to the manuscript. 

 130 

MAJOR COMMENTS 

====== 

Precise Mathematical description 

-------------------------------- 

The problem requires a much more precise mathematical introduction with clear definitions of employed terms. The paper 135 

gives a wide overview over several methods from literature and introduces many of these and related terms without clear 

definitions. At least those discussed later should be introduced well enough to follow the paper without further referencing.  

The continuous and discrete view of the problem needs to be separated and the relationship clarified (see specific 

comments). Very often it is useful to specify the formulas for the continuous case and then "simply" discretize the resulting 

integrals and derivatives. In this case one achieves results that are 140 
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less dependent on the chosen discretization/gridding. This is particularly true as the sampling distance is (wrongly) used in 

the regularization strength instead of the integrals itself. 

Thanks for the suggestions. We have redefined the symbols in this manuscript. Clear and precise descriptions are given. The 
continuous and discrete views have been distinguished by using different symbols. The issue with the sampling distance has 
been corrected. A new section of 3.6 has been added to discuss the influences of the grid size.  145 

 

Motivation for minimum curvature 

-------------------------------- 

This chosen regularization is criticized for producing oversmoothened results. The major question is, what kind of 

regularization term would best describe the a priori information. The Laplacian is an obvious choice due to its relationship 150 

with the Poisson-Equation. If diffusion is the major process than a norm related to an exponential covariance would be very 

useful (see "Inverse Problem Theory" by Tarantola); also here, the Laplacian pops up at least for the 3-D exponential 

covariance. It would be interesting to motivate the choice of regularization form the underlying physics. 

There is also a host of literature with respect to regularization for optical remote sensing methods from nadir and limb 

sounding satellites. It would be very interesting to put this method into this context and/or discuss the statistical angle. 155 

It is true that the prior information should be based on the underlying physical process. The smoothness a priori information 
is most commonly used and very suitable for the diffusion process. More realistic prior information may be better for 
specific applications. For example, we have almost done investigating more complicated regularization based on the 
information derived from the air dispersion models for the diffusion-convention process. But the smoothness is the basic 
feature for all the problems in ORS-CT applications.  In this study, we focus on better understanding the characteristics of 160 
this smoothness regularization. This is done by adopting the variational interpolation technique into the tomographic 
reconstruction process. Therefore, the smooth effect is closely related to the spline functions which has been well studied in 
the literature. Improving the performance of algorithms by using different seminorm is possible.  

The techniques used in similar field should be very inspiring. We are also expecting to explore more ideas from them. We 
also realize that currently the available algorithms for the 2-D tomographic mapping of the air contaminants are still very 165 
limited. This may be caused by the fact that the inversion problems are not exactly the same as those in similar area, 
especially when we look at the beam configurations and underlying distributions which considerably affect the performance 
of the algorithms. Therefore, algorithms need to be modified or adopted to be used in the specific applications. Overall, there 
are still lots of work to do in this area to promote the practical application of the ORS-CT technique. 

 170 

Diagnosis 

--------- 
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Due to the choice of a grid with more unknowns than measurements, diagnostics become more important. This can be done 

in a simple fashion with "resolution" measures. Rodgers' "Inverse Methods for Atmospheric Sounding" shows in great detail 

what kind of diagnostic quantities are relevant (resolution, measurement contribution, smoothing error, uncertainties...) 175 

The nearness, peak location error, and the exposure error are the commonly used measures to evaluate the image quality. 
They provide direct measure of the performance only based on the final reconstruction results and independent of the 
reconstruction approaches. So they do not reveal the internal feature of the algorithms. In this view, the averaging kernel 
matrix is a good complementation.  

According to the suggestion, we find that the averaging kernel matrix (resolution matrix) is commonly used in the 180 
atmospheric sounding but seldomly in the 2-D tomographic reconstructions. In the latter case, it is largely affected by the 
beam geometry and is better to be used as a measure to evaluate the beam configuration. But it also reflects the 
regularization error given the same beam geometry in this study.  

A new measure based on the resolution matrix have been added to the manuscript to determine whether the concentration 
can be independently predicted and how regularization limits reconstruction accuracy. The new fitness measure is defined as 185 
the average Frobenius distance between the resolution matrix and the identity matrix to predict the reconstruction error. For 
the result, the MC algorithm shows slightly better performance than the LTD algorithm with a fitness value of 1.3878 
comparing to 1.4411. The off-diagonal elements in the resolution matrix are not zeros. The reconstructed concentration at 
each pixel is a weighted average of the concentration of the surrounding pixels because of the smoothness regularization. 
Each row of the resolution matrix can be regarded as smoothing weights. The 2-D display of the row of the averaging matrix 190 
gives a clear dependence of the beam configuration. 

Section 2.5 and 3.5 have been revised for detailed description. 

 

SPECIFIC COMMENTS 

===== 195 

line 35 

------- 

"which can detect a large area in situ and provide near real-time information" Maybe cover? Also "in situ" may be an 

unconventional use for a remote sensing instrument, depending on the community. 

We have updated the description as following: "The ORS-CT technique provides a powerful tool for sensitive mapping of air 200 

contaminants over a kilometer-size area in real time." 

 

line 43 

------- 
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To be precise both an infinite number of beams and beams of infinite length are required. One typically assumes a zero 205 
signal outside the reconstruction domain, which, for your problem, is a very reasonable assumption and at least alleviates 
the latter condition. How does the finite number of beams affect the solution? 

It is a good idea to apply the zero-signal assumption outside of the domain, but in some applications of monitoring the air 
pollutants, this assumption may not be true. This is usually the case for mapping the concentration distribution over a 
horizontal plane because the plume may extend for a long distance outside of the mapping area, and the ORS-CT system 210 
cannot cover very large area due to the instrument limitation or deployment difficulties. We think this situation is different 
from the medical CT which reconstructs a slice with a clear boundary.  

The number of beams affects the spatial resolution of the reconstructed map. The concentration of an area can be 
theoretically reconstructed if it is independently sampled by the beams. The beam number and geometry determine the size 
of an area that can be sampled independently. In the view of the reconstruction algorithm, the number of beams determines 215 
the number of equations of the inverse problem. The unknows are the concentration values of the grid pixels. To make the 
system of equations to be not ill-posed (underdetermined), it is required that the number of pixels should be no more than the 
number of beams. Otherwise, the problem of indeterminacy will occur and artifacts may appear on the reconstructed map. 
Because only tens of beams are used in ORS-CT, the resulting spatial resolution produced by the traditional pixel-based 
reconstruction algorithms is very coarse. This issue can be mitigated by adding the smoothness information to the inversion. 220 
We have rewritten the paragraph two in the introduction chapter to discuss the problem of the limited beam number. 

 

line 44 

------- 

"Series-expansion-based methods". Unclear what is meant here. Cite needed. The explanation sounds like a simple 225 
discretization, transforming the "continuous problem" of finding a function over L2 to a discrete problem of identifying a 
number of samples. 

A reference has been added as suggested (Censor, 1983). The series expansion methods are distinguished from the transform 
methods by discretizing the problem at the very beginning whereas with transform methods the continuous problem is 
handled until the very end when the final formulas are discretized for computational implementation. In practice, the 230 
reconstruction domain is divided into discrete grid pixels. The pixel concentrations result from the linear combination of 
finite number of basis functions defined on the domain. We have updated the description in paragraph two. 

 

line 48 

------- 235 

Also medical reconstruction techniques employ discrete samples and basis functions. With many more samples, obviously. 

The number of beams in the ORS-CT is very limited comparing to the medical CT (tens vs hundreds of thousands), which 
poses new challenges for the reconstruction techniques. The main issues are the coarse spatial resolution and the ill-posed 
inverse problem. For limited data tomographic reconstruction, the system of linear equations is rank-deficient. Additional a 
priori information like smoothness must be used to improve the performance. We have revised the texts in paragraph two to 240 
emphasis these challenges.  

 



9 
 
 

line 49 

------- 

I do not understand the difference between a pixel based approach and a basis function based. A pixel is a basis function 245 
with rectangular, non-overlapping support. 

The reviewer's understanding is accurate. There is ambiguity related to the classification of the methods. A pixel is one of the 
simplest basis functions with unit value inside the pixel and zero outside. The "basis function" in the manuscript is actually a 
"smooth basis function". To eliminate this ambiguity, we use only the "series expansion method", which is based on a linear 
combination of finite set of basis functions, as a category comparing to the transform method. And define the "pixel-based 250 
method" and "smooth basis function method" as two types of approaches using different basis functions. The text has been 
revised accordingly in paragraph two and three. 

 

line 51 

------- 255 

"best" in what sense? 

We have updated the description as following text: "The inverse problem is to find the optimal set of pixel concentrations by 
minimizing the error function constructed based on some criteria, including minimizing the L2 norm of error (finding a least-
squares solution), maximum likelihood (ML), maximum entropy, etc." 

 260 

line 52 

------- 

Typically a basis is a basis of a (vector) space. Which space is spanned here? Is the full space spanned or only a subspace 
thereof? 

The two-dimensional reconstruction domain is divided into Nc=m×n grid pixels. For the pixel-based methods, the space is 265 
the N-dimensional real space which is fully spanned by the N pixel-based basis functions. For smooth basis function methods, 
the space is the functions representing the distribution which may not be fully spanned depending on the choice of the basis 
functions. Taking SBFM algorithm as example, usually there are no more than five bivariate Gaussians are used so it can 
only represent some specific distributions. 

 270 

line 53 

------- 

What parameters? Typically one derives pre-factors of normed basis functions. 

Pre-factors are one type of parameters. But there may be more other parameters which need to be determined. For example, 
for the generalized Kaiser-Bessel window function, there are three parameters: sampling distance, window duration, and 275 
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window shape. For the bivariate Gaussian in the SBFM algorithms, there are six parameters: normalizing coefficient, 
correlation coefficient, 2-D peak locations, and two standard deviations. But there are two ways dealing with these basis 
functions. First, the parameters are determined before the reconstruction according to mathematical analysis. Second, these 
parameters are kept unknown and the problem is to fit them to the observation data. The SBFM algorithm works in the latter 
way. We have revised the description of the SBFM algorithm to explain these parameters and how the algorithm solves the 280 
problem in paragraph three. 

 

line 54 

------- 

What equations? Why are those equations non-linear? Typically this problem would be linear even for non-trivial basis 285 
functions. 

The equations are defined by the observed PIC data and the predicted values. The non-linear issue is specific for the SBFM 
algorithm, in which case the concentration values are calculated from linear combination of several bivariate Gaussians. But 
these Gaussians have unknown parameters as mentioned in the previous answer. The problem is to fit these parameters to the 
measurement data instead of getting the concentration values directly. Therefore, the bivariate Gaussians have to be 290 
calculated every time when a new set of parameters is proposed during the optimization process, which makes the problem 
non-linear and very computation intensive. We have revised the description of the SBFM algorithm to give more accurate 
explanation in paragraph three. 

 

line 55 295 

------- 

Best in what sense? 

For the SBFM algorithm, the problem is to find the optimal set of parameters which best fits the observed PIC data by 
minimizing an error function using least square criterion. The text has been revised. 

 300 

line 56 

------- 

Too general. Fits to nearly any problem. What error function based on which criteria? 

The least square criterion is to minimize the sum of the squared errors between the observed and model-predicted PICs. The 
maximum likelihood criterion is to maximize the probability of the PIC observations given the distribution of the errors. The 305 
maximum entropy criterion is to maximize the entropy of the reconstructed maps given the average concentration of the map 
is known. The manuscript has been updated accordingly. 
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line 58 

------- 310 

Define ill-posed. Define very large (millions?). 

The ill-posed problem refers to solve the underdetermined system of linear equation. For traditional approaches like ART 
and NNLS, the number of equations is determined by the number of beams which is usually hundreds of thousands for 
medical CT. But for ORS-CT, the number is only about tens. So "very large" is not accurate and has been deleted.  

 315 

line 61 

------- 

Many classes of non-linear problem can be solved efficiently by deterministic methods. Particularly convex optimization 
problems such as this. 

It is true that the non-linear problems can be solved by deterministic methods. We have revised the manuscript to make the 320 
description to be more accurate as following. First, the system of equations defined by the measured and predicted PICs are 
non-linear because of the presence of the bivariate Gaussians with unknown parameters. Second, the searching of the best-fit 
set parameters can be solved by iterative minimization procedure such as simplex method or simulated annealing. Third, 
simulated annealing method was used in the literature to find a global minimization when the cost function has many local 
minima. This minimizing process was computation intensive. It is possible to improve the speed by modifying the simulated 325 
annealing algorithm or using other optimization techniques. But currently, it is still very slow comparing to solving a system 
of linear equations. 

 

line 65 

------- 330 

Exploiting previous (a priori) knowledge of a problem is almost always key in inverse problems. Doesn't dispersion/diffusion 
suggest a Laplacian as regularizing term? Is there a physical relationship between the dispersion processes and the 
minimum curvature? 

Yes. The Laplacian arise in the diffusion equation. Under steady state, the diffusion process is described by the Laplace's 
equation. In general case, the dispersion process is described by the convection-diffusion equation with additional 335 
convection and source/sink terms comparing to the diffusion process. The minimum curvature principle seeks a two-
dimensional surface which minimizes the total squared curvature (the Laplacian power). The minimizing problem is also 
equivalent to solving a biharmonic equation. Therefore, we can investigate the similarity and difference between different 
algorithms from the equivalent equations. We have added more physical interpretation of the minimum curvature method in 
2.3 section. 340 

 

line 69 

------- 
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This is the first time NNLS is mentioned in the main text and a cite should be placed here with more detail. The EPA cite 
does not detail the NNLS algorithm. 345 

A reference has been added (Lawson and Janson, 1995). 

 

line 74 

------- 

If the number of unknowns is smaller than the number of measurements, such a problem may still be solved by using pseudo-350 
inverses and or regularization techniques, which are computationally cheap. 

There are several things to mention here. It is true that an underdetermined linear system can be solved by pseudo-inverse 
method, which selects the solution with minimum Euclidean norm in this case. However, there is a problem of overfitting. 
This solution may not be physically realistic. It does not have the smoothness feature. Another thing is that the 
reconstruction is a constrained problem (non-negative solutions). The pseudo inverse may not generate a solution satisfying 355 
the constraints. Overall, the reconstruction of the underdetermined linear system is an ill-posed problem. Regularization 
techniques are needed to find an appropriate solution by adding additional realistic a priori information to the problem. For 
the ORS-CT reconstruction problem, the smoothness a priori information has been proven to be a good choice. 

 

line 88 360 

------- 

"But the theory basis of the LTD algorithm was not clearly given". By whom? This paper is so far not helping in this regard. 

The LTD algorithm applies third-order derivative constraints to the solutions. But the underlying theory of this operation was 
not clearly defined in the literature. This prevents us from studying the characteristics of these constraints and getting a broad 
picture of the method. This manuscript first identifies the LTD method as one special case of the well-established Tikhonov 365 
regularization. Then it studies more flexible smoothness constraints through the theory of variational interpolation, based on 
which the characteristic of different smoothness constrains are well understood through the close connection with the spline 
functions. Finally, we successfully adopted the variational approach from spatial interpolation problem into the tomographic 
reconstruction problem. We have rewritten the last two paragraphs in the introduction section to show these connections, and 
updated section 2.2 and 2.3 to give more description of the theories.  370 

 

line 92 

------- 

What is regularization? 

For the inverse or optimization problem, regularization is the process of adding information in order to solve an ill-posed 375 
problem or to prevent overfitting. The regularization term (penalty) imposes a cost on the optimization function to make the 
optimal solution unique. 
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line 95 

------- 380 

Interpolation theory typically deals within interpolation of (mostly discrete) data. How does that relate to the problem at 
hand? 

This is one point that we want to show in this study. The interpolation techniques are based the given sample points, which is 
different from the tomographic reconstruction where only the line integrals are known. But we find that the variational 
interpolation technique can be adopted into the reconstruction process to produce a smooth solution. The connection is 385 
established based on two facts: (1) variational method is another way achieving the spline interpolation because the 
interpolating splines can be derived as the solution of certain variational problems of minimizing a seminorm defined by an 
integral consisting of different derivatives or their combinations; (2) this smoothness seminorm can also be used as a 
smoothness regularization factor for the tomographic reconstruction problem. In this way, the smooth effect similar to the 
spline interpolation can be achieved during the reconstruction process. We also find that other interpolation techniques can 390 
also be adopted in a similar way. We have rewritten the last paragraph of the introduction and section 2.3 to describe this 
idea.  

 

line 98 

------- 395 

"The solution to this problem is a set of spline functions." Please be precise about this. The algorithm derives, necessarily a 
vector. This vector can be interpreted in a various of ways. Of particular import is how it is interpreted by the "forward 
model", because that determines what is fit. This interpretation may differ from the interpretation for the regularisation term, 
but this introduces necessarily an error. One should be clear about that. Typically one sees the regularization term as an 
approximation: as the computation of derivatives by finite differences is inherently approximate. In the case that the 400 
gridding is very fine, the approximation error becomes small, and the point is moot, but this discussion is missing here. The 
discretization error has not been discussed and thus cannot be neglected. It is sensible to represent the 2-D field to be 
reconstructed here as a 2-D spline both in the forward model and the regularization term. This would remove approximation 
errors at the cost of a more complicated algorithms. Either way, the distinction and used assumptions must be made explicit 
and errors discussed. 405 

Thanks for the good suggestions. The most important fact is that the variational approach is another way to find the 
interpolating splines. Therefore, by solving the minimization problem with the smoothness seminorm penalty, we will get a 
smooth solution similar to the effect of applying spline interpolation in the view of the forward model. Normally, 
interpolation is based on the given data points, this study, however, successfully applied it to the problem based on line 
integral data. The final solution is smooth and also has characteristics related to the spline interpolation. But the 410 
"interpolation" is achieved during the inversion process instead of after it, which is a key to improve the reconstruction 
accuracy. We have rewritten the last two paragraphs in the introduction section to clarify this relationship and the idea. 
Section 2.3 have also been revised for the description of the relationship between the variational interpolation and spline 
function. 

A new section of 3.6 has been added to discuss the discretization error due to the use of different grid sizes. The changes of 415 
the nearness, peak location error, exposure error, and computation time with respect to the pixel number were recorded using 
different grid divisions. The results show that the nearness, peak location error, and exposure error generally illustrate 
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decreasing trends when increasing the pixel number. The MC algorithm shows slightly better performance than the LTD 
algorithm with the increase the pixel number. The performance improvements become slow for both algorithms when the 
division is finer than 24 × 24. On the other hand, the computation time shows approximately exponential growth trend with 420 
the increase of the pixel number. But the LTD algorithm has a faster increasing rate than the MC algorithm. So there should 
be a balance between the performance and the computation time.  

 

line 102 

-------- 425 

Maybe a bit more of the theory should be described to make this more obvious to the reader. 

The Tikhonov regularization is a well-known technique to solve the ill-posed inverse problem. The Tikhonov L2 
regularization uses a penalty term defined by the squared norm of the ith-order derivative of the function to produce a 
smoothing effect on the solution. The variational interpolation is motivated by the minimum curvature property of natural 
cubic splines. It is another way achieving the spline interpolation by the fact that the interpolating polynomial splines can be 430 
derived as the solution of certain variational problems of minimizing an integral consisting of different order derivatives or 
their combinations. The interpolating data points can be found through minimizing the sum of the deviation from the 
measured points and the smoothness seminorm. We have updated the description in the last two paragraphs of the 
introduction and section 2.2 and 2.3 to give more explanation of the Tikhonov regularization and the variational interpolation 
theories.  435 

 

line 104 

-------- 

Please properly and mathematically introduce the corresponding biharmonic equation and the smoothness seminorm. 

The seminorm is defined as the total squared curvature of the concentrations in the MC algorithm. The minimizing problem 440 
is equivalent to solving a corresponding biharmonic equation. The definition of the biharmonic equation has been removed 
because we did not use it for finding the solution in this study. The total squared curvature is first discretized. Then in order 
to minimize the seminorm, we need its partial differential with respect to the pixel concentration to zero, which leads to a 
difference equation at each pixel. This equation is appended at each pixel as a smoothness constraint. Thus, a new system of 
liner equations is set up. We have rewritten section 2.3 to mathematically define the smoothness seminorm.  445 

        

line 106 

--------- 

Why does it half the number of equations? 

In the LTD algorithm, two equations are added at each pixel defined by the third-derivative prior information. While in the 450 
MC algorithm, only one equation is added that is derived from the minimizing of the total squared curvature. if we use 38 
beams and a 30 x 30 grid division, there will be 38+30×30×2=1838 equations for LTD, and 38+30×30=938 equations for 
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MC. So the MC approach reduces the number of equations by approximately half. We have added the explanation in section 
2.3.  

 455 

line 107 

--------- 

If the number of grid points increases what does that mean for the amount of information contained in the results and to 
what degree are the resulting "pixels" correlated? I.e. how well is the result resolved? 

We have added a new section 3.6 to show the influence of different grid sizes. The changes of the nearness, peak location 460 
error, exposure error, and computation time with respect to the pixel number were recorded using different grid divisions. 
The results show that the nearness, peak location error, and exposure error generally illustrate decreasing trends when 
increasing the pixel number. The MC algorithm shows slightly better performance than the LTD algorithm with the increase 
of the pixel number. The performance improvements become slow for both algorithms when the division is finer than 24 × 
24. On the other hand, the computation time shows approximately exponential growth trends with the increase of the pixel 465 
number. But the LTD algorithm has a faster increasing rate than the MC algorithm. 

To conclude, the reconstruction performance is improved for both LTD and MC algorithms with the increase of the pixel 
numbers, but at the cost of exponential growth of the computation time. And the improvement become small when the 
resolution is higher than a certain threshold value (24×24 in this study). So there should be a balance between the 
performance and the computation time.  470 

Please refer to section 3.6 for the detailed description. 

 

line 137 

-------- 

A very important interpretation of this approach is the statistical one (optimal estimation), where R^TR can be interpreted as 475 
precision matrix codifying a priori information about the given distribution (i.e. smoothness). Please discuss. 

Thanks for the suggestion. A measure of fitness based on resolution matrix (averaging kernel matrix) has been used to 
investigate the regularization error caused by the inconsistency between the PIC equations and the prior information 
equations. This measure was defined as the average Frobenius distance between the resolution matrix and the identity matrix 
to predict the reconstruction error. Section 2.5 was added to define the measure. 480 

A new section of 3.5 has been added to evaluate the results based on the fitness measure. The MC algorithm shows slightly 
better performance than the LTD algorithm with a fitness value of 1.3878 comparing to 1.4411. The off-diagonal elements 
are not zeros. The reconstructed concentration at each pixel is a weighted average of the concentration of the surrounding 
pixels because of the smoothness regularization. Each row of the resolution matrix can be regarded as smoothing weights. 
The 2-D display of the row of the averaging matrix gives a clear dependence of the beam configuration, while the diagonal 485 
elements may not provide much information in this case. 
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line 139 

-------- 

In what sense is this an approximation? The given formula is discrete already, as such R_i is not a derivative, but a finite 490 
difference operator. 

The approximation means the operator is not the actual derivative operator but an approximation of the derivative operator. 
We have changed them to “finite difference operator”. 

 

line 142 495 

-------- 

The nomenclature is highly unusual. Typically derivatives are defined for continuous functions. c was so far a vector. This is 
an approximation of the third-order derivative of a function in y-direction by finite differences. And even then, the division 
by the grid-distance is missing. In this form, the regularisation is grid-dependent and would change in strength for different 
grid sizes, which requires a re-tuning of regularisation strength for every change of grid size. Please take the grid size into 500 
account. 

Thanks for the correction. We have revised the symbol definitions in this manuscript. The discrete pixel concentrations can 
be arranged in both one-dimensional (1-D) and two-dimensional (2-D) forms. c is defined as a vector containing the 
concentrations in 1-D form with index of j. C is now a matrix containing the concentrations in 2-D form with row and 
column indices of k, l. The continuous distribution is described by a function of f(x,y). The division of the grid-distance has 505 
been moved to the finite difference equations. Therefore, the regularization parameter is independent of the grid size. Section 
2.2 and 2.3 have been revised for the definitions. 

 

line 148 

-------- 510 

Why is the regularization parameter set to 1 over grid length? To compensate for the missing factor in R_3, the power three 
is missing. There is a host of literature discussing optimal choice of this parameter (L-curve, optimal estimation, etc.). 
Practically, it is a tuning parameter which often requires manual adjustments unless both measurements and a priori are 
very well understood. 

A weight needs to be assigned to each equation depending on the uncertainty of the observation. Assuming the analyzers 515 
have the same performance, the uncertainty is mainly related to the path length. Therefore, equations are assigned weights 
inversely proportional to path length to make sure different paths have equal influences. In this study, the lengths of the laser 
paths are approximately equal to each other. So their weights were all set to be the same value which is scaled to be 1. The 
weights for the third-derivative prior equations were assigned to be the same value of w because they were all based on the 
same grid length. The weight is analog to the regularization parameter in the Tikhonov regularization and determined in the 520 
same way. 

The regularization parameter determines the balance between data fidelity and regularization terms. Determination of 
optimum regularization parameter is an important step of the regularization method. However, the regularization parameter 
is problem and data dependent. There is no general-purpose parameter-choice algorithm which will always produce a good 
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parameter. For simplicity, we use the commonly used method based on discrepancy principle. The regularization parameter 525 
is chosen from a finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by solving the 
inverse problem. Then the discrepancy can be calculated. The regularization parameter is determined to be the highest value 
that makes the discrepancy equal to Nbσ2, where Nb is the number of beams, σ is the standard deviation of the noise. In this 
study, the reconstructions varied only slowly with the regularization parameters. Therefore, precise selection of the 
parameter was not necessary. The regularization parameter was selected from four widely varying values. The one produced 530 
the smallest discrepancy was used. 

We have added a separate paragraph to discuss how the weights and regularization parameter are determined at the end of 
section 2.3.  

 

line 148 535 

-------- 

What is meant by "setting the derivative to zero"? Formula (3) minimizes the expression and thus allows for non-zero 
derivatives unless the factor \mu is chosen to be very large. 

The derivatives are set to zero to generate constraint equations. That is how the third-derivative prior equations are set up 
and added to the original equations defined by the observations. That is true that the final optimal solutions may not have 540 
zero derivatives everywhere. They are approximately zero. 

 

line 152 

-------- 

|c| is typically the absolute value of c. To describe more complicate regularization terms, one often uses a more general 545 
function Phi(c) mapping R^n to R^+ or a norm with a subscription like ||c||_\phi^2. Are you refering to Sobolev-Norms? 

Thanks for the suggestion. After revising the symbol definitions, c is a vector representing the discrete pixel concentrations. 
The seminorm is described by I(f) defined on the continuous distribution function of f. The discretization from of the 
seminorm is also provided in section 2.3 in the implement. 

 550 

line 155 

-------- 

The solution to the problem is a discrete vector c, whereby each element of c defines the concentration in one pixel (see (1)). 
A spline is something very different, as it is a continuous. Your problem is set up to be non-continuous by definition. Please 
specify your model precisely and be careful with the distinction between the continuous and discrete view. 555 

Thanks for the correction. We have distinguished the continuous and discrete view by using different symbols. Now this 
minimizing problem is defined in a continuous form. Section 2.1, 2.2 and 2.3 have been revised for the detailed description. 
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line 158 

-------- 560 

c was defined as a vector, not as a continuous function. 

Thanks for the correction. I(f) has been used to represent the seminorm defined on a continuous function f. We have revised 
section 2.3 for the revised definition. 

 

line 159 565 

-------- 

What items in which summation? There is an integral in (7). 

The discrete and continuous formulated have been distinguished. The discrete total squared curvature has been added. Eq. 
(11) and (12) in section 2.3 have been revised for the definitions. 

 570 

line 160: 

---------- 

"This is how the LTD algorithm does to add additional(sic!) equations?" What does this mean? 

Two additional linear equations are introduced at each pixel defined through the third-derivate prior information. There will 
be 2Nc linear equations appended to the original linear equations defined by the PIC observations, resulting in a new system 575 
of linear equations which has (2Nc +Nb) equations and Nc unknowns, where Nc is the pixel number, Nb is the beam number. 
Assuming the new augmented kernel matrix is A, observation vector is p, then the new system of linear equations is Ac=p. 
We have revised the description in the section 2.3.  

 

line 161: 580 

--------- 

Is such a complicated equation really more efficient computationally than two much simpler ones? What are the involved 
algorithmic complexities? 

The LTD and MC algorithms use the same approach (the NNLS optimization algorithm) to solve the generated system of 
linear equations. The main different is the number of equations. The MC algorithm improves the computational efficiency by 585 
reducing the equation number by half comparing to the LTD algorithm.  
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line 165: 

--------- 

It is unclear why this biharmonic equation is necessary. You are already minimizing a cost function in (6). Equation (7) 590 
gives you an immediate way to calculate |c| required by (6). Computing discretized ddc/ddx+ddc/ddy and computing the 
Euclidian norm should give you (6) without the need for higher 

derivatives in the definition of the problem. To efficiently solve (6) one might need higher derivatives depending on the 
chosen algorithm (e.g. Gauss-Newton), but your paper does not detail this part very well. 

Please describe in detail by which algorithm (6) is solved and how (9) plays a role in that. 595 

The reviewer is correct. Solving the biharmonic equation gives the same solution to the minimization problem. But we did 
not find the solution in this way. Instead, we used the equations derived from the minimum curvature principle. To minimize 
the seminorm, the partial differential of the total squared curvature with respect to the pixel concentration needs to zero for 
each pixel, resulting a difference equation. A new system of linear equations is set up based on these difference equations. 
The inverse problem was solved by the NNLS optimization algorithm. We have removed the definition of the biharmonic 600 
equation. The detailed description of the derivation of the equations can be found in section 2.3.  

 

line 169: 

--------- 

Again, the regularization weight typically depends on diffusion coefficients and measurement errors and is often a tuning 605 
parameter. The grid size should directly be implemented in the finite difference equations. 

The grid size has been implemented in the finite difference equations. A weight needs to be assigned to each equation 
depending on the uncertainty of the observation. Assuming the analyzers have the same performance, the uncertainty is 
mainly related to the path length. Therefore, equations are assigned weights inversely proportional to path length to make 
sure different paths have equal influences. In this study, the lengths of the laser paths are approximately equal to each other. 610 
So their weights were all set to be the same value which is scaled to be 1. The weights for the third-derivative prior equations 
were assigned to be the same value of w because they were all based on the same grid lengths. w was determined in the same 
way of determining the regularization parameter μ in the Tikhonov regularization  

The regularization parameter determines the balance between data fidelity and regularization terms. Determination of 
optimum regularization parameter is an important step of the regularization method. But the regularization parameter is 615 
problem and data dependent. There is no general-purpose parameter-choice algorithm which will always produce a good 
parameter. For simplicity, we use the method based on discrepancy principle. The regularization parameter is chosen from a 
finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by solving the inverse problem. 
Then the discrepancy can be calculated. The regularization parameter is determined to be the highest value that makes the 
discrepancy equal to Nbσ2, where Nb is the number of beams, σ is the standard deviation of the noise. In this study, the 620 
reconstructions varied only slowly with the regularization parameters. Therefore, precise selection of the parameter was not 
necessary. The regularization parameter was selected from four widely varying values. The one produced the smallest 
discrepancy was used.  

We have added a separate paragraph at the end of section 2.3 to discuss how the weights and regularization parameter are 
determined.  625 
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line 180: 

--------- 

What interpolation applied after the reconstruction process? The pixel-based algorithm assumes constant values over 
constant pixels. There is no smoothing interpolation, which would not deteriorate the fit to the measurements, i.e. deteriorate 630 
the results. 

What we want to explain here is that the variational approach is another way to find the interpolating splines. Therefore, by 
solving the minimization problem with the smoothness seminorm penalty, we will get a smooth solution similar to the result 
of applying spline interpolation in the view of the forward model. The final solution is smooth and also has characteristics 
related to the spline interpolation. But the "interpolation" is achieved during the inversion process instead of after it, which is 635 
a key to improve the reconstruction accuracy. This is important because an interpolation after the reconstruction cannot 
correct the error resulting from the reconstruction based on coarse spatial resolution. We have rewritten section 2.3. 

 

line 186 

-------- 640 

Here c is defined, for the first time, as a continuous function! Please properly distinguish the "different" c's. 

Thanks for the correction. g(x, y) has been used to represent the continuous concentration distribution. 

 

line 189 

-------- 645 

What source number? (10) defines only a single source. If you use multiple sources, please accommodate this in (10). 

The source number varies from 1 to 5. For multiple sources, the resulting concentration distribution is the superposition due 
to each source. We have revised the description in section 2.4 to clarify this.  

 

line 189 650 

-------- 

You state that the peak width was set randomly. Was it chosen randomly from the listed peak width of line 187f? 

Yes. The values were randomly chosen from the predefined set. We have updated the description to clarify this. 
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line 195 655 

-------- 

You were using c_i,j above for the 2-D fields, why now only c_i? 

The pixel concentration can be arranged both in 1-D and 2-D forms. We now distinguish these two arrangements by using 
c_j and C_k,l, where j is the index of a 1-D vector c, k, l is the row, column index of the 2-D matrix C respectively. The 1-D 
form is used for the linear equations as unknown vector. The 2-D form is used for the finite difference operations. The 660 
revised definitions are in section 2.2. 

 

line 201 

-------- 

How was the location of the highest peak located? 665 

The peak is located by searching the largest concentration value on the map. When there are multiple locations having the 
same values, the centroid of these locations is used. We have revised the manuscript to describe this. 

 

line 210 

-------- 670 

Why did you not apply the other algorithm on your fields for better comparability? 

This study mainly focuses on the comparison between the new MC algorithm and the LTD algorithm because they have 
similar formulas. While MG-GT algorithm uses a different approach. The detailed comparison with the MG-GT algorithm 
may be conducted in another study with the purpose to investigate their performance in different applications. 

 675 

line 215 

-------- 

While it seems to work, the pixel based algorithm derives pixels, not a continuous field. It is straightforward to derive a 
spline interpolated field directly, if desired for the higher accuracy. One simply needs to compute the integrals over the 
spline interpolated field for the coefficients when computing the error to the measurements. This can be accomplished by a 680 
linear matrix multiplication. I expect this to deliver similar results as the other methods at maybe even faster speed due to 
the smaller number of involved equations. Please discuss the choice of your simpler forward model. 

With the purpose of achieving a smooth reconstruction, there is an important difference between applying interpolation after 
the reconstruction and applying smooth regularization during the reconstruction process. In the former situation, high-
resolution grids cannot be used in order to make the inverse problem well-posed. The resulting solutions have coarse spatial 685 
resolution. Large error may occur and cannot be improved by the interpolation after the reconstruction has been done. In the 
latter case, high-resolution grids can be used during the reconstruction process. The MC approach evaluates the discrepancy 
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based on the high-resolution values that are the same as the reconstruction outcomes. Errors due to coarse spatial resolution 
are corrected during the process. We have revised the explanation at the end of section 2.3. 

 690 

line 243 

-------- 

Why does the necessary computation time scale with the number of sources? Shouldn't it be proportional to the problem size? 

It implies that the underlying distribution also affects the computation. Because when the source number is small, most of 
the area has almost zero values, which saves time to find an optimal solution. As the source number increases, the underlying 695 
concentration becomes complicated. It will need more iterations to approach an optimal solution. We have added a new 
section of 3.6 investigating the influence of the grid size. The result shows that the computation times for the LTD and MC 
algorithms exhibit approximately exponential growth trends with the increasing of the pixel number. While the LTD 
algorithm has a faster increasing rate than the MC algorithm. We have revised the discussion in section 3.6. 

 700 

line 283 

-------- 

"oversmooth issue" - necessarily, the amount of information cannot increase between the measurements and the solution. 
Due to the chosen regularization, the result will be necessarily smooth. If it is "oversmooth" depends on whether the a priori 
assumption of smooth fields is correct or not. 705 

It is true that this issue depends on the actual underlying distribution. Actually, the underlying distribution has considerable 
influence on the performance of a reconstruction algorithm. In this study, we have adopted the variational interpolation 
approach to the tomographic reconstruction. As a result, now we can better understand the physical interpretation and the 
characteristics of applying the smooth regularization to the inversion according to the close connection with the spline 
functions. As a consequence, the issues related to the spline functions may also happen in the tomographic reconstructions 710 
and need to be further investigated.  

In case that this assumption does not hold, "better" (less smooth) results can be achieved by Total-variation minimization 
(isotropic or anisotropic) and primal dual methods, e.g. Split-Bregman. I doublt this would fit better to your problem, though. 

Actually, we have tried the TV minimization. But it did not give the smoothness effect we expected. We think it is because 
the observations (line integrals) are too less to sufficiently distinguish the concentration gradient. As a result, an approach 715 
providing sharp gradient may give physically unrealistic solutions. However, this result is based on the specific synthetic 
problem in this manuscript. If different beam configurations (more beam number with optimized geometry) were used, the 
TV approach might be a good try. 

 

MINOR REMARKS 720 

===== 
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line 55 

------- 

"question". This is called an "inverse problem". 

corrected. 725 

 

line 74 

------- 

grids -> grid points? 

The "pixel number" is used. 730 

 

line 85 

------- 

necessary -> necessity 

"need" is used. 735 

 

line 144 

-------- 

-> "third-order forward difference operator" 

corrected. 740 

 

line 160 

-------- 

Which "multiple items"? 

This section has been rewritten and this sentence was removed.  745 
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line 174: 

--------- 

"For pixel-based"->"For conventional pixel-based", posted->posed 

corrected.  750 
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Response to comments of reviewer 3 

We thank the reviewer for the helpful comments and suggestions, and for careful reading of the manuscript. Listed below are 

our responses, with the original comment/question displayed in italics. 

Anonymous referee report 755 

The paper from Sheng Li and Ke Du proposes a new minimum curvature (MC) algorithm to apply smoothness constraints in 
the tomographic inversion of optical remote sensing measurements, to reconstruct the spatial distribution of atmospheric 
chemicals in a given domain (a 40 x 40 m square area in the example given). The authors compare the performance of their 
new proposed method to that of other existing methods, such as the non-negative least squares (NNLS) and the low third 
derivative (LTD). The performance is assessed on the basis of a few test maps containing one or several (up to five) bi-760 
variate Gaussian sources. Apparently, the MC algorithm performs significantly better than the NNLS method, and shows 
almost the same performance of the LTD algorithm in terms of reconstruction accuracy. Compared to this latter, however, 
the MC algorithm allows to save from 27 to 35% computation time, depending on the number of sources in the domain. 

The subject of the paper is interesting, comprehensively presented in the introduction and put in the context of the existing 
literature on the topic. The method used for the assessment, however, is not sufficiently general and could be improved. The 765 
presentation of the algorithms assessed is not sufficient, the actual equations used should be included in the paper. 
Regarding the language of the text, I am not native English speaker, thus I cannot provide a reliable feedback. However, the 
language sounds a bit “strange” to me at several instances. Therefore I recommend a review by a language Editor. Also, I 
would suggest to avoid flooding the text with acronyms. Several of them are not really necessary and make reading the 
paper uncomfortable. 770 

In conclusion, I am very sorry but I can recommend this paper for publication in AMT only after major improvements, as 
outlined in the comments below. 

Thank you for the comments and suggestions. We have done a major revision according to your suggestions. Please see the 

responses below for specific changes we have made to the manuscript. The language has been edited by a highly experienced 

and native English-speaking editor. 775 

 

General comments 

My main concern is that the authors have compared the field reconstruction errors of the NNLS, LTD, MC (and GT-MG) 
algorithms on the basis of a set of only five test distribution maps. I would say that they have verified some necessary 
conditions which, however, are not sufficient to assess the relative efficiency of the considered methods. Each solution 780 
depends both on the measurements and on the constraints applied. Here it is not clear whether the LTD and MC solutions 
perform better than the NNLS because of the smarter applied constraints or because of the specific experimental 
distributions (bi-variate Gaussians) considered in the examples given. 

There are several things which need to be mentioned about this comparison.  



26 
 
 

(1) The performance of the algorithms is problem dependent. The beam configuration and underlying concentration 785 
distribution also affect the reconstruction quality. There is no one algorithm that performs absolutely better than others all 
the time. Even the NNLS algorithm could give the best result under some specific conditions (Wu and Chang, 2011). This is 
the common situation for an optimization algorithm.  

(2) The bi-variate Gaussians are good choice to simulate the diffusion process. It has been commonly used in the 
comparisons of the algorithms in the ORS-CT problems. The generated maps better simulate distributions which have 790 
several hotspots. It is true that the real distribution map may be complicated depending on the specific dispersion conditions. 
Other methods to generate the test maps can also be used. For example, the bivariate lognormal distribution was used in Wu 
and Chang (2011) to simulate a non-symmetric distribution. But that only represents one situation, and the distribution 
function may not be better than others in other cases.  

(3) Another reason that the test maps were generated in this way is for the purpose to compare with the results from the GT-795 
MG algorithm, which used the bi-variate Gaussians. And the beam configuration was also set to be similar to that in the GT-
MG approach. This is a common set for comparisons of tomographic reconstructions and was used in practical applications 
(Dobler et al., 2017).  

 

Error covariance matrices and averaging kernels (see e.g. Rodgers, 2000) are broadly used tools in the atmospheric remote 800 
sensing community to characterize the recovered spatial distribution (yes, also 2D distributions ...) from the point of view of 
the retrieval error, and of the spatial resolution (width of the Point Spread Function) of the measurement chain (measuring 
plus inversion systems). Applying these tools to the inversion methods considered in the paper is possible, thus the authors 
should use them. For example, from the analysis reported in the paper, it is not self evident that the spatial resolution of 
their measuring system changes strongly depending on the x,y position within the squared field considered: there are grid-805 
elements which are crossed by 2 or 3 beams, and others (near the sides of the field) which are not sounded at all. Thus, the 
spatial resolution must be very poor near the sides of the squared field and much better near the center. I believe this feature 
would be self-evident from maps of the diagonal elements of the 2-dimensional averaging kernels of the different solutions 
considered (see e.g. von Clarmann et al, 2009). 

Thanks for the good suggestions. We have added the averaging kernel matrix into the manuscript to determine whether the 810 
concentration can be independently predicted and how regularization limits reconstruction accuracy. In the 2-D tomographic 
reconstruction, the averaging kernel is considerably affected by the beam geometry and is better to be used as a measure to 
evaluate the beam configuration. But it also reflects the regularization error given the same beam geometry in this study. We 
used a measure called fitness which was defined as the average Frobenius distance between the resolution matrix and the 
identity matrix to predict the reconstruction error. The MC algorithm shows slightly better performance than the LTD 815 
algorithm with a fitness value of 1.3878 comparing to 1.4411.  

The off-diagonal elements are not zeros. The reconstructed concentration at each pixel is a weighted average of the 
concentration of the surrounding pixels because of the smoothness regularization. Each row of the resolution matrix can be 
regarded as smoothing weights. The 2-D display of the row of the averaging matrix gives a clear dependence of the beam 
configuration, while the diagonal elements may not provide much information in this case. 820 

Section 2.5 and 3.5 have been revised for the detailed description. 

 

Specific comments 

Lines 42-44: please include references for the mentioned techniques. They are not standard for the whole atmospheric 
remote sensing community. 825 
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The reference has been added (Radon, 1986; Herman, 2009; Censor, 1983). 

 

Lines 73-74: not only, I guess. The chosen pixels should be crossed at least by one beam, otherwise the NNLSF is ill-posed. 

That is correct. For the traditional pixel-based methods, the pixel is required to be passed by at least one beam, otherwise the 
problem will be ill-posed. The regularization technique is the method to solve the ill-posed problems by adding a priori 830 
information into the original problem. This is shown in this study by using high-resolution grid division, in which case many 
grids are not passed by the laser beams. But we still got a good reconstruction through smoothness regularization. 

 

Line 122: I would name the small squares as “pixels” instead of “grids”. 

"pixels" has been used. 835 

 

Line 127: if the PIC is measured at the retro-reflectors, then you have only 16 measurements, or 20 measurements if retro-
reflectors are installed also at the corners of the square. Instead, I guess that for the NNLSF you need at least 36 
measurements. Please make an effort to describe more thoroughly the experimental setup. 

It is correct that there were 20 retroreflectors installed (including the ones at the corners). We can see from bean 840 
configuration (Fig. 1) that each retroreflector reflects two beams coming from different directions. Therefore, the total beam 
number will be 20×2=40. After removing the overlapped beams along the diagonals, the total beam number is 38. We have 
revised section 2.1 to give a more detailed description of the setup.  

 

Section 2.1: it would be interesting if the authors could explain the details of the experimental setup, I could not understand 845 
which is exactly the measured quantity. This would be useful also to understand to which degree the linear formulas (1) and 
(2) are accurate. 

For each laser beam, the path-integrated concentration (PIC) is measured by the analyser. The predicted PIC for one beam 
equals to the summation of the multiplication of the pixel concentration and the beam length passing it. In general, let us 
assume that the site is divided into Nc=m×n pixels, which are arranged as a vector according to the left-to-right and top-to-850 
bottom sequence and indexed by j. The average concentration for j-th pixel is cj. The total number of laser beams is Nb which 
are indexed by i. The length of the laser beam passing the j-th pixel is Lij. Then, for the i-th beam, the measured PIC bi is 
contributed by all the pixels that it passes. A system of linear equations can be set up for all the beams: b=Lc, where L is the 
kernel matrix that incorporates the specific beam geometry with the pixel dimensions, c is the unknown concentration vector 
of the pixels, b is a vector of the measured PIC data.  This section has been rewritten to give a detailed explanation of the 855 
experimental setup.   

 

Equation (3) assumes that all the measurements have the same precision, which may not be the case if the signals observed 
are very different in intensity (e.g. because of the different absorption paths). Could-you please add a comment? 

Yes. A weight needs to be assigned to each equation depending on the uncertainty of the observation. Assuming the 860 
analyzers have the same performance, the uncertainty is mainly related to the path length. Therefore, equations are assigned 
weights inversely proportional to path length to make sure different paths have equal influences. In this study, the lengths of 
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the laser paths are approximately equal to each other. Thus, their weights were all set to be the same value which is scaled to 
be 1. The weights for the third-derivative prior equations were assigned to be the same value of w because they were all 
based on the same grid length. Section 2.2 has been revised for the revised description. 865 

 

Line 139: With equation (3) you require a solution with “small” Li c norm, whereas, usually one requires a small Li (c – ca) 
norm, where ca is some prior estimate of c. Please explain the rationale behind your choice of ca = 0. 

Using (c-ca) means that we have some predefined values ca which we use to regulate the solutions to make it close to the 
prior estimations. This is the case in the atmospheric sounding problem, where some modeled values are used as the prior 870 
estimations. But for the reconstruction of the 2-D concentration distribution of arbitrary area site. There is no such prior 
information about the underlying concentrations. The only information we know is that the values are non-negative.  

 

Line 148: If the regularization parameter μ of eq. (3) is grid-dependent, then I would expect it to appear in some vector form 
in equation (3) rather than as a scalar. How do you establish the actual value of μ? Which is the solution of the LTD 875 
algorithm? Please specify the equation. 

We have revised the equation. Now the grid length is part of the third-derivative prior equation. The regularization parameter 
is independent of the grid size and determines the balance between data fidelity and regularization terms. Determination of 
optimum regularization parameter is an important step of the regularization method. However, the regularization parameter 
is problem and data dependent. There is no general-purpose parameter-choice algorithm which will always produce a good 880 
parameter. For simplicity, we use the method based on discrepancy principle. The regularization parameter is chosen from a 
finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by solving the inverse problem. 
Then the discrepancy can be calculated. The regularization parameter is determined to be the highest value that makes the 
discrepancy equal to Nbσ2, where σ is the standard deviation of the noise. In this study, the reconstructions varied only slowly 
with the regularization parameters. Therefore, precise selection of the parameter was not necessary. The regularization 885 
parameter was selected from four widely varying values. The one produced the smallest discrepancy was used. Section 2.2 
has been revised for equations and description. 

 

Line 149: In principle, the NNLS algorithm does not use constraints, correct? Here you are explaining the LTD algorithm, 
so it cannot be solved with the NNLS approach. Maybe you refer to the Newton method? Please explain. 890 

The non-negative least square (NNLS) optimization algorithm is the first widely used optimization method proposed by 
Lawson and Janson (1995) in their textbook to solve the non-negative constrained least square problem. In this paper, the 
"NNLS algorithm" to the tomographic reconstruction refers to solve the original system of linear equations by using the 
NNLS optimization algorithm without adding other a priori information. The LTD approach generates a new system of 
linear equations with non-negative constrains, which can also be solve by the NNLS optimization algorithm. We have 895 
revised section 2.1 for the description.  

 

Lines 158-165: Up to eq.(6) and later also in eq. (9), c is a vector. In eq.s (7) and (8) “c” seems a function. Please improve 
the notation, it would be difficult to implement your MC algorithm based on your description. 

We have revised the formulates in the manuscript to give a more accurate definitions of the quantities and distinguish the 900 
continuous and discrete functions. The seminorm is defined as an integral of a continuous function, which is the total 
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squared curvature in the MC algorithm. Then, it is discretized to be the sum of the squared curvature at each pixel. Also, c is 
defined as a 1-D vector of the unknown pixel concentrations, while C is defined as a 2-D matrix of the pixel concentrations 
when they are arranged in the 2-D form. f(x,y) is used to describe the underlying concentration distribution. Section 2.1, 2.2, 
and 2.3 have been revised for the detailed definitions. 905 

 

Line 167: I have understood that you are finally using eq.(9), that is the discretized form of eq.(8). Is eq.(9) more or less 
equivalent to eq.(7)? This description is very confusing. 

The seminorm is defined as the total squared curvature in the MC algorithm. It is first discretized to be the sum of the 
squared curvature at each pixel. Then, in order to minimize the seminorm, its partial derivative with respect to the 910 
concentration at each pixel needs to zero, resulting in a difference equation. This equation is appended at each pixel as a 
smoothness prior equation and a new combined system of linear equation is set up. We have revised section 2.3 for the 
equations and the detailed description. 

 

Line 169: the same comment I made for μ (line 148) here applies to ω. Which constant for the inverse proportionality did 915 
you use? 

The weight w is determined in the same way as determining the regularization parameter of μ, which was described in above 
answer for question of line 148. We also revised section 2.2 for the detailed description. 

 

Line 187: If c(x,y) is a concentration, then Q cannot be measured in ppm (that is a mixing ratio). Eq.(10) does not contain σ, 920 
it contains σx and σy… 

The ppm unit has been changed to mg/m3. σx and σy have been defined.  

 

Lines 212-213: this sentence is not clear to me. 

This sentence has been revised as "They did not measure the peak location error and used a different way to calculate the 925 
exposure error by limiting the calculation domain in a small area near the peak instead of the whole map. Therefore, the 
results of the GT-MG algorithm are listed as a reference and only the measure of nearness is compared. " 

 

Line 220: “The smaller the number of sources, the better the reconstruction quality”. I think this is intrinsic to the definition 
of the nearness quantifier. Please comment. 930 

There is a mistake in the sentence. It has been revised as "The smaller the nearness value, the better the reconstruction 
quality". The trend of nearness with the increase of the source number is discussed in that paragraph. 

 

Lines 231-233: do you mean that the "peak-location" quantifier could mistake peaks with similar amplitudes? In this case it 
would be advisable to refine eq.(12) or to apply it with some caveats. 935 
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When there are two or more peaks on the map whose peak magnitudes are comparable to each other, the reconstruction 
algorithm may not identify the correct location of the highest peak. Therefore, a large error may happen when the highest 
value on the reconstructed map is located on the wrong peak. 

 

Line 233: I think that, as it is, eq.(12) is reliable only if the peaks to be reconstructed have amplitudes that differ from each 940 
other by much more that the error with which they are retrieved. Why the “source number” counts so much? 

The reason is given in the previous answer. The large error is mainly because the reconstructed highest peak is the wrong 
one. When there are more peaks, this kind of error is more likely to happen. 

 

Line 239-240: I am skeptical about your general statement regarding the NNLS performance. I would suggest adding some 945 
details regarding how you actually computed the NNLS solution. 

Actually, the NNLS algorithm is used as one representing method to solve the unregularized inverse problem. The main 
performance difference is due to the unregularized and regularized reconstructions. The unregulated inversion uses coarse 
grid division and produces fewer pixel concentrations representing constant values in the grids. Therefore, this method has 
difficulty dealing with the large variation in a scale smaller than the grid size. It fits the true distribution better when the 950 
distribution becomes more uniform. We have updated the manuscript to include this explanation.  

 

Technical corrections 

Line 50: summarising ?? 

This sentence has been revised as "The path integral is approximated by the summation of the product of the pixel value and 955 
the length of the path in that pixel." 

 

Line 85: necessary ? 

The word has been replaced by "need". 

 960 

Line 136: what is the superscript “21” ? 

The number has been replaced with a reference. 

 

Line 174: “well-posed” 

Corrected. 965 

 

Line 212: it (?) 
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Corrected. 

 

Line 224: maybe “complexity” ? 970 

Corrected. 

 

Line 228: are slightly better ... 

Corrected. 

 975 

Line 241: derivation ?? 

It is the standard deviation of the results from 100 tests. 
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