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Response to comments of reviewer 2 

 

We thank the reviewer for the helpful comments and suggestions, and for careful reading of the manuscript. Listed below are 
our itemized responses, with the original comment/question displayed in italics.  5 

 

GENERAL COMMENTS 

==== 

The paper describes a minimum curvature based regularization schemed for deriving 2-D trace gas concentrations from 
optical remote sensing and tomography. The chosen regularization scheme is sensible and the method seems to be an 10 
improvement over the state of the art in the field. 

The topic fits the journal. 

The textual description is good and the different methods are well introduced. 

The paper may be published after addressing the following minor issues. 

Thanks for the comments. We have revised the manuscript according to your comments. Please see the responses 15 

below for specific changes we have made to the manuscript. 

 

SPECIFIC COMMENTS 

===== 

Eq. 4 20 

----- 

The finite difference operator requires the division by the third power of the grid distance. The results are likely correct as 
one needs to multiply with \delta x \delta y in Eq. (5) to properly approximate the 2-D integral over the third order 
derivative. However, in case \delta x unequal to \delta y, an error would be made. 

Thanks for the correction. We have changed the division to the third power of the grid distance in Eq. 4 to make it more 25 
accurate.  

 

Eq. 7 

----- 

In what way are the matrices T and D_3 similar/different? 30 

Matrix T contains the third derivatives of all the pixels in both x (row) and y (column) direction. For the derivatives in x 
direction, the matrix is defined by D3. For those in y direction, each row of the matrix still contains the coefficients [-1 3 -3 
1], but they are separated by n (the number of pixels in x direction) “zero” elements to correctly define the difference in the y 
direction, because in y direction, the difference of index numbers of two neighbor pixels is n. 

 35 
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Eq. 8 

----- 

Here the fourth symbol is introduced for a weight factor after w, W, and µ. Is this necessary, or can one simplify the 
employed notation? 

They all can be viewed as weight factor in this study. But they may have different interpretations in different fields. For 40 
example, the w in the LTD approach represents the weight for a linear equation and was not described as regularization 
parameter. W is a matrix containing the weights for all linear equations. The weights for different equations can also be 
different. µ is a single value to determine the weight of the regularization term in the regularized inversion problem. In this 
view, 𝜔𝜔 in Eq. 8 and Eq. 10 and 𝜆𝜆 in Eq. 16 are also regularization parameter and have been replaced by µ according to the 
reviewer’s suggestion,  45 

 

Eq. 10 

------ 

Here, a needless approximation error is introduced via the c_i. You derive, effectively, a continuous representation f of the 
2-D distribution, which could be used for a better "forward model" F mapping the continuous distribution f onto measured 50 
values b. You might think about being more general here before justifying your choice of forward model based on the pixel-
based approach. 

Thanks for the suggestion. In a general case, the PIC of a path is a line integral over concentration field. We have added this 
integral formula to the manuscript.  

 55 

Eq. 12 

------ 

The grid distance is missing in the discretized integral. Please differentiate. Also, I is now both a function of f and a sum. As 
the "new" I is differentiated later, it would be good to introduce it as a function here as well. 

Thanks for the correction. The grid distance has been added to the equation. To distinguish continuous and discrete form, we 60 
have changed the discrete total squares curvature I to S(C), which is a function of pixel concentrations. 

 

Eq. 16 

------ 

I still do not understand why Eq. 14 and the higher derivative was introduced. Eq. 16 describes a minimization problem and 65 
it should be fully sufficient to minimize \omega I(f). So why introduce Eq. 14? That the higher derivative is zero is a 
necessary condition for the existence of a minimum, but that is a detail of the employed minimizer. Unless a Newton-type-
method is used, Eq.14 is not necessary and seems to complicate the computation. I assume that the algorithm will still work 
with this seemingly needless complication. 

Eq. 16 is the result of the derivation. If Eq. 14 is not introduced, then we will not get the matrix M in Eq. 16. It is true that we 70 
can also work on the original form of I(f) instead of M, and use a different optimization method to solve the minimization 
problem. In this study, Eq. 16 is actually the result after using the Newton-type-method. We use this form because it is 
similar with the formula of LTD algorithm. The only difference for the two approaches is the matrix M comparing with D3 
which is used in the LTD approach. Thus, the same technique can be used to solve the minimization problem, which makes 
the comparison more meaningful.  75 
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Response to comments of reviewer 3 

 

We thank the reviewer for the helpful comments and suggestions, and for careful reading of the manuscript. Listed below are 
our itemized responses, with the original comment/question displayed in italics.  80 

 

General 

As compared to the first version, the paper by Sheng Li, Ke Du has been significantly changed. Many of the concerns I 
pointed out in the first review have been addressed. I apologize that while reading the new version of the paper, 
unfortunately, I found some new relevant issues. Some of them are crucial and, to my opinion, should be carefully 85 
considered before publication. 

In general the language has been greatly improved, however, I would recommend the authors to double check if the editing 
process has always conserved the original meaning of what they wanted to say. 

Thanks for the comments. We have revised the manuscript according to your comments. Please see the responses 

below for specific changes we have made to the manuscript. 90 

 

Specific comments 

Sect. 2.1:  

the section has been significantly improved. I see only two remaining issues: 

a) Linearity of equation (2). Your statement at line 848 of your replies "The predicted PIC for one beam equals to the 95 
summation of the multiplication of the pixel concentration and the beam length passing it'' holds only in the "optically thin" 
regime, i.e. only when a small fraction of the laser signal is absorbed by the pollutant to be measured. If the pollutant 
concentration is large and/or the medium is not very transparent at the laser wavelength, then for sure linearity does not 
hold. Since the laser wavelength can be tuned, usually it is possible to find a suitable wavelength at which, for average or 
expected pollutant concentrations, the medium is sufficiently transparent to fall in the linear regime. To my opinion it would 100 
be convenient to state explicitly that you are working in this hypothesis. 

Thanks for the suggestion. We are using open path TDL analyzer, which is already well-tuned equipment. The wavelength 
of the laser beam is tuned to the absorption line of the target gas and is transparent to other species. The laser absorption is in 
the linear regime and the attenuation of the laser beam is governed by the Beer–Lambert law. This introduction gives a 
description how the PIC is calculated by the equipment. So the condition of “optical thin” was satisfied in our field 105 
experiments. We also added a sentence on page 5 to state that our calculation was based on linearity between laser 
absorption and pollutant concentration. 

 

b) Equation (3): is it really needed to require c ≥0 ? Assume that the real concentration of the pollutant to be measured is 
zero. If you obtain the concentration as the average of several measurements, then, because of the analyzer's noise, these 110 
measurements should be evenly distributed around zero to give a zero average value. If you constrain the solution c to be 
greater or equal to zero, then you remove the measurements that otherwise would be negative because of the measurement 
noise. Thus you introduce a bias (or exposure error) in the average. Of course you don't see this type of error in the tests 
presented later in the paper, because the test 2D distributions considered do not include a "zero concentration" case, and 
because all your formulas fully ignore the measurement noise error (that is the noise error on your b vector). 115 
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We understand that non-negative constraint may result in bias when averaging the concentrations where only noise exists. 
However, this is a trade-off as we need to focus on signals well above noise. Depending on the inverse problem, the optimal 
solution may contain very unrealistic negative value. This is especially true for the case in the 2-D tomographic mapping of 
air pollutants, whereas the data is limited, and the system of linear equations is ill-posed (e.g., rank-deficient). Therefore, it is 
necessary to apply these constraints to eliminate such unrealistic solutions because the resulted negative values are not just at 120 
noise level. They may be comparable with the positive peak values. In addition, there are different sources of errors. In the 
simulated study, one error source is discretization error. Even in this case, the results generated without non-negative 
constraints are not useable. After using the regularization technique, the optimized solution is robust to the measurement 
noise, and the reconstruction error is dominated by regularization error. Therefore, the measurement noise is negligible, and 
we can focus the study on the regularization algorithm itself. We have added a sentence below Eq. (3) to explain the 125 
necessity of using non-negative constraints. 

 

Sect. 2.2:  

If I understand properly, in practice what you call LTD method is the Tikhonov regularization using the discrete 3rd 
derivative operator D3. You tune the regularization strength w using the discrepancy principle. Then I have a question: you 130 
can not introduce the two equations (4) at every pixel of your domain, as you would have problems at the edges of the 
domain (see index values k+2, k+l and k-1 in eq. 4). Thus, you can actually introduce only 2Nc- 6 additional equations (not 
2Nc as you state at line 160). If you do so I think you get in trouble if one or more pixels of your domain are not crossed by a 
ray path. Actually, in this case LtL would be singular and, if also TtT is singular, then you cannot invert the matrix AtWA 
mentioned at line 172. In conclusion, I think you are using some extra constraints (also involving 0-th order derivatives) at 135 
the edges of your domain (as you seem to suggest in the text after eq. 7). Please clarify. Also, what are the symbols m and n 
in eq. 7? 

Line 243: please explain clearly the equations you use at the edges of the domain, see also the analogous comment above. 

They were indicated at line 182 and 243 in the manuscript that the constraints at the edges are second-order and first-order 
difference operators. According to reviewer’s comment, we have added their formulas to the manuscript. m and n are the row 140 
and column number of the pixels. They keep the same definition across the manuscript. It is fine if a pixel is not crossed by a 
ray path. With the high-resolution grid division, most of the pixels are not crossed by the beam. They are restricted by the 
smoothness constraints. 

 

Line 245: requiring c ≥ 0 introduces a bias (i.e. a systematic exposure error) for very small values of the real concentration 145 
distributions c, see also the analogous comment above. 

The non-negative constraints are necessary to eliminate the unrealistic negative solutions resulting from measurement errors 
and ill-posed inverse problem. Please see the response in Sect. 2.1. (b). 

 

Sect. 2.4:  150 

Here you define the "true" concentration distributions that will be considered later to assess the various reconstruction 
methods. You should say also something regarding the synthetic observations b that you build on the basis of g(x,y). Which 
is the spatial mesh (or grid) that you use for the calculation of b, starting from g(x,y)? Do you add pseudo-random 
measurement noise to b, to emulate the real world situation in which the instrument is subject to measurement noise? Your 
equations discard the measurement error. Mathematically this is equivalent to assume uncorrelated noise equal to 1, thus 155 
you should add to each element of b a pseudo random noise with zero average and standard deviation equal to 1. 
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The concentration filed is discretized with a resolution of 0.2 m×0.2 m. The concentration of each pixel is the average value 
of the concentrations in that pixel. The discretized concentration map is used as the true concentration distribution. PICs are 
calculated based on the discretized map by using Eq. (1). We have added this description to the Sec. 2.4.  

The purpose of this study was to study the different regularization techniques to produce smooth reconstruction, instead of 160 
studying the influence of the measurement noise. After using the regularization technique, the optimized solution is robust to 
the measurement noise, and the reconstruction error is dominated by regularization error. Therefore, the measurement noise 
is negligible.  

 

Lines 293 and ff: the unusual naming conventions used in this part make it very difficult to understand for me and, I guess, 165 
also for the whole atmospheric community. G matrices defined at lines 298-300 are usually called "gain matrices". It is true 
that in this case they also represent the "generalized inverse" of L because the forward model (Le) is linear. Despite of that, I 
would still call G the "gain matrix", just for uniformity with Rodgers 2000. Equations at lines 299 and 300 should contain 
a"+" sign within the parenthesis. Matrix R is usually called "averaging kernel", not "resolution matrix", just because it 
shows how a change in the real concentration field maps onto the concentration estimated by the inversion system. The 170 
"resolution" is usually a scalar or vector quantifier computed on the basis of R. Line 304: what you call "regularization 
error" is usually called "smoothing error''. 

The names the reviewer gives are common in the atmospheric sounding problem. But the notations we use are more common 
in the problem of 2-D or 3-D tomography. It may be necessary to discuss the differences between the atmospheric sounding 
problem and 2-D gas tomography. 175 

1) One of the differences is apparently the 1-D inversion versus 2-D inversion. In the 2-D tomographic applications, a new 
factor to consider is the geometric configuration of the beam paths, whereas one does not need to do in the 1-D case. As 
a result, the path geometry largely affects the inversion. And this influence can be seen from the averaging kernel matrix 
(see Fig. 4 in the manuscript). 

2) For retrieval of vertical profile of an atmospheric quantity, a priori profile (xa) of the unknowns is usually introduced. 180 
The error caused by the priori profile can be measured by using the averaging kernel matrix, which makes it an 
important tool to evaluate the sensitivity of the inversion. However, in 2-D gas mapping problem, there is no a priori 
distribution of the gas concentration introduced. Therefore, the significance of the averaging kernel matrix is reduced.  

3) The averaging kernel matrix is also used to evaluate the regularization error, which is determined by the inversion 
algorithm instead of the a priori profile. This is what we did in this study. In this case, the regularization term forces the 185 
off-diagonal terms to be nonzero, thereby making the estimated concentration of each pixel a weighted average of the 
concentration of the surrounding pixels. As a result, there is no need to pursue a prefect averaging kernel matrix. The 
smooth weighting of the matrix is intended and necessary. This is also the focus of this manuscript. 

In summary, we think there are differences between the two applications fields. We think it is a hard choice and decide to 
change the 'resolution matrix' to 'averaging kernel matrix’ and keep other names unchanged. 190 

 

Line 305: what is the perturbation error G delta_b? Why should the observed quantities be perturbed? Maybe delta_b is the 
measurement error (noise + calibration, etc.)? Please explain.  

The perturbation is the measurement error due to various noise sources. We have updated the description in the manuscript. 

 195 

Line 307: note that the non - sensitivity to the "perturbation error" is not always an appreciated property for the solution. In 
fact this means that the solution is mostly independent from the observed quantity, therefore it mostly depends on the applied 
constraints, that is exactly what one usually wants to avoid.  



6 
 
 

As indicated in the manuscript (section 2.5) and in the response in Sect. 2.1. (b), the study focuses on the regularization term, 
which dominates the reconstruction error comparing to the perturbation error. In this case, the regularization error cannot be 200 
avoided and can be used to evaluate different regularization techniques. Please refer to the discussion of the differences 
between the atmospheric sounding problem and the 2-D gas mapping problem (Sect. 2.4. Lines 293 and ff).  

 

Eq. 23: why don't you write explicitly the expression for the Frobenius norm? Which is the advantage of using the Frobenius 
norm over the more usual trace[R] that, according to Rodgers, 2000 would represent the number of degrees of freedom for 205 
the signal? If R is not a orthogonal matrix (like in this case, I guess) then I am not able to find an easy interpretation for 
your quantifier of eq.(23) 

Frobenius norm is the square root of the sum of the absolute squares of the elements of a matrix. We have added the 
definition to the manuscript. R is not an orthogonal matrix and its row contains the weights of all pixels, which are 
determined by the path geometry and the regularization algorithm discussed in the response of Lines 293 in Sect. 2.4. As a 210 
result, the weights are spread over the pixels, and trace[R] is not useful in the study of either the regularization error or the 
path geometry, which is why we use the Forbenius norm. 

 

Line 365 and ff: how do you interpret the systematically slightly worse performance of MC as compared to LTD in terms of 
exposure error? I am also surprised to see such a large exposure error in the NNLS method as compared to the other two 215 
methods. Maybe this due to the larger size of the pixels used with NNLS? In this case it would be better to change eq.(20) by 
multiplying each concentration by the area of the pixel to which it refers (actually eq.(20) should compare the integrals of 
the concentration in the considered domain). 

After carefully examining the results. We found that that large error of NNLS and slightly worse performance of MC were 
mainly caused by using the spline interpolation after the reconstruction. Therefore, we have reproduced the results by using 220 
the nearest which has minimal effect on the original results. The new results illustrate that the MC algorithm shows slightly 
better performance than LTD in all cases, and the performance of NNLS is greatly improved than the previous results. We 
have updated Table 3 and the discuss of the results. 

Eq. (20) already includes the integrals of all the pixels in the domain. All the reconstructed pixels are compared with the 
simulated 'true' pixels. Therefore, they are using the same number of pixels no matter what their original grid divisions are. 225 

 

Sect. 3.4:  

at line 144 of the revised paper finally you reveal that you are using the "lsqnonneg" MATLAB routine to minimize the cost 
functions relating to the various methods considered. I was not able to establish what is exactly the minimization method 
used by this MATLAB function, however, for sure it does not find the solution mentioned at line 172 of your revised 230 
manuscript, because this latter is not bound to be positive. As explained later, I suspect that lsqnonneg is using iterations, 
which is not optimal at all for the linear case (b = Le) you are dealing with. This implies that the run-time analysis presented 
in sect. 3.4 is applicable only to the unlucky case in which one uses lsqnonneg. The optimal solution of your inversion would 
be to implement, directly, in a computer program the matrix operations at line 172. This would make the computation time 
dependent only on Nb (number of measured PICs) and on Ne (number of unknowns). Both Nb and Ne do not depend on the 235 
number of sources that you put in your domain, thus the computation time would not depend neither on the number of 
sources considered nor on their amplitude and location in the domain. You also claim that the MC method is much faster 
with respect to the LTD because of the fewer constraint equations. To my experience, if the solution at line 172 would be 
implemented, most of the computation time would be spent in the inversion of matrix A1WA, of dimension Ne. The number of 
constraint equations used would impact only the calculation of the product TT (that is needed to compute A'WA), thus the 240 
total computation time should depend only very marginally on the number of constraints used. 
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The NNLS algorithm of 'lsqnonneg' uses the algorithm described by Lawson and Janson (1995). As indicated in the 
manuscript, it is an active-set optimization method using an iterative procedure to converge on the best fit of positive values. 
The analytical solution is only demonstrated for the case without non-negative constraints. But it is not applicable in the 
problems with non-negative constrains and was not used in this study. Because of this, an iterative optimal algorithm needs 245 
to be used to solve the constrained inversion problem. Thus, your concern regarding computation time of lsqnonneg routine 
is not applicable in this case. We have added a sentence in the paragraph under Eq. (5) to explain this. 

 

Another discussion point are the absolute values of the computing times shown in Table 4 and their standard deviations: why 
the computation time changes and thus shows a standard deviation also when the method used and the number of sources do 250 
not change? (I suspect this is because lsqnonneg uses iterations whose number changes from test to test). Why is 
computation time so long? Are you using a very old CPU? Please specify. Assuming your inversion problem dimensions, 
finding the solution given at line 172 would require less than 1 second with a standard CPU. In conclusion, finding the 
solution as c = (AT W AJ1 AT W p ( as specified at line 172) would be much faster and the savings in computing time 
achieved with the MC method over the LTD would be much less important 255 

lsqnonneg uses an iterative procedure to converge on the best fit of positive values. Therefore, its speed is affected by the 
values of the coefficient matrix. This is common for an iterative optimal algorithm. We used a modern computer to do the 
calculation. The configuration of the computer has been listed according to the comment. The fast speed the reviewer gives 
is based on the analytical formula, which is not applicable in this study as explained in previous response. 

 260 

Line 378: what do you infer from fig's 4a and 4b? Are they useful? I was not able to extract information from them. In my 
previous review I was suggesting to include only Fig.s 4e and 4f. Of course additional figures are welcome, however they 
should convey useful information that should also be discussed in the text. 

The first two figures are the visualization of the fitness function. It is in 2-D form. Therefore, the values are represented by 
colors, and we cannot expect a curve like that in the 1-D inversion. We have revised the description.  265 

 

Line 388: figures 4e and 4f show diagonal elements significantly smaller than 1, this means that your regularization is 
actually very strong (w is very large). What do you get for trace[R] / Ne? I guess it is < < 1. In practice I feel that with a 
much softer regularization you would get solutions with better accuracy and similar smoothness. 

As indicated in the responses of Eq. 23 in Sect. 2.4, the elements in a row of the averaging kernel matrix are determined by 270 
the path geometry and regularization terms. The purpose is to evaluate the regularizations and this observation implicates it 
is working. The trace is not helpful in this case and fitness value was used. 

 

Figure 4: at least, please use the same color scale in the left and right maps, otherwise the comparison of the two methods is 
very hard .... 275 

The figures have been updated according to the suggestion. 

 

Section 3.6:  

the results reported in this section are not useful as they are not general for the experimental setup considered, they depend 
on the dimension of the assumed sources. From what stated at line 399, I understand that these sensitivity tests are 280 
performed assuming 5 Gaussian source functions, whose minimal Full Width at Half Maximum (FWHM) is 2.8 m x 2.355 = 
6.59 m (see line 272 and the properties of the Gaussian function). When the dimension of the smallest source function is 
about 6.6 m, clearly there is no much advantage to go from a 18x18 grid (pixel size = 40m/18 = 2.22 m) to a 40 x 40 grid 
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(pixel size = 40m/30 = 1.33 m) as in both cases the pixel size is significantly smaller than the source size. Usually, in real 
situations, the size of the source is unknown and what is useful to know is the spatial resolution of the measuring plus 285 
inversion system. The averaging kernels are usually an adequate tool to answer this question: the dimension of the main 
yellow spots of maps in fig. 4c and 4d quantify the spatial resolution of your measuring system at the location of indexes 16 
and 4. 

We used the same settings of the sources with the GT-MG, whereas the values are common for mapping of small-scale air 
pollutants. These results generally show us the trends with changing grid size. It was also indicated in the manuscript that 290 
there is a certain threshold value from the trend, which was 24×24 in this case. It may be a different resolution for other 
application, but the trends are the same. Fig 4. (c) and (d) clearly show the averaging kernels mainly determined by the beam 
geometry, which makes it a good tool for optimizing the beam configuration.  

 

Lines 410 - 413: from the theoretical point of view, the growth of computation time for this inverse problem should roughly 295 
follow a polynomial law as a function of the number of pixels. Did you really prove that the behavior you find is 
exponential? If the behavior is really exponential then you should give a justification so as why the computation time 
increases so rapidly in your case.  

The exponential trend was concluded from an exponential fit with a R2=0.9996. Our purpose is to show that the computation 
time grows fast with increasing pixels and the trend is 'approximately' exponential. Of course, we can fit it with a polynomial 300 
(dependent on what order you use). But we are not intended to prove what exactly the trend it should follow, which is related 
to the details of the optimization algorithm. What we did was to use the same optimization algorithm for all the three 
reconstruction techniques presented in this study to make sure the comparisons were based on the same standard. 

 

Conclusion section: as outlined above, in my view the time computing savings of the MC method, if any, should be assessed 305 
using an optimal solving algorithm for your inversion problem, not the MATLAB lsqnonneg routine. In conclusion, either 
you renounce claiming the time savings or you implement an optimized solver (like eq. at line 172 implemented in 
FORTRAN or in C). 

As explained in the response of the second question in Sect. 3.4 responses, the analytical formula is for the problems without 
non-negative constraints and is not applicable to the problems with non-negative constraints in this study. Also, the NNLS 310 
algorithm that the lsqnonneg uses is the most widely used inversion algorithm for solving non-negative least squares 
problems.  

 

Minor corrections 

Line 14:  315 

I would say "regularization term" (regularization is not a factor in the inversion formula) 

"term' has been used. 

 

Line 22 (and line 113):  

It is also simpler to perform .. . maybe you meant "implement" instead of "perform" ? 320 

'implement' has been used. 
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Line 204:  

bending ? 

Changed to “potential energy stored in a bended elastic object.” 325 

Line 272: 

units of sigma_x and sigma_y should be "m" (meters). 

The unit 'm' has been added. 

 

Line 416:  330 

seminors ? · 

'seminorms' has been used. 
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