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Abstract. Optical remote sensing (ORS) combined with the computerized tomography (CT) technique is a powerful tool to 

retrieve a two-dimensional concentration map over the an area under investigation. But unlike theWhereas medical CT usually 

uses , the beam number used in ORS-CT is usually dozens comparing to up to of hundreds of thousands in the former, ORS-

CT usually uses a beam number of dozens, which thus severely limitlimitings the spatial resolution and the quality of the 

reconstructed map. This situation makes the 'smoothness' a priori information is therefore crucial especially necessary for 10 

ORS-CT. Algorithms thatwhich produce smooth reconstructions include smooth basis function minimization (SBFM), grid 

translation and multiple grid (GT-MG), and low third derivative (LTD), among which the LTD algorithm is a promising one 

withbecause of fast speed and simple realization. But However, its characteristics and the theoreticaly basis are not clearmust 

be clarified to better understand the characteristics of its smoothness constraints. Moreover, the computational efficiency and 

the reconstruction quality need to be improved for practical applications. This paper first treated the LTD algorithm as a special 15 

case of Tikhonov regularization that uses the approximation of the third-order derivative as the regularization factor. Then, to 

seek more flexible smoothness constraints, we successfully incorporated the smoothness seminorm used in variational 

interpolation theory into the reconstruction problem. Thus, the smoothing effects can be well understood according to the close 

relationship between the variational approach and the spline functions. Furthermore, employs two theories, i.e., Tikhonov 

regularization and spatial interpolation, to produce a smooth reconstruction by ORS-CT. Within the two theories’ frameworks, 20 

newother algorithms can be explored in order to improve the performanceformulated by using different seminorms. For 

exampleOn the basis of this idea, we propose a new minimum curvature (MC) algorithm by based on the variational approach 

in the theory of the spatial interpolationusing a seminorm approximating the sum of the squares of the curvature, which reduces 

the number of linear equations by to half comparing to that in the LTD algorithm using the biharmonic equation instead of the 

smoothness seminorm. We compared our The MC algorithm was compared with the non-negative least square (NNLS), GT-25 

MG, and LTD algorithms by using multiple test maps. The MC and the LTD algorithms haveThe MC algorithm, compared 

with the LTD algorithm, shows similar performance as on in terms of the reconstruction quality. But the MC algorithm but 

needs requires only about approximately 65% the computation time of the LTD algorithm. It is much also simpler in realization 

than to perform than the GT-MG algorithm by usingbecause it directly uses high-resolution grids directly during the 

reconstruction process to generate a high-resolution map immediately after one reconstruction process is done. Compareding 30 
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to with the traditional NNLS algorithm, it shows better performance in three aspects: (1) the nearness of reconstructed maps 

is improved by more than 50%; (2) the peak location accuracy is improved by 1- 2 m; and (3) the exposure error is improved 

by more than 10 ten times. The testing results show indicated the effectiveness of the new algorithm based onaccording to the 

spatial variational interpolation theoryapproach. More specific algorithms could be similarly further formulated and evaluated. 

Similarly, other algorithms may also be formulated to address problems such as the over-smooth issue in order to further 35 

improve the reconstruction equality. Thise studyies will promotes the practical application of the ORS-CT mapping of 

atmospheric chemicals. 

1 Introduction 

Measuring the concentration distribution of atmospheric chemicals over a large areas is required in many environmental 

applications, including such as locating hot spots or emission sources of air pollutants (Wu et al., 1999), understanding air 40 

pollutant dispersion and airflow patterns, and quantifying emission rates or ventilation efficiency (Samanta and Todd, 2000; 

Belotti et al., 2003; Arghand et al., 2015). The traditional network methods uses multiple point samplers placed at various 

locations in the region under investigation, which. This method is is intrusive, time-consuming, and limited in temporal and 

spatial resolution (Cehlin, 2019). The advanced method is based on the combination of optical remote sensing (ORS) and 

computerized tomography (CT) techniques (ORS-CT). ORS-CT is is a powerful technique for sensitive mapping of air 45 

contaminants measurement, which can detect a largethroughout kilometer-size areas in situ and provide near real -time 

information (Du et al., 2011). The path-integrated concentration (PIC) is measured along each path using techniques likeTwo 

commonly used ORS techniques use an open-path tunable diode laser (OP-TDL) or and open-path Fourier transform infrared 

spectrometer (OP-FTIR). The ORS analyzer emits a light beam targeted at multiple mirrors, which reflect the beam back to 

the analyzer. For each beam path, the path-integrated concentration (PIC) is obtained. After multiple PICs are collected, the a 50 

two-dimensional concentration map can be reconstructed generated by through the CT techniquetomographic reconstruction 

algorithms (Hashmonay et al., 2001). The ORS-CT method provides better spatial and temporal resolution than the network 

approach, and it is more sensitive than the range-resolved optical techniques. Comparing to other techniques, ORS-CTIt is also 

non-intrusive and fast. It also has good spatial resolution and can worksuitable for continuously long-term and 

automaticallymonitoring. These advantages make ORS-CT have the potential to be an excellent tool for investigating air 55 

dispersion problems under various conditions. 

 

In ORS-CT mapping of atmospheric chemicals, owing to factors including system cost, response time, beam configuration, In 

environmental applications, the number of beams in ORS-CT is usually less than 50only tens , whereas the number of beams 

in medical CT is hundreds of thousandscomparing to hundreds of thousands of beams used in the medical CT due to factors 60 

including cost, response, configuration, and other practical considerations. The very small beam number poses several 
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challenges in tomographic reconstruction algorithms. The reconstruction techniques have been well studied in medical CT. 

Theoretically, the true distribution can be determined exactly by Radon transformation approach, which requires infinite beams 

(Radon, 1986). In practice, the transformation methodsapproaches  based on the theory of Radon transformation using a include 

back projection and filtered back projection (FBP) formula methodsare not feasible because of noise and artifacts in the 65 

reconstructions (Radon, 1986; Herman, 2009). Series-expansion-based methods are another type of approaches which estimate 

Series expansion methods, which discretize the reconstruction problem before any mathematical analysis, are usually used in 

ORS-CT. The underlying distribution is represented by a linear combination of a finite set of basis functions (Censor, 1983). 

the true distribution by finding a finite set of numbers or superposition of a set of simple functions. In environmental 

applications, the number of beams in ORS-CT is usually less than 50 comparing to hundreds of thousands of beams used in 70 

the medical CT due to factors including cost, response, configuration, and other practical considerations. Therefore, only the 

series-expansion-based methods are applied in ORS-CT, which includeThe simplest type is the  two main types of approaches: 

pixel-based approach and basis-function-based approach. Ppixel-based approach, which  divides an area into multiple grid 

pixels (grids) and assigns a concentration value to each pixelassigns a unit value inside each pixel. The PIC path integral is 

approximated by calculated by summarisingthe summation of the product of the pixel concentration value and the length of 75 

the path in each that pixel. A system of linear equations can be set up for multiple beams. The inverse question problem is 

toinvolves finding the best optimal set of pixel concentrations. Basis-function approach assumes that the true distribution is 

determined by the superposition of a set of simple basis functions with unknown parameters. Possible basis functions include 

bilinear function, bivariate Gaussian function, etc (Giuli et al., 1999; Hashmonay et al., 1999). A system of non-linear equations 

is set up for multiple beams. The question is to find the best set of parameters. For both approaches, the inverse questions are 80 

solved by minimizing the error function constructed based onaccording to some criteria (Price et al., 2001) , including the least 

square criterion to minimize the summation of the squared errors between the observed and model-predicted PICs; the 

maximum likelihood (ML) criterion to maximize the probability of the PIC observations given the distribution of the random 

variables of the concentrations and observation errors; and the maximum entropy criterion to maximize the entropy of the 

reconstructed maps, given that the average concentration of the map is knownincluding minimizing the L2 norm of error 85 

(finding a least-squares (LS) solution), maximum likelihood (ML), maximum entropy , etc(Herman, 2009). In pixel-based 

reconstruction, the inverse problem is linear but usually ill-posed. The number of equations is very large. Commonly 

usedNumerical iterative techniques  pixel-based algorithms are used to estimate the solution, including algebraic reconstruction 

techniques (ART) (ART), non-negative least square (NNLS)steepest descent, conjugate gradient (CG), and expectation-

maximization (EM) (Tsui et al., 1991; Lawson and Janson, 1995; Todd and Ramachandran, 1994; Drescher et al., 1996). The 90 

NNLS algorithm has similar performance to the ART algorithm but shorter computation time (Hashmonay et al., 1999). It has 

been used in US EPA OTM-10 for horizontal radial plume mapping of air contaminants (EPA, 2005). The EM algorithm is 

mainly used for ML-based minimization. These traditional pixel-based algorithms are suitable for rapid CT, but they produce 

maps with poor spatial resolution, owing to the requirement that the pixel number must not exceed the beam number, or they 
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may have problem of indeterminacy associated with substantially underdetermined systems (Hashmonay, 2012). In the basis-95 

function-based approach, the inverse problem is usually non-linear. Stochastic optimization algorithms need to be used to find 

the global minimum (e.g., simulated annealing (SA)).  

 

To mitigate the problem of indeterminacy and improve the spatial resolution of reconstructions without substantially increasing 

the system cost, the smooth basis function minimization (SBFM) algorithm has been proposed. This algorithm represents the 100 

distribution map by a linear combination of several bivariate Gaussian functions (Drescher et al., 1996; Giuli et al., 1999). 

Each bivariate Gaussian has six unknown parameters (normalizing coefficient, correlation coefficient, peak locations and 

standard deviations) to be determined. The problem requires fitting these parameters to the observed PIC data. For ORS-CT 

mapping of atmospheric chemicals, lThis method iteratures show that the smooth basis function minimization (SBFM) 

algorithm performs better performs better than otherthe traditional pixel-based algorithms (Drescher et al., 1996). This is b for 105 

ORS-CT applications because the patterns of air dispersion are physically smooth in shape (Wu and Chang, 2011). Therefore, 

an algorithm converging toward smooth concentration distribution consistent with the path-integrated data is a rational choice 

(Cehlin, 2019). However, the resultant equations defined by the PICs are non-linear because of the unknown parameters. The 

search for the best-fit set of parameters minimizing the mean-squared difference between predicted and measured path integrals 

can be performed through an iterative minimization procedure, such as the simplex method or simulated annealing. 110 

The reported methods using simulated annealing to find a global minimization are SBFM is highly computationally -intensive 

due to the non-linear optimization, which was reported to be about 100 times slower than pixel-based algorithms (Price et al., 

2001). This makes it unfavorable, thereby limiting the SBFM algorithm’s practical applications, such as for rapid 

reconstruction, which is usually required  rapid reconstruction in industrial applications such as monitoring of chemical plants. 

However, an algorithm converging toward a smooth concentration distribution consistent with the path-integrated data has 115 

been demonstrated to be a rational choice. To improve the computational speed and append the smoothness a priori information 

to the inverse problemA representative pixel-based algorithm is the non-negative least square (NNLS), which is also the 

algorithm used in the USEPA OTM-10 for horizontal radial plume mapping (HRPM) measurements (EPA, 2005). It achieves 

similar results as the multiplicative algebraic reconstruction technique (MART), but with shorter computing time (Hashmonay 

et al., 1999). The traditional pixel-based algorithms, although suitable for rapid CT, have poor performance comparing to 120 

SBFM algorithm (Wu and Chang, 2011). This is mainly due to the coarse grid resolution limited by the beam number. Because 

the algorithm requires the number of grids to be less than or equal to the number of beams (Hashmonay, 2012). 

To improve the performance of traditional pixel-based algorithms, there are two reported approaches used in ORS-CT. One 

method is t, the pixel-based 'low third derivative' (LTD) algorithm has been proposed, which. This algorithm adds sets the 

third derivative at each pixel to zeroas a smoothness restriction (Price et al., 2001). , thus resulting in a new system of linear 125 

equations that is overdetermined. The LTD algorithm was has been reported to work nearly as well as the SBFM algorithm, 

but was is about approximately 100 times faster (Price et al., 2001). Another method to produce the smoothness effect is the 
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'grid translation' (GT) algorithm, which shifts the basis grid by different distances (e.g., 1/3, or 2/3 the width of the basis grid) 

horizontally and vertically while keeping the basis grid fixed (Verkruysse and Todd, 2004). The performance is 

improvedSmoothness is achieved by averaging the reconstruction results after each shifting. There is also aAn improved 130 

version called 'grid-translation and multi-grid' (GT-MG), which applies the GT algorithm at different basis grid resolutions 

(Verkruysse and Todd, 2005). This method has been successfully used with the maximum likelihood expectation maximization 

(ML-EM) algorithm to improve the reconstruction accuracy, especially particularly in determining the peak location and value 

(Cehlin, 2019). 

 135 

The successes of these algorithms show demonstrates the necessary need of to applying the smoothness restriction to the ORS-

CT gas mapping. Using With the LTD algorithm, we can easily achieve a smooth reconstruction is achieved by simply adding 

the third-order derivative constraints. The generated solutions are locally quadratic. However, like the Gaussian model used in 

the SBFM algorithm, the smoothness in the LTD algorithm is also achieved based on ideal model (quadratic functions)To. It 

is necessary to understand the characteristics of this these model constraints andin order to apply the algorithm method to 140 

specific application, the . But the theoreticaly basis of the LTD algorithm must be understood. However, this basis is  was not 

clearly givendefined in the literature. When we tried toWith the purpose of introducinge the smoothness as a priori 

informationconstraints to the reconstruction process, we found that the LTD algorithm can be treated as a special case of a 

smooth reconstruction could be achieved based on two well-established theories. The first one is thethe Tikhonov  

regularization, a well-known technique to theory originated from Tikhonov for solving solve the ill-posed inverse problem 145 

(Tikhonov and Arsenin, 1977; Rudin et al., 1992). The most well-known approach is the Tikhonov L2 regularization , which 

uses a penalty term defined by the squared norm of the ith-order derivative of the function as a regularization factor and 

produces a smoothing effect on the resulting solution (Gholami and Hosseini, 2013). From The third-order derivative is used 

in the view of regularization theory, the LTD algorithm is a regularized algorithm which uses the third-order derivative. In 

fact,, although the first, second, and higher order derivatives can also produce smooth results. A more flexible method of 150 

regularization uses the smoothness seminorm The second one is the interpolation theory based on which almost all algorithms 

introduce the smooth effect to the output. Specifically, theaccording to the variational interpolation approach theory, given its 

similar formula (Mitasova et al., 1995). The variational method is another way of achieving spline interpolation, given that the 

interpolation polynomial splines can be derived as the solution of certain variational problems of minimizing an integral whose 

integrant can produce a regularized inverse problem similar to Tikhonov regularization by using a smoothness seminorm. The 155 

seminorm consists of different order derivatives or their combinations. The solution to this inverse problem is a set of spline 

functions. For example, a bivariate smoothness seminorm with squares of second derivative leads to a thin plate spline (TPS) 

function. Based on the variational interpolation theory, the LTD algorithm is a special case of the regularized spline with 

tension (RST) (Mitasova et al., 1995).   
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The interpolation techniques are based on the given sample points, in contrast to tomographic reconstruction, in which only 160 

the line integrals are known. However, we have found that the interpolation can be adopted in the reconstruction process to 

produce a smooth solution by using the smoothness seminorm for interpolation as a smoothness regularization factor for the 

tomographic reconstruction problem. In the view of variational splineframework of the regularized inversion and spatial 

interpolation theories, the characteristics of the derivative-based algorithmsalgorithms using different seminorms  have 

beencan be well explored in the literature. The LTD algorithm can be considered as one case that minimizes the seminorm 165 

consisting of the third-order derivatives (Bini and Capovani, 1986). Other algorithms can also be formulated by using different 

seminorms. In this paperOn the basis of this idea, we propose a new minimum curvature (MC) algorithm based on the 

variational interpolationusing a seminorm approximating the integral of the squares of the curvature. This algorithm generates 

a smooth reconstruction approximating the application of cubic spline interpolation. We compared the algorithm with the 

NNLS, LTD, and GT-MG algorithms by using multiple test maps. We demonstrated its effectiveness and two main aspects of 170 

this method. First, smooth effect similar to spline interpolation is achieved during the reconstruction process by using high-

resolution grid division, and second, It improves the computational efficiency is markedly better than that ofcomparing to the 

LTD algorithm by through using the corresponding biharmonic equationhalving the number of linear equations  instead of 

theaccording to the new smoothness seminorm to construct the additional linear equation at each pixel of the map, the new 

MC algorithm reduces the number of equations to half of the LTD algorithm and eventually reduces the computation time. 175 

This approach achieves the same performance but is easier to perform Another innovation of the new algorithm is to use much 

larger number of grids than the number of beams instead of the comparable numbers of grids and beams in the traditional 

methods. Cthanomparing to the GT-MG algorithm which has the complicated operations involving multiple grids and grid 

translation operations in GT-MG algorithm. More specific algorithms applied for the ORS-CT method for mapping 

atmospheric chemicals could be further formulated and evaluated similarly, this approach offers the same performance but is 180 

much easier to realize. We compared the new MC algorithm with the NNLS, LTD, and GT-MG algorithms using multiple test 

maps. These tests showed the effectiveness of the new MC algorithm. This study also demonstrates the feasibility of 

introducing techniques from the Tikhonov regularization and spatial interpolation to the ORS-CT method for mapping 

atmospheric chemicals.  

2 Materials and methodologies 185 

2.1 ORS-CT and beam geometry 

The area of the test field is was 40 m × 40 m. We use the open-path tunable diode laser (OP-Open-path TDL) was used as the 

ORS analyzer, which is was installed on a scanner and aims aimed at multiple retroreflectors by scanning periodically and 

continuously. The beam geometry can be categorized into overlapped and non-overlapped beam geometry based on the way 
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the beams are deployed. To compare with the results with those of the GT-MG algorithm, we used an overlapping beam 190 

configuration similar to the onethat used in by Verkruysse and Todd (2005).  

As shown in Fig. 1, four TDL analyzers are were located at the four corners of the test field. ThThee retroreflectors were are 

evenly distributed along the on the edges of the field. The total number of retroreflectors was 20. Each retroreflector reflected 

the laser beams coming from two different directions. Excluding the overlapped beams along the diagonals, the The total beam 

number is was 38. For the traditional pixel-based algorithm, the pixel number  of grids should be less thannot exceed or equal 195 

to the beam number. Therefore, we divided the test field into 6 × 6=36 pixelsgrids. The concentration within each grid pixel 

is was assumed to be uniform. 

 

                                        (a)                                                                              (b)  

Figure 1. The test field and beam configuration and grid division. (a) beam geometry; (b) beam geometry withThe field was divided into 6 200 
× 6 grid pixels. Four open-path TDL analyzers were located at the four corners. A total of 20 retroreflectors were distributed on the edges of 

the field. 

At For each retroreflectorlaser beam, the the path-integrated concentration (PIC was measured by the analyzer) is measured. 

The predicted PIC for one beam was equal to the sum of the multiplication of the pixel concentration and the length of the 

beam inside the pixel. In general, let us assume that the site is divided into Nc=m×n pixels, which are arranged as a vector 205 

according to the left-to-right and top-to-bottom sequence and indexed by j. The average concentration for the j-th pixel is cj. 

The total number of laser beams is Nb, which are indexed by i. The length of the i-th laser beam passing the j-th pixel is Lij. 

Then, for the i-th beam, the measured PIC bi is contributed by all pixels. We have the following linear equation 

The PIC of the i-th beam and the system of linear equations for all the paths are 

𝑝𝑏𝑖 = ∑ 𝐿𝑖𝑗𝑐𝑗
𝑁𝑐𝑁𝑛
𝑗=1  ,    𝑐𝑗 ≥ 0                                                                                                                                                                   (1) 210 

A system of linear equations can be set up for all beams  

𝒑𝒃 = 𝑳𝒄 ,    𝑐𝑗 ≥ 0                                                                                                                                                                                      (2) 
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where L is the kernel matrix that incorporates the specific beam geometry with the pixel dimensions, c is the unknown 

concentration vector of the pixels, and b is a vector of the measured PIC data. With the least squares approach, the 

reconstruction can be solved by minimizing the following problemwhere p is the PIC, N=m×n is the total number of grids, m, 215 

n  the row and column number of the grids, i, j is the index of path number and cell number respectively, Lij is the beam length 

of the ith beam in the jth cell, cj is the concentration of the jth cell.  

min
𝒄

  ||𝑳𝒄 − 𝒃||2
2, subject to 𝒄 ≥ 0                                                                                                                                     (3) 

where ||·||2 denotes the Euclidean norm. This non-negative constrained linear least squares inverse problem is can be solved by 

the widely used iterative NNLS optimization algorithmsalgorithm of NNLS (Lawson and Janson, 1995), which is an active-220 

set optimization method using an iterative procedure to converge on the best fit of positive values. The routine “lsqnonneg” in 

MATLAB software was used in this study. The optimal least squares solution is not smooth because the minimizing process 

does not introduce smoothness a priori information. Herein, the NNLS algorithm in the tomographic reconstruction refers to 

solving the original problem by using the NNLS optimization algorithm without adding additional a priori information. When 

the system of linear equations is underdetermined, the solution is not unique. Additional information must be introduced to 225 

choose the appropriate solution.. 

2.2 LTD algorithm and Tikhonov regularization and LTD algorithm 

The LTD algorithm introduces the smoothness featureinformation by settingthrough setting the the third-order derivatives of 

the concentration to be zero at each grid pixel in both eachx and y directions, which willthus generatinge solutions that are 

locally quadratic (Price et al., 2001). We define cj as an element of a one-dimensional (1-D) concentration vector of the pixels, 230 

but the pixels also have two-dimensional (2-D) structure according to the grid division of the site area and can be indexed by 

the row number k and column number l, where j=(k-1)n+l. We use Ck,l to denote the pixel concentration at the pixel located at 

the k-th row and l-th column of the grids. The third-derivative prior equations at the (k, l) pixel are defined as Assuming the 

grid indices in x, y directions are i, j, the new equations at one grid are 

𝑑3𝐶𝑐

𝑑𝑥3 = (𝐶𝑘+2,𝑙 − 3𝐶𝑘+1,𝑙 + 3𝐶𝑘,𝑙 − 𝐶𝑘−1,𝑙)
1

∆𝑥

1

∆𝑑
(𝑐𝑖+2,𝑗 − 3𝑐𝑖+1,𝑗 + 3𝑐𝑖,𝑗 − 𝑐𝑖−1,𝑗) = 0                                         235 

𝑑3𝐶𝑐

𝑑𝑦3 = (𝐶𝑘,𝑙+2
1

∆𝑑
(𝑐𝑖,𝑗+2 − −3𝐶𝑘,𝑙+1𝑐𝑖,𝑗+1 + +3𝐶𝑘,𝑙𝑐𝑖,𝑗 − 𝐶𝑘,𝑙−1) − 𝑐𝑖,𝑗−1)

1

∆𝑦
= 0                                                                                                                                            

(34) 

where Δd=Δx=Δy=Δd is the grid length in the x, y direction divided in Eq. 3 to convert the grid-based derivatives into physical 

units. Therefore, two additional linear equations are introduced at each gridpixel defined by Eq. (34). There will be 2Nc linear 

equations appended to the original linear equations (defined by Eq. (2), thus resultsing in a new over-determined system of 240 

linear equations with (2Nc +Nb) equations and Nc unknowns. that is over-determined.  

A weight needs to beneeds to be assigned to each equation depending on the uncertainty of the observation. Under the 

assumption that the analyzers have the same performance, the uncertainty is mainly associated with the path length. Therefore, 
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equations are assigned For the laser paths, wweights are assigned inversely proportional to the path length to make sureensure 

that different paths have equal weightsinfluences. In this applicationHerein, the lengths of the laser paths are comparable (less 245 

than two times difference)approximately equal to each other. ThusTherefore,, their weights areare all set to the same value and 

scaled to be one1. The weights for the third-derivative prior equations areare assigned as the same value (of w) , because they 

areare all based on the singlesame grid length. The determination of w follows the scheme for determining the regularization 

parameter described below. With the least squares approach, the reconstruction is intended to minimize the following problem 

min
𝒄

‖[ 𝑳
𝑤𝑻

]𝒄 − [𝒃
0
] ‖

2

2
 , subject to 𝒄 ≥ 0                                                                                                                                (5)                                                                                         250 

where T is the kernel matrix for the third-derivative prior equations. Assuming that the new augmented kernel matrix is A and 

the observation vector is p, the new system of linear equations will be Ac=p. The non-negative least squares solution The 

approximation solution can bewas also found byby traditional methods likethe NNLS optimization algorithm. If the non-

negative constraints are ignored, the least squares solution can be found analytically as (𝑨𝑻𝑾𝑨)−𝟏𝑨𝑻𝑾𝒑, where W is a 

diagonal matrix whose diagonal elements are the weights (Price et al., 2001). 255 

 

The  LTD algorithm actually constructs a regularized inverse problem. It can be viewed as onea special case of the  

Tikhonov L2 regularization, which is the most well-known Tikhonov regularization technique. Its formThe Tikhonov L2 

regularization can be written as the following minimization problem (Gholami and Hosseini, 2013)21 

argmin𝑚𝑖𝑛
𝒄∈ℝ𝑛

   ‖𝑳𝒄 − 𝒃‖2
2 + 𝜇‖𝑫𝑘𝒄‖2

2{‖𝑳𝒄 − 𝒑‖2
2 + 𝜇‖𝑹𝑖𝒄‖2

2}                                                                                                                                              260 

(346) 

Wherewhere the first term represents the discrepancy between the measured and predicted values, the second term is the 

regularization term adding a smoothness penalty to the solution, μ is the regularization parameter controlling the conditioning 

of the problem, and matrix Ri Dk is the regularization operator, which is typically an approximation of thea ithkth-order 

difference derivative operator. The  first- and the second-order difference derivative operators are commonly used.  265 

We can see that theFor LTD algorithm, the uses the third-order  

The LTD algorithm uses the third-order derivative operator. Assuming the grid indices in x, y directions are i, j, the third-order 

derivative at y-direction is 

𝑑3𝑐

𝑑𝑗3 = 𝑐𝑖,𝑗+2 − 3𝑐𝑖,𝑗+1 + 3𝑐𝑖,𝑗 − 𝑐𝑖,𝑗−1                                                                                                                                     (4) 

The third-order derivativeforward difference operatorin matrix form is 270 

𝑹𝑫3 =

[
 
 
 
 
 
 
−1 3 −3 1

−1 3 −3 1

⋱

1 3 −3 1
1 3 −3 1 ]

 
 
 
 
 
 

1

∆𝑑
∈ ℝ(𝑚−3)×𝑛                                                                                                             (57) 
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For pixelgrids onat the edges, we use the second-order derivative and first-order difference operators derivative can be used.. 

The regularization parameter is set to be inversely propositional to the grid length. By setting the derivative to zero, the 

algorithm introduces two linear equations at each grid. The resulted system of linear equations is over-determined, which can 275 

be solved by NNLS algorithm. The regularization parameter is the same as theanalogous to the weight assignedparameter for 

the prior equations to the third-derivative equations in the LTD algorithm. Therefore, μ=w/ Δd, which is inversely proportional 

to the grid length. 

The regularization parameterIt determines the balance between data fidelity and regularization terms. Determination of the 

optimum regularization parameter is an important step ofin the regularization method. It determines the balance between data 280 

fidelity and regularization terms. There are some parameter-choice methods existed with or without a priori information of 

the noise (Hamarik et al., 2012). However, the regularization parameter is problem and data dependent. There is no general-

purpose parameter-choice algorithm whichthat will always produce a good parameter. For simplicity, we use the commonly 

used method based on the discrepancy principle (Hamarik et al., 2012).  The regularization parameter μ (μi) is chosen from a 

finite section of a monotonic sequence. For each value of μi, an optimal solution is derived by solving Eq. 4the inverse problem. 285 

Then the discrepancy (the first term in Eq. 4) can then be calculated. The regularization parameter is determined to be the 

highest value that makes the discrepancy the  ‖𝑳𝒄 − 𝒃𝒑‖2
2 = ||𝒆||2, equal to where ||𝒆||2 is the residual normNbσ2, where σ is 

the standard deviation of the noisewhich can be determined by examining the variance and uncertainty. In this applicationstudy, 

the reconstructions variedy only slowly with the regularization parameters,. Therefore, pprecise selection of the 

weightsparameter wasis not necessary. For computational efficiency, the regularization parameter can bewas selected from 290 

four widely varying values. The one producesing the smallest discrepancy wasis used.   

2.3 Variational approach interpolation and minimum curvature algorithm 

Splines are special types of piecewise polynomials, which have been demonstrated to be very useful in numerical analysis and 

in many applications in science and engineering problems. They match given values at some points (called knots) and have 

continuous derivatives up to some order at these points (Champion et al., 2000). Spline interpolation is preferred over 295 

polynomial interpolation by fitting low-degree polynomials between each of the pairs of the data points instead of fitting a 

single high-degree polynomial. Normally, the spline functions can be found by solving a system of linear equations with 

unknown coefficients of the low-degree polynomials defined by the given boundary conditions.  

The variational approach for interpolation provides a new way to find the interpolating splines and opens up directions in 

theoretical developments and new applications (Champion et al., 2000). Variational interpolation was motivated by the 300 

minimum curvature property of natural cubic splines, i.e., the interpolated surface minimizes an energy functional that 

corresponds to a physical bending energy. This principle provides flexibility in controlling the behavior of the generated spline. 

Given an observation zk (k=1, …, N) measured at the k-th point whose position vector is rk, a spline function F(r) for 
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interpolating the data points can be found through the variational approach by is to minimizinge the sum of the deviation from 

the measured points and the smoothness seminorm of the spline functionthe following problem 305 

𝑚𝑖𝑛 argmin
𝑐∈ℝ𝑁𝑛𝐹

  ∑ |𝐹(𝒓𝑘) − 𝑧𝑘|
2𝑁

𝑘=1 +  𝜔𝐼(𝐹) {‖𝑳𝒄 − 𝒑‖2
2 +  𝜔|𝐼(𝑐)|2}                                                                                                                                                

(68) 

where 𝜔ω is a positive weight, and and |I(cF)|2 denotes the square of smoothness seminorm. The seminorm can be defined in 

various forms. , The commonly used ones are the first, second, third derivatives, or their combinations. The solutions of to the 

minimizing problems are is spline functions, which can also be found by solving a Euler-Lagrange differential equation 310 

corresponding to the given seminorm (Briggs, 1974)..  

We can see that the minimizing problem in Eq. (8) has a similar form to the Tikhonov regularization but with a more flexible 

regularization term. The problem is that the variational interpolation is based on given data points, whereas the tomographic 

reconstruction is based on measured line integrals. However, we show herein that the variational approach for interpolation 

can also be applied to the latter problem to produce a smoothness solution with an effect similar to spline interpolation. In 315 

addition, on the basis of different seminorms, we can formulate many different reconstruction algorithms. In this way, we 

propose a new minimum curvature (MC) algorithm. 

Under the assumption that the unknown concentration distribution is described by a function f(x, y), (xk, yl) are the smallest 

coordinates of the j-th pixel at row k and column l of the 2-D grids, then the concentration cj equals the average concentration 

of the pixel 320 

𝑐𝑗 =
1

(∆𝑑)2
∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑦𝑙+1

𝑦𝑙

𝑥𝑘+1

𝑥𝑘
                                                                                                                                           (9) 

The minimization problem according to the variational approach is formulated as 

𝑚𝑖𝑛
𝑓

  ∑ ∑ ||
𝑁𝑐
𝑗=1 𝐿𝑖𝑗𝑐𝑗

𝑁𝑏
𝑖=1 − 𝑏𝑖||2

2 +  𝜔𝐼(𝑓)                                                                                                                                  (10) 

For the MC algorithm, we define the seminorm Based on different seminorms, we can formulate many different reconstruction 

algorithms. As a demonstration, we propose the minimum curvature (MC) algorithmaccording to the minimum curvature 325 

principle, which is used in the , geographic data interpolation to seek a 2-D surface with continuous second derivatives and 

minimal total squared curvature (Briggs, 1974). The minimum-curvature surface is analogous to elastic plate flexure, and it 

approximates the shape adopted by a thin plate flexed to pass through the observation data points with a minimum amount of 

bending. This method generates the smoothest possible surface while attempting to follow the observation data as closely as 

possible. which uses tThe seminorm in the MC algorithm is equal todefined to be equal to the total squares curvature:  330 

|𝐼(𝑓𝒄)|2 = ∫∫ (
𝜕2𝑐𝑓

𝜕𝑥2 +
𝜕2𝑐𝑓

𝜕𝑦2 )
2

𝑑𝑥𝑑𝑦                                                                                                                                                 (711) 

This integral must be discretized according to the grid division. According to the minimum curvature principle, the 

minimization can be carried out by solving the biharmonic equation. (Briggs, 1974) 

𝜕4𝑐

𝜕𝑥4 + 2
𝜕4𝑐

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑐

𝜕𝑦4 = 0                                                                                                                                                          (8) 
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T deduce the normal difference equations, Eq. 7 is constructed directly in terms of grid values ci,j.The discrete total squares 335 

curvature is 

𝐼 = ∑ ∑ (𝐼𝑘𝑖,𝑙𝑗
2𝑚𝑁

𝑗𝑙=1
𝑛𝑁
𝑘𝑖=1 )2                                                                                                                                                                             

(912) 

where Iik,l,j is the curvature at the (k,l) pixelxi, yj, which is a function of cCik,lj and its neighboring gridpixel values. In two 

dimensions the approximation to the curvature is. In two dimensions, it is 340 

𝐼𝑘𝑖,𝑙𝑗 = (𝑐𝐶𝑘𝑖+1,𝑙𝑗 + 𝑐𝐶𝑘𝑖−1,𝑙𝑗 + 𝑐𝐶𝑘𝑖,𝑙𝑗+1 + 𝑐𝐶𝑘𝑖,𝑙𝑗−1 − 4𝑐𝐶𝑖𝑘,𝑙𝑗)/(∆𝑑)2                                                                                                            

(103) 

To minimize the total squared curvature, we need 

𝜕𝐼

𝜕𝑐𝐶𝑘𝑖,𝑙𝑗
= 0                                                                                                                                                                                    

(114) 345 

Combining Eq. (911), (102), and (113), we getobtain the commonfollowing difference equation for the biharmonic equation  

[𝑐𝐶𝑖𝑘+2,𝑙𝑗 + 𝑐𝐶𝑖𝑘,𝑙𝑗+2 + 𝑐𝐶𝑖𝑘−2,𝑗𝑙 + 𝑐𝐶𝑖𝑘,𝑙𝑗−2

+2(𝑐𝐶𝑖𝑘+1,𝑗𝑙+1 + 𝑐𝐶𝑖𝑘−1,𝑗𝑙+1 + 𝑐𝐶𝑖𝑘+1,𝑗𝑙−1 + 𝑐𝐶𝑖𝑘−1,𝑗𝑙−1)

−8(𝑐𝐶𝑘𝑖+1,𝑗𝑙 + 𝑐𝐶𝑘𝑖−1,𝑗𝑙 + 𝑐𝐶𝑘𝑖,𝑗𝑙−1 + 𝐶𝑐𝑘𝑖,𝑗𝑙+1) + 20𝑐𝐶𝑘𝑖,𝑗𝑙]/(∆𝑑)2  = 0

                                                                                                                              

(9125) 

This equation is appended at each grid pixel as a smoothness regularization. Therefore, there is only one additionalprior 

equation at each gridThe seminorm can be calculated at each pixel using the finite difference approach. Each item in the 350 

summation is set to be zero to generate an equation at that pixel. Multiple items will lead to multiple equations at one pixel. 

This is how the LTD algorithm does to add additional equations. In this paper, however, we will only add one equation at each 

pixel to reduce the number of equations. This is done by using the corresponding Euler-Lagrange differential equation to the 

minimizing problem (Briggs, 1974). According to the minimum curvature principle, the minimization can be carried out by 

solving the biharmonic equation. 355 

𝜕4𝑐

𝜕𝑥4 + 2
𝜕4𝑐

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑐

𝜕𝑦4 = 0                                                                                                                                                       (8) 

The corresponding finite difference equation is 

𝑐𝑖+2,𝑗 + 𝑐𝑖,𝑗+2 + 𝑐𝑖−2,𝑗 + 𝑐𝑖,𝑗−2

+2(𝑐𝑖+1,𝑗+1 + 𝑐𝑖−1,𝑗+1 + 𝑐𝑖+1,𝑗−1 + 𝑐𝑖−1,𝑗−1)

−8(𝑐𝑖+1,𝑗 + 𝑐𝑖−1,𝑗 + 𝑐𝑖,𝑗−1 + 𝑐𝑖,𝑗+1) + 20𝑐𝑖,𝑗 = 0

                                                                                                                 (9) 

Therefore, one equation is set up for each grid instead of two equations in the LTD algorithm. For grids pixels on the edges, 

we set the approximation of the first and second derivatives to be zeros. Under the assumption that M is the kernel matrix of 360 

the prior equations, the reconstruction aims to minimize the following problem The weight ω is set to be inversely propositional 

to the grid lengthdetermined in the same way as determining the regularization parameter in the Tikhonov regularization 

method.  
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𝑚𝑖𝑛
𝒄

   ‖𝑳𝒄 − 𝒃‖2
2 + λ‖𝑴𝒄‖2

2, subject to 𝒄 ≥ 0                                                                                                                      (16)                                                                                                                                                         

where the parameter 𝜆 is determined in the same manner as the regularization parameter in Tikhonov regularization method. 365 

Similar to the LTD approach, Tthe resultinged constrained system of linear equations is over-determined and iscan be solved 

by the NNLS optimization algorithm. 

 

Figure 2. Beam geometry and a with 30 × 30 grid division of the sitegrids. 

For conventional pixel-based reconstruction algorithms, the number of gridpixels (unknowns) should be no more thannot 370 

exceed the number of beams (equations) in order to get obtain a well-posted system of linear equationsproblem. Because there 

are only dozens tens of beamsbeams are usually used in an ORS-CT applications, the resultant grid spatial resolution is very 

coarse. The GT algorithm is one way to increase the resolution. B, but it needs requires several steps to complete the whole 

entire translation because . each translation uses a different grid division, and Athend the high-resolution map is generated 

after each reconstruction process must be conducted for each grid division. In the MC algorithm, we use only one division of 375 

very high-resolution grids directly before during the reconstruction. T he resultant system of linear equations remains 

determined Bbecause there is one of the derivative smoothness restriction at each pixel, the resulted system of linear equations 

is determined. As shown in Fig. 2, 30 × 30 grids pixels are used in the MC algorithm instead of the 6 × 6 grids pixels in the 

traditional NNLS algorithmapproach. Under this configuration, the number of linear equations for the LTD algorithm is 

approximately 38+30×30×2=1838, whereas the number for the MC algorithm is approximately 38+30×30=938. Thus, the MC 380 

approach decreases the number of linear equations to approximately half that of the LTD algorithm. The smoothness feature 

seminorm of the MC algorithm will guaranteeensures the a smooth effect between all the pixelssolution. This smoothing 

smooth effect is similar to the spline interpolation applied after the reconstruction process, except that the interpolationit is 
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achieved automatically when theduring the inverse problem is solvedprocess. This aspect is important because an interpolation 

after the reconstruction cannot correct the error resulting from the reconstruction in terms of coarse spatial resolution. The MC 385 

approach evaluates the discrepancy based on the high-resolution values that are the same as the reconstruction outcomes. 

Errors due to coarse spatial resolution are corrected during the process.  

2.4 Test concentration data 

The NNLS, LTD, and MC algorithms were compared by using multiple test maps. The results were also compared with those 

of the GT-MG algorithm. In order tWo do this, we set up test conditions similar to thoseat used in Verkruysse and Todd (2005). 390 

The source concentration distribution from one source is defined by a bivariate Gaussian distribution 

𝑐𝑔(𝑥, 𝑦) = 𝑄exp[−(
(𝑥−𝑥0)2

𝜎𝑥
2 +

(𝑦−𝑦0)2

𝜎𝑦
2 )]                                                                                                                                 (10137) 

where Q (0 to 40 ppmmg/m3) is the source strength, x0, y0 (0 to 40 m) is the peak location, and σe , σy areis the width of the 

peaks (with possible values of 2.8, 4.2, 5.7, andor 7.1.).  

The source number varies from 1 to 5. For multiple sources, the resultant concentration distribution is the superposition value 395 

due to each source. For each source number, 100 maps were generated by randomly setting the source strength, location, and 

peak width from the defined ranges or set above. 

2.5 Evaluation of reconstruction quality 

A conventional image quality measure called nearness is used to describe the discrepancy between the original maps and the 

reconstructed maps. Nearness evaluates errors over all the grid cells in on the map (Verkruysse and Todd, 2005) 400 

Nearness=√
∑ (𝑐𝑖

∗−𝑐𝑖)
2𝑚×𝑛

𝑖

∑ (𝑐𝑖
∗−𝑐𝑎𝑣𝑔

∗ )2𝑚×𝑛
𝑖

                                                                                                                                                     (11148) 

where m, n are the grid divisions on the x, y direction of the map, 𝑐𝑖
∗ is the synthetic value of concentration in the ith grid on 

the map generated by the Gaussian distribution model, 𝑐𝑖 is the estimated value for the ith grid in the map, and 𝑐𝑎𝑣𝑔
∗  is the 

mean concentration of all the grids in the map. A nearness value of zero implies a perfect match. 

The effectiveness of locating the emission source is evaluated by the peak location error, which calculates the distance between 405 

the true and reconstructed peak locations. 

Peak location error =√(𝑥𝑟 − 𝑥0)
2 + (𝑦𝑟 − 𝑦0)

2                                                                                                                   (12159) 

where xr, yr are the peak locations in on the reconstruction map. For multiple peaks, only the location of the highest peak iswas 

calculated. The peak is located by searching for the largest concentration on the map. When multiple locations have the same 

values, the centroid of these locations is used. 410 
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Exposure error percentage is used to evaluate how well average concentrations in the whole field are reconstructed. It can 

reflect the accuracy of measuring chemical air emissions and emission rates from fugitive sources, such as agricultural sources 

and landfills (Verkruysse and Todd, 2004) 

Exposure error % = |
∑ 𝑐𝑖

∗𝑚×𝑛
𝑖 −∑ 𝑐𝑖

𝑚×𝑛
𝑖

∑ 𝑐𝑖
∗𝑚×𝑛

𝑖
| × 100%                                                                                                                     (131620) 

Herein, a measure using the resolution matrix is also applied to predict the reconstruction error due to different regularization 415 

approaches. Resolution matrices are commonly used to determine whether model parameters can be independently predicted 

or resolved, and how regularization limits reconstruction accuracy (Twynstra and Daun, 2012; von Clarmann et al., 2009). 

Ignoring the non-negative constraints, the generalized inverse matrices for the NNLS, LTD, and MC algorithms can be found 

by  

𝑮𝑁𝑁𝐿𝑆 = (𝑳𝑇𝑳)−1𝑳𝑇  420 

𝑮𝐿𝑇𝐷 = (𝑳𝑇𝑳 − 𝜇2𝑫3
𝑇𝑫3)

−1𝑳𝑇    

𝑮𝑀𝐶 = (𝑳𝑇𝑳−𝜆2𝑴𝑇𝑴)−1𝑳𝑇                                                                                                                                               (21) 

The resolution matrix is defined as R=GL. The reconstruction error is given by 

𝛿𝒄 = 𝒄𝒎𝒐𝒅𝒆𝒍 − 𝒄𝒆𝒙𝒂𝒄𝒕 = (𝑹 − 𝑰)𝒄𝒆𝒙𝒂𝒄𝒕 − 𝑮𝛿𝒃                                                                                                                   (22) 

where cmodel and cexact are the model-predicted and the exact concentrations, respectively, δb is the perturbation of the 425 

observation, I is the identity matrix, (𝑹 − 𝑰)𝒄𝒆𝒙𝒂𝒄𝒕  is the regularization error caused by the inconsistency between the 

measurement data equations and the prior information equations, and 𝑮𝛿𝒃 is the perturbation error.  

For the LTD and MC approaches using high-resolution grids, the kernel matrix L is rank-deficient, and the regularized solution 

is robust to perturbation error over a wide range of regularization parameters. Thus, the perturbation error is negligible, and 

the reconstruction error is dominated by regularization error (Twynstra and Daun, 2012). Because the resolution matrix is 430 

determined only by the beam configuration and the regularization approach, it is independent of the actual concentration 

distribution. Therefore, it is best used to evaluate different beam configurations that considerably influence the reconstruction 

accuracy. However, in this study the beam configurations are fixed. We can therefore use the resolution matrix to measure 

different regularization approaches. In an ideal experiment, R=I, thus implying that each unknown pixel value can be 

independently resolved from the measurement data. The regularization term forces the off-diagonal terms in R to be nonzero, 435 

thereby making the estimated concentration of each pixel a weighted average of the concentration of the surrounding pixels. 

We can use the Frobenius distance between R and I defining a measure of fitness to predict the reconstruction error (Twynstra 

and Daun, 2012). 

𝜀 =
𝟏

𝑁𝑐
‖𝑹 − 𝑰‖𝐹

𝟐                                                                                                                                                                      (23) 

 440 
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3 Results and discussions 

In these tests, the traditional NNLS algorithm uses 6 × 6 grids, whereasile the LTD and MC algorithms both use 30 × 30 grids. 

The results of the GT-MG algorithm are from Verkruysse and Todd (2005), in which. They used a maximum basis grid 

resolution of 10 × 10 with 1/4 grid size as translation distance was used. Of nNote, that the test conditions wereare not exactly 

the same as thosee ones used by the GT-MG algorithm, which.  did not measure the peak location error and used a different 445 

method to calculate the exposure error by limiting the calculation domain to a small area near the peak instead of the entire 

map. Therefore, the results of the GT-MG algorithm are listed provided as a reference. O and only the measure of nearness 

results of the GT-MG algorithm arewas compared because It it did not give the peak location error, and the exposure error was 

calculated only in a small area near the peak instead of the whole map in this paper. The original resolution of the reconstruction 

map by the NNLS algorithm is too coarse (6.7 m). In order toTo determine the peak locations more accurately, all the 450 

reconstructed concentration maps reconstructed by the NNLS algorithm are were spline interpolated by spline function using 

with a resolution of 0.5 m. Fig. 3 depicts some examples of the test maps and reconstructed maps generated by different 

algorithms with different source numbers. 

(a) 

 455 

(b) 

 

(c) 
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(d) 460 

 

(e) 

 

Figure 33. Original test maps (first column) and corresponding reconstructed maps reconstructed using with the NNLS (second column), 

LTD (third column), and MC (forth column) algorithms. (a) one One source; (b) two sources; (c) three sources; (d) four sources; (e) five 465 
sources. 

Fig. 3 depicts some examples of the test maps and reconstructed maps generated by different algorithms under different source 

numbers. As indicated by the nearness results, LTD and MC algorithms show better accuracy than the NNLS algorithm in the 

shapes and source strengths. Because the differences in accuracy (i.e., nearness, peak distance) between LTD and MC 

algorithms are very small, more specific evaluations may be needed to compare them using more complicated and realistic 470 

conditions.  

3.1 Nearness 

Table 1. Mean and standard deviation of nearness. 

Source number NNLS LTD MC GT-MG* 

1 0.40 (0.21) 0.13 (0.08) 0.11 (0.07) 0.09 (0.05) 

2 0.38 (0.16) 0.15 (0.07) 0.13 (0.06) 0.16 (0.07) 
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3 0.40 (0.14) 0.18 (0.08) 0.17 (0.08) 0.19 (0.06) 

4 0.40 (0.12) 0.20 (0.08) 0.19 (0.08) 0.25 (0.08) 

5 0.43 (0.13) 0.22 (0.09) 0.21 (0.08) 0.27 (0.09) 

*: The results of the GT-MG algorithm are from Verkruysse and Todd (2005), whose test conditions are not exactly the same 

as the conditions used in this paperherein. 475 

NThe nearness is the most important measure of accuracy of the reconstructed map. It , which represents the reconstruction of 

peak heights, shapes, and the production of artifacts. The smaller the number of sourcesnearness value, the better the 

reconstruction quality. In Table 1, the LTD, MC, and GT-MG algorithms generally reduce the nearness values by more than 

50% with respect toof the values obtained by the NNLS algorithm. UnderIn the condition of one source, they can reduce the 

nearness by approximatelyabout 70% with respect to the NNLS. The LTD, MC and, GT-MG algorithms show increasing 480 

trends as the source number increases, thuswhich implyingies that the performance of the algorithm is affected by the 

complicity complexity of the underlying distribution. The nearness results of NNLS for different numbers of sources are almost 

the same because they are the results after spline interpolation. In fact, the original un-interpolated results also show increasing 

trends. The interpolation improves the results of the NNLS algorithm more than those of the LTD and MC algorithms, which 

already use high-resolution grids. The overall performances of the LTD, MC, and GT-MG algorithms isare very similar, 485 

whereasile the new MC algorithm’s performances is slightly better. 

3.2 Peak location error 

Table 2. Mean and standard deviation of peak location error. 

Source number NNLS (m) LTD (m) MC (m) 

1 1.78 (0.93) 0.41 (0.45) 0.40 (0.56) 

2 4.88 (8.21) 1.97 (5.98) 1.62 (4.81) 

3 5.17 (8.35) 2.58 (6.77) 2.34 (6.17) 

4 8.40 (11.53) 5.22 (10.28) 5.58 (10.76) 

5 8.95 (11.32) 5.51 (10.15) 5.77 (10.41) 

As shown Iin Table 2, the LTD and MC algorithms show better performance in peak location error than the NNLS algorithm. 

They generally improve the accuracy of peak location by 1 to 2 m. The errors of all the algorithms increase withas the source 490 

number increase.  

One reason for this finding is that Because only the highest peak was calculated, a large error may happen wwhen there are 

two or more peaks with  that are comparable peak magnitudes on the map to each other in magnitude (see Fig. 3), the algorithm 

may not identify the correct location of the highest peak. Therefore, a large error may occur Thereforewhen the highest value 

on the reconstructed map is located on the wrong peak, this measure is more meaningful when the source number is small.. 495 
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3.3 Exposure error 

Table 3. Mean and standard deviation of exposure error. 

Source number NNLS (%) LTD (%) MC (%) 

1 29.26 (19.29) 1.51 (2.11) 1.61 (2.15) 

2 19.91 (11.99) 1.05 (1.26) 1.09 (1.19) 

3 16.05 (9.78) 1.16 (0.97) 1.31 (0.92) 

4 12.99 (6.92) 1.15 (1.04) 1.24 (1.00) 

5 12.13 (8.62) 1.30 (1.14) 1.45 (1.16) 

As shown Iin Table 3, we can see a significant improvement inof exposure error is achieved by the MC and LTD algorithms 

compareding withto the NNLS algorithm. The exposure error reflects the accuracy of the overall emissions measurement other 

than the concentration distribution. The performances of the LTD and MC algorithms isare very similar to each other. Unlike 500 

the trends shown by that the NNLS shows in the nearness and peak location error, its performance in exposure error improves 

becomes better with the increasinge of source number. A plausible cause of this phenomenon maycould be that the distribution 

becomes more uniform with larger numbers of sources. Because , implying that tthe NNLS algorithm  uses coarse grid division, 

it produces concentrations with very low spatial resolution and fits the true distribution better when the distribution becomes 

more uniformis more suitable for relatively uniform distributions. 505 

3.4 Computation time 

Table 4. Mean and standard derivation of computation time. 

Source number LTD (s) MC (s) Ratio (MC/LTD) 

1 11.08 (14.27) 8.06 (10.03) 0.73 

2 21.02 (17.89) 14.17 (11.46) 0.67 

3 34.44 (19.93) 22.76 (13.61) 0.66 

4 43.58 (20.45) 29.13 (12.92) 0.67 

5 59.48 (21.98) 38.74 (15.05) 0.65 

In Table 4, the computation times for the LTD and MC algorithms are compared. The computation time generally increases 

with the increasinge of source number. The MC algorithm is faster than the LTD algorithm because it has approximatelyabout 

half the number of the linear equations than that inas the LTD algorithm. The ratio results shows that the MC algorithm's 510 

computation time is approximatelyabout 65% of that of the LTD algorithm when the source number is five. The trend of the 

ratio implies that the advantage of the MC algorithm becomes more clearerobvious with the increasing complexity of the 

underlying distribution.  
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3.5 Fitness 

Contour plots of the resolution matrices for the LTD and MC algorithms are shown in Fig. 4. (a) and (b). The fitness values 515 

for the LTD and MC algorithm are 1.4411 and 1.3878, respectively. The MC algorithm shows slightly better performance. 

The off-diagonal elements are not zeros. The reconstructed concentration at each pixel is a weighted average of the 

concentrations of the surrounding pixels according to the smoothness regularization. Each row of the resolution matrix can be 

regarded as smoothing weights. Because the pixels have a 2-D arrangement, we show the 2-D display of the row of the 106th 

pixel (row and column indices are 4 and 16) in the resolution matrix for the LTD and MC algorithms in Fig. 4. (c) and (d) as 520 

an example. The dependence on the beam geometry can be seen on both pictures. Because the beam configuration is fixed, the 

difference between the fitness values is mainly caused by the use of different regularization approaches. The fitness difference 

between the LTD and MC algorithms is very small, which may indicate that both algorithms have similar smoothness effects. 

This result coincides with the results from other measures discussed above. The 2-D display of the diagonal elements of the 

resolution matrix are shown in Fig. 4. (e) and (f), which are not much useful in this case. 525 

  

(a)  (b)   

(c)  (d)   
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(e)  (f)   
Figure 4. Contour plot of the resolution matrix for (a) the LTD algorithm (b) the MC algorithm. 2-D display of the row vector of the 106th 530 
pixel in the resolution matrix for (c) the LTD algorithm (d) the MC algorithm. 2-D display of the diagonal elements of the resolution matrix 

for (e) the LTD algorithm (f) the MC algorithm. 

3.6 Influence of the grid size 

The derivatives are approximated by the finite differences during the discretization process. The finite grid length causes 

discretization error and affects the reconstruction results. We studied the influences of different grid divisions by investigating 535 

the changes of the nearness, peak location error, exposure error, and computation time with respect to the pixel number. Five 

different grid divisions were used: 6×6, 12×12, 18×18, 24×24, and 30×30. The peak number was five. A total of 100 maps 

were tested for each grid division. The results of the averaged values are shown in Fig. 5.   
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(a)  (b)  540 

(c)  (d)  

Figure 5. The change of (a) nearness (b) peak location error (c) exposure error percentage (d) computation time with respect to the pixel 

number. 

The nearness, peak location error, and exposure error generally illustrate decreasing trends with increasing pixel number. The 

MC algorithm shows slightly better performance than the LTD algorithm with increasing pixel number. The performance 545 

improvement becomes slow for both algorithms when the division is finer than 24×24. The computation time shows 

approximately exponential growth trend with increasing pixel number. The LTD algorithm has a faster increasing rate than 

the MC algorithm. To conclude, the reconstruction performance is improved for both LTD and MC algorithms with increasing 

pixel numbers, but at the cost of exponential growth of the computation time. And the improvement becomes small when the 

resolution is higher than certain threshold value (24×24 herein). Therefore, there should be a balance between the performance 550 

and the computation time. 

4 Conclusion 

With the purpose ofTo understand the characteristics of the smoothness constraints and to seek more flexible achieving a 

smooth reconstruction, we first found identified the LTD algorithm as a special case ofthat the Tikhonov regularization. Then, 
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more flexible smoothness constraints were found through the smoothness seminorms and theaccording to variational spatial 555 

interpolation theories theory. The smoothness seminors were successfully adopted can be applied toin the ORS-CT inverse 

problems. Based onOn the basis of the variational approach approach in the interpolation theory, we proposed a new MC 

algorithm by using a seminorm approximating the sum of the squares of the curvaturethe corresponding biharmonic equation 

instead of the smoothness seminorm to construct an additional linear equation at each pixel of the map. The new algorithm 

improves the computational efficiency comparing to the LTD algorithm throughby reducing the number of linear equations by 560 

to half that of the LTD algorithm. It is simpler to perform than . Comparing to the GT-MG algorithm, which achieves high-

resolution reconstruction by shifting the low-resolution base grids and averaging the resulted maps, the new MC algorithm 

uses by directly using high-resolution grids directly during the reconstruction process to generate a high-resolution map 

immediately after the reconstruction is done. Therefore, it is much simpler in realization.  

The MC, LTD, and NNLS algorithms were compared by using multiple test maps with the GT-MG algorithm as a reference. 565 

The new MC algorithm shows almost the samesimilar performance as the LTD algorithm, but only needs requires about 

approximately 65% of itsthe computation time. The smoothness-related algorithms of LTD, MC, and GT-MG all show better 

performance than the traditional NNLS algorithm: the nearness of reconstructed maps is improved by more than 50%, the peak 

distance accuracy is improved by 1- 2 m, and the exposure error is improved by more than ten10 times. Because the differences 

in accuracy (i.e., nearness, peak distance) between the LTD and MC algorithms are very small, more specific evaluations may 570 

be needed to compare themby using more complicated and realistic conditions.  

These comparisons prove demonstrate the feasibility of introducing theories of Tikhonov regularization andthe theory of 

spatial variational interpolation techniques to mapping distribution of atmospheric chemicals using the ORS-CT techniques. 

With On the basis of the seminormsthese theories, it is easier to understand the advantages and the drawbacks of the 

currentdifferent algorithms. Common problems such as the over-smooth issue may be solved improved by testing formulating 575 

more algorithms suitable for techniques in these theories and using them in the ORS-CT applications. We need to nNote that 

although the smoothness is very good a priori information for the reconstruction problem, beam configuration and underlying 

concentration distribution are also important factors affecting the reconstruction equality. To further improve the 

reconstruction quality, extra a priori information based onaccording to the specific application may be added to the inverse 

problem. For example, the statistic information of the underlying distribution , or the information resulting from the fluid 580 

mechanics.  
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