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Abstract. Optical remote sensing (ORS) combined with the computerized tomography (CT) technique is a powerful tool to 

retrieve two-dimensional concentration map over an area under investigation. Whereas medical CT usually uses beam number 

of hundreds of thousands, ORS-CT usually uses a beam number of dozens, thus severely limiting the spatial resolution and 

the quality of the reconstructed map. The smoothness a priori information is therefore crucial for ORS-CT. Algorithms that 

produce smooth reconstructions include smooth basis function minimization, grid translation and multiple grid (GT-MG), and 10 

low third derivative (LTD), among which the LTD algorithm is promising because of fast speed. However, its theoretical basis 

must be clarified to better understand the characteristics of its smoothness constraints. Moreover, the computational efficiency 

and reconstruction quality need to be improved for practical applications. This paper first treated the LTD algorithm as a 

special case of Tikhonov regularization that uses the approximation of the third-order derivative as the regularization factor. 

Then, to seek more flexible smoothness constraints, we successfully incorporated the smoothness seminorm used in variational 15 

interpolation theory into the reconstruction problem. Thus, the smoothing effects can be well understood according to the close 

relationship between the variational approach and the spline functions. Furthermore, other algorithms can be formulated by 

using different seminorms. On the basis of this idea, we propose a new minimum curvature (MC) algorithm by using a 

seminorm approximating the sum of the squares of the curvature, which reduces the number of linear equations to half that in 

the LTD algorithm. The MC algorithm was compared with the non-negative least square (NNLS), GT-MG, and LTD 20 

algorithms by using multiple test maps. The MC algorithm, compared with the LTD algorithm, shows similar performance as 

in terms of reconstruction quality but requires only approximately 65% the computation time. It is also simpler to perform than 

the GT-MG algorithm because it directly uses high-resolution grids during the reconstruction process. Compared with the 

traditional NNLS algorithm, it shows better performance in three aspects: (1) the nearness of reconstructed maps is improved 

by more than 50%; (2) the peak location accuracy is improved by 1- 2 m; and (3) the exposure error is improved by more than 25 

ten times. Testing results indicated the effectiveness of the new algorithm according to the variational approach. More specific 

algorithms could be similarly further formulated and evaluated. This study promotes the practical application of ORS-CT 

mapping of atmospheric chemicals. 
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1 Introduction 

Measuring the concentration distribution of atmospheric chemicals over large areas is required in many environmental 30 

applications, such as locating hotspots or emission sources of air pollutants (Wu et al., 1999), understanding air pollutant 

dispersion and airflow patterns, and quantifying emission rates or ventilation efficiency (Samanta and Todd, 2000; Belotti et 

al., 2003; Arghand et al., 2015). The traditional network method uses multiple point samplers placed at various locations in 

the region under investigation. This method is intrusive, time-consuming, and limited in temporal and spatial resolution 

(Cehlin, 2019). The advanced method is based on the combination of optical remote sensing and computerized tomography 35 

techniques (ORS-CT). ORS-CT is a powerful technique for sensitive mapping of air contaminants throughout kilometer-size 

areas in real time (Du et al., 2011). Two commonly used ORS techniques use an open-path tunable diode laser (TDL) and 

open-path Fourier transform infrared spectrometer. The ORS analyzer emits a light beam targeted at multiple mirrors, which 

reflect the beam back to the analyzer. For each beam path, the path-integrated concentration (PIC) is obtained. After multiple 

PICs are collected, a two-dimensional concentration map can be generated through tomographic reconstruction algorithms 40 

(Hashmonay et al., 2001). The ORS-CT method provides better spatial and temporal resolution than the network approach, 

and it is more sensitive than the range-resolved optical techniques. It is also non-intrusive and suitable for continuous long-

term monitoring.  

In ORS-CT mapping of atmospheric chemicals, owing to factors including system cost, response time, beam configuration, 

the number of beams is only tens, whereas the number of beams in medical CT is hundreds of thousands. The very small beam 45 

number poses several challenges in tomographic reconstruction algorithms. In practice, transform methods based on the theory 

of Radon transformation using a filtered back projection formula are not feasible because of noise and artifacts in the 

reconstructions (Radon, 1986; Herman, 2009). Series expansion methods, which discretize the reconstruction problem before 

any mathematical analysis, are usually used in ORS-CT. The underlying distribution is represented by a linear combination of 

a finite set of basis functions (Censor, 1983). The simplest type is the pixel-based approach, which divides an area into multiple 50 

grid pixels and assigns a unit value inside each pixel. The path integral is approximated by the summation of the product of 

the pixel value and the length of the path in that pixel. A system of linear equations can be set up for multiple beams. The 

inverse problem involves finding the optimal set of pixel concentrations according to criteria including the least square criterion 

to minimize the summation of the squared errors between the observed and model-predicted PICs; the maximum likelihood 

(ML) criterion to maximize the probability of the PIC observations given the distribution of the random variables of the 55 

concentrations and observation errors; and the maximum entropy criterion to maximize the entropy of the reconstructed maps, 

given that the average concentration of the map is known (Herman, 2009). Commonly used pixel-based algorithms are 

algebraic reconstruction techniques (ART), non-negative least square (NNLS), and expectation-maximization (EM) (Tsui et 

al., 1991; Lawson and Janson, 1995; Todd and Ramachandran, 1994). The NNLS algorithm has similar performance to the 

ART algorithm but shorter computation time (Hashmonay et al., 1999). It has been used in US EPA OTM-10 for horizontal 60 

radial plume mapping of air contaminants (EPA, 2005). The EM algorithm is mainly used for ML-based minimization. These 
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traditional pixel-based algorithms are suitable for rapid CT, but they produce maps with poor spatial resolution, owing to the 

requirement that the pixel number must not exceed the beam number, or they may have problem of indeterminacy associated 

with substantially underdetermined systems (Hashmonay, 2012).  

To mitigate the problem of indeterminacy and improve the spatial resolution of reconstructions without substantially increasing 65 

the system cost, the smooth basis function minimization (SBFM) algorithm has been proposed. This algorithm represents the 

distribution map by a linear combination of several bivariate Gaussian functions (Drescher et al., 1996; Giuli et al., 1999). 

Each bivariate Gaussian has six unknown parameters (normalizing coefficient, correlation coefficient, peak locations and 

standard deviations) to be determined. The problem requires fitting these parameters to the observed PIC data. This method 

performs better than the traditional pixel-based algorithms for ORS-CT applications because the patterns of air dispersion are 70 

physically smooth in shape (Wu and Chang, 2011). However, the resultant equations defined by the PICs are non-linear 

because of the unknown parameters. The search for the best-fit set of parameters minimizing the mean-squared difference 

between predicted and measured path integrals can be performed through an iterative minimization procedure, such as the 

simplex method or simulated annealing. 

The reported methods using simulated annealing to find a global minimization are highly computationally intensive, thereby 75 

limiting the SBFM algorithm’s practical applications, such as rapid reconstruction in industrial monitoring of chemical plants. 

However, an algorithm converging toward a smooth concentration distribution consistent with the path-integrated data has 

been demonstrated to be a rational choice. To improve the computational speed and append the smoothness a priori information 

to the inverse problem, the pixel-based low third derivative (LTD) algorithm has been proposed. This algorithm sets the third 

derivative at each pixel to zero, thus resulting in a new system of linear equations that is overdetermined. The LTD algorithm 80 

has been reported to work as well as the SBFM algorithm, but is approximately 100 times faster (Price et al., 2001). Another 

method to produce the smoothness effect is the grid translation (GT) algorithm, which shifts the basis grid by different distances 

(e.g., 1/3 or 2/3 the width of the basis grid) horizontally and vertically while keeping the basis grid fixed (Verkruysse and 

Todd, 2004). Smoothness is achieved by averaging the reconstruction results after each shifting. An improved version called 

grid-translation and multi-grid (GT-MG) applies the GT algorithm at different basis grid resolutions (Verkruysse and Todd, 85 

2005). This method has been used with the ML-EM algorithm to improve the reconstruction accuracy, particularly in 

determining the peak location and value (Cehlin, 2019). 

The success of these algorithms demonstrates the need to apply smoothness restriction to the ORS-CT gas mapping. With the 

LTD algorithm, a smooth reconstruction is achieved by simply adding the third-order derivative constraints. The generated 

solutions are locally quadratic. To understand the characteristics of these constraints and apply the method to specific 90 

application, the theoretical basis of the algorithm must be understood. However, this basis is not clearly defined in the literature. 

With the purpose of introducing smoothness constraints, the LTD algorithm can be treated as a special case of the Tikhonov 

regularization, a well-known technique to solve the ill-posed inverse problem (Tikhonov and Arsenin, 1977; Rudin et al., 

1992). The Tikhonov L2 regularization uses a penalty term defined by the squared norm of the ith-order derivative of the 
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function and produces a smoothing effect on the resulting solution (Gholami and Hosseini, 2013). The third-order derivative 95 

is used in the LTD algorithm, although the first, second and higher order derivatives can also produce smooth results. A more 

flexible method of regularization uses the smoothness seminorm according to the variational interpolation theory, given its 

similar formula (Mitasova et al., 1995). The variational method is another way of achieving spline interpolation, given that the 

interpolation polynomial splines can be derived as the solution of certain variational problems of minimizing an integral whose 

integrant consists of different order derivatives or their combinations.   100 

The interpolation techniques are based on the given sample points, in contrast to tomographic reconstruction, in which only 

the line integrals are known. However, we have found that the interpolation can be adopted in the reconstruction process to 

produce a smooth solution by using the smoothness seminorm for interpolation as a smoothness regularization factor for the 

tomographic reconstruction problem. In view of variational spline interpolation, the characteristics of algorithms using 

different seminorms have been well explored in the literature. The LTD algorithm can be considered as one case that minimizes 105 

the seminorm consisting of the third-order derivatives (Bini and Capovani, 1986). Other algorithms can also be formulated by 

using different seminorms. On the basis of this idea, we propose a new minimum curvature (MC) algorithm using a seminorm 

approximating the integral of the squares of the curvature. This algorithm generates a smooth reconstruction approximating 

the application of cubic spline interpolation. We compared the algorithm with the NNLS, LTD, and GT-MG algorithms by 

using multiple test maps. We demonstrated its effectiveness and two main aspects of this method. First, smooth effect similar 110 

to spline interpolation is achieved during the reconstruction process by using high-resolution grid division, and second, the 

computational efficiency is markedly better than that of the LTD algorithm through halving the number of linear equations 

according to the new smoothness seminorm. This approach achieves the same performance but is easier to perform than the 

GT-MG algorithm which has complicated operations involving multiple grids and grid translation. More specific algorithms 

applied for the ORS-CT method for mapping atmospheric chemicals could be further formulated and evaluated similarly.  115 

2 Materials and methods 

2.1 ORS-CT and beam geometry 

The area of the test field was 40 m×40 m. Open-path TDL was used as the ORS analyzer, which was installed on a scanner 

and aimed at multiple retroreflectors by scanning periodically and continuously. To compare the results with those of the GT-

MG algorithm, we used an overlapping beam configuration similar to that used by Verkruysse and Todd (2005). As shown in 120 

Fig. 1, four TDL analyzers were located at the four corners of the test field. The retroreflectors were evenly distributed along 

the edges of the field. The total number of retroreflectors was 20. Each retroreflector reflected the laser beams coming from 

two different directions. Excluding the overlapped beams along the diagonals, the total beam number was 38. For the traditional 

pixel-based algorithm, the pixel number should not exceed the beam number. Therefore, we divided the test field into 6×6=36 

pixels. The concentration within each pixel was assumed to be uniform. 125 
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Figure 1. The beam configuration and grid division. The field was divided into 6×6 grid pixels. Four open-path TDL analyzers were located 
at the four corners. A total of 20 retroreflectors were distributed on the edges of the field. 

For each laser beam, the PIC was measured by the analyzer. The predicted PIC for one beam was equal to the sum of the 

multiplication of the pixel concentration and the length of the beam inside the pixel. In general, let us assume that the site is 130 

divided into Nc=m×n pixels, which are arranged as a vector according to the left-to-right and top-to-bottom sequence and 

indexed by j. The average concentration for the j-th pixel is cj. The total number of laser beams is Nb, which are indexed by i. 

The length of the i-th laser beam passing the j-th pixel is Lij. Then, for the i-th beam, the measured PIC bi is contributed by all 

pixels. We have the following linear equation 

𝑏𝑏𝑖𝑖 = ∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖
𝑁𝑁𝑐𝑐
𝑖𝑖=1                                                                                                                                                                     (1) 135 

A system of linear equations can be set up for all beams  

𝒃𝒃 = 𝑳𝑳𝑳𝑳                                                                                                                                                                                 (2) 

where L is the kernel matrix that incorporates the specific beam geometry with the pixel dimensions, c is the unknown 

concentration vector of the pixels, and b is a vector of the measured PIC data. With the least squares approach, the 

reconstruction can be solved by minimizing the following problem 140 

min
𝑳𝑳

  ||𝑳𝑳𝑳𝑳 − 𝒃𝒃||22, subject to 𝑳𝑳 ≥ 0                                                                                                                                     (3) 

where ||·||2 denotes the Euclidean norm. This non-negative constrained linear least squares problem can be solved by the widely 

used NNLS optimization algorithm (Lawson and Janson, 1995), which is an active-set optimization method using an iterative 

procedure to converge on the best fit of positive values. The routine “lsqnonneg” in MATLAB software was used in this study. 

The optimal least squares solution is not smooth because the minimizing process does not introduce smoothness a priori 145 

information. Herein, the NNLS algorithm in the tomographic reconstruction refers to solving the original problem by using 
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the NNLS optimization algorithm without adding additional a priori information. When the system of linear equations is 

underdetermined, the solution is not unique. Additional information must be introduced to choose the appropriate solution. 

2.2 LTD algorithm and Tikhonov regularization 

The LTD algorithm introduces the smoothness information through setting the third-order derivative of the concentration to 150 

zero at each pixel in both x and y directions, thus generating solutions that are locally quadratic (Price et al., 2001). We define 

cj as an element of a one-dimensional (1-D) concentration vector of the pixels, but the pixels also have two-dimensional (2-D) 

structure according to the grid division of the site area and can be indexed by the row number k and column number l, where 

j=(k-1)n+l. We use Ck,l to denote the pixel concentration at the pixel located at the k-th row and l-th column of the grids. The 

third-derivative prior equations at the (k, l) pixel are defined as  155 
𝑑𝑑3𝐶𝐶
𝑑𝑑𝑥𝑥3

= (𝐶𝐶𝑘𝑘+2,𝑙𝑙 − 3𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 3𝐶𝐶𝑘𝑘,𝑙𝑙 − 𝐶𝐶𝑘𝑘−1,𝑙𝑙)
1
∆𝑥𝑥

= 0                                         

𝑑𝑑3𝐶𝐶
𝑑𝑑𝑦𝑦3

= (𝐶𝐶𝑘𝑘,𝑙𝑙+2 − 3𝐶𝐶𝑘𝑘,𝑙𝑙+1 + 3𝐶𝐶𝑘𝑘,𝑙𝑙 − 𝐶𝐶𝑘𝑘,𝑙𝑙−1) 1
∆𝑦𝑦

= 0                                                                                                                 (4) 

where Δx=Δy=Δd is the grid length in the x, y direction. Therefore, two additional linear equations are introduced at each pixel 

defined by Eq. (4). There will be 2Nc linear equations appended to the original linear equations defined by Eq. (2), thus resulting 

in a new over-determined system of linear equations with (2Nc +Nb) equations and Nc unknowns.  160 

A weight needs to be assigned to each equation depending on the uncertainty of the observation. Under the assumption that 

the analyzers have the same performance, the uncertainty is mainly associated with the path length. Therefore, equations are 

assigned weights inversely proportional to the path length to ensure that different paths have equal influences. Herein, the 

lengths of the laser paths are approximately equal to each other. Therefore, their weights are set to the same value and scaled 

to be 1. The weights for the third-derivative prior equations are assigned as the same value of w, because they are all based on 165 

the same grid length. The determination of w follows the scheme for determining the regularization parameter described below. 

With the least squares approach, the reconstruction is intended to minimize the following problem 

min
𝑳𝑳
�� 𝑳𝑳𝑤𝑤𝑻𝑻�𝑳𝑳 − �𝒃𝒃0� �2

2
 , subject to 𝑳𝑳 ≥ 0                                                                                                                                (5)                                                                                         

where T is the kernel matrix for the third-derivative prior equations. Assuming that the new augmented kernel matrix is A and 

the observation vector is p, the new system of linear equations will be Ac=p. The non-negative least squares solution was also 170 

found by the NNLS optimization algorithm. If the non-negative constraints are ignored, the least squares solution can be found 

analytically as (𝑨𝑨𝑻𝑻𝑾𝑾𝑨𝑨)−𝟏𝟏𝑨𝑨𝑻𝑻𝑾𝑾𝒑𝒑, where W is a diagonal matrix whose diagonal elements are the weights (Price et al., 2001). 

The LTD algorithm actually constructs a regularized inverse problem. It can be viewed as a special case of the well-known 

Tikhonov regularization technique. The Tikhonov L2 regularization can be written as the following minimization problem 

(Gholami and Hosseini, 2013) 175 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑳𝑳

   ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 + 𝜇𝜇‖𝑫𝑫𝑘𝑘𝑳𝑳‖22                                                                                                                                              (6) 
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where the first term represents the discrepancy between the measured and predicted values, the second term is the regularization 

term adding a smoothness penalty to the solution, μ is the regularization parameter controlling the conditioning of the problem, 

and matrix Dk is the regularization operator, which is typically a kth-order difference operator. The first- and second-order 

difference operators are commonly used. We can see that the LTD algorithm uses the third-order forward difference operator 180 

𝑫𝑫3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−1 3 −3 1

−1 3 −3 1

⋱

1 3 −3 1
1 3 −3 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

1
∆𝑑𝑑
∈ ℝ(𝑚𝑚−3)×𝑛𝑛                                                                                                             (7) 

For pixels on the edges, the second-order and first-order difference operators can be used. The regularization parameter is 

analogous to the weight parameter for the prior equations in the LTD algorithm.  

The regularization parameter determines the balance between data fidelity and regularization terms. Determination of the 

optimum regularization parameter is an important step in the regularization method. However, the regularization parameter is 185 

problem and data dependent. There is no general-purpose parameter-choice algorithm that will always produce a good 

parameter. For simplicity, we use the method based on the discrepancy principle (Hamarik et al., 2012). The regularization 

parameter μ is chosen from a finite section of a monotonic sequence. For each value of μ, an optimal solution is derived by 

solving the inverse problem. The discrepancy can then be calculated. The regularization parameter is determined to be the 

highest value that makes the discrepancy ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 equal to Nbσ2, where σ is the standard deviation of the noise. In this study, 190 

the reconstructions varied only slowly with the regularization parameters. Therefore, precise selection of the parameter was 

not necessary. For computational efficiency, the regularization parameter was selected from four widely varying values. The 

one producing the smallest discrepancy was used.   

2.3 Variational interpolation and minimum curvature algorithm 

Splines are special types of piecewise polynomials, which have been demonstrated to be very useful in numerical analysis and 195 

in many applications in science and engineering problems. They match given values at some points (called knots) and have 

continuous derivatives up to some order at these points (Champion et al., 2000). Spline interpolation is preferred over 

polynomial interpolation by fitting low-degree polynomials between each of the pairs of the data points instead of fitting a 

single high-degree polynomial. Normally, the spline functions can be found by solving a system of linear equations with 

unknown coefficients of the low-degree polynomials defined by the given boundary conditions.  200 

The variational approach provides a new way to find the interpolating splines and opens up directions in theoretical 

developments and new applications (Champion et al., 2000). Variational interpolation was motivated by the minimum 

curvature property of natural cubic splines, i.e., the interpolated surface minimizes an energy functional that corresponds to a 

physical bending energy. This principle provides flexibility in controlling the behavior of the generated spline. Given an 
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observation zk (k=1, …, N) measured at the k-th point whose position vector is rk, a spline function F(r) for interpolating the 205 

data points can be found through the variational approach by minimizing the sum of the deviation from the measured points 

and the smoothness seminorm of the spline function 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹

  ∑ |𝐹𝐹(𝒓𝒓𝑘𝑘) − 𝑧𝑧𝑘𝑘|2𝑁𝑁
𝑘𝑘=1 +  𝜔𝜔𝐼𝐼(𝐹𝐹)                                                                                                                                                 (8) 

where 𝜔𝜔 is a positive weight, and I(F) denotes the smoothness seminorm. The seminorm can be defined in various forms, 

commonly the first, second, third derivatives, or their combinations. The solution to the minimizing problem is spline functions, 210 

which can also be found by solving a Euler-Lagrange differential equation corresponding to the given seminorm (Briggs, 

1974). 

We can see that the minimizing problem in Eq. (8) has a similar form to the Tikhonov regularization but with a more flexible 

regularization term. The problem is that the variational interpolation is based on given data points, whereas the tomographic 

reconstruction is based on measured line integrals. However, we show herein that the variational approach for interpolation 215 

can also be applied to the latter problem to produce a smoothness solution with an effect similar to spline interpolation. In 

addition, on the basis of different seminorms, we can formulate many different reconstruction algorithms. In this way, we 

propose a new minimum curvature (MC) algorithm. 

Under the assumption that the unknown concentration distribution is described by a function f(x, y), (xk, yl) are the smallest 

coordinates of the j-th pixel at row k and column l of the 2-D grids, then the concentration cj equals the average concentration 220 

of the pixel 

𝑐𝑐𝑖𝑖 = 1
(∆𝑑𝑑)2 ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑦𝑦𝑙𝑙+1

𝑦𝑦𝑙𝑙

𝑥𝑥𝑘𝑘+1
𝑥𝑥𝑘𝑘

                                                                                                                                           (9) 

The minimization problem according to the variational approach is formulated as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓

  ∑ ∑ ||𝑁𝑁𝑐𝑐
𝑖𝑖=1 𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖

𝑁𝑁𝑏𝑏
𝑖𝑖=1 − 𝑏𝑏𝑖𝑖||22 +  𝜔𝜔𝐼𝐼(𝑓𝑓)                                                                                                                                  (10) 

For the MC algorithm, we define the seminorm according to the minimum curvature principle, which is used in the geographic 225 

data interpolation to seek a 2-D surface with continuous second derivatives and minimal total squared curvature (Briggs, 1974). 

The minimum-curvature surface is analogous to elastic plate flexure, and it approximates the shape adopted by a thin plate 

flexed to pass through the observation data points with a minimum amount of bending. This method generates the smoothest 

possible surface while attempting to follow the observation data as closely as possible. The seminorm in the MC algorithm is 

defined to be equal to the total squares curvature  230 

𝐼𝐼(𝑓𝑓) = ∫∫ �𝜕𝜕
2𝑓𝑓

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑦𝑦2
�
2
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦                                                                                                                                            (11) 

This integral must be discretized according to the grid division. The discrete total squares curvature is 

𝐼𝐼 = ∑ ∑ (𝐼𝐼𝑘𝑘,𝑙𝑙
𝑚𝑚
𝑙𝑙=1

𝑛𝑛
𝑘𝑘=1 )2                                                                                                                                                               (12) 

where Ik,l is the curvature at the (k,l) pixel, which is a function of Ck,l and its neighboring pixel values. In two dimensions the 

approximation to the curvature is 235 
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𝐼𝐼𝑘𝑘,𝑙𝑙 = (𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘,𝑙𝑙−1 − 4𝐶𝐶𝑘𝑘,𝑙𝑙)/(∆𝑑𝑑)2                                                                                                      (13) 

To minimize the total squared curvature, we need 
𝜕𝜕𝐼𝐼

𝜕𝜕𝐶𝐶𝑘𝑘,𝑙𝑙
= 0                                                                                                                                                                                  (14) 

Combining Eq. (11), (12), and (13), we obtain the following difference equation  
[𝐶𝐶𝑘𝑘+2,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙+2 + 𝐶𝐶𝑘𝑘−2,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙−2

+2(𝐶𝐶𝑘𝑘+1,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙+1 + 𝐶𝐶𝑘𝑘+1,𝑙𝑙−1 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙−1)
−8�𝐶𝐶𝑘𝑘+1,𝑙𝑙 + 𝐶𝐶𝑘𝑘−1,𝑙𝑙 + 𝐶𝐶𝑘𝑘,𝑙𝑙−1 + 𝐶𝐶𝑘𝑘,𝑙𝑙+1� + 20𝐶𝐶𝑘𝑘,𝑙𝑙]/(∆𝑑𝑑)2  = 0

                                                                                               (15) 240 

This equation is appended at each pixel as a smoothness regularization. Therefore, there is only one prior equation at each grid 

instead of two equations in the LTD algorithm. For pixels on the edges, we set the approximation of the first and second 

derivatives to zeros. Under the assumption that M is the kernel matrix of the prior equations, the reconstruction aims to 

minimize the following problem  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑳𝑳

   ‖𝑳𝑳𝑳𝑳 − 𝒃𝒃‖22 + λ‖𝑴𝑴𝑳𝑳‖22, subject to 𝑳𝑳 ≥ 0                                                                                                                      (16)                                                                                                                                                         245 

where the parameter 𝜆𝜆 is determined in the same manner as the regularization parameter in Tikhonov regularization method. 

Similar to the LTD approach, the resulting constrained system of linear equations is over-determined and is solved by the 

NNLS optimization algorithm. 

 
Figure 2. Beam geometry and a 30×30 grid division of the site. 250 

For conventional pixel-based reconstruction algorithms, the number of pixels (unknowns) should not exceed the number of 
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resultant spatial resolution is very coarse. The GT algorithm is one way to increase the resolution, but it requires several steps 

to complete the entire translation because each translation uses a different grid division, and the reconstruction process must 

be conducted for each grid division. In the MC algorithm, we use only one division of high-resolution grids directly during the 255 

reconstruction. The resultant system of linear equations remains determined because of the smoothness restriction at each 

pixel. As shown in Fig. 2, 30×30 pixels are used in the MC algorithm instead of the 6×6 pixels in the NNLS approach. Under 

this configuration, the number of linear equations for the LTD algorithm is approximately 38+30×30×2=1838, whereas the 

number for the MC algorithm is approximately 38+30×30=938. Thus, the MC approach decreases the number of linear 

equations to approximately half that of the LTD algorithm. The smoothness seminorm of the MC algorithm ensures a smooth 260 

solution. This smoothing effect is similar to the spline interpolation applied after the reconstruction process, except that it is 

achieved during the inverse process. This aspect is important because an interpolation after the reconstruction cannot correct 

the error resulting from the reconstruction in terms of coarse spatial resolution. The MC approach evaluates the discrepancy 

based on the high-resolution values that are the same as the reconstruction outcomes. Errors due to coarse spatial resolution 

are corrected during the process.  265 

2.4 Test concentration data 

The NNLS, LTD, and MC algorithms were compared by using multiple test maps. The results were also compared with those 

of the GT-MG algorithm. We set up test conditions similar to those used in Verkruysse and Todd (2005). The concentration 

distribution from one source is defined by a bivariate Gaussian distribution 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑄𝑄exp[−�(𝑥𝑥−𝑥𝑥0)2

𝜎𝜎𝑥𝑥2
+ (𝑦𝑦−𝑦𝑦0)2

𝜎𝜎𝑦𝑦2
�]                                                                                                                                 (17) 270 

where Q (0 to 40 mg/m3) is the source strength, x0, y0 (0 to 40 m) is the peak location, and σe, σy are the width of the peaks with 

possible values of 2.8, 4.2, 5.7, and 7.1. 

The source number varies from 1 to 5. For multiple sources, the resultant concentration distribution is the superposition value 

due to each source. For each source number, 100 maps were generated by randomly setting the source strength, location, and 

peak width from the defined ranges or set above. 275 

2.5 Evaluation of reconstruction quality 

A conventional image quality measure called nearness is used to describe the discrepancy between the original maps and the 

reconstructed maps. Nearness evaluates errors over all grid cells on the map (Verkruysse and Todd, 2005) 

Nearness=�
∑ (𝑐𝑐𝑖𝑖

∗−𝑐𝑐𝑖𝑖)2𝑚𝑚×𝑛𝑛
𝑖𝑖

∑ (𝑐𝑐𝑖𝑖
∗−𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎∗ )2𝑚𝑚×𝑛𝑛

𝑖𝑖
                                                                                                                                                     (18) 

where m, n are the grid divisions on the x, y direction of the map, 𝑐𝑐𝑖𝑖∗ is the synthetic value of concentration in the ith grid 280 

generated by the Gaussian distribution model, 𝑐𝑐𝑖𝑖 is the estimated value for the ith grid, and 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎∗  is the mean concentration of 

all grids. A nearness value of zero implies a perfect match. 
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The effectiveness of locating the emission source is evaluated by the peak location error, which calculates the distance between 

the true and reconstructed peak locations. 

Peak location error =�(𝑥𝑥𝑟𝑟 − 𝑥𝑥0)2 + (𝑦𝑦𝑟𝑟 − 𝑦𝑦0)2                                                                                                                   (19) 285 

where xr, yr are the peak locations on the reconstruction map. For multiple peaks, only the location of the highest peak is 

calculated. The peak is located by searching for the largest concentration on the map. When multiple locations have the same 

values, the centroid of these locations is used. 

Exposure error percentage is used to evaluate how well average concentrations in the whole field are reconstructed. It can 

reflect the accuracy of measuring chemical air emissions and emission rates from fugitive sources, such as agricultural sources 290 

and landfills (Verkruysse and Todd, 2004) 

Exposure error % = �∑ 𝑐𝑐𝑖𝑖
∗𝑚𝑚×𝑛𝑛

𝑖𝑖 −∑ 𝑐𝑐𝑖𝑖
𝑚𝑚×𝑛𝑛
𝑖𝑖

∑ 𝑐𝑐𝑖𝑖
∗𝑚𝑚×𝑛𝑛

𝑖𝑖
� × 100%                                                                                                                     (20) 

Herein, a measure using the resolution matrix is also applied to predict the reconstruction error due to different regularization 

approaches. Resolution matrices are commonly used to determine whether model parameters can be independently predicted 

or resolved, and how regularization limits reconstruction accuracy (Twynstra and Daun, 2012; von Clarmann et al., 2009). 295 

Ignoring the non-negative constraints, the generalized inverse matrices for the NNLS, LTD, and MC algorithms can be found 

by  

𝑮𝑮𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑳𝑳𝑇𝑇𝑳𝑳)−1𝑳𝑳𝑇𝑇  

𝑮𝑮𝑁𝑁𝑇𝑇𝐿𝐿 = (𝑳𝑳𝑇𝑇𝑳𝑳 − 𝜇𝜇2𝑫𝑫3
𝑇𝑇𝑫𝑫3)−1𝑳𝑳𝑇𝑇    

𝑮𝑮𝑀𝑀𝐶𝐶 = (𝑳𝑳𝑇𝑇𝑳𝑳−𝜆𝜆2𝑴𝑴𝑇𝑇𝑴𝑴)−1𝑳𝑳𝑇𝑇                                                                                                                                               (21) 300 

The resolution matrix is defined as R=GL. The reconstruction error is given by 

𝛿𝛿𝑳𝑳 = 𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝑳𝑳𝒎𝒎𝒆𝒆𝒆𝒆𝑳𝑳𝒆𝒆 = (𝑹𝑹 − 𝑰𝑰)𝑳𝑳𝒎𝒎𝒆𝒆𝒆𝒆𝑳𝑳𝒆𝒆 − 𝑮𝑮𝛿𝛿𝒃𝒃                                                                                                                   (22) 

where cmodel and cexact are the model-predicted and the exact concentrations, respectively, δb is the perturbation of the 

observation, I is the identity matrix, (𝑹𝑹 − 𝑰𝑰)𝑳𝑳𝒎𝒎𝒆𝒆𝒆𝒆𝑳𝑳𝒆𝒆  is the regularization error caused by the inconsistency between the 

measurement data equations and the prior information equations, and 𝑮𝑮𝛿𝛿𝒃𝒃 is the perturbation error.  305 

For the LTD and MC approaches using high-resolution grids, the kernel matrix L is rank-deficient, and the regularized solution 

is robust to perturbation error over a wide range of regularization parameters. Thus, the perturbation error is negligible, and 

the reconstruction error is dominated by regularization error (Twynstra and Daun, 2012). Because the resolution matrix is 

determined only by the beam configuration and the regularization approach, it is independent of the actual concentration 

distribution. Therefore, it is best used to evaluate different beam configurations that considerably influence the reconstruction 310 

accuracy. However, in this study the beam configurations are fixed. We can therefore use the resolution matrix to measure 

different regularization approaches. In an ideal experiment, R=I, thus implying that each unknown pixel value can be 

independently resolved from the measurement data. The regularization term forces the off-diagonal terms in R to be nonzero, 

thereby making the estimated concentration of each pixel a weighted average of the concentration of the surrounding pixels. 
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We can use the Frobenius distance between R and I defining a measure of fitness to predict the reconstruction error (Twynstra 315 

and Daun, 2012). 

𝜀𝜀 = 𝟏𝟏
𝑁𝑁𝑐𝑐
‖𝑹𝑹 − 𝑰𝑰‖𝐹𝐹𝟐𝟐                                                                                                                                                                      (23) 

3 Results and discussions 

In these tests, the traditional NNLS algorithm uses 6×6 grids, whereas the LTD and MC algorithms both use 30×30 grids. The 

results of the GT-MG algorithm are from Verkruysse and Todd (2005), in which a maximum basis grid resolution of 10×10 320 

with 1/4 grid size as translation distance was used. Of note, the test conditions were not exactly the same as those used by the 

GT-MG algorithm, which did not measure the peak location error and used a different method to calculate the exposure error 

by limiting the calculation domain to a small area near the peak instead of the entire map. Therefore, the results of the GT-MG 

algorithm are provided as a reference and only the measure of nearness was compared. The original resolution of the 

reconstruction map by the NNLS algorithm is too coarse (6.7 m). To determine the peak locations more accurately, all 325 

concentration maps reconstructed by the NNLS algorithm were spline interpolated with a resolution of 0.5 m. Fig. 3 depicts 

some examples of the test maps and reconstructed maps generated by different algorithms with different source numbers. 

(a) 

 
(b) 330 

 
(c) 



13 
 
 

 
(d) 

 335 
(e) 

 
Figure 3. Original test maps (first column) and corresponding maps reconstructed with the NNLS (second column), LTD (third column), 
and MC (forth column) algorithms. (a) One source; (b) two sources; (c) three sources; (d) four sources; (e) five sources. 

3.1 Nearness 340 

Table 1. Mean and standard deviation of nearness. 

Source number NNLS LTD MC GT-MG* 

1 0.40 (0.21) 0.13 (0.08) 0.11 (0.07) 0.09 (0.05) 

2 0.38 (0.16) 0.15 (0.07) 0.13 (0.06) 0.16 (0.07) 

3 0.40 (0.14) 0.18 (0.08) 0.17 (0.08) 0.19 (0.06) 

4 0.40 (0.12) 0.20 (0.08) 0.19 (0.08) 0.25 (0.08) 

5 0.43 (0.13) 0.22 (0.09) 0.21 (0.08) 0.27 (0.09) 

*: The results of the GT-MG algorithm are from Verkruysse and Todd (2005), whose test conditions are not exactly the same 

as the conditions used herein. 

Nearness is the most important measure of accuracy of the reconstructed map. It represents the reconstruction of peak heights, 

shapes, and the production of artifacts. The smaller the nearness value, the better the reconstruction quality. In Table 1, the 345 
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LTD, MC and GT-MG algorithms generally reduce the nearness values by more than 50% with respect to the values obtained 

by the NNLS algorithm. Under the condition of one source, they reduce the nearness by approximately 70% with respect to 

the NNLS. The LTD, MC and GT-MG algorithms show increasing trends as the source number increases, thus implying that 

the performance of the algorithm is affected by the complexity of the underlying distribution. The nearness results of NNLS 

for different numbers of sources are almost the same because they are the results after spline interpolation. In fact, the original 350 

un-interpolated results also show increasing trends. The interpolation improves the results of the NNLS algorithm more than 

those of the LTD and MC algorithms, which already use high-resolution grids. The overall performance of the LTD, MC, and 

GT-MG algorithms is very similar, whereas the new MC algorithm’s performance is slightly better. 

3.2 Peak location error 

Table 2. Mean and standard deviation of peak location error. 355 

Source number NNLS (m) LTD (m) MC (m) 

1 1.78 (0.93) 0.41 (0.45) 0.40 (0.56) 

2 4.88 (8.21) 1.97 (5.98) 1.62 (4.81) 

3 5.17 (8.35) 2.58 (6.77) 2.34 (6.17) 

4 8.40 (11.53) 5.22 (10.28) 5.58 (10.76) 

5 8.95 (11.32) 5.51 (10.15) 5.77 (10.41) 

As shown in Table 2, the LTD and MC algorithms show better performance in peak location error than the NNLS algorithm. 

They generally improve the accuracy of peak location by 1 to 2 m. The errors of all algorithms increase with the source number.  

One reason for this finding is that when two or more peaks with comparable peak magnitudes on the map (Fig. 3), the algorithm 

may not identify the correct location of the highest peak. Therefore, a large error may occur when the highest value on the 

reconstructed map is located on the wrong peak. 360 

3.3 Exposure error 

Table 3. Mean and standard deviation of exposure error. 

Source number NNLS (%) LTD (%) MC (%) 

1 29.26 (19.29) 1.51 (2.11) 1.61 (2.15) 

2 19.91 (11.99) 1.05 (1.26) 1.09 (1.19) 

3 16.05 (9.78) 1.16 (0.97) 1.31 (0.92) 

4 12.99 (6.92) 1.15 (1.04) 1.24 (1.00) 

5 12.13 (8.62) 1.30 (1.14) 1.45 (1.16) 

As shown in Table 3, a significant improvement in exposure error is achieved by the MC and LTD algorithms compared with 

the NNLS algorithm. The exposure error reflects the accuracy of the overall emissions measurement other than the 
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concentration distribution. The performance of the LTD and MC algorithms is very similar. Unlike the trends shown by the 365 

NNLS in the nearness and peak location error, its performance in exposure error improves with increasing source number. A 

plausible cause of this phenomenon may be that the distribution becomes more uniform with larger numbers of sources. 

Because the NNLS algorithm uses coarse grid division, it produces concentrations with very low spatial resolution and fits the 

true distribution better when the distribution becomes more uniform. 

3.4 Computation time 370 

Table 4. Mean and standard derivation of computation time. 

Source number LTD (s) MC (s) Ratio (MC/LTD) 

1 11.08 (14.27) 8.06 (10.03) 0.73 

2 21.02 (17.89) 14.17 (11.46) 0.67 

3 34.44 (19.93) 22.76 (13.61) 0.66 

4 43.58 (20.45) 29.13 (12.92) 0.67 

5 59.48 (21.98) 38.74 (15.05) 0.65 

In Table 4, the computation times for the LTD and MC algorithms are compared. The computation time generally increases 

with increasing source number. The MC algorithm is faster than the LTD algorithm because it has approximately half the 

number of the linear equations as the LTD algorithm. The ratio results show that the MC algorithm's computation time is 

approximately 65% that of the LTD algorithm when the source number is five. The trend of the ratio implies that the advantage 375 

of the MC algorithm becomes more clearer with increasing complexity of the underlying distribution.  

3.5 Fitness 

Contour plots of the resolution matrices for the LTD and MC algorithms are shown in Fig. 4. (a) and (b). The fitness values 

for the LTD and MC algorithm are 1.4411 and 1.3878, respectively. The MC algorithm shows slightly better performance. 

The off-diagonal elements are not zeros. The reconstructed concentration at each pixel is a weighted average of the 380 

concentrations of the surrounding pixels according to the smoothness regularization. Each row of the resolution matrix can be 

regarded as smoothing weights. Because the pixels have a 2-D arrangement, we show the 2-D display of the row of the 106th 

pixel (row and column indices are 4 and 16) in the resolution matrix for the LTD and MC algorithms in Fig. 4. (c) and (d) as 

an example. The dependence on the beam geometry can be seen on both pictures. Because the beam configuration is fixed, the 

difference between the fitness values is mainly caused by the use of different regularization approaches. The fitness difference 385 

between the LTD and MC algorithms is very small, which may indicate that both algorithms have similar smoothness effects. 

This result coincides with the results from other measures discussed above. The 2-D display of the diagonal elements of the 

resolution matrix are shown in Fig. 4. (e) and (f), which are not much useful in this case. 
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 (a)  (b)   

(c)  (d)   390 

(e)  (f)   
Figure 4. Contour plot of the resolution matrix for (a) the LTD algorithm (b) the MC algorithm. 2-D display of the row vector of the 106th 
pixel in the resolution matrix for (c) the LTD algorithm (d) the MC algorithm. 2-D display of the diagonal elements of the resolution matrix 
for (e) the LTD algorithm (f) the MC algorithm. 

3.6 Influence of the grid size 395 

The derivatives are approximated by the finite differences during the discretization process. The finite grid length causes 

discretization error and affects the reconstruction results. We studied the influences of different grid divisions by investigating 

the changes of the nearness, peak location error, exposure error, and computation time with respect to the pixel number. Five 
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different grid divisions were used: 6×6, 12×12, 18×18, 24×24, and 30×30. The peak number was five. A total of 100 maps 

were tested for each grid division. The results of the averaged values are shown in Fig. 5.  400 

(a)  (b)  

(c)  (d)  
Figure 5. The change of (a) nearness (b) peak location error (c) exposure error percentage (d) computation time with respect to the pixel 

number. 

The nearness, peak location error, and exposure error generally illustrate decreasing trends with increasing pixel number. The 405 

MC algorithm shows slightly better performance than the LTD algorithm with increasing pixel number. The performance 

improvement becomes slow for both algorithms when the division is finer than 24×24. The computation time shows 

approximately exponential growth trend with increasing pixel number. The LTD algorithm has a faster increasing rate than 

the MC algorithm. To conclude, the reconstruction performance is improved for both LTD and MC algorithms with increasing 

pixel numbers, but at the cost of exponential growth of the computation time. And the improvement becomes small when the 410 

resolution is higher than certain threshold value (24×24 herein). Therefore, there should be a balance between the performance 

and the computation time. 
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4 Conclusion 

To understand the characteristics of the smoothness constraints and to seek more flexible smooth reconstruction, we first 

identified the LTD algorithm as a special case of Tikhonov regularization. Then, more flexible smoothness constraints were 415 

found through the smoothness seminorms according to variational interpolation theory. The smoothness seminors were 

successfully adopted in ORS-CT inverse problems. On the basis of variational approach, we proposed a new MC algorithm by 

using a seminorm approximating the sum of the squares of the curvature. The new algorithm improves computational 

efficiency through reducing the number of linear equations to half that of the LTD algorithm. It is simpler to perform than the 

GT-MG algorithm by directly using high-resolution grids during the reconstruction.  420 

The MC, LTD, and NNLS algorithms were compared by using multiple test maps. The new MC algorithm shows similar 

performance as the LTD algorithm, but only requires approximately 65% the computation time. The smoothness-related 

algorithms of LTD, MC, and GT-MG all show better performance than the traditional NNLS algorithm: the nearness of 

reconstructed maps is improved by more than 50%, the peak distance accuracy is improved by 1- 2 m, and the exposure error 

is improved by more than ten times. Because differences in accuracy between the LTD and MC algorithms are very small, 425 

more specific evaluations may be needed by using more complicated and realistic conditions.  

These comparisons demonstrate the feasibility of introducing the theory of variational interpolation. On the basis of the 

seminorms, it is easier to understand the advantages and the drawbacks of different algorithms. Common problems such as the 

over-smooth issue may be improved by formulating more algorithms suitable for ORS-CT applications. Note that although the 

smoothness is very good a priori information for the reconstruction problem, beam configuration and underlying concentration 430 

distribution are also important factors affecting the reconstruction quality. To further improve the reconstruction quality, extra 

a priori information according to specific application may be added to the inverse problem. For example, statistic information 

of the underlying distribution or information resulting from the fluid mechanics.  
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