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Abstract. Optical remote sensing (ORS) combined with computerized tomography (CT) technique is a powerful tool to 

retrieve a two-dimensional concentration map over the area under investigation. But unlike the medical CT, the beam number 

used in ORS-CT is usually dozens comparing to up to hundreds of thousands in the former, which severely limits the spatial 

resolution and the quality of the reconstructed map. This situation makes the 'smoothness' a priori information especially 

necessary for ORS-CT. Algorithms which produce smooth reconstructions include smooth basis function minimization 10 

(SBFM), grid translation and multiple grid (GT-MG), and low third derivative (LTD), among which the LTD algorithm is a 

promising one with fast speed and simple realization. But its characteristics and the theory basis are not clear. Moreover, the 

computation efficiency and the reconstruction quality need to be improved for practical applications. This paper employs two 

theories, i.e., Tikhonov regularization and spatial interpolation, to produce a smooth reconstruction by ORS-CT. Within the 

two theories’ frameworks, new algorithms can be explored in order to improve the performance. For example, we propose a 15 

new minimum curvature (MC) algorithm based on the variational approach in the theory of the spatial interpolation, which 

reduces the number of linear equations by half comparing to that in the LTD algorithm using the biharmonic equation instead 

of the smoothness seminorm. We compared our MC algorithm with the non-negative least square (NNLS), GT-MG, and LTD 

algorithms using multiple test maps. The MC and the LTD algorithms have similar performance on the reconstruction quality. 

But the MC algorithm needs only about 65% computation time of the LTD algorithm. It is much simpler in realization than 20 

the GT-MG algorithm by using high-resolution grids directly during the reconstruction process to generate a high-resolution 

map immediately after one reconstruction process is done. Comparing to the traditional NNLS algorithm, it shows better 

performance in three aspects: (1) the nearness of reconstructed maps is improved by more than 50%; (2) the peak location 

accuracy is improved by 1- 2 m; and (3) the exposure error is improved by more than 10 times. The testing results show the 

effectiveness of the new algorithm based on the spatial interpolation theory. Similarly, other algorithms may also be formulated 25 

to address problems such as the over-smooth issue in order to further improve the reconstruction equality. The studies will 

promote the practical application of the ORS-CT mapping of atmospheric chemicals. 
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1 Introduction 

Measuring the concentration distribution of atmospheric chemicals over a large area is required in many environmental 

applications, including locating hot spots or emission sources of air pollutants (Wu et al., 1999), understanding air pollutant 30 

dispersion and airflow patterns, quantifying emission rate or ventilation efficiency (Samanta and Todd, 2000; Belotti et al., 

2003; Arghand et al., 2015). Traditional methods use multiple point samplers placed at various locations in the region under 

investigation, which is intrusive, time-consuming, and limited in temporal and spatial resolution (Cehlin, 2019). The advanced 

method is based on the combination of optical remote sensing (ORS) and computerized tomography (CT) techniques (ORS-

CT). ORS is a powerful technique for air contaminant measurement, which can detect a large area in situ and provide near 35 

real-time information (Du et al., 2011). The path-integrated concentration (PIC) is measured along each path using techniques 

like open-path tunable diode laser (OP-TDL) or open-path Fourier transform infrared spectrometer (OP-FTIR). After multiple 

PICs are collected, the two-dimensional concentration map can be reconstructed by the CT technique (Hashmonay et al., 2001). 

Comparing to other techniques, ORS-CT is non-intrusive and fast. It also has good spatial resolution and can work continuously 

and automatically. These advantages make ORS-CT have the potential to be an excellent tool for investigating air dispersion 40 

problems under various conditions. 

The reconstruction techniques have been well studied in medical CT. Theoretically, the true distribution can be determined 

exactly by Radon transformation approach, which requires infinite beams. In practice, the transformation approaches include 

back projection and filtered back projection (FBP) methods. Series-expansion-based methods are another type of approaches 

which estimate the true distribution by finding a finite set of numbers or superposition of a set of simple functions. In 45 

environmental applications, the number of beams in ORS-CT is usually less than 50 comparing to hundreds of thousands of 

beams used in the medical CT due to factors including cost, response, configuration, and other practical considerations. 

Therefore, only the series-expansion-based methods are applied in ORS-CT, which include two main types of approaches: 

pixel-based approach and basis-function-based approach. Pixel-based approach divides an area into pixels (grids) and assigns 

a concentration value to each pixel. The PIC is calculated by summarising the product of the pixel concentration and the length 50 

of the path in each pixel. A system of linear equations can be set up for multiple beams. The question is to find the best set of 

pixel concentrations. Basis-function approach assumes that the true distribution is determined by the superposition of a set of 

simple basis functions with unknown parameters. Possible basis functions include bilinear function, bivariate Gaussian 

function, etc (Giuli et al., 1999; Hashmonay et al., 1999). A system of non-linear equations is set up for multiple beams. The 

question is to find the best set of parameters. For both approaches, the inverse questions are solved by minimizing the error 55 

function constructed based on some criteria (Price et al., 2001), including minimizing the L2 norm of error (finding a least-

squares (LS) solution), maximum likelihood (ML), maximum entropy, etc. In pixel-based reconstruction, the inverse problem 

is linear but usually ill-posed. The number of equations is very large. Numerical iterative techniques are used to estimate the 

solution, including algebraic reconstruction techniques (ART), steepest descent, conjugate gradient (CG), and expectation-

maximization (EM) (Tsui et al., 1991; Todd and Ramachandran, 1994; Drescher et al., 1996). In the basis-function-based 60 
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approach, the inverse problem is usually non-linear. Stochastic optimization algorithms need to be used to find the global 

minimum (e.g., simulated annealing (SA)).  

For ORS-CT mapping of atmospheric chemicals, literatures show that the smooth basis function minimization (SBFM) 

algorithm performs better than other algorithms (Drescher et al., 1996). This is because the patterns of air dispersion are 

physically smooth in shape. Therefore, an algorithm converging toward smooth concentration distribution consistent with the 65 

path-integrated data is a rational choice (Cehlin, 2019). However, SBFM is highly computation-intensive due to the non-linear 

optimization, which was reported to be about 100 times slower than pixel-based algorithms (Price et al., 2001). This makes it 

unfavorable for rapid reconstruction, which is usually required in industrial applications such as monitoring chemical plants. 

A representative pixel-based algorithm is the non-negative least square (NNLS), which is also the algorithm used in the USEPA 

OTM-10 for horizontal radial plume mapping (HRPM) measurements (EPA, 2005). It achieves similar results as the 70 

multiplicative algebraic reconstruction technique (MART), but with shorter computing time (Hashmonay et al., 1999). The 

traditional pixel-based algorithms, although suitable for rapid CT, have poor performance comparing to SBFM algorithm (Wu 

and Chang, 2011). This is mainly due to the coarse grid resolution limited by the beam number. Because the algorithm requires 

the number of grids to be less than or equal to the number of beams (Hashmonay, 2012). 

To improve the performance of traditional pixel-based algorithms, there are two reported approaches used in ORS-CT. One 75 

method is the 'low third derivative' (LTD) algorithm, which adds the third derivative at each pixel as a smoothness restriction 

(Price et al., 2001). The LTD algorithm was reported to work nearly as well as SBFM algorithm, but was about 100 times 

faster (Price et al., 2001). Another method is the 'grid translation' (GT) algorithm, which shifts the basis grid by different 

distances (e.g., 1/3, 2/3 width of the basis grid) horizontally and vertically while keeping the basis grid fixed (Verkruysse and 

Todd, 2004). The performance is improved by averaging the reconstruction results after each shifting. There is also an 80 

improved version called 'grid-translation and multi-grid' (GT-MG), which applies the GT algorithm at different basis grid 

resolutions (Verkruysse and Todd, 2005). This method has been successfully used with maximum likelihood expectation 

maximization (MLEM) to improve the reconstruction accuracy, especially in determining the peak location and value (Cehlin, 

2019). 

The successes of these algorithms show the necessary of applying the smoothness restriction to the ORS-CT gas mapping. 85 

Using the LTD algorithm, we can easily achieve a smooth reconstruction. However, like the Gaussian model used in the SBFM 

algorithm, the smoothness in the LTD algorithm is also achieved based on ideal model (quadratic functions). It is necessary to 

understand the characteristics of this model in order to apply the algorithm to specific application. But the theory basis of the 

LTD algorithm was not clearly given. When we tried to introduce the smoothness as a priori information to the reconstruction 

process, we found that a smooth reconstruction could be achieved based on two well-established theories. The first one is the 90 

regularization theory originated from Tikhonov for solving the ill-posed inverse problem (Tikhonov and Arsenin, 1977; Rudin 

et al., 1992). The most well-known approach is the Tikhonov L2 regularization, which uses the ith-order derivative of the 

function as a regularization factor and produces a smoothing effect on the resulting solution (Gholami and Hosseini, 2013). 
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From the view of regularization theory, the LTD algorithm is a regularized algorithm which uses the third-order derivative. In 

fact, the first, second, and higher order derivatives can also produce smooth results. The second one is the interpolation theory 95 

based on which almost all algorithms introduce the smooth effect to the output. Specifically, the variational interpolation 

approach can produce a regularized inverse problem similar to Tikhonov regularization by using a smoothness seminorm. The 

seminorm consists of different order derivatives or their combinations. The solution to this inverse problem is a set of spline 

functions. For example, a bivariate smoothness seminorm with squares of second derivative leads to a thin plate spline (TPS) 

function. Based on the variational interpolation theory, the LTD algorithm is a special case of the regularized spline with 100 

tension (RST) (Mitasova et al., 1995).   

In the framework of the regularized inversion and spatial interpolation theories, the characteristics of the derivative-based 

algorithms can be well explored. In this paper, we propose a new minimum curvature (MC) algorithm based on the variational 

interpolation. It improves the computation efficiency comparing to the LTD algorithm by using the corresponding biharmonic 

equation instead of the smoothness seminorm to construct the additional linear equation at each pixel of the map, the new MC 105 

algorithm reduces the number of equations to half of the LTD algorithm and eventually reduces the computation time. Another 

innovation of the new algorithm is to use much larger number of grids than the number of beams instead of the comparable 

numbers of grids and beams in the traditional methods. Comparing to the multiple grids and grid translation operations in GT-

MG algorithm, this approach offers the same performance but is much easier to realize. We compared the new MC algorithm 

with the NNLS, LTD, and GT-MG algorithms using multiple test maps. These tests showed the effectiveness of the new MC 110 

algorithm. This study also demonstrates the feasibility of introducing techniques from the Tikhonov regularization and spatial 

interpolation to the ORS-CT method for mapping atmospheric chemicals.  

2 Materials and methodologies 

2.1 ORS-CT and beam geometry 

The area of the test field is 40 m × 40 m. We use the open-path tunable diode laser (OP-TDL) as the ORS analyzer, which is 115 

installed on a scanner and aims at multiple retroreflectors by scanning periodically and continuously. The beam geometry can 

be categorized into overlapped and non-overlapped beam geometry based on the way the beams are deployed. To compare 

with the results of GT-MG algorithm, we use an overlapping beam configuration similar to the one used in Verkruysse and 

Todd (2005). 

As shown in Fig. 1, four TDL analyzers are located at the four corners of the test field. The retroreflectors are evenly distributed 120 

on the edges of the field. The total beam number is 38. For traditional pixel-based algorithm, the number of grids should be 

less than or equal to the beam number. Therefore, we divide the test field into 6 × 6 grids. The concentration within each grid 

is assumed to be uniform. 
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                                        (a)                                                                              (b)  125 
Figure 1. The test field and beam configuration. (a) beam geometry; (b) beam geometry with 6 × 6 grids. 

At each retroreflector, the path-integrated concentration (PIC) is measured. The PIC of the i-th beam and the system of linear 

equation for all the paths are 

𝑝𝑝𝑖𝑖 = ∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑛𝑛
𝑗𝑗=1  ,    𝑐𝑐𝑗𝑗 ≥ 0                                                                                                                                                       (1) 

𝒑𝒑 = 𝑳𝑳𝑳𝑳 ,    𝑐𝑐𝑗𝑗 ≥ 0                                                                                                                                                                    (2) 130 

where p is the PIC, i, j is the index of path number and cell number respectively, Lij is the beam length of the ith beam in the 

jth cell, cj is the concentration of the jth cell. This constrained linear inverse problem is solved by iterative algorithms of NNLS 

(Lawson and Janson, 1995). 

2.2 Tikhonov regularization and LTD algorithm 

Tikhonov L2 regularization is the most well-known regularization technique. Its form can be written as the following 135 

minimization problem21 

arg min
𝒄𝒄∈ℝ𝑛𝑛

{‖𝑳𝑳𝑳𝑳 − 𝒑𝒑‖22 + 𝜇𝜇‖𝑹𝑹𝑖𝑖𝒄𝒄‖22}                                                                                                                                           (3) 

where μ is the regularization parameter controlling the conditioning of the problem, matrix Ri is the regularization operator, 

which is typically an approximation of the ith-order derivative operator.  

 140 

The LTD algorithm uses the third-order derivative operator. Assuming the grid indices in x, y directions are i, j, the third-order 

derivative at y-direction is 
𝑑𝑑3𝑐𝑐
𝑑𝑑𝑗𝑗3

= 𝑐𝑐𝑖𝑖,𝑗𝑗+2 − 3𝑐𝑐𝑖𝑖,𝑗𝑗+1 + 3𝑐𝑐𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖,𝑗𝑗−1                                                                                                                                     (4) 

The third-order derivative operator in matrix form is 
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∈ ℝ(𝑚𝑚−3)×𝑛𝑛                                                                                                             (5) 145 

 

For grids at the edges, we use the second-order derivative and first-order derivative. The regularization parameter is set to be 

inversely propositional to the grid length. By setting the derivative to zero, the algorithm introduces two linear equations at 

each grid. The resulted system of linear equations is over-determined, which can be solved by NNLS algorithm. 

2.3 Variational approach and minimum curvature algorithm 150 

The variational approach for interpolation is to minimize the following problem 

arg min
𝒄𝒄∈ℝ𝑛𝑛

{‖𝑳𝑳𝑳𝑳 − 𝒑𝒑‖22 +  𝜔𝜔|𝒄𝒄|2}                                                                                                                                                (6) 

where ω is a positive weight and |c|2 denotes the square of smoothness seminorm. The seminorm can be defined in various 

forms. The commonly used ones are the first, second, third derivatives or their combinations. The solutions of the minimizing 

problems are spline functions.  155 

Based on different seminorms, we can formulate many different reconstruction algorithms. As a demonstration, we propose 

the minimum curvature (MC) algorithm, which uses the seminorm equal to the total square curvature:  

|𝒄𝒄|2 = ∫∫ �𝜕𝜕
2𝑐𝑐

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑦𝑦2
�
2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                                                                                                (7) 

The seminorm can be calculated at each pixel using the finite difference approach. Each item in the summation is set to be 

zero to generate an equation at that pixel. Multiple items will lead to multiple equations at one pixel. This is how the LTD 160 

algorithm does to add additional equations. In this paper, however, we will only add one equation at each pixel to reduce the 

number of equations. This is done by using the corresponding Euler-Lagrange differential equation to the minimizing problem 

(Briggs, 1974). According to the minimum curvature principle, the minimization can be carried out by solving the biharmonic 

equation. 
𝜕𝜕4𝑐𝑐
𝜕𝜕𝑥𝑥4

+ 2 𝜕𝜕4𝑐𝑐
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2

+ 𝜕𝜕4𝑐𝑐
𝜕𝜕𝑦𝑦4

= 0                                                                                                                                                       (8) 165 

The corresponding finite difference equation is 
𝑐𝑐𝑖𝑖+2,𝑗𝑗 + 𝑐𝑐𝑖𝑖,𝑗𝑗+2 + 𝑐𝑐𝑖𝑖−2,𝑗𝑗 + 𝑐𝑐𝑖𝑖,𝑗𝑗−2

+2(𝑐𝑐𝑖𝑖+1,𝑗𝑗+1 + 𝑐𝑐𝑖𝑖−1,𝑗𝑗+1 + 𝑐𝑐𝑖𝑖+1,𝑗𝑗−1 + 𝑐𝑐𝑖𝑖−1,𝑗𝑗−1)
−8�𝑐𝑐𝑖𝑖+1,𝑗𝑗 + 𝑐𝑐𝑖𝑖−1,𝑗𝑗 + 𝑐𝑐𝑖𝑖,𝑗𝑗−1 + 𝑐𝑐𝑖𝑖,𝑗𝑗+1� + 20𝑐𝑐𝑖𝑖,𝑗𝑗 = 0

                                                                                                                 (9) 
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Therefore, one equation is set up for each grid instead of two equations in the LTD algorithm. For grids on the edges, we set 

the first and second derivatives to be zeros. The weight is set to be inversely propositional to the grid length. The resulted 

constrained system of linear equations is over-determined and can be solved by NNLS algorithm. 170 

 
Figure 2. Beam geometry with 30 × 30 grids. 

For pixel-based reconstruction algorithms, the number of grids (unknowns) should be no more than the number of beams 

(equations) in order to get a well-posted system of linear equations. Because there are only dozens beams in an ORS-CT 

application, the grid resolution is very coarse. The GT algorithm is one way to increase the resolution. But it needs several 175 

steps to complete the whole translation. And the high-resolution map is generated after each reconstruction process. In the MC 

algorithm, we use very high-resolution grids directly before the reconstruction. Because there is one derivative restriction at 

each pixel, the resulted system of linear equations is determined. As shown in Fig. 2, 30 × 30 grids are used in the MC algorithm 

instead of the 6 × 6 grids in the traditional NNLS algorithm. The smoothness feature of the MC algorithm will guarantee the 

smooth effect between all the pixels. This smooth effect is similar to the interpolation applied after the reconstruction process, 180 

except that the interpolation is achieved automatically when the inverse problem is solved. 
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2.4 Test concentration data 

The NNLS, LTD, and MC algorithms were compared using multiple test maps. The results were also compared with the GT-

MG algorithm. In order to do this, we set up test conditions similar to that used in Verkruysse and Todd (2005). The source 

distribution is defined by a bivariate Gaussian distribution 185 

𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝑄𝑄exp[−�(𝑥𝑥−𝑥𝑥0)2

𝜎𝜎𝑥𝑥2
+ (𝑦𝑦−𝑦𝑦0)2

𝜎𝜎𝑦𝑦2
�]                                                                                                                                 (10) 

where Q (0 to 40 ppm) is the source strength, x0, y0 (0 to 40 m) is the peak location, σ is the width of the peak (2.8, 4.2, 5.7, or 

7.1).  

The source number varies from 1 to 5. For each source number, 100 maps were generated by randomly setting the source 

strength, location, and peak width. 190 

2.5 Evaluation of reconstruction quality 

A conventional image quality measure called nearness is used to describe the discrepancy between the original maps and the 

reconstructed maps. Nearness evaluates errors over all the grid cells in the map (Verkruysse and Todd, 2005) 

Nearness=�
∑ (𝑐𝑐𝑖𝑖

∗−𝑐𝑐𝑖𝑖)2
𝑚𝑚×𝑛𝑛
𝑖𝑖

∑ (𝑐𝑐𝑖𝑖
∗−𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎∗ )2𝑚𝑚×𝑛𝑛

𝑖𝑖
                                                                                                                                                     (11) 

where m, n are the grid divisions on the x, y direction of the map, 𝑐𝑐𝑖𝑖∗ is the synthetic value of concentration in the ith grid on 195 

the map generated by the Gaussian distribution model, 𝑐𝑐𝑖𝑖 is the estimated value for the ith grid in the map, 𝑐𝑐𝑎𝑎𝑎𝑎𝑔𝑔∗  is the mean 

concentration of all the grids in the map. A nearness value of zero implies a perfect match. 

The effectiveness of locating the emission source is evaluated by peak location error, which calculates the distance between 

the true and reconstructed peak locations. 

Peak location error =�(𝑥𝑥𝑟𝑟 − 𝑥𝑥0)2 + (𝑦𝑦𝑟𝑟 − 𝑦𝑦0)2                                                                                                                   (12) 200 

where xr, yr are the peak locations in the reconstruction map. For multiple peaks, only the location of the highest peak was 

calculated. 

Exposure error percent is used to evaluate how well average concentrations in the whole field are reconstructed. It can reflect 

the accuracy of measuring chemical air emissions and emission rates from fugitive sources such as agricultural sources and 

landfills (Verkruysse and Todd, 2004) 205 

Exposure error % = �∑ 𝑐𝑐𝑖𝑖
∗𝑚𝑚×𝑛𝑛

𝑖𝑖 −∑ 𝑐𝑐𝑖𝑖
𝑚𝑚×𝑛𝑛
𝑖𝑖

∑ 𝑐𝑐𝑖𝑖
∗𝑚𝑚×𝑛𝑛

𝑖𝑖
� × 100%                                                                                                                     (13) 

3 Results and discussions 

In these tests, the traditional NNLS algorithm uses 6 × 6 grids, while the LTD and MC algorithms both use 30 × 30 grids. The 

results of the GT-MG algorithm are from Verkruysse and Todd (2005). They used a maximum basis grid resolution of 10 × 
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10 with 1/4 grid size as translation distance. Note that the test conditions are not exactly the same as the ones used by the GT-210 

MG algorithm. Therefore, the results of the GT-MG algorithm are listed as a reference. Only the nearness results of the GT-

MG algorithm are compared because It did not give the peak location error, and the exposure error was calculated only in a 

small area near the peak instead of the whole map in this paper. The original resolution of the reconstruction map by the NNLS 

algorithm is too coarse (6.7 m). In order to determine the peak locations more accurately, all the reconstructed concentration 

maps by NNLS algorithm are interpolated by spline function using a resolution of 0.5 m. 215 
Table 1. Mean and standard deviation of nearness. 

Source number NNLS LTD MC GT-MG* 

1 0.40 (0.21) 0.13 (0.08) 0.11 (0.07) 0.09 (0.05) 

2 0.38 (0.16) 0.15 (0.07) 0.13 (0.06) 0.16 (0.07) 

3 0.40 (0.14) 0.18 (0.08) 0.17 (0.08) 0.19 (0.06) 

4 0.40 (0.12) 0.20 (0.08) 0.19 (0.08) 0.25 (0.08) 

5 0.43 (0.13) 0.22 (0.09) 0.21 (0.08) 0.27 (0.09) 

*: The results of the GT-MG algorithm are from Verkruysse and Todd (2005), whose test conditions are not exactly the same 

as the conditions in this paper. 

The nearness is the most important measure of accuracy of the reconstructed map, which represents the reconstruction of peak 

heights, shapes, and the production of artifacts. The smaller the number of sources, the better the reconstruction quality. In 220 

Table 1, LTD, MC, and GT-MG algorithms generally reduce the nearness values by more than 50% of the values obtained by 

the NNLS algorithm. In the condition of one source, they can reduce the nearness by about 70% with respect to NNLS. LTD, 

MC, GT-MG algorithms show increasing trends as the source number increases, which implies that the performance of the 

algorithm is affected by the complicity of the underlying distribution. The nearness results of NNLS for different numbers of 

sources are almost the same because they are the results after spline interpolation. In fact, the original un-interpolated results 225 

also show increasing trends. The interpolation improves the results of the NNLS algorithm more than those of LTD and MC 

algorithms, which already use high-resolution grids. The overall performances of LTD, MC, and GT-MG algorithms are very 

similar, while the new MC algorithm performances slightly better. 
Table 2. Mean and standard deviation of peak location error. 

Source number NNLS (m) LTD (m) MC (m) 

1 1.78 (0.93) 0.41 (0.45) 0.40 (0.56) 

2 4.88 (8.21) 1.97 (5.98) 1.62 (4.81) 

3 5.17 (8.35) 2.58 (6.77) 2.34 (6.17) 

4 8.40 (11.53) 5.22 (10.28) 5.58 (10.76) 

5 8.95 (11.32) 5.51 (10.15) 5.77 (10.41) 
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In Table 2, LTD and MC algorithms show better performance in peak location error than the NNLS algorithm. They generally 230 

improve the accuracy of peak location by 1 to 2 m. The errors of all the algorithms increase as the source number increase. 

Because only the highest peak was calculated, a large error may happen when there are two or more peaks that are comparable 

to each other in magnitude (see Fig. 3). Therefore, this measure is more meaningful when the source number is small. 
Table 3. Mean and standard deviation of exposure error. 

Source number  NNLS (%) LTD (%) MC (%) 

1 29.26 (19.29) 1.51 (2.11) 1.61 (2.15) 

2 19.91 (11.99) 1.05 (1.26) 1.09 (1.19) 

3 16.05 (9.78) 1.16 (0.97) 1.31 (0.92) 

4 12.99 (6.92) 1.15 (1.04) 1.24 (1.00) 

5 12.13 (8.62) 1.30 (1.14) 1.45 (1.16) 

In Table 3, we can see a significant improvement of exposure error by MC and LTD algorithms comparing to the NNLS 235 

algorithm. The exposure error reflects the accuracy of the overall emissions measurement other than the concentration 

distribution. The performances of LTD and MC algorithms are very similar to each other. Unlike the trends that the NNLS 

shows in the nearness and peak location error, its performance in exposure error becomes better with the increase of source 

number. A plausible cause of this phenomenon could be that the distribution becomes more uniform with larger number of 

sources, implying that the NNLS algorithm is more suitable for relatively uniform distributions. 240 
Table 4. Mean and standard derivation of computation time. 

Source number  LTD (s) MC (s) Ratio (MC/LTD) 

1 11.08 (14.27) 8.06 (10.03) 0.73 

2 21.02 (17.89) 14.17 (11.46) 0.67 

3 34.44 (19.93) 22.76 (13.61) 0.66 

4 43.58 (20.45) 29.13 (12.92) 0.67 

5 59.48 (21.98) 38.74 (15.05) 0.65 

In Table 4, the computation time for LTD and MC algorithms are compared. The computation time generally increase with 

the increase of source number. MC algorithm is faster than LTD algorithm because it has about half the number of the linear 

equations than that in LTD algorithm. The ratio result shows that the MC algorithm's computation time is about 65% of that 

of the LTD algorithm when the source number is five. The trend of the ratio implies that the advantage of the MC algorithm 245 

becomes more obvious with the increasing complexity of the underlying distribution.  
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(a) 

 
(b) 250 

 
(c) 

 
(d) 

 255 
(e) 

 
Figure 3. Original test maps (first column) and corresponding reconstructed maps using the NNLS (second column), LTD (third column), 
and MC (forth column) algorithms. (a) one source; (b) two sources; (c) three sources; (d) four sources; (e) five sources. 
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Fig. 3 depicts some examples of the test maps and reconstructed maps generated by different algorithms under different source 260 

numbers. As indicated by the nearness results, LTD and MC algorithms show better accuracy than the NNLS algorithm in the 

shapes and source strengths. Because the differences in accuracy (i.e., nearness, peak distance) between LTD and MC 

algorithms are very small, more specific evaluations may be needed to compare them using more complicated and realistic 

conditions.  

4 Conclusion 265 

With the purpose of achieving a smooth reconstruction, we found that the Tikhonov regularization and the spatial interpolation 

theories can be applied to the ORS-CT inverse problems. Based on the variational approach in the interpolation theory, we 

proposed a new MC algorithm by using the corresponding biharmonic equation instead of the smoothness seminorm to 

construct an additional linear equation at each pixel of the map. The new algorithm improves the computation efficiency 

comparing to the LTD algorithm by reducing the number of linear equations by half. Comparing to the GT-MG algorithm, 270 

which achieves high-resolution reconstruction by shifting the low-resolution base grids and averaging the resulted maps, the 

new MC algorithm uses high-resolution grids directly during the reconstruction process to generate a high-resolution map 

immediately after the reconstruction is done. Therefore, it is much simpler in realization.  

The MC, LTD, and NNLS algorithms were compared using multiple test maps with the GT-MG algorithm as a reference. The 

new MC algorithm shows almost the same performance as the LTD algorithm, but only needs about 65% of its computation 275 

time. The smoothness-related algorithms of LTD, MC, and GT-MG all show better performance than the traditional NNLS 

algorithm: the nearness of reconstructed maps is improved by more than 50%, the peak distance accuracy is improved by 1- 2 

m, and the exposure error is improved by more than 10 times. Because the differences in accuracy (i.e., nearness, peak distance) 

between LTD and MC algorithms are very small, more specific evaluations may be needed to compare them using more 

complicated and realistic conditions.  280 

These comparisons prove the feasibility of introducing theories of Tikhonov regularization and spatial interpolation techniques 

to mapping distribution of atmospheric chemicals using the ORS-CT techniques. With these theories, it is easier to understand 

the advantages and the drawbacks of the current algorithm. Common problems such as the over-smooth issue may be solved 

by testing more techniques in these theories and using them in the ORS-CT applications. We need to note that although the 

smoothness is very good a priori information for the reconstruction problem, beam configuration and underlying concentration 285 

distribution are also important factors affecting the reconstruction equality. To further improve the reconstruction quality, extra 

a priori information based on the specific application may be added to the inverse problem. For example, the statistic 

information of the underlying distribution, or the information resulting from the fluid mechanics.  
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