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Section S1. Condensation sink estimation

The condensation sink, CS (Lehtinen et al., 2003; Dal Maso et al., 2002) in s is
calculated as

€S =2mD [ dy - Pu(dy) - N(d,) - dd,, Eqg. (S1)

where D is the vapor diffusivity, dr is the particle diameter, the N(dp) is the number of particle
of diameter dp, and pm(dp) is the Fuchs-Sutugin correction factor for gas-phase diffusion over
particles in the transition regime. Using a discrete particle size distribution as measured by the
SMPS, we calculate CS using an approximation of the integral, namely

CS = 2nD ZiﬁidpiNi Eq (82)

The lifetime for gaseous condensation in the presence of a CS is (Markku Kulmala and
Wagner 2001)

Tcond = é Eq. (S3)

As an approximation, D can be assumed to be 6 to 7 x 10® m? s for condensable
organic vapors (Palm et al., 2016; Krechmer et al., 2017). A more nuanced estimation is
described below. The Fuchs-Sutugin correction factor f, is calculated
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where a is the mass accommodation coefficient. In lieu of empirical values, unity is assumed
for o (Markku et al., 2001). Recent experimental results support this unity assumption
(Krechmer et al., 2017; Liu et al., 2019). K is the Knudsen number,

K,=2 Eq. (S5)

dp
where the particle radius (dp / 2) is used as the characteristic length; 4 is the effective free mean
path of vapor molecules. The mean free path in dry air varies slightly in the literature, e.g. 6.53
to 6.673 x 10® m (Jennings 1988). The mean free path of any organic compound can be
calculated if its gas-phase diffusion coefficient (at the bath gas pressure), Der, and average

molecular speed c, are known,

A = Do Eq. (S6)

Eq. (S7)



where R is the ideal gas constant (8.314 J mol™ K1), T is the temperature in K, and MW is the
molar mass (kg mol™). Note that Dpr is a function of bath gas pressure, P (Torr), and the gas
diffusivity, D (Torr cm?s™)

D
Dpr = > Eq (88)

For a trace gas A in a bath gas B, the gas diffusivity could be estimated using Fuller’s
method (Fuller et al., 1966; Tang et al., 2015),
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where Va and Vs are dimensionless diffusion volumes of A, and B; m(A,B) is the reduced mass
of the A-B pair and can be calculated based on the molecular masses (g mol™?) of A and B, ma
and ms, respectively

D(A,B) = Eq. (S9)

2

Va may be estimated from the molecular formula of the trace gas

where ni is the number of atoms with diffusion volume of Vi, which is 15.9 for C, 2.31 for H,
6.11 for O, and 4.54 for N (Reid et al., 1987). Subtracting 18.3 from the total diffusion volume
accounts for the effect of the aromatic ring. For compounds containing multiple aromatic rings,
it maybe be best to correct only for independent aromatic rings, based on limited experimental
data (Tang et al., 2015). Alicyclic rings are not expected to have an effect on the diffusion
volume (Tang et al., 2015). Diffusion volumes of common bath gasses are known instead of
estimated: N2 (18.5), Oz (19.7), H20 (13.1). For inorganic and slightly oxygenated organic
compounds, the mean free path of condensable vapors may be quite uniform (within 20%),
where the Knudsen number can be estimated based on pressure and particle diameter alone
(Tang et al., 2015),
Ap
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where P is the pressure of air in atm, and Ap is the pressure normal mean free path equal to 100
nm atm. The deviation of Kn estimated using Eq. S12 for a 100 nm particle (i.e. Kn = 2) with
respect to that estimated using Eq. S5 for selected compounds is shown in Table S1 with the
corresponding gas diffusivity D, estimated using Eq. S9. All compounds are assumed to be
non-aromatic unless indicated otherwise. For Cs to Ci0 VOCs (e.g. isoprene, monoterpenes)
and their oxidation products (e.g. Cs to Cio monomers and Czo dimers), the estimated
diffusivities differ less than a factor of 2 from 6.5-10® cm? s. Diffusion volume correction for
(single) aromatic rings results in minor differences (< 5%) of the estimated D values. The
estimated Knudsen numbers agree within 15%, as do the estimated Fuchs-Sutugin correction
factors, f3, between the simplified and the more rigorous estimation methods, assuming either
a mass accommodation coefficient of 1 (3.08-10 for all compounds) or 0.1 (3.67-107 for all
compounds), estimated using Eq. S4 and Eq. S12.



Table S1. Knudsen number and gas diffusivity

Gas Kn %Diff*  Diffusivity (m? s B(0=1)° B (a=0.1)
CsHg 1.83 9.30 1.18x10° 3.29x 101 4.00x 102
C3HgO: 2.05 -2.44 9.97x10% 3.02x10' 3.58x107?
C3HgO4 2.20 -9.26 8.96x10% 2.85x 101 3.34x107?
C3HgOs 2.32 -13.77 8.27x10% 273x10' 3.18x10?
CsHsg 1.77 13.02 8.98x10% 3.38x10' 4.13x107?
CsHgO: 1.94 3.00 8.13x10% 3.15x10' 3.78x10?
CsHgO4 2.07 -3.55 755x10% 299x10! 3.54x107?
CsHgOs 2.18 -8.19 7.12x10% 2.88x10' 3.38x107?
CsHsgOs 2.26 -11.67 6.77x10% 279x10' 3.25x 1072
C7HsO° 1.94 2.88 7.83x10% 3.14x10' 3.77x107?
C7Hg01 1.83 9.41 7.36 x10°% 3.30x 10" 4.00x 1072
C7Hs0- 1.89 5.55 7.12x10% 3.21x10' 3.87x107?
C7HgO4 2.01 -0.45 6.73x10% 3.06x 10" 3.65x 1072
C7HsOs 2.10 -4.91 6.42 x 10% 296 x 10" 3.49x 107
C7HgOs 2.18 -8.37 6.16 x 108 2.87x 101 3.37x107?
C7HgO10 2.25 -11.12 593x10% 280x10' 3.27x107?
CoH12® 181 10.46 6.92x10% 3.32x10' 4.04x107?
CoH12 1.72 16.08 6.58 x 10% 3.44x 101 4.24x107?
CoH120; 1.84 8.65 6.25x10°% 3.28x 101 3.98x 1072
CoH1,04 1.94 3.13 598 x10% 3.15x10' 3.78x107?
CoH1,06 2.02 -1.13 576x10% 3.05x10' 3.63x 1072
CoH1,08 2.10 -4.54 557x10% 297x10' 3.51x107?
CoH12010 2.16 -7.33 540x10% 290x 10" 3.41x107?
CioHis 1.70 17.36 6.11x 10% 3.47x 10" 4.29x107?
Ci0H1602 181 10.41 5.85x10% 3.32x10' 4.04x107?
Ci0H1604 1.90 5.13 563x10% 3.20x10' 3.85x107?
CloHleoe 1.98 0.96 5.44 x 10'6 3.10x 10'1 3.70 x 10'2
Ci0H160s8 2.05 -2.42 528x10% 3.02x10' 3.58x107?
C10H16010 2.11 -5.21 513x10% 295x10' 3.48x107?
Ci0H16012 2.16 -7.57 500x10% 2.89x10' 3.40x107?
C10H16014 2.21 -9.58 488x10% 284x10' 3.33x107?
C10H16015 2.26 -11.32 477x10% 2.80x10t 3.26x10?
C20H3206 1.83 9.56 3.98x10% 3.30x10' 4.01x107?
C20H320s8 1.87 6.86 3.92x10% 3.24x10' 3.91x107?
ConazOlo 1.91 4.49 3.85x 10'6 3.18 x 101 3.83x 10'2
C20H32012 1.95 2.38 3.80 x 10'6 3.13x 101 3.75x 10'2
Ca0H32014 1.99 0.49 3.74x10% 3.09x10' 3.69x107?
C20H32016 2.02 -1.21 3.69x 10'6 3.10x 10_1 3.63x 10'2

(a). Percent difference of K,=2, estimated using Eq. S12, with respect to the K, estimated using Eg. S5. (b). Fuchs-
Sutugin correction factors estimated using Eq. S4 assuming different values for mass accommodation coefficients;
the K, used here was estimated using Eq. S5 (c¢) o-Cresol (d) 1,2,4-trimethylbenzene



Section S2. Oxidation flow reactor schematic

A schematic of the experiment setup is shown in Figure S1 along with the physical
dimensions of the oxidation flow reactor (OFR). VOC precursor and seed particles are injected
near the entrance region of the OFR, whereas Os is injected coaxially in the direction of the
flow through a 6 mm outer diameter stainless-steel tubing about 61 cm downstream of the
entrance region. Instruments sampled from near the exit region of the OFR. The cross-sectional
area of the OFR is approximately 4.3-10° m2, At 12 L min‘%, the plug flow velocity is roughly
4.65-10 m s*. The residence time within the oxidation region (i.e. 39 cm) is roughly 8.38s, or
an effective dilution rate of 0.12 s,
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Figure S1. Flow tube dimension.

Section S3. Vocus-PTR Mass transmission
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Figure S2. Vocus-PTR mass transmission efficiency

The mass transmission efficiency curve for Vocus-PTR is fitted using a lognormal function.
Calibration of the mass transmission efficiency for PTR is described in details elsewhere
(Holzinger et al., 2019).
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Section S4. AMS Vaporizer artifact correction

The high-resolution aerosol mass spectrometer (AMS) determines the aerosol
composition in terms of NOs, NH4, SO4, Chl, and Organics (OA). All experiments were
conducted under low-NOx conditions using NH4NOs seed particles. Therefore, all NH4* and
NOs™ observed are attributed to NH4NOs. Due to the high inorganic concentrations used (up to
11.6 mg m®), caution needs to be taken to account for vaporizer artifacts, where NOx* ions
generated from nitrate particles during the electron impact ionization process could oxidize
organic residues on the vaporizer surface, producing CO2" ions that are falsely attributed to
organic aerosols (Pieber et al., 2016). The extent of this artifact is determined by injecting
NH4NOs seed particles into the OFR in the absence of any organic oxidation products. As
shown in Figure S3a below, the correlation of the organic vaporizer artifact, Orgartifact, can be
described by an exponential function of the NH4NOs (i.e. combined mass concentrations of
NOs" and NH4"). This correlation is used to correct for Orgartitact for all runs, as shown in Figure
S3b to Figure S3d. Note that this correlation could change with the vaporizer history (Pieber et
al., 2016). Here, the vaporizer artifact was characterized in the midst of the campaign.
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Figure S3. Inorganic salt-induced vaporizer artifact

(a) Artefact organics concentration observed by the AMS when sampling nebulized NH4NO3
in the absence of any organic oxidation products. An exponential function of NHiNO3
concentration is used to estimate the organic signal attributable to the vaporizer artifact. The



organic concentrations with and without applying this correction are shown in (b) for limonene
ozonolysis, in (c) for the OH oxidation of o-cresol, and in (d) for the OH oxidation of 1,2,4-
trimethylbenzene. The correlation between condensed organics and NH4NOs seed
concentrations can be roughly described by a double exponential function.

Section S5. Oxidation flow reactor model

The organic vapor wall loss may be estimated from the OFR dimension and the gas-

diffusivities as proposed by McMurry and Grosjean (1995),
1 A 2

kwan = — =1 " VkeD Eqg. (S14)
when the vapor wall accommodation coefficient is greater than 10°, i.e. eddy diffusion
dominates. This is the case for oxidation flow reactors (OFR) of similar dimensions to the one
used in this study (Brune 2019; George et al., 2007). A and V are the surface area (1.02 x 10°*
m?) and volume (1.72 x 10 m®) of the OFR, respectively. ke is the coefficient of Eddy diffusion,
which may be estimated as a function of the enclosure volume (Krechmer et al., 2016),

ko(s™1) = 0.004 + (5.6 x 1073)(V)07 Eq. (S15)

which is 4.05 x 102 s, Due to their relatively small enclosure volume (relative to that of a
typical smog chamber, ke would be close to 4-10 s for most OFR designs. For estimated gas
diffusivity, D ranging from 3.69-10° (C20H32016) to 1.18-10° (C3He) m? s, the corresponding
kwanl ranges from 4.60-10 s to 8.22-10 s2, resulting in a wall loss timescale, wan between
122 and 218 s. Two different vapor wall loss experiments conducted using a PTR-TOF and an
acetate atmospheric pressure interface chemical ionization TOF-MS indicate a 50% vapor wall
loss rate at 10 L min'* flow rate, which suggest a zwai similar to that of the dilution lifetime, i.e.
27 seconds, meaning that the actual kwan is close to 3.7-102 s, roughly 4 to 8 times higher
than Eqg. S14 and Eq. S15 would suggest. For simplicity, a kw value of 0.04 s? is used as the
base case scenario. The effects of higher kw (i.e. 0.4 s) and lower kw (i.e. 0.04 s*) values on
the gas- and particle-phase concentrations are simulated and shown in Figure 3a-c for generic
oxidation products of differing saturation vapor concentrations ranging from 1072 to 10° pg m-
3, The OFR wall is also assumed to be a perfect sink for organic vapors, i.e. no back-partitioning
of organic vapor from the wall to the gas-phase is considered.

The remaining gas-phase concentration, Gremain and the condensed particle-phase
concentration, Pcond during seed injection are expressed in relative terms with respect to the
steady gas-phase concentration prior to the seed injection, Gss (€.9. Gremain/Gss and Pcond/Gss).
So that they are not dependent on the absolute value of Gss, and vice versa on the actual
production rate, provided that the production rate is not affected by the seed injection.

The modeled gas-particle partitioning is shown below in Figure S4. A sensitivity
analysis was performed by varying the organic aerosol concentration (OA), the condensation
sink (CS), or the wall loss rate (kw) from the base condition (20 pg m= OA, 1 s CS, and 0.04
st kw) in Figure S4a-c. The observed OA and CS values were used to simulate the partitioning
behaviors as shown in Figure S4d-i. For each VOC system, the observed OA concentration and
CS roughly followed a linear correlation. Figure S4d shows the Pcond normalized to the
maximum value as a function of CS, and suggests that it may be possible to infer the saturation
vapor concentration, C* of semi-volatile compounds based on the uptake trend without the
knowledge of near-molecular particle-phase sensitivity or gas-phase concentration (as long as
Gss remains constant in this case). However, compounds of different C* may exhibit similar



trends, i.e. high inter-correlations, which cannot be numerically resolved due to noise. Visually,
this is obvious for compounds with log(C™) > 2 or < -1 as shown in Figure S4d.

To determine the range of log(C") that could be in theory numerically resolved from the
Pcond behaviors alone, we modeled the normalized Pcond for compounds with log(C™) ranging
from -2 to 6 using OA and CS values observed for each system. The lower C* threshold is set
at the point beyond which all compounds with lower C* would exhibit normalized Pcond trends
with intercorrelation (R? value from linear regression between the normalized Pcond values
corresponding to any pair of C* values, i.e. any two “vertical slices” from Figure S4e and S4f)
above 0.99. The decision to set the cutoff at R? = 0.99 is arbitrary. The upper C* threshold is
similarly defined in Figure S4g-i. The experimentally constrainable log(C") ranges based on
the uptake behavior alone are narrow: 1.25 to 2.02 for the cresol system, 1.18 to 2.09 for the
TMB system, and 0.57 to 1.85 for the limonene system. The span of the constrainable C” range
is wider for the limonene system due to the higher maximum CS range explored experimentally
(>2 s as compared to <1 s* for the anthropogenic systems). The upper constrainable C* range
for limonene system (i.e. log(C™) =1.85) is lower compared to that for either cresol (i.e. log(C")
=2.02) or TMB system (i.e. log(C") =2.09) due to the lower maximum OA uptake as a function
of CS for the limonene system as compared to the anthropogenic systems. All else being equal,
the constrainable range of log(C”) increases with the experimental CS range, which is limited
by the maximum particle concentrations the instruments could accommodate before clogging
or signal depletion becomes too severe.
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Figure S4. Modeled partitioning

(a-c) Expected distribution of organic oxidation products of differing volatilities between the
gas- and particle-phase during the seed injection period for a hypothetical base case scenario
of 20 pug m= organic aerosol concentration (OA), 1 s condensation sink (CS), and 0.04 s*
vapor wall loss rate (kw). Alternative scenarios assume higher or lower OA, CS, and kw. (d-i)
Modeled ratio of Pcond to Gss for compounds of varying log(C*) under observed OA and CS
conditions. (a) Ratio of condensed organic material during seed injection, Pcond to the steady-
state gas-phase concentration prior to seed injection, Gss. The ratio can exceed 1 under high
CS conditions. (b) Ratio of Pcond to the sum of Pcond With the gas-phase concentration during
the seed injection period, Gremain. Partitioning between Pcond and Gremain is invariant with respect



to kw. (C) Ratio of Pcond to the sum of Pcond and Gss. (d) Normalized Pcond relative to the
maximum expected value, Pcondmax @s a function of CS for compounds of different volatility.
Note again that observed CS and OA values from the anthropogenic experiments are used to
simulate the uptake behavior shown in (d), whereas hypothetical CS, OA, and kw conditions are
used to simulate the behaviors shown in (a-c). (e) Ratio of Pcond to Gss for compounds of
varying log(C") at different CS for the cresol and TMB systems, which exhibited similar
intercorrelations between observed OA and CS. (f) Ratio of Pcond to Gss for compounds of
varying log(C") at different CS for the limonene system. (g) Inter-correlation of the expected
normalized Pcond, Similar to those shown in (d), for compounds of varying log(C*) under the
uptake conditions in the cresol system. (h) Inter-correlation of the expected normalized Pcond,
for compounds of varying log(C”) under the uptake conditions in the TMB system. (i) Inter-
correlation of the expected normalized Pcond, for compounds of varying log(C”) under the
uptake conditions in the limonene system. (j) Similar to g, but with the maximum CS range
extrapolated to 2 s from ~0.8 s to examine its effect on constrainable log(C") range. Regions
with R? values exceeding 0.99 are shown in white in (g-j), where the log(C”) empirically
determined from the normalized Pcond IS considered as highly uncertain due to experimental
noise and high intercorrelations of the normalized Pcond behavior with compounds of different
log(C™). Behaviors of compounds with log(C™) below -1 or above 4 are not shown, as they are
indistinguishable per our definition based on the intercorrelation value R?.



Section S6. EESI-TOF vs Vocus-PTR Composition
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Figure S5. Average particle-phase composition

lon intensity of [M+Na]® adducts observed during (a) OH-oxidation of cresol, (b) OH-
oxidation of TMB, and (c) ozonolysis of limonene. For each VOC and oxidant system, the
average composition over all seed injection / organic aerosol uptake events is shown. lon
intensities are grouped by their carbon number (#C) and further distinguished by the oxygen
number as shown in the legend.
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Figure S6. Comparison of major particle- and gas-phase oxidation products

Intensities of selected [M+Na]* adducts observed by the EESI-TOF for the particle-phase are
shown for (a) Cz OH + cresol oxidation products, (¢) Ce OH + TMB oxidation products, and
(e) C1o limonene + Oz oxidation products. Intensities of selected [M+H]* ions observed by the
Vocus-PTR in the gas-phase are shown for (b) Cz OH + cresol oxidation products, (d) Co OH
+ TMB oxidation products, and (f) Cio limonene + Oz oxidation products. Average particle-
phase signals over all uptake events are shown in (a), (c), and (e). Average steady-state gas-
phase concentrations prior to each uptake event are shown in (b), (d), and (f). Note that the
color scales are only consistent within each of the (a-b), (c-d), and (e-f) pairs. lon intensities



are grouped by the number of hydrogens (#H) and further distinguished by the number of
oxygen as indicated in the legends. The o-cresol is not included in (a) and (b) because it is the

VOC precursor and not an oxidation product.
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Figure S7. Sensitivity estimation with and without assuming —H>O loss

The EESI-TOF response factor, RFx~ estimated by performing a linear regression of the
observed increase in particle-phase EESI-TOF ion intensity vs. the decrease in the gas-phase
concentration as measured by the Vocus-PTR under two different assumptions: (a) and (c),
where no ion-fragmentation occurs in the Vocus-PTR or (b) and (d), where all ions undergo
H20 loss inside the Vocus-PTR. In (a) and (b), RFx" values are plotted against the log(C")
estimated based on the molecular formula. In (c) and (d), the RFx" of isomers observed from
different oxidation systems are compared. Only oxidation products with R2 = 0.5 for the linear
regression of EESI-TOF signal increase and Vocus-PTR mixing ratio decreases are shown. The
red, green, and blue shaded regions in (a) and (b) indicate the volatility ranges corresponding
to LVOC, SVOC, and IVOC, respectively. Overall, the inverse correlation between EESI RF’x
and log(C") is retained under different H20 loss assumptions. The lighter and darker shaded
regions in (c) and (d) indicate a factor of 5 or 20 deviation from the 1-to-1 line, respectively.
Overall, the isomeric sensitivities agree within a factor of 20, where the RF"x deviation between



limonene and TMB isomers is less pronounced under the H20 loss assumption as compared to
the no fragmentation assumption.

Section S7. Parameterization and Model Validation

Based on the elemental formulae measured by the EESI-TOF and the Vocus-PTR,
several additional features could be derived from the number of carbon (nc), hydrogen (nw),
and oxygen (no), including the exact molecular mass (MW), the mass defect (Am), the
hydrogen-to-carbon ratio (H:C), the oxygen-to-carbon ratio (O:C), the double bond equivalent
(DBE), and the double bond equivalent per carbon (DBEpC)

DBE=1+%(2C—H+N+P) Eq. (S16)

The aromaticity index (Al) can be calculated as

Al = DBEa; _ 14C—-0-S—0.5H Eq. (317)
Cas C-0-S—-N-P

Which has been reported to underestimate the aromaticity compared to the aromaticity
equivalent (Xc) proposed by Yassine et al. (Yassine et al., 2014)

c—(H-0)
DBE

where, if DBE <0, Xc is set to 0. Note that for CHO compounds, Eq. S18 simplifies to

X, = +1 Eq. (S18)

X, =3-——= Eq. (S19)

DBE

In addition, the carbon-oxygen non-ideality (Nlco) from Eq. (7) itself is an interaction
term between the product of the number of carbon and oxygen atoms (Pco) and the inverse of
the sum of carbon and oxygen atoms (lco),

ncno

NICO =

= PCO X ICO Eq (820)

nc+ngp

In addition to the aforementioned features, the log of effective saturation vapor concentration,
log(C™) is included as a feature.

Preliminary ordinary least square (OLS) regressions of the near-molecular EESI-TOF
response factor, RF"x with nc, no, MW, Pco, Ico, and Nlco are shown in Figure S8a-f for each
of the three VOC systems studied. The RF"x values estimated for cresol and TMB oxidation
products appear to increase as the molecules increase in size (i.e. positive correlation with MW
and nc) and/or become more functionalized (i.e. positive correlation with no). The correlations
also appear to be steeper for the TMB system than for the cresol system. In contrast, the RF"
values estimated for limonene oxidation products do not appear to be well correlated with nc,
no, MW, Pco, Ico, or Nlco. The discrepancies observed between the aromatic systems and the
biogenic system are likely due to differences in the structure of the oxidation products as
discussed in the main text.
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Figure S8. Preliminary regression analysis

OLS regression analysis of the log of RF*x with respect to (a) the number of carbon, nc, (b) the
number of oxygen, no, (c) the molecular weight, MW, (d) the carbon-oxygen non-ideality, Nico,
(e) the product of nc and no, Pco, and (f) the inverse of the sum of nc and no, Ico. The red, blue,
and green dashed lines correspond to the linear fitting lines for the log(RF"x) values of TMB,
cresol, and LMN oxidation products, respectively. The coefficient of determination, R? of
ordinary linear regression for the log(RF’x) as a function of the feature is shown in brackets

after the corresponding VOC label.

The full regression analysis was performed on two types of datasets: The log of
measured EESI sensitivity in ions s ppb™, log(RF"x) from (1) the TMB system alone, or (2)
all three VOC systems. Two approaches were taken for the combined dataset: (2a) the precursor



VOC identity was not included as a feature or (2b) the VOC identity was digitized and included
as a feature. Based on the trends observed for the relative isomer sensitivities, which were
highest for the oxidation products of limonene followed by those of TMB and of cresol, the
VOC identity feature value for limonene, TMB, and cresol data were digitized as 1, 0, and -1.

First, an exhaustive search over the feature space was performed to determine the
optimal set of features for each regressor using their respective default hyperparameter values.
Leave-one-out (LOO) cross-validation was used to evaluate the model performance in terms
of the coefficient of determination, R?

X 0i=9)?

RZ=1
Z?=1(yi—_')_/)2

Eq. (S21)
where yi and y; are the true and the predicted value for the i-th sample among a total of n
samples, and ¥ is the mean of the n samples. If the model always predicts y, the R? will be 0,
e.g. a naive model where all values are predicted to equal that of the sample mean regardless
of input. The R? can be negative if it performs worse than this naive model, i.e. assuming the
mean value regardless of model input produces on average better results. For a dataset of size
n, LOO involves setting aside each data point (yi) in turn as the test sample while the remaining
(n-1) data points are used to train the model and make a prediction, ¥;. yi and y; are then used
to estimate the R? using Eq. (S21). LOO can be considered as performing a K-fold cross-
validation where the number of K is equal to the number of data points. Compared to the K-
fold cross-validation method, LOO is more computationally intensive to perform, but is
nonetheless appropriate given the small size of the dataset used here (nsampie = 30 for case 1 and
70 for 2a and 2b). During cross-validation, a portion of the dataset is used to train the model
(i.e. “train” set), while the remaining dataset is withheld to validate against the model
predictions (i.e. “test” set). For each train-test set, the training feature values (n = Nsample — 1)
were standardized, which involves subtracting by their mean and dividing by their standard
deviation. The same transformation was then applied to the feature values from the test set (n
= 1), which was not included in deriving the transformation required for the standardization to
prevent information leak between the training and test sets.

The results of the feature optimization are shown in Figure S8 in terms of the best R?
vs. the number of features used. The optimal feature sets are shown in Table S2. In addition to
OLS, linear ridge regression (“Ridge”) and Bayesian ridge regression (BayRR) are included.
Both Ridge and BayRR implement L2 regularization, making them more resilient against
overfitting and feature co-linearity. Support vector regression (SVR) with linear kernel is also
included as a linear regression model for comparison. Exploratory analysis using SVR with
radial basis functions (rbf) yielded better R?, but the relative feature importance was not easily
interpretable when rbf was used, hence the choice of linear kernel. Lastly, nonparametric
regressions such as random forest regressor (RFR) and gradient boosting regressor (GBR) were
included, as the RF’x is likely not a linear function of features already included. While it is
possible that RF"x could be well-described by a linear combination of engineered features, it is
not feasible to explore all nonlinear (e.g. nc?) or interaction (ncnw) feature terms, hence the
necessity of nonparametric regressors.
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Figure S9. Feature selection

The best R? from LOO cross-validation test for each regressor using different permutations of
features as a function of the number of features included for (a) Case 1, where only the TMB
dataset is used, (b) Case 2a, where data from all the VOC systems were used without providing
the digitized VOC identity as one of the input features, or (c) Case 2b, where data from all the
VOC systems were used with the digitized VOC identity provided as one of the input features,
hence the one extra feature over cases 1 and 2a.

Table S2. Best R? scores and their corresponding feature combination obtained using
leave-one-out cross-validation with default model hyperparameters

Case # OLS Ridge BRR SVR RFR GBR
1 0.59 0.49 0.49 0.53 0.61 0.69
Nlco, Pco,  Nlco Nlco, Nlco, Nlco, No, N, Nlco, Pco, N,
log(C"), log(C") log(C") H:C H:C
Xc,
DBEpC
2a 0.23 0.17 0.15 0.20 0.05 0.08
Nlco, Pco,  Nlco, Pco, Nlco, Pco, Nlco, Pco, ne, Xc lco, Xc
Nk, Xc Xe, N, Xe, log(C”),
DBEpC mw Xe,
DBEpC
2b 0.25 0.24 0.22 0.27 0.38 0.43
Nlco, Pco, Nlco, Pco, Nlco, Nlco, H:C, No, Am, VOC Nc, NH, No,
0O:C,vOoC log(Ch, VOC Xc, VOC DBEpC, Am,
VOC VOC




Note that in some cases (e.g. SVR in case 1), the optimal feature set selected does not
correspond to the set with the highest R?, but rather one with slightly lower R? score but also
(sometimes substantially) lower total number of features used. The feature abbreviations used
are as followed: Carbon-oxygen non-ideality (Nlco), product of the number of oxygen and
carbon numbers (Pco), the inverse of the sum of the number of oxygen and carbon numbers
(Ico), logarithm of saturation vapor concentration (log(C™)), aromaticity (Xc), double bond
equivalent per carbon (DBEpC), number of oxygen atoms (no), number of hydrogen atoms
(nH), molecular weight (MW), mass defect (Am), hydrogen-to-carbon ratio (H:C), oxygen to
carbon ratio (O:C), digitized precursor VOC label (VOC).

For Case 1, Nlco is unanimously identified as an essential feature in predicting the (log
of) EESI-TOF response factor. For Case 2a, the decision-tree model performs negligibly better
at predicting the EESI-TOF sensitivity than simply assuming the dataset mean. The feature
selection results for linear regression models suggest that Nlco, Pco, and Xc are essential
features to include. In general, the regression model performances are poor for Case 2a, and it
would be simpler to assume instead a uniform RF"x, for example the geometric mean of 10*°
ions st ppbt. For Case 2D, inclusion of the VOC label as the 2" feature results in substantial
increase in R? for all regressors, as shown in Figure S9 and Table S3 below. As the number of
features increase beyond 3, regressor performances do not show any substantial improvement
and may even deteriorate. Comparing the regressor performances for Case 2a and 2b, we see
that nonparametric models (i.e. RFR and GBR) benefit much more from the inclusion of the
VOC precursor as an input feature than do the linear regression models. This is partially due to
the specific digitization applied to the VOC precursor (-1 for cresol, 0 for TMB, 1 for limonene),
which come with a priori ranking and weighting information that would affect the linear
models more so than the decision-tree type models.

Table S3. Best R? scores for different feature combinations obtained using leave-one-out
cross-validation with default model hyperparameters for Case 2b

Feature# OLS Ridge BRR SVR RFR GBR

1 0.12 0.12 0.12 0.14 0.04 0.03
lco lco lco mw Nc Nc

2 0.22 0.22 0.22 0.24 0.28 0.20
N|co, N|co, N|co, N|co, mW, VOC Am, VOC
VOC VOC VOC VOC

3 0.24 0.24 0.21 0.26 0.38 0.39
Nlco, Nlco, Pco, Nlco, Nlco, no, Am, VOC no, Am, VOC
log(C"), log(C"), log(C"), log(C"),
VOC VOC VOC VOC




Having identified the optimal feature sets, we then performed grid search to find the
optimal model hyperparameters using R? from LOO as the metric. The hyperparameter spaces
explored for each regressor are listed in Table S4a-c below, along with the LOO R? obtained
using the default vs. the optimal model hyperparameters.

Table S4a. Regressor hyperparameter grid search results for Case 1

Regressor Hyperparameter Space Optimal  R? (Optimal) R? (Default)
RFR n_estimator: [10, 20, 30, 40, 50,100] 10 0.60 0.61
min_samples_split: [2, 3, 4, 5] 4
max_features: [“auto”, “sqrt”, “log2”] “auto”
SVR C:[0.1,0.2,05, 1, 2,10] 1 0.53 0.53
epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.1
GBR n_estimator: [5, 10, 20, 30, 40, 50,100] 100 0.76 0.69
loss: [“Is”, “lad”, “huber"] Is
learning_rate: [0.05, 0.1, 0.2, 0.5] 0.1
subsample: [0.3, 0.5, 0.7, 1] 0.3
max_features: [“auto”, “sqrt”, “log2”] “auto”
min_samples_split: [2, 3, 4, 5] 4
BRR n_iter: [100, 200, 500, 1000] 100 0.49 0.49
alpha_1:[10%, 10®, 106, 107, 109 10+
alpha_2: [104, 105, 105, 107, 109] 108
lambda_1: [104, 105, 106, 107, 10¥] 108
lambda_2: [104, 10®, 106, 107, 10°¢] 10+
Ridge alpha: [0.1, 0.2, 0.5, 1, 2, 10, 100] 1 0.49 0.49

Note: Optimal hyperparameter values that are identical to the default values are underlined. For decision-tree type
models such as GBR and RFR, the model can vary from run to run, and the “optimal” hyperparameter values may
produce worse scores than the default case by chance.

Table S4b. Regressor hyperparameter grid search results for Case 2a

Regressor Hyperparameter Space Optimal R? (Optimal) R? (Default)
RFR n_estimator: [10, 20, 30, 40, 50,100] 20 0.10 0.05
min_samples_split: [2, 3, 4, 5] 4
max_features: [“auto”, “sqrt”, “log2”’] “auto”
SVR C:[0.1,0.2,0.5, 1, 2,10] 2 0.20 0.20
epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.1
GBR n_estimator: [5, 10, 20, 30, 40, 50,100] 40 0.00 0.08
loss: [“Is”, “lad”, “huber"] Is
learning_rate: [0.05, 0.1, 0.2, 0.5] 0.5
subsample: [0.3, 0.5, 0.7, 1] 0.7
max_features: [“auto”, “sqrt”, “log2”] “auto”
min_samples_split: [2, 3, 4, 5] 4
BRR n_iter: [100, 200, 500, 1000] 100 0.15 0.15
alpha_1: [10%, 1075, 10, 107, 109 10+
alpha_2:[10%, 10®, 106, 107, 109 108
lambda_1: [10*, 10, 106, 107, 109 108
lambda_2: [10%4, 105, 106, 107, 10°¥] 10+
Ridge alpha: [0.1,0.2,0.5, 1, 2, 10, 100] 0.2 0.18 0.17




Table S4c. Regressor hyperparameter grid search results for Case 2b

Regressor Hyperparameter Space Optimal R? (Optimal) R? (Default)
RFR n_estimator: [10, 20, 30, 40, 50,100] 100 0.38 0.38
min_samples_split: [2, 3, 4, 5] 2
max_features: [“auto”, “sqrt”, “log2”’] “auto”
SVR C:[0.1,0.2,05,1, 2,10] 0.5 0.28 0.27
epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.2
GBR n_estimator: [5, 10, 20, 30, 40, 50,100] 100 0.48 0.43
loss: [“Is”, “lad”, “huber"] Is
learning_rate: [0.05, 0.1, 0.2, 0.5] 0.7
subsample: [0.3, 0.5, 0.7, 1] 1
max_features: [“auto”, “sqrt”, “log2”] “auto”
min_samples_split: [2, 3, 4, 5] 3
BRR n_iter: [100, 200, 500, 1000] 100 0.22 0.22
alpha_1:[10%, 10®, 106, 107, 109 10+
alpha_2:[10%, 10®, 106, 107, 109 108
lambda_1: [10*, 10, 106, 107, 109 108
lambda_2: [10*, 10, 106, 107, 10°9] 10+
Ridge alpha: [0.1,0.2, 0.5, 1, 2, 10, 100] 0.2 0.24 0.24

The log(RF™) predicted from the LOO cross-validation test (see discussion around Eq.
S21) by the linear ridge regressor (LRR) and the gradient boosting regressor (GBR) using their
respective optimal features sets and hyperparameters for Cases 1, 2a, and 2b are shown in
Figure S10 and compared to the measured log(RF"x). For a single VOC system (Case 1), the
predicted and measured RF"x values mostly agree within a factor of 5 using LRR or a factor of
2 using GBR. When dealing with compounds from multiple VOC systems, where the VOC
precursor identities are unknown (i.e. Case 2a), the predictions do not fare better than simply
assuming a uniform response factor equal to that of the sample mean, as shown in Figure S10b.
If the VOC precursor identity is used as one of the features, GBR can produce reasonable
predictions that agree with the measured values within a factor of 2-5, as shown in Figure S10c,
where most of the scatter outside this range was related to the limonene dataset, which did not
appear to have a clear predictor for log(RFx"), as we have also shown during our preliminary
regression analysis in Figure S8.
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Figure S10. Comparison of model performance for different cases

Comparison of the log of the measured response factor, log(RF’x) with those predicted using
the leave-one-out cross-validation method by the linear ridge regressor (LRR) and the gradient
boosting regressor (GBR) using their optimal feature sets and hyperparameters for (a) Case 1,
(b) Case 2a, and (c) Case 2b. The digitized VOC labels are shown in color scale in (b) and (c)
for combined VOC scenarios, but it was made available to the regression models to use as a
potential feature for Case 2b in (c). The 1-to-1 line is shown in solid black. The darker shaded
region represents a factor of 2 deviation from the 1-to-1 line. The lighter shaded region
represents a factor of 5 deviation from the 1-to-1 line.

Table S5. R? for each regressor using their optimal features and model
hyperparameters, and the weights/importance of fitted features.

Case# OLS Ridge BRR SVR RFR GBR
1 0.59 0.49 0.49 0.53 0.61 0.69
N|coZ 2.73 N|coZ 0.47 N|coZ 0.70 N|coZ 0.73 N|coZ 0.42 N|coZ 0.32
Pco: -1.77 log(C"):0.23 1og(C*): 0.26  no: 0.28 Pco: 0.24
log(C"): 0.60 ny: 0.16 ny: 0.20
Xc: 0.50 H:C: 0.15 H:C:0.24
DBEpC: -0.51
2a 0.23 0.17 0.15 0.20 0.10 0.00
Nlco: 2.38 Nlco: 1.05 Nlco: 1.76 Nlco: 0.54 Nc: 0.52 lco: 0.64
Pco: -2.35 Pco: -0.88 Pco: -1.02 Pco: -0.28 Xc: 0.47 Xc: 0.36
ny: 0.53 Xc: 0.47 ny: 0.58 log(C™: 0.07
Xc: 0.39 DBEpC: -0.49 Xc: 0.36 Xc: 0.36
mwW: -0.74 DBEpC: -0.43
2b 0.25 0.24 0.22 0.27 0.38 0.49
Nlco: 2.11 Nlco: 1.25 Nlco: 0.27 Nlco: 0.30 no: 0.28 nc:0.10
Pco: -1.64 Pco: -0.46 VOC: 0.22 H:C: 0.19 Am: 0.43 ny: 0.03
0:C:-0.31 log(C"): 0.51 Xc: 0.24 VOC: 0.30 no: 0.23
VOC: 0.24 VOC: 0.24 VOC: 0.23 DBEpC: 0.17
Am: 0.20
VOC: 0.26

The R? determined from the leave-one-out (LOO) cross-validation test is shown. For ordinary least square
(OLS) regression, linear ridge regression (LRR), Bayesian ridge regression (BRR), and support vector
regression (SVR), the weight for each feature is shown. For random forest (RFF) and gradient boosting
regression (GBR), the importance is shown, which is a measure of the usefulness of a feature in constructing the
decision tree.



Note that if we were to use the entire dataset to train and validate the model, the resulting
R? would be overly optimistic, as shown in Figure S11 especially for those obtained using the
nonparametric models.
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Figure S11. Regression using the entire dataset

Comparison of the predicted log(RF™x) using the entire dataset with VOC label included as one
of the features using (a) linear regression models and (b) nonparametric regression models. The
optimal feature sets and hyperparameters used for each model are identical to those used for
Figure S10 and Table S5, except that now each model was trained with the entire dataset to
predict the entire dataset, instead of following the LOO procedure. The 1-to-1 line is shown in
solid black. The darker shaded region represents a factor of 2 deviation from the 1-to-1 line.
The lighter shaded region represents a factor of 5 deviation from the 1-to-1 line.

For typical ambient measurements or chamber experiments with complex precursor
mixtures, the VOC precursor identity is often not known without additional constraints (e.g.
ion mobility or gas chromatography measurements supported with chemical reaction box
models). The prediction capability of the regression model for an unknown VOC is examined
in Figures S12a and S12b, using the TMB dataset as the “known” VOC system to predict the
log(RFx) for the “unknown” cresol and limonene (LMN) systems. As shown in Figure S12a,
while the regression models trained with TMB dataset tend to overestimate the log(RF"x) for
the cresol system, the predictions and observations are qualitatively consistent in terms of the
relative log(RF™), likely due to the structural similarity of cresol and TMB, which would be
reflected to varying degrees in their respective oxidation products. In contrast, regression
models trained with the TMB dataset are unfit to predict the log(RF’x) for the limonene
oxidation products, as shown in Figure S12b.

The effect of the VOC precursor on the predicted log(RF’x) values, using the model
trained in Case 2b (all data with digitized VOC label), for all CHO molecular formulae used
for EESI-TOF spectral fitting is shown in Figures S12c and S12d. In general, the predicted
log(RF"x) trend in the same direction for all VOCs. The predicted effect of VOC precursor is
distinct when a linear regressor is used, as shown in Figure S12d, where log(RF™) is treated as
a linear combination of features, one of which is the digitized VOC precursor identity. When a
decision-tree type regressor is used, the VOC precursor identity effect is not as obvious, as



shown in Figure S12c. Lastly, the combination of dataset from multiple VOC systems also
affects the predicted log(RF"x), as shown in Figure S12e and S12f for the TMB system. Models
trained with the combined dataset (i.e. Case 2b) appear to underestimate the log(RF"x) as
compared to the models trained with a single VOC dataset (i.e. Case 1). Furthermore,
regressors that performed reasonably well (e.g. LRR for Case 1) for the training dataset with a
limited number of features (e.g. Nlco) may be ill-equipped when predicting for a more diverse
set of compounds, whose variabilities are only reflected in other features (e.g. optimal features
for LRR in Case 2Db, see Table S5).
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Figure S12. Prediction of all RF"x

(a) Comparison of the observed log(RF’x) for cresol oxidation products with that predicted
using gradient boosting regression (GBR) and the linear ridge regression (LRR) models trained
with the TMB dataset (b) Same as (a) but for the limonene (LMN) system. (c) Comparison of
the log(RF™) for all molecular formulae used for EESI-TOF MS fitting predicted using the
GBR model from Case 2b for different VOC systems, i.e. all feature values used during
prediction were identical expect for that of the digitized VOC precursor identity. (d) Same as
(c), but with the LRR model from Case 2b. (e) Comparison of the log(RF"x) for all molecular
formulae used for EESI-TOF MS fitting predicted using the GBR model from Case 1 and Case
2b for TMB system only. (f) Same as (e), but with the LRR model from Case 1 and Case 2b.
The optimal feature sets and hyperparameters used for each model are listed in Table S5. The
1-to-1 line is shown in solid black. The darker shaded region represents a factor of 2 deviation
from the 1-to-1 line. The lighter shaded region represents a factor of 5 deviation from the 1-to-
1 line. The case number indicated on the axis legend and in annotations indicate the how the
model was trained as described throughout Tables S2-5.
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Figure S13. Comparison of estimated and observed OA concentration

(a) Comparison of the observed organic aerosol (OA) as measured by the AMS with the OA
concentration estimated using EESI-TOF measurements converted from ions s* to ug m
using the RF’x (ions s ppb™) predicted using the gradient boosting regression (GBR) model.
(b) Same as (a), but using the RFx" predicted by the linear ridge regression model (LRR).



Conversion of ppb to molecules cm is performed under standard conditions, i.e. 2.46-10%°
molecules cm™ per ppb. The 1-to-1, 2-to-1, and 4-to-1 lines are shown in solid black. Two
versions of the regression models are used to predicted the RF"x for TMB, one trained with
single VOC dataset (Case 1) and one trained with combined VOC datasets where the VOC
precursor identity is used as a training feature (Case 2b).
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