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Abstract. Precipitable water vapor (PWV) is the vertically integrated amount of water vapor in the atmosphere, and it is a

valuable predictor for weather forecasting. Currently, the use of sophisticated instrumentation can limit the number of PWV

measurement sites, which affects the accuracy of forecast models in regards to storm formation, strength, and the potential for

precipitation. We have analyzed relationships between PWV and zenith sky temperature measurements for the dry climate zone

found in the North American Desert Southwest, specifically over Socorro, New Mexico (34◦N, 107◦W). Daily measurements5

of the ground and zenith sky temperatures have been made at Socorro for two complete annual cycles using low-cost infrared

thermal sensors. Radiosonde measurements of PWV from National Weather Service stations located in nearby Albuquerque,

and Santa Teresa, New Mexico, are input into our dataset and analysed via a newly developed computational tool. Our results

show that an exponential relationship between PWV and zenith sky temperature holds for the Desert Southwest, but with

parameters that are different than those obtained previously over the more moist climate zone of the North American Gulf10

Coast. Model simulations can accurately reproduce the observed relationship between PWV and temperature, and the results

suggest that half of the signal in temperature is directly related to changes in opacity due to changes in PWV, while the other

half is due to changes in air temperature that usually accompany changes in PWV.

1 Introduction

The amount of water in the atmosphere is an important factor that can, along with other factors, determine the amount of15

rainfall and influence the dynamical evolution of convective storms. Weather forecasting is dependent upon having accurate

precipitable water vapor (PWV) data with sufficient temporal/spatial coverage over the forecasting area (Yang and Smith,

2018; Marcus et al., 2007). Increasing the availability of PWV data will ensure more accurate forecasts; especially in higher

elevation arid climate zones where there are large distances between existing PWV measurement sites (Maussion et al., 2014;

Chen et al., 2018; Zhao et al., 2019). Although PWV can be obtained from infrared measurements on satellite platforms such20

as GOES-R (Schmit et al., 2018, 2017), potentially large observation angles can result in degraded spatial resolution, and may

not provide adequate information for numerical weather prediction models to take into account local variations in PWV.

PWV strongly influences atmospheric dynamics. This is most evident in the fact that when large amounts of PWV are
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observed, there is a greater probability for uplifting convection and cloud formation (Raj et al., 2004). This leads to applications

in numerical weather prediction (Wang et al., 2007), as well as climate change modeling and analysis (Gradinarsky et al., 2002).25

When the vertically integrated amount of water vapor is more than twice the climatological amount, heavy precipitation can

occur (Wang et al., 2017), which may lead to soil erosion and flooding. Higher amounts of PWV tend to be located near the

equator and especially near Intertropical Convergence Zones, with a general decrease in PWV from low to high latitudes (Raj

et al., 2004).

In this paper we use the standard definition of PWV (Salby, 1996), which is determined by the integrated amount of water30

vapor that is contained in a vertical column of air extending from the Earth’s surface to the top of the atmosphere, typically

expressed as the height of the liquid water equivalent. In clear skies (the focus of this work), all of this water is in vapor form

and the expression becomes

PWV =
1

ρg

po∫
0

µ(p)dp, (1)

where ρ is the mass density of liquid water, g is the acceleration of gravity, µ(p) is the mass mixing ratio of water vapor, and35

the integral is over pressure p from zero to some surface pressure po.

Typically, the water vapor mass density decreases quasi-exponentially with increasing altitude (decreasing pressure), such

that the majority of the total column is near the surface. Previous studies have determined that 40% to 60% of the contribution

to sea-level PWV occurs in the pressure layer between 1000
:
3
:
hPa and 850 hPa, with roughly 90% lying between the surface

and 500 hPa (Ross and Elliott, 1996; Wang et al., 2007; Raj et al., 2004). Here we will emphasize the importance of surface40

elevation on PWV due to the high desert elevation of the Socorro measurement site. As most previous studies have focused on

lower surface elevations and tropical environments, there remains a need to easily determine the PWV in high elevation arid

climate zones for improved forecasting and trend monitoring.

There currently exist several methods for directly and indirectly measuring the total amount of water vapor in the atmo-

sphere. The more traditional methods of measurement include: Radiosondes (Guan et al., 2019; Li et al., 2003), ground-based45

Global Position System signal delay analysis (Means and Cayan, 2013; Bevis et al., 1994), Solar Photometry (Raj et al., 2004;

Thome et al., 1992; Thomason, 1985), and Microwave Radiometry (Liljegren, 1994; Hogg et al., 1983). Though each method

has proven successful, the radiosonde remains the most widely used method to obtain atmospheric data. Some of the limi-

tations of using radiosondes to study the atmosphere include the cost of balloons and sensors, availability of personnel and

launch sites, and the frequency of launches.50

Global Positioning Systems utilize a signal that passes through the atmosphere from a satellite to a ground-based receiver,

which measures the delay as a result of the amount of water vapor along the atmospheric path between the receiver and the

satellite (Means and Cayan, 2013). This signal delay can be used to estimate PWV assuming spatial homogeneity in conversion

to a vertical column of air. Many measurement sites are located near major airports and therefore typically do not supply rural

PWV measurements. Solar photometric methods apply a Langley extrapolation of multi-channel radiometric data in order to55

quantify PWV. Sun photometers utilize both the 940 nm and 1020 nm near-infrared bands to determine PWV (Raj et al., 2004).
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Relative to radiosonde data, this collection technique records PWV data with a precision of about 10%. (Thome et al., 1992;

Thomason, 1985). Microwave Radiometers use Gigahertz frequencies to measure the incident microwave energy in the atmo-

sphere, wherein the 23.8 GHz frequency is three times more sensitive to the concentration of atmospheric water vapor relative

to the 31.4 GHz frequency (Liljegren, 1994). This two-channel approach enables a comprehensive profile of tropospheric water60

vapor and liquid water (Hogg et al., 1983). Limitations to using microwave radiometers to measure PWV include interference

noise. There are also additional techniques that have been developed such as direct retrieval from ground-based hyperspec-

tral IR observations (Turner, 2005),
::
or

:
calculated from thermodynamic profiles retrieved from hyperspectral IR observations

(Turner and Blumberg, 2019).

Building upon a method using low-cost materials (under $50 USD) to determine PWV based on infrared temperature mea-65

surements of the zenith sky (Mims et al., 2011), we examined whether similar techniques could also be applied for higher

elevation, arid and semiarid regions. A better understanding of this methodology may also demonstrate the feasibility of a

citizen observer network, which could supply temperature data that would help monitor the PWV variations across different

locations in a region. One major difference between our paper and previous work is our interpretation and modeling to better

characterize and understand reasons for the correlation between zenith sky temperatures and PWV. Mims et al. first established70

the feasibility of this measurement technique, but their work was focused on observational results and provided little analytical

interpretation. In addition, our measurement suite includes corresponding ground temperature data for instrument calibration

and drift. For the remainder of the paper, we will discuss the observational methods including sensors and derivation of PWV

from radiosondes (Sect. 2), results and analysis (Sect. 3), and interpretation using model simulations (Sect. 4). Conclusions are

presented in Sect. 5.75

2 Observational methods

We utilize infrared thermometry to measure the zenith sky (vertically upward at zenith angle of zero) temperature with a

temporal resolution of approximately one day over Socorro, New Mexico (34N, 107W, 1.4 km surface elevation) (Kelsey and

Riley, 2021) for a period of two years (Nclear = 539). Three different handheld thermal sensors were used in this study: TE

16101, FLIR i3, and AMES.80

2.1 Sensors

The FLIR i3 sensor has a hardware-imposed temperature measurement range from -20◦C to 250◦C (however, in our ob-

servations this sensor has produced temperature readings down to -40◦C). The manufacturer defines the accuracy of these

measurements as±2◦C and defines the spectral sensitivity to be between 7.5 and 13 µm (FLIR Systems Inc., 2012). Compared

to the 4.8◦ conical field of view associated with the TE 1610 and AMES thermometers, the FLIR i3 has a 12.5◦×12.5◦ rect-85

angular field of view. The target emissivity for the FLIR is adjustable, but was set at 0.95 for consistency with the fixed value

1As a result of the lack of viable data from the TE 1610 (2 measurements out of 539 days), we have removed this sensor from further analysis and

comparison.
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employed by the AMES sensor.

The AMES thermometer has a low temperature measurement limit of -50◦C and an upper limit of 550◦C, and an assumed

target emissivity of 0.95. The manufacturer error associated with this instrument differs between two temperature ranges. The

first is between -50◦C and 0◦C, with an error of ±3.9◦C (Harbor Freight Tools, 2017). The second range is 0.5◦C and 550◦C,90

the error for this range is ±2.2◦C (Harbor Freight Tools, 2017). In our measurements we have found few instances where the

temperature reading is below the -50◦C threshold. There is not a defined spectral range provided by the manufacturer for this

sensor. However, we inferred that the spectral sensitivity of the sensor lies within the range 7µm - 10µm by comparing to

radiative model calculations,
:
as further discussed in Sect. 4. We employed two sensors of this type: AMES 1, which was used

starting on 22 January 2019, and AMES 2 which was put into service on 14 May 2019.95

2.2 Measurement procedure

As discussed previously, the zenith sky temperature measurements are taken once a day, typically near 1700-1800 UTC or

2300-2400 UTC to avoid having the sun within the field of view of the sensors. Sky temperature is measured at the zenith, by

hand, to facilitate the measurement of the vertical column air temperatures. This ensures the shortest optical path is used for

infrared water vapor measurements (Smith and Toumi, 2008). A series of measurements were taken to investigate the impact100

of manual observations having small offsets from true zenith (determined by plumb bob, level, and large protractor), where

readings were taken at varying angles up to 30◦ from zenith over a week-long period. It was determined that with proper

technique one can manually get within 5◦ of true zenith, which introduces less than 0.8◦C variation in clear sky temperature

measurements. Angular variations in sky temperature might be expected to differ at other locations with different atmospheric

conditions. We also measure the immediate ground temperature
:::
(the

::::::::
effective

::
IR

::::
skin

:::::::::::
temperature)

:
as a check on instrument105

calibration and drift. A noticeable difference in ground temperature measurements from one sensor in comparison to the others

would highlight the need to look closer at the measurements from that particular sensor. A large variation in zenith sky tem-

perature observations without a similar variance in the ground temperatures would flag that there may be an issue with the sky

temperature measurement.

The presence of clouds, smoke, dust, or aerosol within the sensor field of view can have an impact on observed sky tem-110

peratures. Clouds, in particular, are capable of affecting
::::::
biasing

:
the observations by providing an effective emission source

at temperatures near cloud base. We screen and exclude any observations contaminated by clouds, regardless of cloud base

height. This cloud screening is based upon
::::::::
subjective visual observations and Table 1 shows the breakdown of sky conditions

and sensor readings for the entire data record. We find that cloud screening results in the loss of data for 26.5% of daily read-

ings. Additionally, there are occasions when a given sensor will not produce a reading (NaN) when the sky temperature falls115

below the calibrated range for that sensor. This occurs mostly under clear skies, and it varies from 0.9% of the measurements

for AMES 2 to 68.1% for FLIR i3 (Table 1). The larger fraction of NaN days for the FLIR i3 instrument is likely due to a

warmer low-temperature cutoff (-40◦C for FLIR i3 versus -50◦C for AMES), and a different spectral sensitivity that is closer

to the transparent atmospheric window between 8 and 12 µm wavelength. We have not made any measurements in the presence

of noticeable smoke or dust. Surface solar radiation measurements at Socorro have shown that aerosol optical depths (AOD)120
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Table 1. Relative distributions of data types for Real, Not-a-Number (NaN), and No Data readings on the three sensors used in this study,

broken down between clear sky and overcast labels. The overall fractions of measurements classified as either clear or overcast sky conditions

are 73.5% and 26.5%, respectively.

Clear Overcast

Sensor Label % Real % NaN % No Data % Real % NaN % No Data

FLIR i3 31.9 68.1 0.0 90.7 7.2 2.1

AMES 1 96.1 3.9 0.0 96.4 1.5 2.1

AMES 2 71.3 0.9 27.8 74.7 0.0 25.3

No Data is used for those days where data was not collected by the sensor.

are typically very low, varying between 0.03 and 0.10 with maximum values during summer (Minschwaner et al., 2002). These

values are confirmed by sun-photometer data from the Sevilleta AERONET (AErosol RObotic NETwork) site located about 30

km north of Socorro (Holben et al., 1998, 2001). This AERONET site is near the Rio Salado riverbed and could be influenced

by wind-blown dust, but despite isolated instances of high AOD
::::::
aerosol

::::::
loading

:
from either dust or wildfire smoke, it is

::::
AOD

:::::
levels

::
are

:
typically no larger than 0.15. Variations in aerosol are not considered here, but they will contribute a small additional125

source of variability in sky temperature readings.

2.3 Infrared opacity and instrument comparison

As discussed above, the spectral sensitivity curves for each of our thermal sensors are not precisely known, but they are all

assumed to have passbands that fall within relatively transparent atmospheric windows at wavelengths between∼7 to∼12 µm,

corresponding roughly to the mid-IR spectral range. The downward mid-IR radiance observed at ground level with clear skies130

is primarily dependent on the vertical distribution of atmospheric temperature, and on the vertical distributions of greenhouse

gases with mid-IR absorption signatures (e.g. Thomas et al. (1999)). The most important infrared-active gases at these wave-

lengths are ozone, with a vibrational band at 9.6 µm, and water vapor, with a weak continuum between the 6.3 µm vibrational

band and the far-IR rotational lines of H2O (Stephens, 1994). Although the 9.6 µm ozone feature is significant for transmission

through the entire atmosphere, most of the ozone is located in the stratosphere and ozone generally has a negligible impact135

on mid-IR transmission for path lengths within the lowest few kilometers of the surface, except perhaps under highly polluted

conditions. On the other hand, even though the H2O continuum absorption is considered weak (only 10%-20% absorption

through the entire atmosphere), the radiative effects can be significant for path lengths near the surface. The magnitude of this

so-called e-type absorption varies as the square of the absorber amount (e.g. Burroughs (1979)). Furthermore, the scale height

for the vertical distribution of water vapor (∼3 km) is much smaller than for the background atmosphere, so that most of the140

water vapor continuum effects are felt within the lowest few kilometers of the surface.

Figure 1 shows instrument comparisons for clear sky temperatures and for ground temperatures, where the AMES 1 instru-

ment is used as a standard due to its longevity and stability during the course of observations. We find that the AMES 1 and
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Figure 1. Comparisons between the AMES 1 and the FLIR i3 (left column) and the AMES 2 (right column) for clear sky (top row) and

ground (bottom row). A 1:1 line is indicated as a dashed black line with the linear least-squares fit represented as a solid black line.

AMES 2 instruments agree to within ± 2◦C for both ground and sky temperatures, with no clear bias or offset. The FLIR

i3 and AMES 1 instruments are also in good agreement for ground temperature, but they show a considerable difference in145

sky temperature. The FLIR i3 sensor consistently obtains readings that are ∼20◦C lower than AMES 1 temperatures, and the

difference grows larger with decreasing temperature. We believe that these differences are largely due to the difference in spec-

tral passbands between the FLIR i3 and AMES sensors, with the FLIR i3 passband lying closer to the 8-12 µm atmospheric

window, where water vapor opacity is a minimum and the effective emission occurs at higher altitudes and cooler temperatures,

as shown in Appendix A. For these reasons and because of the differences in low-temperature cutoffs between the FLIR i3150

compared with the other two sensors, the FLIR dataset is not included in our analysis.

2.4 PWV determination

There are no routine precipitable water measurements at Socorro, but two measurement sites are located nearby
:::::
within

:
a
::::::
50-km

:::::
radius: a PWV SuomiNet PWV ground station (Ware et al., 2000), and a sun-photometer installation within AERONET (Hol-

ben et al., 1998). There are two reasons why the SuomiNet data have not been adopted in the analysis. First,
::
In

:::::::
addition,

:::::
there155

::
are

::::
two

:::::::
National

:::::::
Weather

:::::::
Service

::::::
(NWS)

:::::::
stations

:::::
within

::
a
:::
few

:::::::
hundred

:::::::::
kilometers

::
of

::::::::
Socorro.

::::::::
Primarily

:::
due

::
to

::::
data

::::::::
coverage

:::::
issues,

:::
we

:::::::
adopted the

:::::
NWS

:::::::::
radiosonde

:::::
PWV

::::::
values

::
for

::::
use

::
in

:::
our

:::::::
analysis.

::::
The

:::::::
Socorro

::::::::
SuomiNet

::::
site

:
is
:::::::
located

::::
only

::
2

:::
km

::::
west

::
of

:::::
NMT

::::::
campus

:::::
where

::::::
zenith

:::
sky

:::::::::::
temperatures

:::
are

::::::::
measured,

:::
but

:::::
there

::
are

::::
two

::::::
reasons

::::
why

:::
the SuomiNet data set

:::
are

:::
not

::::
used.

:::::
First,

:::
this

::::::
dataset

:
has critical gaps in time coverage

:::::
during

:::
our

:::::::::
observing

:::::
period

:
- most notably over January-April and
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June-August of 2019. Second, the Socorro SuomiNet site is located on South Knoll, M-Mountain at an elevation of 2.15 km160

above sea level, which is roughly 750 m higher than NMT campus where the zenith sky temperatures are measured
::
in

::::::::
elevation

:::
than

::::
our

:::::::::::
measurement

:::
site. Assuming a water vapor scale height of 3 km, this

::
the

:::::::::
difference

::
in

::::::::
elevation could lead to a

:::
dry

:::
bias

:::
of 20% systematic difference between South Knoll and

:
at
::::::

South
:::::
Knoll

::
as

:::::::::
compared

::
to NMT campus. The AERONET

site includes an automated sun photometer station on the Sevilleta Wildlife refuge, located approximately 30 km north of NMT

campus. Unfortunately,
:::::::
Socorro,

:::
but

:
there is a significant data gap in the AERONET Sevilleta data from June 2019 to June165

2020 , which
:::
that precludes the use of this dataset for our analysis. There is also a documented dry bias of 5-6% in AERONET

sun-photometer PWV that must be considered
::
in

::::::::::
comparison

::
to

:::::::::
radiosonde

:::::
PWV

:
(Pérez-Ramírez et al., 2014).

Our method to determine PWV at Socorro utilizes
::::
uses

:
a
::::::::
weighted

:::::
mean

::
of

:
balloon soundings from the National Weather

Service (NWS )
:::::
NWS monitoring stations in both Albuquerque (ABQ) and Santa Teresa (EPZ). The ABQ NWS station is lo-

cated approximately 110 km to the north of Socorro, while EPZ is located about 240 km to the south. The geographic locations170

:::::::
Socorro,

:::::
ABQ,

:::::
EPZ, and topography of the region are shown in Fig. 2

:
,
:::::
along

::::
with

:::
the

::::::::
locations

::
of

:::
the

:::::::
Socorro

::::::::
SuomiNet

::::
and

:::::::
Sevilleta

::::::::::
AERONET

::::
sites. It should be noted that the elevation of the EPZ station is approximately 250 m lower than Socorro,

while the ABQ station is approximately 200 m higher than Socorro. These differences are much less than the elevation differ-

ence between Socorro and the SuomiNet mountaintop site. Soundings from each NWS station are initiated at 0000 and 1200

UTC, which approximately brackets the ∼1800 UTC Socorro temperature measurements; therefore, we average the 0000 and175

1200 UTC soundings from each station to obtain daily means.

:::::
Figure

:
3
::::::::
compares

:::
the

::::::::::
radiosonde

:::::
PWV

:::
data

:::::
with

::::
both

::::::::
SuomiNet

::::
and

:::::::::
AERONET

:::::::::::
observations

:::
for

:::
one

::::
year

:::::::
(2020). There

is generally a good correspondence between ABQ and EPZ daily-mean PWV(∆PWV/PWV < 20%), consistent with previous

studies that show spatial scales for PWV variations on the order of
:::
tens

::
to

:
hundreds of kilometers (Randel et al., 1996). How-

ever, larger differences between the
::::
these

:
two stations can be observed during periods when sharp gradients in humidity exist180

over central/southern New Mexico. In all of the analysis that follows, we use a weighted mean (inversely related to distancefrom

Socorro
:::
the

::::::::
following

::::::::
analyses,

::
we

:::::::
employ

:
a
::::::::::::
2-dimensional

::::::::::
interpolation

::::::
(which

::
is

:::::
linear

::
in

::::::::
horizontal

::::::::
distance,

:::
and

::::::::::
exponential

::
in

:::::::
elevation) of ABQ and EPZ PWV

::::::::
radiosonde

:::
as

:
a
:::::
means

:
to estimate PWV over Socorro. Appendix B compares our derived

PWV with both SuomiNet and AERONET observations for one year (2020).
:::
The

::::::::::::
corresponding

::::::::
linearized

:::::::::
weighting

::::::
factors

::
are

::::
0.75

:::
for

:::::
ABQ

:::
and

::::
0.25

:::
for

:::::
EPZ.185

During periods when all three datasets are
::::
PWV

::::
data

:::::
from

:::::::::
SuomiNet,

:::::::::::
AERONET,

:::
and

::::::::::
radiosonde

::::::
means

:::
are

:::
all avail-

able, the agreement
:::::
shown

::
in

::::
Fig.

:
3
:

is good. Nevertheless, it should noted that this spatial/temporal averaging of the NWS

datawill introduce an additional source of uncertainty and scatter to the PWV dataset derived for Socorro .
:::::::
However,

:::
we

:::
do

:::
note

::
a
:::::::::
significant

:::
dry

:::
bias

::
in
:::::::::
SuomiNet

::::::::
compared

::::
with

:::
the

::::::::::
radiosonde

::::
data,

:::::
which

::
is

:::::::::
consistent

::::
with

::
the

:::::::::
difference

::
in

::::::::
elevation

::::::::
discussed

:::::
above.

::::
The

:::::::
amount

::
of

::::::::
SuomiNet

::
or
::::::::::
AERONET

::::
data

::::::::
available

:::
for

:::
our

:::::::
two-year

:::::::
analysis

::::::
period

::
is

::::
even

:::::
more

::::::
limited190

:::
than

:::::::::
suggested

:::
for

:::
the

:::::
single

::::
year

::::::
shown

::
in

::::
Fig.

::
3:

:::
out

:::
of

:::
522

:::::
days

::::
with

::::
clear

::::
sky

::::::::::
temperature

::::::::::::
measurements

::
in

::::::::::
2019-2020,

::::
there

:::
are

::::
only

:::
142

:::::
days

::
of

::::::::::
AERONET

:::::::
Sevilleta

:::::
PWV

::::
data

:::
and

::::
270

::::
days

::
of

:::::::
Socorro

::::::::
SuomiNet

:::::
PWV

:::::
data.

::::::::
However,

::::
these

::::
two

::::::
datasets

:::
are

::::
still

:::::::
valuable

::::::::::
comparison

::::::::
standards

::
as

::::::::
discussed

::::::
further

::::::
below.
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Figure 2. Topographical map of south-central New Mexico that shows the location of the measurement site at Socorro, along with the NWS

radiosonde sites in Albuquerque (ABQ) and Santa Teresa (EPZ). The labels include surface elevations for all three locations.
:::
The

:::::
black

:::
star

:::
and

::::::
triangle

::::::
indicate

::
the

:::::::
locations

::
of

:::
the

::::::
Socorro

::::::::
SuomiNet

:::
and

:::::::::
AERONET

::::::
Sevilleta

:::::::
stations,

:::::::::
respectively.

:
Map prepared by Phil L. Miller,

Map Production Coordinator, New Mexico Bureau of Geology and Mineral Resources.

3 Results and analysis

3.1 Time series195

A time series of two years of daily clear sky temperature and precipitable water is shown in Fig. 4. Both quantities show large

seasonal cycles with maximum temperatures and PWV during the late summer and early fall (July-September). The seasonal

amplitude in PWV is very large, with values averaging 5 mm during December-February and peaking at 25-30 mm in August.

This pattern is consistent with the timing of the North American Monsoon in New Mexico. The corresponding zenith sky

temperatures range from -40◦C in winter to -10◦C in late summer. The day-to-day variability is on the order of 2-5 mm for200
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Figure 3.
:::

Time
:::::
series

:::
plot

:::::::
showing

::::
daily

:::::
mean

::::::::
SuomiNet,

:::::::::
AERONET,

:::
and

:::::
ABQ

:::
and

:::
EPZ

:::::::::
radiosonde

::::::::::
observations

::
of

::::
PWV

:::
for

:::
the

::::
2020

:::
year

:::::
(color

:::::::
symbols),

::::
with

:::
the

:::::::
weighted

::::
mean

::
of

:::
the

::::::::
radiosonde

:::::::::::
measurements

:::::::
indicated

::
by

:::
the

::::
solid

:::
line.

PWV and roughly 2-5◦C for temperature. Note the difference in PWV between Spring-Summer 2019 and Spring-Summer

2020, which provides some measure of the interannual variability. A detailed analysis of seasonal and interannual variability

is beyond the scope of this paper; however, Appendix A presents evidence indicating that some of these differences are related

to large scale changes in relative humidity.

3.2 Analytical techniques205

For the purpose of this experiment we developed the Precipitable-Water Model Analysis Tool (PMAT), which is a computa-

tional utility to analyze and visualize the collected data. Some of the visualizations used in the model include temperature and

PWV measurements (as a function of time), direct sky temperature and PWV comparisons, and sensor performance compar-

isons. The tool implements common numerical methods to study the exponential relationship between the collected zenith sky

temperature and PWV with ease (Riley and Kelsey, 2021). In the development of this computational model, we applied two210

common numerical methods: linearization of an exponential and least-square linear regression (LSLR).

We begin the process of analyzing the collected data by purging data that is not viable; this includes out-of-range tempera-

ture readings in addition to incomplete precipitable water measurements. Sensor malfunctions on radiosondes contribute to the

missing precipitable water measurements. As part of this procedure, four additional days were not included in the final analysis

because the results from these days exceeded a 3σ limit of deviation from the rest of the entire dataset.215

For a more rigorous analytical process, we have implemented three additional pre-processing functions: a superficial overcast
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Figure 4. Time series composite of sky temperature (black) and precipitable water (white) over the period from January 2019 through January

2021.

filter, a relative difference
:::::::
standard

::::::::
deviation filter with respect to the PWV observations, and a training-testing data partition.

The first of the three simply removes data that has the overcast label. The second compares individual PWV observations to the

daily mean of both ABQ and EPZ
::
the

:::::::
standard

::::::::
deviation

:::
of

:::
the

:::::
PWV

::::::::::
observations

:::
for

::
a

::::
given

::::
day

::::
with

:::
the

:::::
mean

::
of

:::
the

:::::
daily

:::::::
standard

:::::::::
deviations

::::
over

:::
the

:::::
entire

::::::
dataset, and rejects those days for which any difference exceeds a fixed threshold of 55%.220

This threshold value was determined so that no more than 10% of the days are rejected by this filter, while still ensuring
:::
the

:::::::
standard

::::::::
deviation

::
is

::::
more

::::
than

:::::
twice

:::
the

::::::
overall

:::::
mean

:::::
value.

:::::
This

::::::
filtering

:::::::
ensures

:
that days with major differences between

ABQ and EPZ radiosondes do not bias
:::::
PWV,

::
or

::::::::
between

::::
00Z

:::
and

::::
12Z

:::::::::::
observations,

:::
do

:::
not

:::::::::
negatively

::::::
impact our analysis.

::::::::::::
Approximately

::::
12%

::
of

:::
the

:::::
days

::
are

:::::::
rejected

:::
by

:::
this

:::::
filter. For the data partition, we split the data such that 80% was dedicated

to training the regression model and the remaining 20% is for evaluating and testing the model.225

After the data has been pre-processed, the relationship between the zenith sky temperature and precipitable water is passed

through a least-squares linear regression algorithm in (Tb,log(PWV)). For the purposes of this paper, we collected the param-

eters of the best-fit, the root mean squared error (RMSE), and the residual deviation (S) for the run. Then, we iterated the

collection of the results for five thousand iterations. The results of the average best-fit curve is shown in Fig. 5. The exponential

parameters for the best-fit function, physically defined as230

PWV =AeBTb , (2)
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Figure 5. Analytical results of relationship between precipitable water vapor and zenith clear-sky temperature. Individual days are plotted

with white circles. The solid black curve indicates an average best-fit exponential relationship based on five thousand iterations; this includes

the 95% prediction interval of the data (shaded region).
:::
The

::
fit

::::::::
parameters

:::
and

:::::::
residual

::::::
standard

::::::::
deviation,

::
S,

::
are

:::::::
indicated

::
in
:::
the

::::::
legend.

as noted in Fig. 5, are A= 20.2 mm and B = 0.036◦
::::::::
A= 18.48

::::
mm

:::
and

::::::::::
B = 0.034◦C−1. The prediction interval, denoted as

the shaded region, represents specific probability of future data points.

The goodness of fit in Fig. 5 confirms that a quasi-exponential relationship between the two variables provides a valid

description of these observations. The scatter shown in Fig. 5 is dominated by the errors in PWV introduced by spatial/temporal235

averaging of radiosonde sounding from ABQ and EPZ, as discussed below.
::
In

::::
view

::
of

:::
the

:::::
lower

::::::::::
temperature

::::::::
threshold

::
of

::::::
-50◦C,

::
we

:::
see

::
in
::::
Fig.

::
5

:::
that

:::
the

::::::
lowest

::::::::
detectable

:::::
PWV

:::::
using

:::
our

:::::::::
technique

:
is
:::::
about

::
3
::::
mm.

3.3 Error analysis

The primary sources of error that impact our results include uncertainties in both the thermal sensors and in the radiosonde

instruments. For the thermal sensors, the main sources of uncertainty are the precision of the instruments and uncertainties in240

zenith pointing. As discussed in Sect. 2.3, comparisons between sensors suggest that the precision is on the order of ±2◦C,

while zenith pointing introduces uncertainties no larger than 0.8◦C. Combined in quadrature, we obtain uncertainties in ther-

mal readings of ±2.2◦C. For the radiosonde PWV uncertainties, we implemented the relative difference filter and applied a

weighted mean of ABQ and EPZ to reduce errors from spatial-temporal averaging. However, based on the differences shown

in Fig. 3 and taking into account known systematic biases due to elevation and differences between instruments (see Sect. 2.4),245

an uncertainty of 15% is estimated for daily mean PWV at Socorro as derived from the two radiosonde datasets.
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Figure 6.
:::::::::
Comparison

::
of

::::::::
SuomiNet

:::::
PWV

:::::
(left),

::::
and

:::::::::
AERONET

:::::
PWV

:::::
(right)

::::
with

:::::
PWV

::::::
derived

::::
from

::::
our

:::::
zenith

:::
sky

::::::::::
temperature

::::::::::
measurements

:::::
using

:::::::
equation

:::
(2),

::::
over

:::
the

:::::
period

::::
from

:::::::
January

::::
2019

::::::
through

::::::
January

:::::
2021.

::
In
::::

both
:::::

cases,
:::
the

::::::
dashed

:::
line

:::::::
indicates

::
a

::
1:1

::::::::::
relationship,

::::
while

:::
the

::::
solid

:::
line

:::::
shows

::
the

:::::
linear

::::::::::
least-squares

::
fit,

::::
with

::::::::
parameters

:::::::
indicated

::
in

::::
each

:::::
legend

::::
box.

To take into account perturbations in the sampled data generated by the mean
:::::::
standard

::::::::
deviation

:
filter and data partition

functions, we incorporated an iterative evaluation mechanism that collected five thousand steps worth of data. This process

reduces the random bias that is included when we randomly partition the data set, so we can analyze a series of random states

rather than a single state. In this evaluation, we calculated that the average residual standard deviation is 3.79
::::
3.64 mm evalu-250

ated with the testing data subset.

::
In

:::::
order

::
to

::::::
further

:::::
gauge

:::
the

:::::::
accuracy

::::
and

:::::::
precision

:::
of

:::
our

::::::
derived

:::::
PWV,

:::
we

:::::::
compare

:::
the

:::::
daily

:::::
values

::
of

:::::
PWV

:::::
based

:::
on

:::
our

:::::
zenith

:::
sky

::::::::::
temperature

::::::::::::
measurements,

:::::
using

:::
the

::
fit

::::::
shown

::
in

::::
Fig.

::
5,

::::
with

::
all

::::::::
available

:::::::::
2019-2020

::::
daily

:::::
mean

:::::
PWV

:::::
values

:::::
from

::::::::
SuomiNet

::::
and

::::::::::
AERONET

::::
(Fig.

:::
6).

:::::
First,

:::
we

::::
note

:::
that

:::::
there

:::
are

:::::
more

::::
days

::::::::
available

:::
for

::::::::::
comparison

:::
for

:::::::::::
SUOMINET

:::::
(270)

:::
than

:::
for

::::::::
AeroNet

:::::
(142).

::
In

::::
both

:::::
cases

::::
there

:::
are

:::::
small

::::::::
variations

:::::
which

:::
are

:::
due

::
to
::::::::::
differences

::
in

::::::::
elevation,

:::::::
physical

:::::::
location,

::::
and255

:::::::::
instrument

::::::
offsets.

:::
We

::::
find

:::
that

:::::::::
SuomiNet

:::::
PWV

::
is

::::::::
generally

:::::
lower

:::::
(25%)

::::
than

:::
our

:::::::
derived

:::::
PWV,

:::::
which

::
is
:::::::::
consistent

::::
with

:::
the

::::::::
difference

::
in

::::::::
elevation

:::::
noted

:::::
above.

::::::::::
AERONET

:::::
PWV

:::
also

::::::
shows

:::::
lower

:::::
values

::
of

:::::::
15-20%

::::
with

::::::
respect

::
to

:::
our

:::
IR

:::::
PWV

:::::::
product.

:
A
:::::
large

::::
part

::
of

:::
this

:::::::
apparent

::::
bias

:::
can

:::
be

::::::::
attributed

::
to

:::
the

:::::::::
differences

::
in
:::::::
location

::::
and

::
in

:::::::::
instrument

::::::
offsets

::
as

:::::
noted

:::::
above.

:

The RMSE value calculated based on our model as a result of the aforementioned evaluations was, on average, 3.75
::::
3.60

mm. For comparison, the RMSE generated from the evaluation of the Mims et al. best-fit with our dataset yielded a corre-260

sponding value of 4.52
::::
4.63 mm. The lower RMSE for our model (∼20%) indicates that the relationship between PWV and
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clear sky temperature over Socorro, NM, is better described by our derived parameters rather than those that fit the more moist

climate in eastern Texas observed by Mims et al..

4 Interpretation and comparison to model simulations

In this section, we interpret the observed relationship between PWV and zenith sky temperature using radiative transfer calcula-265

tions with the MODTRAN6 (MODerate resolution atmospheric TRANsmission 6) model (Berk et al., 2014). This framework

inputs vertical profiles of temperature, density, and radiatively active trace gases, and computes atmospheric spectral trans-

mittances and radiances over a wide spectral range from the ultraviolet through far infrared wavelengths. Here, we focus on

vertical path lengths through a midlatitude summer atmosphere (Anderson, 1986), with a surface located at 1.4 km altitude, in

order to simulate the zenith sky radiances at Socorro. In the base simulation, PWV = 11.4 mm and the temperature distribution270

is unchanged from the midlatitude summer case. Other model runs include changes to the PWV by uniformly scaling the water

vapor vertical profile by factors of 0.5 and 2 while keeping temperature fixed, and by uniform temperature changes of -5 K and

+5 K while keeping PWV fixed.

Figure 7 shows downward spectral radiances computed within a wavelength range between 7 and 10 µm. This range is

taken for the sake of illustration because, as noted previously, the spectral passband of the AMES thermal sensor is expected275

to approximately correspond to this region. The radiances shown in Fig. 7 can be used to separately quantify the impact of

changes in temperature or water vapor on downward radiances. We find that changes in PWV have the largest relative impact

on spectral radiances at 10 µm as compared to 7 µm, due largely to saturation effects closer to the edge of the strong H2O 6.7

µm band absorption. Changes in temperature, however, have a more uniform spectral effect.

For each case, we integrated the spectral radiances from 7 to 10 µm and determined the equivalent brightness tempera-280

ture across this spectral range. The equivalent brightness temperature was found by integrating the Planck function over the

same spectral range, and solving for the blackbody temperature that provided the same integrated value as the MODTRAN6

downward radiances. The equivalent brightness temperature is intended to simulate our thermal sensor’s zenith sky temper-

ature reading, and as indicated in Fig. 7, we do find a relationship between PWV and equivalent brightness temperature that

is somewhat consistent with the observations shown in Fig. 5. Higher PWV amount leads to higher effective temperatures,285

which can be interpreted as a simple lowering in altitude of the effective emission level due to increasing opacity from water

vapor, and lower altitudes generally correspond to higher temperatures. For atmospheric temperature, we find an expected

increase/decrease in equivalent brightness temperature when atmospheric temperatures are respectively increased/decreased.

We developed a simple linearized model to further interpret our observations using the MODTRAN6 calculations above. If

the equivalent brightness temperature, Tb, is assumed to be a function primarily of PWV and atmospheric temperature, Tair,290

then

dTb
d(PWV)

=
∂Tb

∂(PWV)
+
∂Tb
∂Tair

· ∂Tair

∂(PWV)
. (3)

The observed relationship between Tb and PWV is clearly nonlinear, but for small changes about some basic state (Tb '−20◦C

and PWV ' 11 mm) we assume that the observations can be represented by the left-hand side of Eq. (3) and that the slope
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is approximately constant with a magnitude of about 1.9◦C mm−1 (Fig. 5). The MODTRAN6 simulations can be used to295

estimate the partial derivative terms, so that the first term on the right-hand side of Eq. (3) has a magnitude of 1.04◦C mm−1

based on Fig. 7. This is the direct effect of changes in PWV on equivalent brightness temperature, and the results can be shown

to capture some, but not all, of the variations in the observed relationship. The second term on the right side of Eq. (3) accounts

for changes in Tb that may arise from any coupling between Tb and PWV due to changes in atmospheric temperature, and it

is composed of two factors. The first factor is 0.87 based on the MODTRAN6 calculations (Fig. 7). The second factor may300

be estimated by assuming that the atmosphere maintains a state of constant relative humidity, so that the water vapor partial

pressure at all levels (and hence PWV) is set by the Clausius–Clapeyron relation,

des
dTair

=
Lv

RvT 2
air
, (4)

where es is the saturation vapor pressure, Lv is the latent heat of vaporization, and Rv is the specific gas constant for water

vapor. If relative humidity is held fixed, then it can be shown that305

∂(PWV)

∂Tair
=

Lv

RvT 2
air
·PWV . (5)

Evaluating this equation for Tair = 273 K and PWV=11.4 mm, we find the second factor on the far right side of Eq. (3) to

be 1.21◦C mm−1, hence the entire second term has a magnitude of 1.05◦C mm−1. We conclude that the magnitudes of the

two terms on the right side of Eq. (3) are nearly identical at about 1◦C mm−1, implying an overall slope on the order of

2◦C mm−1, which is in close agreement with the observed slope of 1.9◦C mm−1. A comparison of the model results to the310

observations is shown in Fig. 8. Despite the use of a simple linearized model to describe a clearly nonlinear relationship seen

in the observations, we find a good level of agreement that confirms our hypothesis for the two primary influences on the

relationship between PWV and zenith sky temperature.

In order to test the robustness of assumptions implicit in Eq. (5). we investigated the relationship between PWV and air

temperatures near 3 km altitude using the Albuquerque sounding data spanning over one year. There was a considerable degree315

of scatter but PWV and air temperature were found to be well correlated, and a linear fit to the data (not shown) produced a slope

consistent with the value estimated using Eq. (5). Figure 8 also includes the temperature-PWV relationship fit to observations

by Mims et al. (2011), which employs an exponential form somewhat similar to ours. While the overall patterns are similar and

consistent with the model, there are differences between the two fits that are most likely due to different sensitivities between

the sensors used, and to differences between climate regimes (e.g., mean relative humidities for our location are much lower320

than for the Mims et al. (2011) study).

5 Conclusion and future directions

Our results demonstrate the feasibility of using low-cost sensors to measure PWV in less than five minutes using simple mea-

surement protocols, confirming the findings by Mims et al. (2011), but our work extends the previous analysis by observing at

colder zenith sky temperatures (down to -40◦C) and correspondingly lower PWV (down to ∼3 mm). Our measurements also325
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Figure 7. (Left) Downward radiances at the surface, located 1.4 km above sea level, computed using MODTRAN6 with a midlatitude summer

model atmosphere. Water vapor was uniformly scaled to produce a PWV of 5.7 mm (blue), 11.4 mm (orange), and 22.7 mm (purple), with

all other model parameters held constant. Also plotted are blackbody curves for three different temperatures (black), with each curve having

the same integrated radiance as the corresponding MODTRAN6 radiance (Tb=260.55 K, 252.77 K, and 242.85 K for PWV=22.7 mm, 11.4

mm, and 5.7 mm, respectively). (Right) Same as Left but for uniform changes in atmospheric temperature of ±5 K with water vapor held

constant at PWV=11.4 mm. Equivalent blackbody temperatures are Tb=257.14 K, 252.77 K, and 248.42 K for the case of ∆Tb=+5 K, 0 K,

and -5 K, respectively.

show that the exact Tb - PWV relationship will be a function of instrument spectral sensitivity and local conditions such as sur-

face elevation and mean relative humidity. In addition, we developed a simple model that uses MODTRAN6 radiative transfer

calculations to quantify how Tb can be influenced by changes in PWV and in mean-column air temperature, an analysis that

was not done in previous studies. The model analysis indicates that the observed relationship between zenith sky temperature

and PWV can be explained primarily by two dominant influences. First, an increase in PWV leads to increasing atmospheric330

opacity and a lower altitude for the effective emission height as viewed from the surface. Under typical conditions a lower

height corresponds to a higher temperature. Second, an increase in PWV is typically correlated with higher air temperatures;

although relative humidity is not perfectly constant, the climatology is such that positive relationships between temperature and

humidity are generally observed. Higher air temperatures, in turn, increase the observed zenith sky temperature due to greater

emission rates governed by the Planck function, as seen in the MODTRAN6 simulations. The model results show that surface335

elevation and climatological relative humidity are two of the most important local factors in shaping the exact form of the Tb -

PWV relationship.

15



Figure 8. Zenith sky temperature versus PWV for the best fit to measurements from this study (solid curve), best fit from Mims et al. (2011)

using the expression 30.55e0.035x − 2.63 (dashed curve). Results from MODTRAN6 radiance calculations for average 7-10 µm effective

brightness temperature (blue, orange, and purple solid circles) are plotted for comparison. The model results include the combined effects of

changes in PWV and air temperature on the effective brightness temperature, as expressed by Eq. (3).

Since PWV can typically be measured to within±20% using this approach with a single-design sensor, it shows promise for

applications involving a dense network of PWV observations, and it may be a good candidate for broader observations employ-

ing the “citizen science” methodology. Coordinated observations within the Global Learning and Observations to Benefit the340

Environment (GLOBE) Program has been proven to be successful for a wide variety of geophysical phenomena (e.g., Robles

et al. (2020)). The question of whether or not sensors of the same model and manufacturer are similar enough to be used in an

observing network is an area of future investigation. We also found that those sensors which were not capable of measuring

temperatures colder than -20◦C were not able to collect zenith sky temperature data in Socorro, New Mexico. However, at

a lower elevation and less arid region, zenith sky temperatures rarely fall below -20◦C [e.g. Mims et al. (2011)], and those345

sensors may be effectively utilized for PWV monitoring

As we continue the study of the relationship between zenith sky temperature and precipitable water, we plan on developing

an autonomous sensor module. This module would not only enable consistent temperature measurement times, but will also

facilitate an expansion of this project with more measurement sites. Additional measurement sites will increase our capability

to analyze the relationship between zenith sky temperature and precipitable water in different climate zones. We are also de-350

veloping plans to work with schools to continue manual data collection in different parts of the American West to help advance

science learning while collecting data from regions with different elevations and precipitation profiles. Current efforts are fo-
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cused on testing and optimizing a machine learning algorithm (more specifically a Support Vector Machine) to predict a binary

set of weather conditions, clear sky or overcast, based on zenith sky temperature and PWV data. These predictive models will

have the capabilities to further quantify the aforementioned relationship by applying common statistical metrics, and will be355

the subject of a future paper.

Appendix A

This Appendix presents two supplementary figures that support discussions about variability in PWV and spectral passbands

of our instruments.

Figure A1 shows a comparison of surface relative humidity measured at Socorro, NM for the first halves of 2019 and 2020,360

along with the corresponding Tb and PWV measurements analyzed over same two time periods. We find that relative humidity

(RH) values in late spring and early summer of 2020 were much lower than those observed in 2019. Similarly, PWV values in

Spring-Summer 2019 were lower in 2020 compared with 2019. However, measured values of Tb did not undergo a proportional

change so that the 2019 and 2020 relationships show small differences that can be seen in the fits. The reductions in RH and

PWV appear to be consistent with the La Niña pattern seen in 2020, although a more complete analysis would require more365

years of Tb and PWV measurements.
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Figure A1. Top two plots show time series of surface relative humidity measured at Socorro, New Mexico. The left plot shows the period

from February to July 2019, and the right plot shows the values for February-July 2020. The bottom two plots show the corresponding PWV

and zenith sky temperatures for the same periods in 2019 (left) and 2020 (right).
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Figure A2. (Left) Downward radiances at the surface, between 8 and 12 µm, computed using MODTRAN6 with a midlatitude summer

model atmosphere. Water vapor was uniformly scaled to produce a PWV of 5.7 mm (blue), 11.4 mm (orange), and 22.7 mm (purple), with

all other model parameters held constant. Also plotted are blackbody curves for three different temperatures (black), with each curve having

the same integrated radiance as the corresponding MODTRAN6 radiance. (Right) Same as Left but for uniform changes in atmospheric

temperature of ±5 K with water vapor held constant at PWV=11.4 mm. Equivalent blackbody curves and temperatures are also shown.

Figure A2 shows the results of MODTRAN6 calculations as described above in Sect. 4. In this case the spectral passband

is assumed to be between 8 and 12 micrometers, and we find a corresponding decrease in effective brightness temperatures

compared to those
::::::::
calculated

:::
for

:::
the

::::
7-10

::::::::::
micrometer

:::::::
spectral

::::::
region shown in Fig. 7. The

:::::
These

:
results confirm our hypoth-370

esis that the lower temperatures observed by the FLIR i3 instruments are primarily due to differences in spectral passbands.

Furthermore, we find a much reduced sensitivity to air temperature within this passband, suggesting that this kind of instrument

could provide a more direct means of monitoring PWV, but only for climate regimes where mean humidities are sufficiently

large so that observed sky temperatures would fall within the measurement temperature range for this instrument.

Appendix B375

This appendix shows results of a comparison between SuomiNet, AERONET, and radiosonde PWV for one full year. Figure 3

shows daily mean PWV values for 2020. During periods when all three datasets are available, there is reasonable agreement in

monthly and seasonal patterns despite systematic offsets discussed in Sect. 2.4. The figure also shows gaps in data coverage,

days 1-196 for AERONET and days 211-243 for SuomiNet, which are not present in the radiosonde datasets. The weighted
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mean radiosonde values that are used to develop the PWV-temperature relationship used in this study are shown as the solid380

line in 3. Time series plot showing daily mean SuomiNet, AERONET, and ABQ and EPZ radiosonde observations of PWV for

the 2020 year (color symbols), with the weighted mean of the radiosonde measurements indicated by the solid line.
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