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Abstract. Riming, i.e. the accretion and freezing of SLW
::::::::::
supercooled

:::::
liquid

:::::
water

::::::
(SLW)

:
on ice particles in mixed-phase

clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar

observations is of great interest, however, approaches based on measurements of the mean Doppler velocity (MDV) are unfea-

sible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be

used to predict riming using ground-based zenith-pointing cloud radar variables as input features. ANNs are a versatile means5

to extract relations from labeled data sets, which contain input features along with the expected target values. Training data

are extracted from a data set acquired during winter 2014 in Finland, containing both Ka-band
:::
Ka-

:::
and

:::::::
W-band

:
cloud radar

and in-situ observations of snowfall.
:::::
ANNs

:::
are

:::::::
trained

::::::::
separately

:::::
either

:::
on

:::
the

::::::::
Ka-band

::::
radar

:::
or

:::
the

:::::::
W-band

::::
radar

::::
data

::::
set.

We focus on two configurations of input variables: ANN #1 uses the equivalent radar reflectivity factor (Ze), MDV, the width

from left to right edge of the spectrum above the noise floor (spectrum edge width; SEW), and the skewness as input features.10

ANN #2 only uses Ze, SEW and skewness. The application of these two ANN configurations to case studies from different data

sets demonstrates that both are able to predict strong riming (riming index = 1
:::::::
FRANN ::

>
:::
0.7) and yield low values (riming

index
:::::::
FRANN ≤ 0.4) for unrimed snow. In general, the predictions of ANN #1 and ANN #2 are very similar, advocating the

capability to predict riming without the use of MDV. It is demonstrated that both ANN setups are able to generalize to W-band

radar data. The predictions of both ANNs for a wintertime convective cloud fit coinciding in-situ observations extremely well,15

suggesting the possibility to predict riming even within convective systems. Application of ANN #2 to an orographic case

yields high riming index
:::::::
FRANN values coinciding with observations of solid graupel particles at the ground.

Copyright statement.
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1 Introduction

Mixed-phase clouds are important components of the climate system, because they play a major role both for the radiation

budget (Tan et al., 2016) and for the hydrological cycle (Mülmenstädt et al., 2015). In this type of cloud, ice particles and

supercooled liquid water (SLW) can coexist in the temperature range between 0 and −38◦C. The availability of both ice and

SLW allows for riming, i.e. the accretion and freezing of SLW on frozen ice particles. Riming is a key process for ice growth5

and eventually precipitation formation (Lamb and Verlinde, 2011; Heymsfield et al., 2020). Detecting and quantifying riming

using ground-based remote sensing observations is a non-trivial task, but of great interest for several reasons:

Firstly, ice-phase microphysical growth process rates in general are associated with a large uncertainty, posing a major chal-

lenge for microphysics schemes in numerical weather forecast and climate models (Morrison et al., 2020). Recently, consider-

able effort has been made to improve the representation of riming in models, ranging from process-oriented approaches (e.g.10

Seifert et al., 2019) to novel microphysics schemes (e.g. Morrison and Milbrandt, 2015). Deriving the rime mass fraction from

remote sensing measurements would enable observation-model comparison studies, which are an important step to evaluate

and constrain parameterizations of riming in models. Secondly, those regions where riming occurs in clouds coincide with

icing conditions, which pose a hazard to aircraft traffic (Cao et al., 2018). The ability to detect riming conditions e.g. using

ground-based vertically pointing remote sensing instruments would allow for real-time warnings near airports (Serke et al.,15

2010). Finally, long-term statistics of riming are needed in order to better understand under which conditions riming is taking

place in the atmosphere.

In the past, several approaches to retrieve riming from ground-based remote sensing observations have been developed. Riming,

at least in its initial stage, increases particle density but not much its size, because the freezing SLW droplets first fill the cav-

ities in the particle structure (Heymsfield, 1982; Seifert et al., 2019). As an effect, its terminal velocity increases (Mosimann20

et al., 1994; Mosimann, 1995), and also the aspect ratio and backscattering cross-section are changed (Garrett et al., 2015;

Leinonen and Szyrmer, 2015). While it is quite challenging to detect riming in polarimetric measurements (Vogel and Fabry,

2018; Li et al., 2018), robust signatures were identified by putting the radar signals of multiple frequencies in relation: Kneifel

et al. (2015, 2016) utilized observations of collocated cloud radars with three different wavelengths to pin down fingerprints

of riming and aggregation in the triple-frequency Doppler spectral space. They found that rimed particles can be connected25

with a combination of low dual-wavelength ratios (DWR) of X and Ka-band radar (DWRX,Ka < 3 dB) and DWRKa,W values

larger than 3 dB. These signatures are clearer for larger particles. For smaller particles, i.e. small DWR values, this distinction

becomes ambiguous. Under these conditions, the fall velocity of the hydrometeors can give an additional constraint. Mason

et al. (2018) developed an optimal estimation retrieval to obtain a density factor parameter, which is sensitive to riming, using

observations of mean Doppler velocity (MDV) and DWRKa,W . Li et al. (2020) developed a snow observation classification30

with a rimed and an unrimed category, using MDV and DWRX,Ka. Oue et al. (2021) combined MDV ,
:::
and DWRKa,W with

polarimetric observations and were able to observe even different stages of the riming process. However, only a few sites

worldwide are equipped with cloud radars of two or more different frequencies, and correct alignment and volume matching

is associated with a certain effort. Another approach which does not rely on observations at multiple wavelengths is based
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on MDV only (Mosimann et al., 1994; Mosimann, 1995). Recently, this technique has been further developed by Kneifel and

Moisseev (2020), who were able to derive a robust estimate of rime mass fraction using MDV averaged in both spatial and

temporal domains over a 100 m / 20 min height-time window. They applied this method to time series of radar measurements

at several stations located within the CloudNet (Illingworth et al., 2007) network.

While there is an evident correlation between MDV and riming due to the larger density and thus increased fall speed of5

rimed ice particles, it is not always possible to rely on this relation. The method fails when the assumption that the particle

terminal fall velocity equals the measured MDV
::::
MDV

::
is

:::::::::
equivalent

::
to

:::
the

:::::::
particle

:::
fall

:::::
speed

::
in

:::
the

::::::::::
observation

::::::
volume

:
does

not hold. This is, e.g., the case in convective systems, which can cause persistent up- or downdrafts. Also, in complex terrain,

orographically induced waves can shift the observed MDV up or down by several meters per second. These gravity waves can

be temporally persistent and consequently not be removed by temporal averaging (Radenz et al., 2021), making MDV-based10

approaches such as the one by Kneifel and Moisseev (2020) unfeasible. This is unfortunate especially considering the fact

that riming plays an important role in the microphysics of convective and orographic systems (Woods et al., 2005; Houze and

Medina, 2005). In these cases, other radar variables have to be exploited in search for fingerprints of riming, which allow for a

quantitative detection of this process. During riming, multiple hydrometeor populations are present in the same radar observa-

tion volume. Due to their different terminal fall velocities, these hydrometeor types result in multiple peaks in the cloud radar15

Doppler spectra (Kalesse et al., 2016, 2019). A broadening of the spectra is the result, which is e.g. evident in an increase of

the spectrum width (the second moment). Another variable which is impacted by riming is the skewness (the fourth moment):

Multi-peaked spectra have nonzero abolute skewness values, zero being the value of a Gaussian distribution. The impact of

riming on these other radar variables is, however, not as straightforward as for MDV. For example, riming and aggregation

processes may result in similar signatures, because aggregation can also lead to bimodal spectra (e.g. Barrett et al., 2019). Con-20

sequently, the often ambiguous information contained in the higher radar moments cannot easily be extracted from the radar

variable space using e.g. simple thresholding techniques (Maahn and Löhnert, 2017). More sophisticated methods to derive the

relationship between riming and the set of available radar variables are required.

Machine learning (ML) algorithms offer ways to discern relationships from complex data sets. The interest in ML techniques

has been increasing rapidly over the past years, and exciting advances have been accomplished in many scientific fields. Also25

in atmospheric sciences, the use of ML offers a promising path for scientific discoveries (e.g. Seifert and Rasp, 2020). Deep

learning is a type of ML, where artificial neural networks (ANNs) are trained to make predictions. Their potential to extract

useful relations from ground-based radar observations has been demonstrated in work published e.g. by Luke et al. (2010) and

van den Heuvel et al. (2020).

In this study, the overall goal is to develop a technique which does not rely on MDV and can consequently be applied to data30

sets acquired in complex terrain, where orographically induced vertical air motions render MDV unusable. More precisely,

our motivation is to derive riming estimates for a data set acquired in Punta Arenas, Chile. This site is strongly influenced

by stationary gravity waves, which make the application of MDV-based riming retrievals challenging. At the same time, in-

formation about the occurrence of riming over Punta Arenas would be of special interest due to its location in the vicinity of

the Southern Ocean and the pristine aerosol conditions encountered there (Foth et al., 2019; Radenz et al., 2021). We assess35
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in this work how ANNs can be used to predict riming using ground-based zenith-pointing cloud radar measurements as input

features. We optimize and train ensembles of ANNs using different combinations of radar variables. These variables include

the equivalent radar reflectivity factor (Ze), the MDV, the spectrum width from left to right edge of the spectrum above the

noise floor
:::::::::
(“spectrum

::::
edge

:::::::
width”,

:::::
SEW), and the skewness.

2 Data and methods5

2.1 Field experiments

We are using data from the “Biogenic Aerosols – Effects on Clouds and Climate” (BAECC; Petäjä et al., 2016) campaign to

train, validate and test ensembles of ANNs. During BAECC, in situ observations of snow were collocated with Ka-band
:::
Ka-

::::
and

::::::
W-band

:
radar measurements at a site in Hyytiälä, Finland. The developed models

::::::::
ensembles

:::
of

::::::
trained

::::::
ANNS are then applied

to observations collected during the “TRIple-frequency and Polarimetric radar Experiment for improving process observation10

of winter precipitation” (TRIPEx-pol; Mróz et al., 2020) in Section 3.2. The motivation to use these data is twofold: Firstly,

it allows us to demonstrate that the ANNs are able to generalize to different meteorological conditions and radar settings,

and to check whether they can be applied to
::
the

::::::::::
predictions

:::
are

:::::::::
consistent

:::::::
between

:::
the

::::
Ka-

:::
and

:
W-band radar observations

as well. Using a different radar frequency could be problematic due to the different sensitivity and scattering properties. A

lower or higher radar sensitivity might impact the computed SEW due to its dependence on the noise level, and thus require15

re-training of the ANNs
::::
setup. Secondly, the riming retrieval can be additionally compared with expected signatures of riming

in triple-frequency radar observations. Another validation study is performed using data obtained at the Leipzig Institute for

Meteorology (LIM) on 19 March 2021 in Section 3.3. In this data set, W-band radar data are complemented by ground-based in

situ observations of graupel and snowflakes. In Section 3.4, we apply one set of ANNs to a graupel case measured by the same

W-band radar during the “Dynamics, Aerosol, Cloud And Precipitation Observations” (DACAPO-PESO) field experiment in20

Punta Arenas. In this section, each of the four measurement setups is briefly introduced.

2.1.1 The BAECC experiment

The BAECC campaign was a joint effort between the US Department of Energy Atmospheric Radiation Measurement Pro-

gram (DOE ARM), University of Helsinki, the Finnish Meteorological Institute (FMI), the US National Aeronautics and Space25

Administration (NASA), and Colorado State University. From February to September 2014, the second ARM mobile facility

(AMF2) was deployed at the Station for Measuring Ecosystem-Atmosphere Relations II (SMEAR II) in Hyytiälä, Finland

(61◦ 51′N, 24◦ 17′E). A detailed description of the setup of the remote sensing and in situ instrumentation can be found in

Petäjä et al. (2016). The suite of remote-sensing instruments includes
::::::
include

:
a Ka-band ARM zenith-pointing

:::::::::::::
Zenith-pointing

radar (KAZR), which is a Doppler cloud radar. A ceilometer was located at SMEAR II as well, measuring the cloud base height30

(CBH)
:::
and

::
a
::::::
Marine

::::::::
W-Band

:::::
ARM

:::::
Cloud

::::::
Radar

::::::::::
(MWACR),

::::
both

:::::::
Doppler

:::::
cloud

:::::
radars. Moreover, several ground-based in
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situ instruments for measuring microphysical properties of snow were deployed at the site. We use data from the ground-based

in situ Precipitation Imaging Package (PIP, Pettersen et al., 2020), a video disdrometer which measures the size and velocity

of hydrometeors reaching the surface.

2.1.2 The TRIPEx-pol experiment5

The TRIPEx-pol campaign took place from November 2018 until February 2019 at the Jülich Observatory for Cloud Evolution

Core Facility, Germany (JOYCE-CF, 50◦54′N, 6◦25′E, Löhnert et al. (2015)). At that site, vertically pointing pulsed X-,

and Ka-band (Görsdorf et al., 2015) systems (manufactured by Metek GmbH) and a Frequency Modulated Continuous Wave

vertically-poiting
:::::::::::::::
vertically-pointing

:
W-band radar (FMCW, Radiometer Physics GmbH, Küchler et al., 2017) are employed on

a roof platform within 10 m distance. Calibration, quality control, matching and resampling procedures described in Dias Neto10

et al. (2019) were applied to yield high-quality data from all three instruments on the same time-height grid. We are using data

from seven days between 24 November 2018 and 10 January 2019 during which thick cloud systems were observed, covering

a range of meteorological conditions. The specific days chosen for this analysis are 24 November, 3, 8, 23, and 27 December,

and 7 and 10 January,
:::
all

::::::::
featuring

::::
thick

:::::::::::
mixed-phase

:::::
cloud

:::::
cases,

:::::::
possibly

::::
with

::::::
riming.

2.1.3 LIM roof platform15

The University of Leipzig Institute for Meteorology (LIM) remote sensing instrument suite is located on the observatory’s

roof platform (51◦20′N, 12◦22′E). This CloudNet site encompasses LIM’s 94 GHz Radar (LIMRAD94), and a Video In Situ

Snofall
:::::::
Snowfall

:
Sensor (VISSS, Maahn et al., 2021). LIMRAD94 is a W-band FMCW radar very similar to the system which

was employed during TRIPEx-pol. The VISSS is an optical observation system for snow particles, measuring 140 frames per

second at an optical resolution of 59 µm. While particle size distribution and fall velocity are planned to be avaliable as data20

products in the future, we here make use of the recorded images of snow particles in a qualitative manner.

2.1.4 The DACAPO-PESO experiment

Since December 2018, the Leipzig Aerosol and Cloud Remote Observations System (LACROS, Bühl et al., 2016) has been

employed in Punta Arenas, Chile (53◦10′S, 70◦56′W). LACROS comprises a suite of active and passive remote sensing instru-

ments, and for the time period from December 2018 to October 2019, LIMRAD94 was employed next to the LACROS shipping25

container. The measurement site in Punta Arenas is located at the most southerly continental part of South America, where the

meteorological conditions are characterized by prevailing strong westerly to northwesterly winds. As the air flow hits the con-

tinental mass, it is forced over mountainous orography and at the same time strongly decelerated, resulting in orographic wave

motions. From the ground-based radar perspective, persistent up- or downdrafts (Lee
::
lee

:
waves), as well as updrafts followed

by downdrafts or vice versa can often be observed. The site and the DACAPO-PESO experiment (http://dacapo.tropos.de) have30

5
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been described in more detail in Floutsi et al. (2021).

2.1.5
::::::::::
Attenuation

::::::::::
corrections

:::::
Radar

:::::::::
reflectivity

:::
of

::
all

::::
data

:::::
used

::
in

::::
this

:::::
study

::::
were

::::::::
corrected

::::
for

:::::::::
attenuation

:::
by

::::::::::
atmospheric

::::::
gases,

:::::
liquid

::::::
water,

:::::::
melting

:::::::
particles

:::
and

::::
ice.

:::
The

:::::::
Passive

:::
and

::::::
Active

:::::::::
Microwave

:::::::::
TRAnsfer

::::::::::
(PAMTRA)

:::::::
forward

:::::::
operator

::::::::::::::::
(Mech et al., 2020)

:::
was

:::::
used

::
in5

::::::::::
combination

::::
with

::::::::
CloudNet

::::::::
products,

::::::
which

::
are

:::::
either

::::::
freely

:::::::
available

:::
on

:::
the

::::::::
CloudNet

::::
data

:::::
portal

:
(https://cloudnet.fmi.fi/

:
)
::
or

::::
were

::::::::
processed

::::::
locally

:::::
using

:::
the

::::::::::
cloudnetpy

::::::
Python

:::::::
package

::::::::::::::::::::
(Tukiainen et al., 2020):

::::::::::
Attenuation

::::
due

::
to

::::::::::
atmospheric

::::::
gases,

::::::::
including

:::::
water

:::::
vapor,

::::
was

::::::::
estimated

:::::
using

::::::::
PAMTRA

::::
and

:::
the

::::::
profiles

:::
of

::::::::::
temperature

:::
and

::::::::
humidity

:::::::
included

::
in
:::
the

:::::::::
CloudNet

:::::
model

::::
files.

::::
For

:::::
liquid

:::::
water,

:::
we

:::::
used

:::
the

::::::::
measured

:::::
liquid

:::::
water

::::
path

:::
and

::::::::::
distributed

:::
the

::::
mass

::::::
among

:::
the

:::::
pixels

::::::::
classified

:::
as

::::::
“liquid

:::::::::
containing”

:::
in

:::
the

::::::::
CloudNet

:::::::::::
classification

:::::
mask,

::::::::
weighted

:::
by

:::
the

::::::::
measured

::::::::::
reflectivity.

:::
We

::::
used

:::::::::
PAMTRA

::
to

::::::
obtain10

::
the

::::::::::
attenuation

::::::
caused

:::
by

:::
the

::::
mass

:::::
liquid

:::
in

:::
the

::::::::
respective

::::::
height

:::
bin,

:::::::::
assuming

:
a
::::::::::::
monodisperse

::::::
particle

::::
size

::::::::::
distribution

:::
for

::::
cloud

:::::::
droplets

::::
and

::
an

::::::::::
exponential

::::::::::
distribution

:::
for

:::
rain

::::::::::::::::
(Mech et al., 2020)

:
.
::
If

:::::
pixels

::::
were

::::::::
classified

::
as

:::::::::
“melting”

::
in

:::::::::
CloudNet,

::
the

:::::::
melting

::::
layer

::::::::::
attenuation

:::
was

::::::::
assumed

::::::::
following

::::::::::::::
Matrosov (2008),

::::
who

:::::::
derived

:::::::
relations

:::
for

:::
Ka-

:::
and

:::::::
W-band

::
as

::
a

:::::::
function

::
of

::::::
rainfall

::::
rate.

::::::::::
Attenuation

:::
due

::
to
:::::
snow

:::
and

:::
ice

::::
was

::::::::
neglected

:::
for

:::::::
Ka-band

::::
and

::::::::
estimated

::::::::
according

::
to
::::::::::::::::
Protat et al. (2019)

:::
for

::
the

:::::::
W-band

::::::
radars.

::
If
::::

the
:::::::::
cumulative

::::::::::
attenuation

::::::::
correction

:::
for

::
a
::::
pixel

::::::::
exceeded

:::
10

:::::
dBZ,

:::
the

::::::
profile

::::
was

:::::::
removed

:::::
from

:::
the15

:::::::
analysis.

2.2 Sampling of training data

Masses of individual snow flakes can be retrieved by applying hydrodynamic theory to PIP observations of particle velocity

and size (von Lerber et al., 2017). A data set containing observed snow particle number size distributions, along with retrieved

particle masses collected between 2014 and 2015 in 5-minute temporal resolution is freely available on GitHub (Moisseev,20

2018). Using these retrieved masses m and the maximum dimensions of the observed particles, Dmax, we first estimated the

rime fraction. The mass of unrimed snow, mus is assumed as in Moisseev et al. (2017); Li et al. (2020):

mus = α ·Dβ
max (1)

where the values for α and β are α= 0.0053 and β = 2.05 (in cgs units). The rime fraction is then defined as in Kneifel and

Moisseev (2020):25

FRPIP
:::

= 1− IWCus
IWC

= 1−
∫
mus(Dmax) ·N(Dmax)dDmax∫
m(Dmax) ·N(Dmax)dDmax

(2)

::::
Here,

:
IWCus is the estimated ice water content for unrimed snow having the same

::
N(Dmax:

)
:
as the observed particles. It is

obtained by integrating mus computed from Eq. (1) over the measured particle number size distribution N(Dmax). FR
::::PIP

values smaller than zero were removed. In the next step, continuous PIP sampling periods longer than one hour were identified

for which KAZR
::::
and/

::
or

::::::::
MWACR

:
observations are available as well. This results in six snow cases between 1 February and30

20 March 2014, which are listed in Table 1.

6
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Table 1. Overview of the cases used in the training set, and coincident notable events according to Table 2 in Petäjä et al. (2016)

time period precipitation type
:::
note

01 February 2014, 01:07 – 01 February 2014, 05:57 UTC snow

01 February 2014, 09:07 – 01 February 2014, 15:57 UTC snow (riming)

15 February 2014, 20:07 – 16 February 2014, 01:57 UTC snow (riming)

21 February 2014, 15:07 – 22 February 2014, 03:27 UTC snow (riming)/ melting snow

18 March 2014, 23:07 – 19 March 2014, 19:57 UTC large aggregates/ riming
::
no

:::::::
MWACR

::::
data

20 March 2014, 15:07 – 20 March 2014, 23:47 UTC snow/ riming

:::::
During

::::::::
BAECC,

:
a
::::::::
turbulent

::::::
surface

:::::
layer

:::
was

:::::
often

:::::::
present,

:::::::
resulting

::
in

::
a

:::::::::
broadening

::
of

:::::::
Doppler

:::::::
spectra

:::
and

:::::::::
impacting

::::
their

:::::
width

:::
and

::::
other

:::::::::::
higher-order

::::::::
moments

::::::
relevant

:::
for

:::
the

:::::::
training.

:
The following sampling procedure for the training data set was

chosen, striving to achieve the best-possible spatio-temporal match between remote sensing and in situ observations, while at

the same time avoiding to sample spectra which are strongly impacted by surface induced turbulence: We assume riming to

only occur within the cloud and hence FR at CBH is expected to remain constant down to the surface level
:::::::
compute

:::
the

::::::::
turbulent5

::::
eddy

:::::::::
dissipation

:::
rate

::::::
(EDR)

:::
for

::::::::
5-minute

::::
time

::::::
periods

:::::::::::::::::
(Maahn et al., 2015)

:::
and

:::::::::
determine

::
r,

:::
the

:::::
lowest

:::::
range

::
at

:::::
which

:::::
EDR

::
is

::::::::::::
< 10−3m2s−3.

::::
This

::::::::
threshold

::::
was

::::::::::
determined

:::::::::
empirically

::
in
::

a
:::::::::
sensitivity

:::::
study,

::
in

:::::
which

:::::::
spectral

::::::::::
broadening

:::
was

:::::::::
simulated

::::
using

::::::::::
convolution

:::
of

:
a
:::::::
spectral

::::::::::
broadening

::::
term

:::
σT::::

with
:::::::::

measured
:::::::
Doppler

::::::
spectra. The time x

::
∆t

:
it takes for the particle

to travel from the CBH
:::::
height

::
r
:
to the surface can be estimated using the measured MDV at CBH

:
r, making the assumption

of temporal and spatial coherence, i.e. that the properties measured at time t at a certain range
:::
and

:
r above the radar will be10

the same as the properties at time t+x at r+x ·MDV(t,r)
:::::
t+ ∆t

::
at
:::::::::::::::::
r+ ∆t ·MDV(t,r). Note that negative MDV values

indicate downward motions. A schematic for visualization of the applied sampling technique is shown in Fig. 1. For each PIP

measurement, the rime fraction was obtained using Eq. 2. All the KAZR spectra at CBH
:::
and

::::::::
MWACR

::::::
spectra

::
at

::::
range

::
r, which

were matched within
::::
with a 5-minute window centered at the PIP measurement time stamp

:::
PIP

:::::::::::
measurement

:
were extracted,

and Ze, MDV, and skewness were computed. MDV was corrected for air density change as a function of altitude (Vogel and15

Fabry, 2018). An additional measure of the width of the spectra , which is not weighted by the reflectivity, was computed

and stored: The “spectrum edge width” (SEW )
::::
SEW

:
is defined as the distance (in m s−1) between the left edge and the

right edge above the noise threshold. This threshold is the mean noise according to Hildebrand and Sekhon (1974) plus three

standard deviations of the noise.
::::
SEW

:::::
offers

:::
the

:::::::::
advantage

::::
that

:
it
:::

is,
::
in

:::::::
contrast

::
to

:::
the

::::::::
spectrum

::::::
width,

:::
not

::::::::
weighted

:::
by

:::
the

:::::::::
reflectivity,

::::::
making

::
it
:::::
more

:::::::
sensitive

::
to

:::::::::
broadening

::
of

:::
the

::::::::
spectrum

:::
due

::
to
:::::
small

::::::
peaks,

:::
e.g.

::::::
caused

::
by

:::::
liquid

::::::
water. While SEW20

and skewness are not among the “traditional” radar moments, they are often available; e.g., the ARM MicroARSCL product

contains the skewness and edges of the spectra (Kollias et al., 2007; Luke et al., 2008).

The resulting extracted training data set includes 59,396
:::::::
105,115

:::::::
Ka-band

::::
and

:::::::
209,965

:::::::
W-band radar observations along with

the FR
::::PIP retrieved from the corresponding PIP measurements. It is available on GitHub (https://github.com/ti-vo/BAECC_

7
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time
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[ t+Δt, 
r + Δt · MDV(t,r) ]
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Z

e [dB
Z
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F
R
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(a)
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strong 
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● remove noise floor
● compute moments: Ze, MDV,  

skewness, SEW
● apply air density correction
● store along with retrieved FR

PIP

Figure 1. (a) Schematic of the spatio-temporal matching of the in situ (PIP) observations and the cloud radar observations: Radar spectra

at cloud base height (measured by a Ceilometer) at time t and range r are assigned to the PIP measurement closest to the time t+x. (b)

Processing steps applied to each extracted radar Doppler spectrum. (c) 3D plot of three features contained the resulting training data set

(equivalent radar reflectivity factor Ze, spectrum edge width SEW, and skewness) colored by the rime mass fraction FR.

features). A 3D plot of three of the contained features (Ze, SEW and skewness) colored by FR
:::PIP:

is shown in Fig. 1c. The

video supplement contains an animated visualization of the same variables. We acknowledge that several sources of uncertainty

impact the training data. Assumptions for the density of unrimed snow and the viewing geometry corrected Dmax are required.

Furthermore, errors are introduced by the spatio-temporal matching of radar and PIP observations. Finally, only a limited

number of cases with high FR, i.e. values > 0.7 were observed during the period when KAZR and PIP were collocated in5

Hyytiälä. By their nature, high FR cases are rather short-lived, so the duration and therefore length of such observations are

rather small. This skewed distribution of target values has impacts on the training of machine learning algorithms and needs to

be taken into account carefully.

2.3 Machine learning methods

The retrieval described in this section reflects a regression problem. Machine learning techniques are used to relate Doppler10

cloud radar moments and SEW using a fully-connected deep neural networkto predict FR
::
to

::::::
FRPIP:::::

using
::
a

::::
fully

:::::::::
connected

:::::
neural

:::::::
network. Multiple ANN models are trained to make predictions, given many input (features) and output (target) pairs,

with the goal to search for a function that both fits the given data well, and also is able to generalize to new values (Goodfellow

8
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et al., 2016). For the steps described in the following, tools provided in the Python library Sklearn (Pedregosa et al., 2011) were

used.

2.3.1 Data preparation

Radar moments
::
and

::::
the

:::::
SEW extracted from the BAECC data set are used as input features, and PIP-retrieved FR

::::::
FRPIP5

values are the desired target.
:::
One

::::::::
problem

:::::::
emerges

:::::::
because

::::
only

::
a

::::::
limited

:::::::
number

::
of

:::::
cases

::::
with

::::
high

::::
FR,

:::
i.e.

::::::
values

:::::
> 0.7

::::
were

::::::::
observed

:::::
during

:::
the

::::::
period

:::::
when

::::::
KAZR,

::::::::
MWACR

::::
and

:::
PIP

:::::
were

:::::::::
collocated

::
in

::::::::
Hyytiälä.

:::
By

::::
their

::::::
nature,

::::
high

:::
FR

:::::
cases

::
are

::::::
rather

:::::::::
short-lived,

:::
so

:::
the

:::::::
duration

::::
and

:::::::
therefore

::::::
length

::
of

:::::
such

::::::::::
observations

:::
are

::::::
rather

:::::
small.

::::
This

:::::::
skewed

:::::::::
distribution

:::
of

:::::
target

:::::
values

:::
has

:::::::
impacts

:::
on

:::
the

:::::::
training

::
of

::::::::
machine

::::::::
learning

:::::::::
algorithms

:::
and

::::::
needs

::
to

::
be

:::::
taken

::::
into

:::::::
account

::::::::
carefully.

:::::
ANN

::::::
models

:::
will

::::::::
primarily

:::
be

::::::
trained

::
to

::::::
predict

:::::
values

::
in

:::
the

:::::
range

:::::
where

::::
most

:::
of

::
the

:::::::::::
observations

:::
lie.

::
In

:::::
order

::
to

:::::
ensure

::::
that

::::::
trained10

::::::
models

::::
also

:::::::
succeed

::
to

::::::
predict

::::
high

::::::
values

::
of

::::
FR,

:::::
which

:::
are

:::
of

::::::
special

:::::::
interest,

:::
the

:::::::
training

::::
data

:::
set

::
is

:::::::::
resampled

:::::
using

:::
the

:::::::
synthetic

::::::::
minority

:::::::::::
oversampling

::::::::
technique

:::
for

:::::::::
regression

::::::::
problems

:::::::::::::::::::::::::
(SMOTER, Torgo et al., 2013).

:::::::::
SMOTER

::
is

::
an

:::::::::
algorithm

:::::
which

::::::::::
oversamples

::::
rare

:::::
cases

:::
and

:::::::::::
undersamples

:::::::
frequent

:::::
cases

::
in

:::
the

:::::::
training

::::
data

:::
set,

::::::
leading

::
to

:
a
:::::
more

::::::::
balanced

::::::::::
distribution.

For many ML applications, standardization of the input data set is a common requirement. In order to avoid effects caused by

outliers, it is advantageous to use a robust scaler, which scales each of the input features according to the inter-quartile range15

(IQR) and removes the median.
:::
The

::::
same

::::::
robust

:::::
scaler

:::::
which

::
is

::::::
defined

:::::
using

:::
the

:::::::
training

::::
data

::
set

::::
will

::::
also

::
be

::::::
applied

::::
later

:::
on

::
to

:::
new

::::
data

:::::
being

::::
sent

:::::::
through

:::
the

::::::
model.

After scaling, the labeled data are split into two parts, one training and validation set (90%), and retaining 10% of the data for

the testing phase. The choice of these ratios is subjective and associated with a tradeoff between learning and the assessment

of the generalization ability.20

2.3.2 ML model specifications

In our study, we are using a multilayer perceptron (MLP), which is composed of one input layer, at least one hidden layer, and

one output layer. In this section, the hyperparameters, which determine the network’s architecture and the training process, are

discussed.

The input layer consists of one neuron for each input feature, and the output layer yields the output value(s). In between the25

input and output layers, one or more hidden layers are defined. Each hidden layer contains a certain number of neurons, which

transform the values from the previous layer and then apply a non-linear (rectified linear unit; f(x) =max(0,x)) activation

function. In a fully connected model, a given neuron is connected to every neuron in the previous layer. During training, an

optimizer iteratively adjusts the weights of the model, until a minimum in error (“loss”) is reached. This error is defined by the

loss function
:
,
::
in

:::
our

::::
case

:::
the

:::::::
squared

:::::
error. We are using the “Adaptive Moment Estimation” (Adam) optimizer, a stochastic30

gradient-based method (Kingma and Ba, 2017), which requires computing the gradient of the loss function with respect to the

model parameters by a back-propagation algorithm. The learning rate controls the step-size for updating the weights, and is in

our case set to a constant value of 0.001.
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The number of hidden layers
:::::
(which

::
is
::::
also

:::::::
referred

::
to

:::
as

:::
the

:::::
layer

:::::
depth)

:
and respective number of neurons are hyperpa-

rameters, which require tuning in the validation phase.
:
In

:::::::::::::::::::::
Goodfellow et al. (2014),

:::::
plots

::
of

::::::::
accuracy

::::::
vs.layer

:::::
depth

:::
are

:::::
used

::
to

::::::::
determine

:::
the

:::::::
optimal

:::::
ANN

:::::::::::
architecture.

::::::::
Following

::::
this

:::::::
concept,

:::
we

:::::::
plotted

:::
the

:::
root

:::::
mean

:::::::
squared

:::::
error

:::::::
(RMSE)

:::
of

:::
the

::::::::
validation

::::
data

:::
set

:::::::::
predictions

::::
and

:::::
targets

:::
vs.

:::
the

:::::::
number

::
of

::::::::
neurons/

::::::
hidden

:::::
layers

::::
(not

::::::
shown)

::
to

::::
find

::
an

::::::::::
architecture

::::::
which

:
is
::::::
simple

:::
yet

::::::::
accurate.

:::
For

:::
the

::::::
limited

:::::::
number

::
of

::::
input

:::::::
features

::::
used

::
in

:::
our

:::::::::
approach,

:
a
::::::::
relatively

::::::
simple

::::
setup

::::
with

::::
one

::::::
hidden5

::::
layer

:::
and

::::
two

:::::::
neurons

:::::
fulfills

:::::
these

:::::::::::
requirements.

Here, we use a k-fold cross validation (k-fold cv) approach with five
::::
three

:
folds. This means that the training and validation

set is split into five
::::
three

:
equally-sized chunks (folds). Each of the folds is once used to test the model while the remaining

four folds are used to train the model. This method enables us to compute the mean error of the five
::::
three folds, which is a

more reliable measure of the ANN performance than the error obtained for one split between training/ validation set only. In10

addition, this approach results in five
::::
three trained models, which can be applied as an ensemble to yield an average prediction

and a variance
::::::
spread, which can (at least to some degree) be regarded as an uncertainty estimate of the prediction. In this study,

we are using three different parameter combinations as input features to the ANNs:

1. ANN #0: Ze, MDV

2. ANN #1: Ze, MDV, SEW and skewness15

3. ANN #2: Ze, SEW and skewness

The set of input parameters in ANN #0 was chosen because they are similar to existing riming retrieval methods relying on

MDV. In order to check whether adding more radar variables can improve the riming estimate, ANN #1 uses the SEW and

skewness as additional input features. ANN #2 represents the set of input parameters if MDV can not be used e.g. due to

persistent up- or downdrafts.20

In Goodfellow et al. (2014), plots of accuracy vs. layer depth are used to determine the optimal ANN architecture. Following

this concept, we plotted the root mean squared error (RMSE) vs. the number of neurons/ hidden layers (not shown) to find an

architecture which is simple yet accurate. For the limited number of input features used in our approach, a relatively simple

setup with one hidden layer and two neurons fulfills these requirements.In the testing phase, the model performance is evaluated

using the test set prediction RMSE,
::
in
::::::::::
connection

::::
with

:::::
visual

:::::::::
inspection

::
of

::::::
scatter

::::
plots

::
of

:::::
ANN

:::
test

:::
set

:::::::::
predictions

::::
and

:::::
target25

::::::
values.

::
In

::::::::
addition,

:::::::::
time-height

:::::
plots

::
of

:::::
ANN

::::::::::
predictions

:::
are

::::::::
examined

::::
with

::::::
regard

::
to

::::::::
physical

:::::::::
plausibility

:::
of

:::
the

::::::::
predicted

::::::
features. We decided to put an additional focus on the ability of the networks to predict high FR values > 0.5

:::::
≥ 0.5. The

reason for this choice is that strong riming cases are less well represented in the training data set , but those cases are clearly

::
the

::::::::
extracted

:::::::
Doppler

:::::::
spectra

:::::::
features

:::
are

:::::::
expected

:::
to

::::::
contain

::::
little

::::::::::
information

:::::
about

::::::
riming

:::
up

::
to

::
a

::::::::
moderate

::::::
riming

:::::
stage.

:::
For

::::
high

:::
FR

::::::
values,

:::
the

:::::::::
prediction

::::::
should

::
be

:::::
more

:::::::
accurate

:::::::
because

:::
the

::::::
riming

:::::
signal

::::::
should

::
be

:::::::
clearer

::
in

:::
the

::::
input

::::::::
features.30

::::
Table

::
2
::::::::::
summarizes

:::
the

:::
test

:::
set

:::::::
RMSEs

:::::
found

:::
for

:::
the

::::
three

::::::::
different

::::
ANN

:::::
input

:::::::::
parameter

:::
sets

:::
and

:::
the

::::
two

::::
radar

:::::::::::
frequencies.

:::
Fig.

::
2

:::::
shows

::::::
scatter

:::::
plots

::
of

:::::
ANN

:::::::::
predictions

::::
and

:::
test

:::
set

:::::
target

::::::
values,

:::
for

:::
the

:::::
three

:::::::
different

:::::
ANN

::::::::::
ensembles,

:::
for

:::
Ka-

::::
and

:::::::
W-band.

::::
The

:::::
slopes

:::
of

:::
the

:::::
linear

::::::
models

::::
(red

::::::
dashed

:::::
lines

::
in

::::
Fig.

::
2)

:::
are

:::::
listed

::
in

:::::
Table

::
2.
:::::

From
::::

Fig.
::
2
::
it

:::::::
becomes

::::::::
apparent
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Figure 2.
:::::
scatter

::::
plots

::
of

::::
ANN

:::::::::::
performances

::
on

:::
the

:::
test

:::
set.

:::
The

::::
black

::::::
dashed

:::
line

:::::
marks

:::
the

::
1:1

::::
line,

:::
the

::
red

::::::
dashed

:::
line

::
is

:
a
:::::
linear

:::::
model

::
fit

:
to
:::
the

::::
data.

:::
The

:::::
slopes

::
of

:::
the

::
red

::::::
dashed

::::
lines

::
are

:::::
listed

::
in

::::
Table

::
2.

::
(a)

:::::::
W-band,

::::
ANN

:::
#0;

::
(b)

:::::::
Ka-band,

:::::
ANN

::
#0

:::
(c)

::::::
W-band,

::::
ANN

:::
#1;

:::
(d)

:::::::
Ka-band,

::::
ANN

:::
#1;

::
(e)

:::::::
W-band,

::::
ANN

:::
#2;

::
(e)

:::::::
Ka-band,

:::::
ANN

::
#2
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Table 2. Test set performances for the three different ANN ensembles, for the complete test set, and a subset of it containing only high

(> 0.5) target values

ANN test set RMSE test set RMSE
:::
test

::
set

::::::
RMSE

::
test

:::
set

:::::
RMSE

: ::::
slope

:::
Fig.

::
2

::::
slope

:::
Fig.

::
2

::::::
Ka-band

::::::
Ka-band(FR > 0.5)

:::::
W-band

: :::::::::
W-band(FR

::
>

:::
0.5)

:::::::
Ka-band

::::::
W-band

ANN #0 0.22
::::
0.21 0.26

:::
0.23

: :::
0.15

::::
0.15

:::
0.23

:::
0.41

ANN #1 0.18 0.16
:::
0.19

: :::
0.15

::::
0.14

:::
0.38

:::
0.46

:

ANN #2 0.20 0.19
:::
0.20

: :::
0.15

::::
0.15

:::
0.32

:::
0.46

:::
that

:::::
ANN

:::
#0

:::::
seems

:::
to

::::
have

::
a

:::::::
problem

::
in

:::
the

:::::::
W-band

:::
set

:::
up,

:::::::
because

::::
two

::::::::::
populations

::
of

::::::
values

:::
are

:
separated in the input

feature space (cf. Fig 1c).
::::::::::
predictions.

::::
The

:::::
slopes

:::
of

:::
the

:::::
linear

::::
fits,

:::::
which

::::::
should

::::::
ideally

:::
be

::
1,

:::
are

::::::
lowest

:::
for

:::::
ANN

:::
#0

:::
for

::::
both

:::::::::
considered

:::::
radar

::::::::::
frequencies.

::::
This

::::::::::
observation

::
is
::::::::

however
:::
not

::::::::
reflected

::
in

:::
the

:::::::
RMSEs

:::::
listed

::
in

:::::
Table

::
2,
::::::

which
::::::
hardly

::::
differ

::::::::
between

:::
the

:::::
three

:::::
ANN

:::::::::
ensembles

:::
for

:::
the

:::::::
W-band.

::::
The

:::::::
RMSEs

::
in

::::
turn

:::::
show

:::
that

:::::
ANN

:::
#0

::::::::
performs

:::::
worse

:::::
than

:::
the

::::
other

::::
two

:::::
setups

:::
for

:::
the

::::::::
Ka-band.

::::
This

::::::::
illustrates

:::
the

:::::
limits

::
of

:::::
using

::
a
:::::
single

:::::::
quantity

::::
like

::::::
RMSE

::
as

:
a
::::::
quality

::::::
metric.

:::::
ANN

:::
#15

:::
and

:::
#2

:::
also

:::::
have

:::::
issues

:::::::::
predicting

::::
high

:::
FR

::::::
values,

::::
and

::
all

::::::
ANNs

::::::
feature

::
a
::::::
cut-off

::
at

::::
low

:::
FR

::::::
values.

::::
This

:::::
might

:::
be

:::::::
because

:::::
riming

:::::::::
signatures

:::
for

:::
low

:::
FR

:::
are

:::
not

::::
very

::::::::::
pronounced

::
in
:::

the
:::::
cloud

:::::
radar

:::::::
Doppler

:::::::
spectra,

::::::
making

::
it
:::::::::
impossible

:::
for

:::
the

::::::
ANNs

::
to

::::::::
accurately

::::::
predict

:::
FR

::::::
≤ 0.3

::::
from

:::
the

::::::::
extracted

:::::::
features.

:::::::::
Similarly,

:::
the

:::::
issues

::
of

:::
the

::::::
ANNs

::
to

::::::
predict

::::
high

:::
FR

::::::
values

:::::
could

::
be

::::::::
explained

:::
by

::::::
spectra

::
of
:::::

pure
::::::
graupel

:::
not

::::::::::
necessarily

:::::
being

::::::::
bimodal,

:::::
which

::::::
would

:::::
result

::
in

::
a

:::
less

:::::
clear

::::::::
signature

::
in

:::::
SEW

:::
and

::::::::
skewness.

::::
For

:::
the

::::::::
remaining

::::::
study,

::
we

::::
will

:::::
focus

::::
only

:::
on

::::
ANN

:::
#1

:::
and

:::::
ANN

:::
#2. Table 2 summarizes the test set RMSEs10

found for the three different ANN input parameter sets. The RMSE basically represents the error between the predicted and the

retrieved FR. For ANN #0, the performance is much worse than for the other two setups, which is why, in the remaining study,

we will focus only on ANN #1 and ANN #2. Due to the many steps involved in obtaining the predicted quantity, we will refer

to it as a “riming index” rather than FR in the following.
:::
We

::::
will

::::
refer

::
to

:::
the

::::::::
predicted

:::::::
quantity

::
in

:::
the

::::::::
following

::
as

::::::::
FRANN ,

::
to

:::::::::
distinguish

:
it
:::::
from

:::::::
FRPIP .15

2.4
::::

Error
:::::::::::::
consideration

:::
We

:::::::::::
acknowledge

::::
that

::::::
several

:::::::
sources

::
of

::::::::::
uncertainty

::::::
impact

:::
the

::::::
riming

::::::::::
predictions,

::::
only

:::::
some

:::
of

:::::
which

::::
can

:::
be

:::::::::
quantified.

:::
For

:::
the

:::::::
training

::::
data

:::
set,

:::::::::::
assumptions

:::::
about

:::
the

:::::::
density

::
of

:::::::
unrimed

:::::
snow

::::
and

:::
the

:::::::
viewing

:::::::::
geometry

::::::::
corrected

:::::
Dmax:::::

were

:::::
made.

::::
The

::::
m-D

::::::
relation

:::::
used

::
to

:::::
derive

:::
the

:::::
mass

::
of

:::::::
unrimed

:::::
snow

::::::::::::::::::::
(Moisseev et al., 2017)

:
is

:::::::
assumed

::
to
:::::::::::

overestimate
::::
mus:::

by

:
a
:::::::::
maximum

::
of

:::
5%.

:::::::::::
Furthermore,

::::::
errors

:::
are

:::::::::
introduced

::
by

:::
the

:::::::::::::
spatio-temporal

::::::::
matching

:::
of

::::
radar

::::
and

:::
PIP

:::::::::::
observations.

:::
To

:::
get20

:
a
:::::
grasp

::
of

:::
the

::::::
overall

:::::
effect

:::
of

:::::::::::
measurement

:::::::::::
uncertainties,

::::::
which

::::::::
propagate

::::
into

:::
the

:::::::
FRANN::::::::::

predictions,
::

a
:::::::::
sensitivity

:::::
study

:::
was

::::::::::
performed.

:::
We

:::::::
assumed

:::
an

::::
error

::
of

:::
0.2

:::::
dBZ

:::
for

:::
Ze,

:::
one

:::::::
Doppler

:::
bin

:::
for

::::::
MDV

:::
and

:::::
SEW,

::::
and

:::
0.2

:::
for

:::
the

::::::::
skewness,

::::
and

:::::
added

:::
this

::::::::::
uncertainty

::
to

:::::::
selected

:::::::
Doppler

:::::::
spectra.

::::
This

::::
was

:::::::::::
accomplished

:::
by

:::::::
random

::::::
picking

::
of

::
n
::
=

::::::
10,000

:::::::
samples

::::
from

::
a

:::::::
Gaussian

::::::::::
distribution

:::::::
defined

::
by

:::
the

::::::::
measured

::::::
values

::
as

:::::
mean

::::
and

:::::
above

:::::
errors

::
as

::::::::
standard

::::::::
deviation.

::::
The

:::::::
resulting

::::::::
standard

12



:::::::
deviation

::
in
:::
the

::::::::
predicted

:::::::
FRANN::

is
::::::::::::
approximately

::::
1%.

::
In

:::::::
addition

::
to

:::
the

:::
5%

:::::::::
uncertainty

:::::
from

:::
the

::::
mass

::
of

:::::::
unrimed

:::::
snow,

::::
and

::::
other

:::::
error

::::::
sources

::::::
which

:::::
cannot

:::
be

::::::::
quantified

:::
we

:::::::
propose

::
to

:::::::
assume

::
an

::::::
overall

::::::::::
uncertainty

::
of

::::::::::::
approximately

::::
10%

::::
due

::
to

:::
the

::::::
training

:::::
data.

::::
This

:::::::::
uncertainty

:::
has

::
to

:::
be

:::::
added

::
to

:::
the

:::::::::
uncertainty

:::
of

:::
the

::::
ANN

:::::::
models

:::::
(Table

:::
2).

3 Results and Discussion

This section is structured as follows: In Section 3.1, a well-defined “benchmark” riming case from the BAECC dataset is pre-5

sented. The application of the ANNs to the TRIPEx-Pol
::::::::::
TRIPEx-pol

:
dataset is demonstrated in Section 3.2. In Section 3.3,

the performance of the ANNs for the W-band radar in Leipzig on 19 March 2021 is evaluated by comparison to in situ obser-

vations. Finally, in Section 3.4, we present ANN predictions for a case obtained during the DACAPO-PESO field campaign

using the same W-band radar.

3.1 BAECC benchmark riming case10

While
::
In

:::::::
addition

::
to

:
using the BAECC data set for training, validation and testing, we also capitalize on the fact that these data

have already been extensively studied with respect to microphysical growth processes, and several well-defined case studies

are available. We evaluate the performance of our newly developed riming estimation technique for a 1.5-hour
:::::
1-hour

:
period

between 22:00 and 23:30
::
15 UTC on 21 February 2014.

:::::
2014,

:::::
which

::
is
::::
part

::
of

:::
the

::::
10%

:::
of

:::
the

::::::
labeled

::::
data

:::
that

:::::
were

:::::::
retained

::
for

:::
the

::::
test

:::
set.

:
Riming was taking place starting at around 17.00

:::::
17:00, the LWP reaching its maximum value of more than15

1000 g m−2 around 22:00 UTC (Fig. 4c, cf. Moisseev et al., 2017)
:::::::::::::::::::::::::::
(Fig. 4e, cf. Moisseev et al., 2017). Parts of the focus period

considered here between 22:00 and 23:30
::
15 UTC have been previously analyzed in detail e.g. by Kalesse et al. (2016, 2019),

Moisseev et al. (2017), Mason et al. (2019) and Kneifel et al. (2015, 2016). Fig. 3 shows the equivalent radar reflectivity (Ze)
::
Ze,

MDV, spectral width, skewness and SEW measured by the KAZR. The case is characterized by a “seeder-feeder” situation,

where a frontal snow cloud merges into a mid-level mixed-phase cloud. In the mixed-phase cloud, SLW layers are present at20

0.7 to 0.9
:::
km, and slightly below 3 km. As snow starts to fall from the frontal (“seeder”) cloud into the lower-level (“feeder”)

cloud, intense riming happens along a slanted fall-streak feature at around 22:40 to 22:45 UTC, resulting in Doppler spectra

with multiple peaks (Kalesse et al., 2016, 2019). During the following time period, a transition from strongly rimed particles

to unrimed snow aggregates at between 23:03 and 23:10 UTC was observed by Kneifel et al. (2015, 2016); Moisseev et al.

(2017); Mason et al. (2019).25

Fig. 4 shows the predicted riming index
:::::::
FRANN for the two different ANN ensembles, along with the measured liquid

water path (LWP)
:::
and

:::
the

::::
two

:::::::
different

:::::
radar

::::::::::
frequencies,

::::::::::
respectively. The ensembles yield very similar predictions, which is

remarkable given the fact that ANN #2 does not use MDV as input feature. Both approaches seem to predict too high values in

the lowermost 500 m, where spectra are noisy and broadened by strong turbulence. Above this
:::
The surface-induced turbulent

layer close to the ground , which contains high values throughout, there are variations in the riming index: A
:
is

:::::::
masked

::::
with30

::::
grey

:::::
pixels,

::::::
where

:::::
EDR

:::::::
exceeds

:::
the

::::::::
threshold

:::
of

::::
10−3

:::::::
m2s−3.

:::
For

::::
the

:::::::
W-Band,

::::::::
columns

::::::
where

:::
the

::::::::
estimated

::::::::::
attenuation

:::::::
exceeded

:::
10

::::
dBZ,

:::::
were

:::::::
masked.

:::
For

:::
all

:::
four

:::::::::::::
configurations,

:
a
:
clear increase in signal

:::::::
FRANN:

is visible at around 22:40 UTC,

13



Hyytiälä, 2014-02-21

(b)

(a)

(c)

(d)

(e)

Figure 3. Radar moments measured by the KAZR in the focus period between 22:00 UTC and 23:30
::
15 UTC on 21 February 2014. a)

Equivalent radar reflectivity of the main peak
::
full

:::::::
spectrum

:
in dBZ; b) mean Doppler velocity (negative values indicating downward motion)

computed from the full spectrum; c) spectral width computed from the full spectrum; d) skewness computed from the full spectrum; e)

spectrum edge width

14



Hyytiälä, 2014-02-21

ANN #1
W-band

ANN #2
W-band

ANN #1
Ka-band

ANN #2
Ka-band

(a) (b)

(d)(c)

F
R

P
IP

(e) (f)

Figure 4. Riming during the focus case on 21 February 2014 predicted by (a)
:::
and

:::
(b) ANN # 1

:::::
trained

::
on

::::::::
MWACR

:::
and

::::::
KAZR

::::
data,

:::::::::
respectively (Ze, MDV, SEW and skewness)

:
;
::
(c)

:
and (b

:
d) ANN # 2

:::::
trained

::
on

::::::::
MWACR

:::
and

::::::
KAZR

::::
data,

:::::::::
respectively

:
(Ze, SEW, and

skewness); (c
:
e) Liquid water path obtained from microwave radiometer measurements

:
;
::
(f)

::::::
FRPIP :::::::

measured
:::::
during

:::
the

:::::
event.

:::::
Pixels

::::
with

::::
EDR

::::
above

:::
the

:::::::
threshold

::
of

:::::::::
10−3m2s−3

:::
are

::::::
masked

::
in

:::
grey

::
in
::::::
(a)-(d).

when snow starts falling from the seeder cloud through the SLW layers in the lower-level mixed-phase (feeder) cloud. This

is the period for which Kalesse et al. (2016, 2019) reported riming signatures in Doppler spectra featuring multiple peaks.

Unfortunately, due to low precipitation intensity at the ground, no PIP-based FR retrieval was avaialble for this time period .

A
::::
(Fig.

:::
4f).

::::::::
However,

::
a continuous decrease in LWP points to the depletion of SLW by the strong riming (Fig. 4c). Later, both

ANNs are
:::
after

:::::::
around

:::::
22:50

:::::
UTC,

:::
the

::::::::::
predictions

:::::
differ

:::::::
between

:::
Ka-

::::
and

:::::::
W-band:

::::::
While

:::
the

::::
two

:::::
ANN

:::::::::
ensembles

::::::
trained5

::
on

::::::::
Ka-band

:::
data

:::::
only

::::::
predict

::::::
riming

::::::
during

:
a
:::::
short

:::::
period

:::::::
around

:::::
23:00

:::::
UTC,

:::
the

:::::::
FRANN::::::::::

predictions
::
in

:::
the

:::::::
W-band

:::::
setup

::::::
remain

:::::::
elevated

::
up

::
to

::
a
:::::
range

::
of

::::::
around

::
4

:::
km.

::::
The

:::::::
Ka-band

::::::
ANNs

:::
are

:::::::::
apparently able to detect the transition from increased

riming to less riming around 23:05 UTC, as
:::::
which

::::
was reported in existing studies of the event. Around this time, the LWP has

reached its minimum, indicating that no SLW for further riming is available in the column. Coinciding with this period from

around 23:05 UTC onwards, the riming index
::::::
FRANN:

is very low (≤ 0.5) throughout the cloud systembeyond the near-surface10

turbulent layer of increased values
:
,
:::::
which

::
is
::
in
::::::::::

accordance
::::
with

:::
the

:::::::::
measured

:::::::
decrease

:::
of

:::::::
FRPIP .

::::
(Fig.

:::
4f). This first case

study is promising with respect to the usability of our trained ANNs to predict riming from cloud radar moments. Furthermore,

the performance of
:::::::
similarity

::::::::
between

::::::
ANN#1

::::
and ANN #2

::
for

::::
both

:::::
radar

:::::::::
frequencies

:
shows that that their application might

be possible even without the use of MDV.

15



3.2 TRIPEx-Pol
::::::::::
TRIPEx-pol case study and triple-frequency signatures for seven cases

To answer the question whether the developed methods are able to generalize to conditions different than the ones they were

trained on, considering another data set is required. For this reason, the two ANN sets are applied to data from a different

site, obtained by radars with different settingsand a different (W-band) frequency. We will first focus in more detail on the

24 November 2018 case from the TRIPEx-Pol
:::::::::
TRIPEx-pol

:
campaign. This precipitation event has been analyzed with respect5

to rain and ice microphysics by Mróz et al. (2020), who found strong signatures of aggregation during the period from 06:45

to 07:45 UTC, and riming after 08
::::::
during

:
a
::::::
shorter

::::
time

:::::::
interval

::::::
around

::
09:00 UTC.

Fig. 5 shows the radar moments measured during the period from 03
::
02:00 UTC to 22:00

::::
11:30 UTC on 24 November 2018. The

period characterized as “aggregation” by Mróz et al. (2020) clearly shows up as a patch of increased signal in the DWRX,Ka

:::::::
between

:
1
::::
and

:
4
:::
km

:::::
range, while during the “riming” period

::::::
around

:::::
09:00

::::
UTC, an obvious increase in absolute MDV values10

can be observed
:
in
::

a
::::::
similar

:::::
range

:::::::
interval, along with an increase in SEW. In Fig. 6, the predictions of the two ANNs are

shown side by side for W-band and Ka-band. In both cases, the CloudNet classification mask was used to only apply the

ANNs to those parts of the cloud which were classified as ice or ice and liquid. For the two different frequencies, as well as

for the two ANNs, the predicted riming index is very similar and the features are almost identical
:::::::
FRANN ::::::

features
::::

are
::::
very

::::::
similar. For the “aggregation” period, which has the strongest signal in the DWRX,Ka (Fig. 5c) from approximately 06:4515

to 07:30 UTC, some riming is predicted, however relatively low values. During the “riming” period, which clearly shows up

as increased MDV in Fig. 5b between 08:00 and 09:00 UTC, strong riming is predicted for both wavelengths, and by both

ANN sets. Again, it is remarkable how the MDV features in Fig 5b can be discovered even in the predictions by ANN #2,

which does not use MDV (two lower panels in Fig. 6). These findings show that the ANNs can be applied at a different cloud

radar frequency than the one they were trained at, indicating that the scattering properties of rimed particles are sufficiently20

similarbetween the two wavelengths considered. Apparently, sensitivity differences between the instruments do not play a

major role for
::::::
Despite

::::
the

:::::::::
differences

:::
in

::::::::
scattering

:::::::::
properties

:::
and

::::::::::
attenuation

::::
due

::
to

::::::::::::
hydrometeors

::
at

::::
Ka-

:::
and

:::::::
W-band

:::
as

:::
well

:::
as

:::
the

:::::::
different

:::::
noise

::::::
levels

::
of

:::
the

::::
two

::::::
radars, the ANN performance, and the ANNs also do not seem to be impacted

by the liquid precipitation below the cloud system. However, from Fig. 6, the possibility that in some cases aggregation is

misclassified as riming cannot be outruled. To further investigate this question, we next take a look at statistics over seven25

cases observed during TRIPEx-Pol
:::::::
retrieved

::::::::
FRANN :

is
::::::

rather
::::::
similar.

::::
The

::::::::
common

:::::::::
time-height

::::
grid

::
in
:::
the

:::::::::::
TRIPEx-pol

::::
data

::
set

::::::
allows

:::
for

:::::::::
convenient

:::::
direct

::::::::::
comparison

::
of

:::
the

::::
two

:::::
radar

:::::::::
frequencies

:::
for

:::::
each

::
of

:::
the

:::::
ANN

:::
set

::::
ups:

:::
The

:::::::::
correlation

:::
of

:::
the

:::::::
predicted

::::::::
FRANN :::::

values
:::
for

:::
all

:::::::::
considered

::::::::::
TRIPEx-pol

:::::
cases

::
is
::::
high

:::
for

::::
both

:::::
ANN

:::
#1

::::
and

:::
#2,

:::
the

::
R2

::::::
being

::::
0.73

:::
and

:::::
0.81,

::::::::::
respectively.

As mentioned earlier on, riming and aggregation can produce distinct signatures in the triple-frequency space : While
::
of30

:::
X-,

:::
Ka-

::::
and

:::::::
W-band

:::::::::
reflectivity.

::::::
When

::::::::::
considering

:
a
::::

plot
::::
with

::::::::::
DWRX,Ka:::

on
:::
the

:::::::
abscissa

:::
and

::::::::::
DWRKa,W:::

on
:::
the

::::::::
ordinate,

observations obtained during riming events fall onto a line at low DWRX,Ka , aggregates
:::::
(pink

:::
line

::
in

::::
Fig.

:::
7).

::::::::::
Aggregates,

::
in

:::::::
contrast, tend to yield a hook-like feature. These signatures are attributed to changes in the particle density during the riming

process,
::::

due
::
to

:::::
their

::::::::::
comparably

::::
large

::::
size

::
at

::::::
which

:::::::::
DWRKa,W::

is
:::

in
::::::::
saturation

:::::::
because

::
of

::::
Mie

:::::::::
scattering. This conceptual
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Jülich, 2018-11-24
(a)

(b)

(d)

(c)

Figure 5. Radar moments measured during the 24 November 2018 case. a) Equivalent radar reflectivity measured by the Ka-band MIRA

radar; b) mean Doppler velocity measured by the W-band radar; c) spectrum edge width derived from W-band Doppler spectra; d) Dual-

Wavelengh-Ratio of X and Ka-band radar (DWRX,Ka)
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Jülich, 2018-11-24

ANN #1
W-band

ANN #2
W-band

ANN #1
Ka-band

ANN #2
Ka-band

(a) (b)

(d)(c)

Figure 6. Predicted riming during the case on 24 November 2018 by ANN #1 and #2 using W-band moments (left column) and Ka-band

moments (right column) as input features. The ANNs were applied only to those parts of the cloud which were classified as containing ice

or ice and liquid by the CloudNet algorithm.
:::::
Pixels

:::
with

:::::
EDR

::::
above

:::
the

:::::::
threshold

::
of

:::::::::
10−3m2s−3

:::
are

::::::
masked

::
in

::::
grey.

model was presented by Kneifel et al. (2015) and further explored by Mason et al. (2019), who found that not only the density,

but also the shape parameter of the particle size distribution and the internal structure of aggregates can have strong impacts on

triple-frequency signatures.

In Fig. 7, we plotted the observations for which an increased riming index
:::::::
FRANN > 0.5 was predicted by the ANNs on 2-D

histograms in the triple-frequency space, colored by the median riming index
:::::::
FRANN of all the observations in the respective5

pixel. The pink line is drawn along the line of increasing median volume diameter expected for rimed particles according to

Fig. 15 in Kneifel et al. (2015). With respect to frequency of occurrence (not shown here), the largest portion of the pixels for

which a riming index
:::::::
FRANN > 0.5 was predicted, falls around that line, for both ANN sets and both frequencies. For both

ANN #1 and #2, there is even a trend towards higher riming indices with increasing DWRKa,W . However, in all plots, there

is a population of points at higher DWRX,Ka, which fall onto a hook-like feature, which is expected for aggregates in the10

triple-frequency space. The riming index for this population is smaller than for the pixels falling around the pink line, which

is expected for riming. This finding suggests that both ANNs
::::
ANN

:::::::::
ensembles

:::
for

::::
both

::::::::::
frequencies

:
are capable of predicting

strong riming, but that there is uncertainty in distinguishing between aggregation and riming in other cases
::::::
elevated

:::
FR

::::::
values.

3.3 Convective riming and aggregation case study in Leipzig

The findings in the previous sections motivate the need for additional comparisons to in situ observations. The 19 March 202115

::::::
Leipzig

:
case is characterized by a wintertime convective mixed-phase cloud system, with cloud top at 3-4 km, and with em-

bedded strong snow and graupel showers. Cold air aloft combined with some solar warming near the ground causes weak
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Figure 7. 2D histograms for seven cases chosen from the TRIPEx-Pol

:::::::::
TRIPEx-pol

:
data set where rime index > 0.5 was predicted. Each

pixel contains at least 10 observations, and the color indicates the median riming index
::::::
FRANN:

of all the observations contained in the pixel.

Riming index
::::::
FRANN:

predicted using W-band and Ka-band radar observations are displayed in the top and bottom panel plots, respectively.

The pink line is drawn where rimed particles are expected according to Fig. 15 in Kneifel et al. (2015).
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Leipzig, 2021-03-19

(b)

(a)

(c)

Figure 8. Radar moments measured by LIMRAD94 during the case on 19 March 2021. a) Equivalent radar reflectivity in dBZ; b) mean

Doppler velocity; c) spectrum edge width

20



lability
::::::::
instability. Additional lifting, e.g. due to convergences, triggers showers and, as in this case study, is even sufficient to

cause thunderstorms.

In Fig. 8, the first two moments of the cloud radar Doppler spectra during that day are shown, along with the SEW. Around

15:00 UTC, a strong updraft is visible in the MDV, followed by strongly negative Doppler velocities coinciding with increased

Ze and SEW values. Around that time, alternating graupel and snow showers were observed in the Leipzig area. This case is5

moderately convective, and most of the data would be excluded by filtering criteria such as the convection index κ used in the

approach by Mosimann (1995).

Fig. 9 shows the ANN predictions for the time between 14:00 and 19:00 UTC. In the panels below, hydrometeors observed by

the VISSS are shown for three selected time periods. In both ANN predictions, a clear transition from very high (around 1) to

very low (≤ 0.4) riming index
:::::::
FRANN values at around 15:00 UTC is visible. This change can be confirmed by the VISSS ob-10

servations: In the period from 14:40 to 14:50 UTC, the images show dense and roundish particles (rimed aggregates, graupel).

In contrast, during the period from 15:00 to 15:10 UTC, fluffy, unrimed aggregates are observed. Later, from approximately

15:45 UTC to 16:20 UTC, the riming index
::::::
FRANN:

features increased values throughout the vertical column (≈ 0.7−1.0), but

not as pronounced as in the period before 15:00 UTC. VISSS images taken during the period from 15:50 to 16:00 UTC reveal

a mixture of particles, which have different sizes and degrees of riming. Small hydrometeors with diameters well below 1 mm15

coincide with aggregates and graupel particles having sizes of several mm. The ANN predictions fit extremely well in line with

these observations: In the first case, very high riming index
:::::::
FRANN values around 1 are predicted, whereas in the second case,

the predicted riming indices are below 0.4. In the third case, intermediate riming index
::::
even

::::::
though

:
a
::::::
portion

::
of

:::
the

:::::::
column

::
is

::::::
masked

:::
due

:::
to

:::
the

::::
EDR

::::::::
threshold,

::
it
::
is

::::::
visible

:::
that

:::::::::::
intermediate

:::::::
FRANN values are predicted by both ANNs. This leads to the

assumption that the ANNs are not only capable of detecting strong riming, but are also sensitive to the degree of riming, or the20

fraction of rimed particles compared to the total hydrometeor population. In this case, as well as in the previously presented

results, the predictions of ANN #1 and #2 are strikingly similar. These findings show that predicting riming is possible even

without the use of MDV. Moreover, since
:
It
::::
has

::
to

::
be

:::::::::::::
acknowledged,

::::::
though,

::::
that

:::
the

:::::::
vertical

:::::::::
distribution

:::
of

:::::::
FRANN ::::::

cannot

::
be

::::::
verified

:::
by

:::
the

::::::
VISSS

:::::::::::
observations.

:::::
Since the ANNs proved to perform well for this wintertime convective case, this could

open a door to detect and even quantify riming in convective systems.25

3.4 Punta Arenas gravity wave case

The previous findings make us confident that ANN #2 can be applied to the W-band radar data in the DACAPO-PESO data set.

We do not apply ANN #1, because it would be biased by the orographic wave motions. Here, we analyze a case observed on

21 February 2019 (Fig. 10) from 13:30 to 22:00 UTC. A precipitating cloud system with cloud top around 2.5 to 3 km is present

from around 15 to 18 UTC. Above, a mid-level cloud with top around 6 km and varying cloud base is observed. Especially in30

the higher-level cloud, in the range between 3 and 6 km, a wave pattern is visible in the MDV (Fig. 10b), including a prominent

downdraft around 18:00 UTC with MDV ≈ −2 ms−1. Precipitation was reaching the ground between 15:00 and 18:00 UTC,

and another precipitation event occurred around 21:00 UTC. At 16:30 UTC, marked by the red cross in Fig. 10d, graupel

particles were observed at the ground on-site.
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Figure 9. Riming during the case on 19 March 2021 predicted by (a) ANN #1 (SEW, Ze, skewness, MDV), (b) ANN #2 (SEW, Ze, skewness).

The panels in (c) show images taken by the VISSS during the period from 14:40 to 14:50 UTC, the period from 15:00 to 15:10 UTC, and the

period from 15:50 to 16:00 UTC. These periods are marked on the time axis in (b) with pink lines.
::::
Pixels

::::
with

::::
EDR

:::::
above

:::
the

:::::::
threshold

::
of

:::::::::
10−3m2s−3

:::
are

:::::
masked

::
in
::::
grey

::
in

::
(a)

:::
and

:::
(b).
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Punta Arenas, 2019-02-21

(a)

(b)

(c)

(d)

Figure 10. Radar moments measured by LIMRAD94 during the case on 21 February 2019. a) Equivalent radar reflectivity in dBZ; b) mean

Doppler velocity; c) spectrum edge width and d) riming index
::::::
FRANN predicted by ANN #2 (using, Ze, SEW and skewness). The red cross

marks the time (16:30 UTC) when graupel particles were observed at the site.
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In Fig. 10d, the riming index
:::::::
FRANN predicted by ANN #2 is shown. The predicted riming index

:::::::
FRANN is only increased in

the lower part of the cloud system up to around 3.5 km range, which probably contains liquid waterand reaches the maximum

value of 1.0 around 16:
:
.
:::
No

::::::::
increased

:::::::
FRANN::::::

values
:::
are

::::::::
predicted

:::
for

:::
the

::::::
higher

::::
part

::
of

:::
the

:::::
cloud

:::::::
system.

::::
The

:::::::::
maximum

::
in

:::::::
FRANN :::::::::

predictions
::
is
:::::::
reached

::::::
around

:::
16:30 UTC. Later in the day, at around 21:00 to 21:15 UTC, a fall streak reaching

from the higher cloud system into the lower cloud with increased riming index is visible. This coincides with strongly negative5

values ≤−3 m s−1 of measured MDV in Fig. 10b and precipitation at the surface.
::::::::
coinciding

::::
with

:::
the

::::::::::
observation

::
of

:::::::
graupel

:::::::
particles.

:

4 Summary, Conclusions and Outlook

In this work, we have demonstrated the ability of artificial neural networks (ANNs) to estimate riming using ground-based

zenith-pointing cloud radar measurements as input features. Training data were extracted from the BAECC data set by tempo-10

rally matching PIP-based riming retrievals with cloud radar observations at cloud base. Ensembles of ANNs were trained to

predict a riming index
:::::::
FRANN ,

:::::::::
separately

:::
for

:::::::
Ka-band

::::
and

::::::
W-band

:::::::::::
observations, using three different combinations of input

variables: ANN #1 uses the equivalent radar reflectivity factor (Ze), the mean Doppler velocity (MDV), the spectrum edge

width (SEW) and skewness as input features; ANN #2 uses Ze, SEW and skewness. One set of ANNs using only Ze and MDV

as input features was not further considered due to low performance indicating that these two quantities are not sufficient for15

quantifying riming. We evaluated the trained models using four case studies and a longer data set comprising observations of

seven mixed-phase cloud systems. In general, the predictions of ANN #1 and #2 were found to be very similar across all con-

sidered cases despite the different input variables. Both ANNs were able to predict strong riming and capture the subsequent

transition to unrimed snow reported in literature for a case from the BAECC experiment (Fig. 4). One limitation was identified

within the surface-induced turbulent layer, where Doppler spectra are broadened and the ANN estimates of the riming index20

are too high
::
A

:::::::::
turbulence

::::::::
threshold

::
of

:::::
EDR

::
=

::::
10−3

::::::
m2s−3

::::
was

:::::::
applied

::
to

::::::
prevent

::::
too

::::
high

:::::::
FRANN:::::

ANN
::::::::
estimates

::::
due

::
to

::::::::
broadened

:::::::
Doppler

:::::::
spectra. It was shown that the models are able to generalize to a new data set, i.e. different radar systems

including a different frequency
::
for

::::
both

::::::::::
considered

::::::::::
wavelengths (Fig. 6, W-band) than the one they were trained on (Ka-band),

and different meteorological conditions. ANN predictions for seven cloud cases were shown to match expected signatures of

riming in the triple-frequency observation space of X-, Ka- and W-band (Fig. 7). Large riming index
::::::
FRANN:

values mostly fall25

into the region for which riming is expected: The retrieved values are increasing along the line of increasing median volume

diameter reported for rimed particles. Predictions falling into the region where aggregation is expected are lower in magnitude,

and occur less frequent. The application of both ANNs to a convective wintertime cloud case showed that the method can

also be applied to convective systems (Fig. 9). Because ANN #2 does not depend on MDV, it was applied to an orographic

case, yielding high riming index
::::::
FRANN:

values for the period during which solid graupel particles were observed at the site30

(Fig. 10). These findings indicate that retrieving riming is possible even without the use of MDV.

This study closes an important gap in our abilities to quantify the riming process with cloud radars. Future work will focus

on the application of the newly developed technique to longer-term data sets to investigate the drivers of riming, including

24



orographic conditions. One of the major constraints of this study is the limited training data set. As better and longer-term

training data sets become available, the ML techniques at hand can be more fully exploited and further improvement of the

ANN performance is expected. Also, defining the turbulence threshold that prohibits the application of the method to convective

systems will be a subject of future studies
::
an

::::::::
extended

::::
data

::
set

::::::
would

:::::
better

:::::
allow

::
to

:::::::
quantify

:::
the

:::::
errors

::
of

:::
the

::::
ML

::::::
method

::::
and

::
to

:::::::::
understand

:::
the

:::::::::
limitations

::::
with

::::::
respect

::
to

:::::::::
identifying

::::
very

::::
high

::::
and

::::
very

:::
low

:::
FR

::::::
values.5

::::
This

::::
study

::::::
closes

::
an

::::::::
important

::::
gap

::
in

:::
our

:::::::
abilities

::
to

:::::::
quantify

:::
the

::::::
riming

:::::::
process

::::
with

:::::
cloud

:::::
radars.

:::::::
Further

:::::::::
validation,

:::
e.g.

:::
by

:::::::::
comparison

:::
of

:::
this

::::::::
technique

::::
with

::::::::
airborne

::
in

:::
situ

:::::::::::
observations

:::::
would

:::
be

:
a
::::::
useful

::::::::
extension

::
of

::::
this

:::::
work.

::::::
Future

::::::::::
applications

:::
will

:::::
focus

::
on

::::::::::
longer-term

::::
data

::::
sets

::
to

:::::::::
investigate

:::
the

::::::
drivers

::
of

::::::
riming,

::::::::
including

:::::::::
orographic

:::::::::
conditions.
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