Preprints
https://doi.org/10.5194/amt-2021-144
https://doi.org/10.5194/amt-2021-144

  02 Jun 2021

02 Jun 2021

Review status: a revised version of this preprint is currently under review for the journal AMT.

Total water vapour columns derived from Sentinel 5p using the AMC-DOAS method

Tobias Küchler1, Stefan Noël1, Heinrich Bovensmann1, John Philip Burrows1, Thomas Wagner2, Christian Borger2, Tobias Borsdorff3, and Andreas Schneider3,a Tobias Küchler et al.
  • 1University of Bremen, Bremen, Germany
  • 2Max Planck Institute for Chemistry, Mainz, Germany
  • 3SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
  • anow at: Earth Observation Research Unit, Finnish Meteorological Institute, Sodankylä, Finland

Abstract. Water vapour is the most abundant natural greenhouse gas in the Earth's atmosphere and global data sets are required for meteorological applications and climate research. The Tropospheric Ozone Monitoring Instrument (TROPOMI) onboard Sentinel 5 Precursor (S5P) launched on 13 October 2017 has a very high spatial resolution of around 5 km and a daily global coverage. Currently, there is no operational total water vapour product for S5P measurements. Here, we present first results of a new scientific total column water vapour (TCWV) product for S5P using the so-called Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) scheme. This method analyses spectral data between 688 and 700 nm and has already been successfully applied to measurements from the Global Monitoring Experiment (GOME) on ERS-2, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on Envisat and GOME-2 on MetOp.

The adaptation of the AMC-DOAS method to S5P data especially includes an additional post-processing procedure to correct the influences of surface albedo, cloud height and cloud fraction. The quality of the new S5P AMC-DOAS water vapour product is assessed by comparisons with data from GOME-2 on MetOp-B retrieved also with the AMC-DOAS algorithm and with four completely independent data sets, namely re-analysis data from the European Centre for Medium range Weather Forecast (ECMWF ERA5), data obtained by the Special Sensor Microwave Imager and Sounder (SSMIS) flown on the Defense Meteorological Satellite Program (DMSP) platform 16 and two scientific S5P TCWV products derived from TROPOMI measurements. Both are recently published TCWV products for S5P provided by the Max Planck Institute for Chemistry (MPIC) in Mainz and the Netherlands Institute for Space Research (SRON), Utrecht. The SRON TCWV is limited to clear sky scenes over land.

These comparisons reveal a good agreement between the various data sets but also some systematic deviations between all of them. On average, the derived offset between AMC-DOAS S5P TCWV and AMC-DOAS GOME-2B TCWV is negative (around −1.5 kg m−2) over land and positive over ocean surfaces (more than 1.5 kg m−2). In contrast, SSMIS TCWV is on average lower than AMC-DOAS S5P TCWV by about 3 kg m−2.

TCWV from ERA5 and S5P AMC-DOAS TCWV comparison shows spatial differences over both land and water surface. Over land there are systematical spatial structures with enhanced discrepancies between S5P AMC-DOAS TCWV and ERA5 TCWV in tropical regions. Over sea, S5P AMC-DOAS TCWV is slightly lower than ERA5 TCWV by around 2 kg m−2. The S5P AMC-DOAS TCWV and S5P TCWV from MPIC agree on average within 1 kg m−2 over both land and ocean. TCWV from SRON shows differences to AMC-DOAS S5P TCWV of around 1.2 kg m−2. All of these deviations are in line with the accuracy of these products and with the typical range of deviations of 5 kg m−2 obtained when comparing different TCWV data sets.

The AMC-DOAS TCWV product for S5P provides therefore a valuable new and independent data set for atmospheric applications which also shows a better spatial coverage than the other S5P TCWV products.

Tobias Küchler et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2021-144', Ruediger Lang, 14 Jul 2021
    • AC1: 'Reply on RC1', Tobias Küchler, 26 Aug 2021
  • RC2: 'Comment on amt-2021-144', Anonymous Referee #2, 20 Jul 2021
    • AC2: 'Reply on RC2', Tobias Küchler, 26 Aug 2021

Tobias Küchler et al.

Tobias Küchler et al.

Viewed

Total article views: 475 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
262 77 136 475 3 34
  • HTML: 262
  • PDF: 77
  • XML: 136
  • Total: 475
  • BibTeX: 3
  • EndNote: 34
Views and downloads (calculated since 02 Jun 2021)
Cumulative views and downloads (calculated since 02 Jun 2021)

Viewed (geographical distribution)

Total article views: 386 (including HTML, PDF, and XML) Thereof 386 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Sep 2021
Download
Short summary
We applied the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel 5p measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. Especially for the different Sentinel 5p water vapour products the deviations are around 1 kg m−2.