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Abstract. Satellite retrievals of XCO2 at northern high latitudes currently have sparser coverage and lower data quality than 

most other regions of the world. We use a neural network (NN) to filter OCO-2 B10 bias-corrected XCO2 retrievals and 

compare the quality of the filtered data to the quality of the data filtered with the standard B10 quality control filter. To assess 

the performance of the NN filter, we use Total Carbon Column Observing Network (TCCON) data at selected northern high 15 

latitude sites as a truth proxy. We found that the NN filter decreases the overall bias by 0.25 ppm (~50%), improves the 

precision by 0.18 ppm (~12%), and increases the throughput by 16% at these sites when compared to the standard B10 quality 

control filter. Most of the increased throughput was due to an increase in throughput during the spring, fall, and winter seasons. 

There was a decrease in throughput during the summer, but as a result the bias and precision were improved during the summer 

months. The main drawback of using the NN filter is that it lets through fewer retrievals at the highest latitude Arctic TCCON 20 

sites compared to the B10 quality control filter, but the lower throughput improves the bias and precision.   

1 Introduction 

Northern high latitude regions are undergoing considerable changes related to climate change. The Arctic has seen the annual 

average temperature increase three times more than the global annual average (Stocker et al., 2013). The Boreal forest (an 

important driver of the CO2 seasonal cycle) has seen its growing season lengthen due to climate change (Pulliainen et al., 25 

2017), with an increase in the frequency and severity of forest fires (Seidl et al., 2017). Permafrost soils of the northern high 

latitudes are a large carbon reservoir and some fraction of this carbon is vulnerable to release as CO2 and CH4 as the climate 

warms (Schuur et al., 2015). Changes in the carbon cycle will impact the climate, which in turn will impact the carbon cycle. 

Understanding how the carbon cycle is changing at Boreal and Arctic latitudes, including this feedback loop, will be key to 

predicting future climate change. 30 
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In situ atmospheric measurements of CO2 can be used to study how the carbon cycle is changing. However, cost and logistical 

challenges present barriers to establishing measurement sites at high northern latitudes, limiting the amount of information 

available about the carbon cycle in the Arctic and Boreal regions. Remote sensing measurements from space can be used to 

complement coverage to the current in situ networks (Olsen and Randerson, 2004). Current satellite missions such as the 35 

Greenhouse Gases Observing Satellite (GOSAT) (Yokota et al., 2009) and the Orbiting Carbon Observatory 2 (OCO-2) (Crisp 

et al., 2004) record solar absorption spectra reflected off the Earth’s surface which are used to retrieve column-averaged dry-

air mole fractions of CO2 (XCO2), giving regional information on atmospheric CO2. These data can be used to learn about the 

carbon cycle but require low bias and high precision to be useful (Rayner and O’Brien, 2001).  

 40 

The density of satellite retrievals of XCO2 from current missions is limited by the amount of available sunlight and the inability 

to measure through clouds. At high latitudes there is less sunlight available during the colder seasons decreasing the number 

of spectra obtained when compared to the mid-latitudes. Furthermore, filtering and bias correction schemes are optimized for 

mid-latitudes where more validation datasets are available. This has led to a filter that removes a larger fraction of the high-

latitude data than data at mid-latitudes. Scenes with snow are also filtered out because they are thought to be problematic for 45 

the retrievals, which decreases the throughput during the colder seasons. In order to improve the quality and throughput of 

retrievals at high latitudes, in this study we focus on using high-latitude validation XCO2 retrievals to improve the filtering of 

Northern high-latitude OCO-2 bias corrected XCO2 retrievals.    

 

The study by Jacobs et al. (2020) showed that making modifications to the quality control filtering scheme and bias correction 50 

used by OCO-2, one can increase the throughput of OCO-2 retrievals (data version B9) (Kiel et al., 2019; O’Dell et al., 2018) 

in the Boreal region. This was done by changing limits on the features used in the quality control scheme created in O’Dell et 

al. (2018). These changes were validated by comparing OCO-2 XCO2 retrievals (Kiel et al., 2019; O’Dell et al., 2018) 

coincident to XCO2 retrievals from ground-based solar absorption spectra made by remote sensing instruments used by the 

Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011a).  55 

 

Machine learning algorithms are useful for pattern recognition in complex data sets. Mandrake et al. (2013) was the first study 

to demonstrate the use of machine learning (using a genetic algorithm) to filter ACOS-GOSAT retrievals and multiple versions 

of the OCO-2 retrievals using warn levels. There is potential to apply different machine learning algorithms to the Northern 

high-latitude OCO-2 data set in order improve the bias, precision, and throughput.                       60 

  

In this study, we investigate the feasibility of using a simple neural network to filter the current OCO-2 data version (B10) 

(Osterman et al., 2020) XCO2 retrievals at Northern high latitudes. Section 2 outlines the coincidence criteria between OCO-

2 and TCCON retrievals and an explanation of how the retrieved XCO2 is adjusted for different averaging kernels and a priori 

information when comparing OCO-2 to TCCON. Section 3 describes the architecture of the neural network and how it is 65 
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trained to filter the OCO-2 bias-corrected XCO2 retrievals. In Section 4, the NN filtered OCO-2 retrievals are compared to the 

B10 quality control (qc_flag) retrievals to assess the performance of the NN filter. Finally, we discuss results of the study and 

future work to improve the NN filtering. 

2 Coincidence Criteria 

The OCO-2 satellite was launched on July 2, 2014 and has been making measurements since mid-September 2014. The 70 

instrument on board the satellite is a three channel, imaging, grating spectrometer that records spectra of reflected sunlight in 

three spectral bands centered at 0.765 µm, 1.62 µm, and 2.04 µm. These spectra are processed using a “full-physics” retrieval 

algorithm that retrieves a profile of CO2 (which is used to calculate XCO2) and other geo-physical information. In this study 

we use OCO-2 data that has been processed using the B10 version of the full-physics retrieval algorithm, with the retrieval 

output and sounding information contained in the B10 lite files (Osterman et al., 2020).  All soundings used in the study were 75 

recorded from September 2014 to July 2020. 

 

TCCON is a global network of ground-based Fourier Transform Infrared (FTIR) spectrometers that record direct solar 

absorption spectra. The high-resolution spectra are processed using the GGG2014 retrieval algorithm which scales the a priori 

profile of the gas of interest until the spectrum calculated by forward model best matches the spectrum recorded by the FTIR 80 

(Wunch,  et al., 2015). GGG2014 retrieves XCO2, XCH4, XCO, XN2O, XHF, and XH2O from a single spectrum. Selected 

XCO2 TCCON retrievals made in the Boreal and Arctic regions were used as a truth proxy to compare to OCO-2 retrievals. 

The TCCON sites used in this study and the date range of the data are East Trout Lake, Canada (et) (Wunch et al., 2018) from 

Oct 2016 to June 2020, Eureka, Canada (eu) (Strong et al., 2019) from September 2014 to July 2020, Park Falls, USA (pa) 

(Wennberg et al., 2017) from September 2014 to June 2020, Bremen, Germany (br) (Notholt et al., 2019a) from September 85 

2014 to August 2018, Białystok, Poland (bi) (Deutscher et al., 2019) from September 2014 to August 2018, Sodankylä, Finland 

(so) (Kivi et al., 2014 and Kivi and Heikkinen, 2016) from September 2014 to November 2019, Ny Ålesund, Spitzbergen 

Norway (sp) (Notholt et al., 2019b) from September 2014 to August 2018, and Rikubestu, Japan (ri) (Morino et al., 2018) 

from September 2014 to September 2019. Fig. 1 shows the location of all the TCCON sites used in this study. All TCCON 

spectra were processed using the GGG2014 algorithm (Wunch, et al., 2015) to retrieve XCO2 and other gases of interest. Data 90 

were filtered for standard FLAG = 0, and additionally XHF <= 150 ppt, and XCO <= 125 ppb.  

  

Filtering for XHF <= 150 ppt was done to avoid the impact of the polar vortex on the TCCON retrievals. Arctic sites such as 

Eureka and Ny Ålesund routinely record solar absorption spectra while under polar vortex conditions during the spring months. 

In some years the polar vortex can reach as far south as 40o N (Whaley et al., 2013). Boreal sites such as East Trout Lake have 95 

recorded solar spectra under polar vortex conditions but on fewer days than at the Arctic sites. Since the GGG2014 retrieval 

algorithm does a profile scaling retrieval (Wunch et al., 2015) it relies on good knowledge of the shape of the profile of the 
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gases of interest. The GGG2014 profiles are built without knowledge of the impact of the polar vortex on the shape of the 

profiles. When XCO2 is retrieved from spectra measured through polar vortex conditions, the shape of the a priori profile 

generated by the GGG2014 retrieval algorithm will likely be incorrect. This is less of an issue for OCO-2 retrievals because 100 

OCO-2 performs a profile retrieval (O’Dell et al., 2018).  

 

The TCCON sites used in this study have no direct influence due to anthropogenic pollution but are still influenced by biomass 

burning plumes. At sites like East Trout Lake, major enhancements in XCO over background levels are measured, typically in 

late summer when measurements are made through forest fire plumes. Even a remote Arctic site like Eureka sees forest fire 105 

plumes during the summer months (Viatte et al., 2013). In an attempt to avoid a situation where a coincident TCCON 

measurement is influenced by a plume and the OCO-2 measurement is not, we filter any TCCON measurement where XCO 

is elevated above the value of ~150 ppb or more. 

 

We use the B10 “lite” OCO-2 data product (Osterman et al., 2020), where the XCO2 values have been corrected for various 110 

biases, such as footprint-to-footprint biases and biases that are dependent on features of the atmosphere, surface, or retrieval 

algorithm. OCO-2 XCO2 data are also scaled by a global offset term that was derived using the OCO-2 target mode retrievals 

coincident with TCCON retrievals (Osterman et al., 2020). In our study, we use all OCO-2 spectra that are coincident with the 

TCCON spectra acquired in nadir and glint modes over land. The coincidence criteria are: the distance of an OCO-2 

measurement must be <= 150 km of a TCCON station, the temperature difference between the TCCON and OCO-2 115 

temperature profiles at 700 hPa must be <= absolute value of 2K (Wunch et al., 2011), and the time difference between the 

TCCON and OCO-2 measurements must be <= 2hrs to avoid the impact of the XCO2 diurnal cycle.  

 

To compare TCCON and OCO-2 retrievals, one has to take into account that GGG2014 and the OCO-2 retrievals obtain 

information about atmospheric CO2 from different spectral regions (which have peak sensitivity at different altitudes), and use 120 

different a priori information. To adjust the OCO-2 bias-corrected XCO2 retrievals to take into account the a priori profile used 

in the GGG2014 retrieval, the following formula is used: 

𝑋𝐶𝑂2𝑎𝑑𝑗
𝑂𝐶𝑂−2 = 𝑋𝐶𝑂2𝑏𝑐

𝑂𝐶𝑂−2 +  ∑ ℎ𝑗
𝑂𝐶𝑂−2(1 − 𝑎𝑗

𝑂𝐶𝑂−2)(𝑥⃑𝑇𝐶𝐶𝑂𝑁 − 𝑥⃑𝑂𝐶𝑂−2)𝑗𝑗 ,                                                                         (1) 

where 𝑋𝐶𝑂2𝑏𝑐
𝑂𝐶𝑂−2 is the original bias-corrected XCO2 value found in the lite files, ℎ𝑗

𝑂𝐶𝑂−2 is the OCO-2 pressure weighting 

vector, 𝑎𝑗
𝑂𝐶𝑂−2 is the OCO-2 total column averaging kernel vector,  𝑥⃑𝑂𝐶𝑂−2 is the XCO2 a priori profile used in the OCO-2 125 

retrieval and  𝑥⃑𝑇𝐶𝐶𝑂𝑁 is the XCO2 a priori profile used in the GGG2014 retrieval but interpolated onto the OCO-2 retrieval 

pressure grid.   

  

OCO-2 retrieves information about CO2 from the strong CO2 band (centered at 2.04 µm) and the weak CO2 band (centered at 

1.62 µm) (O’Dell et al., 2018). TCCON retrieves information from two weak CO2 bands, centered at 1.62 and 1.57 µm, (Wunch 130 
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et al., 2011b) but not in the strong CO2 band. This results in the OCO-2 retrievals, having different vertical sensitivities 

compared to the TCCON retrievals. To take this into account when comparing OCO-2 and TCCON retrievals the following 

formula is used to adjust the TCCON retrieved XCO2: 

𝑋𝐶𝑂2𝑎𝑑𝑗
𝑇𝐶𝐶𝑂𝑁 = 𝑋𝐶𝑂2𝑎𝑝𝑟𝑖𝑜𝑟𝑖

𝑇𝐶𝐶𝑂𝑁 +  ∑ ℎ𝑗
𝑂𝐶𝑂−2𝑎𝑗

𝑂𝐶𝑂−2(𝛾𝑥⃑𝑇𝐶𝐶𝑂𝑁 − 𝑥⃑𝑇𝐶𝐶𝑂𝑁)𝑗𝑗 ,                                                                                (2) 

where 𝑋𝐶𝑂2𝑎𝑝𝑟𝑖𝑜𝑟𝑖
𝑇𝐶𝐶𝑂𝑁  is the integrated a priori profile used in the GGG2014 retrieval, ℎ𝑗

𝑂𝐶𝑂−2 is the OCO-2 pressure weighting 135 

vector, 𝑎𝑗
𝑂𝐶𝑂−2 is the OCO-2 total column averaging kernel vector, 𝑥⃑𝑇𝐶𝐶𝑂𝑁 is the XCO2 a priori profile used in the GGG2014 

retrieval, and 𝛾 is the TCCON XCO2 value divided by 𝑋𝐶𝑂2𝑎𝑝𝑟𝑖𝑜𝑟𝑖
𝑇𝐶𝐶𝑂𝑁 . Ideally 𝛾 should be the scaling factor determined by the 

GGG2014 retrieval, but this value does not take into account the airmass dependence correction and aircraft calibration factor 

applied in post processing to the retrieved XCO2.  The vectors 𝑎𝑗
𝑂𝐶𝑂−2 and 𝑥⃑𝑇𝐶𝐶𝑂𝑁 have been interpolated onto a 20-layer 

pressure grid using the surface pressure measured at the TCCON site. 140 

 

The bias between coincident TCCON and OCO-2 retrievals is calculated by taking the difference between  𝑋𝐶𝑂2𝑎𝑑𝑗
𝑂𝐶𝑂−2 (Eq. 

1) and 𝑋𝐶𝑂2𝑎𝑑𝑗
𝑇𝐶𝐶𝑂𝑁 (Eq. 2) and resulting in: 

𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓 = 𝑋𝐶𝑂2𝑎𝑑𝑗

𝑂𝐶𝑂−2 − 𝑋𝐶𝑂2
𝑎𝑑𝑗

𝑇𝐶𝐶𝑂𝑁
.                                                                                                                                   (3) 

3 Neural Network Architecture and Training 145 

To filter the OCO-2 data, we use a three-layer neural network (NN) that consists of an input layer, a hidden layer, and an 

output layer. The design of the NN is based on the book by Nielsen (2015). The input layer is the value of the features of the 

OCO-2 retrievals that are given in the B10 lite files. Table 1 lists all the features used by the NN. An initial feature list was 

built by combing all features in the OCO-2 qc_flag filter (Osterman et al., 2020), with the features contained in the retrieval 

state vector. Features that provide information about the quality of the spectral fit, the quality of the recorded spectrum, and 150 

airmass were also included in the initial features list. To reduce the total number of features used, each feature that was thought 

to provide redundant information to others was removed by testing how the NN performed with and without the feature. The 

bias, precision, number of outliers (absolute value of 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓 > 2.5ppm) getting through and throughput of the training data 

set were used as the metrics to judge the NN performance with and without the feature. The hidden layer contains the “neurons” 

where the calculations are done. Each input is connected to a neuron by a weight. The calculation for single neuron (𝑁) in a 155 

NN with 𝑘 neurons is given by: 

𝑁𝑘 = ∑ 𝑤𝑖
𝑘𝐼𝑖

𝑛
𝑖=1 + 𝑏𝑘,                                                                                                                                                               (4) 

where 𝐼𝑖  is the value of feature 𝑖, 𝑤𝑖
𝑘 is the weight on feature 𝑖 for neuron 𝑘, and 𝑏𝑘 is the bias associated with neuron 𝑘. There 

is a total of 37 neurons which is the total number of features plus one. An activation function is commonly applied to the 



6 

 

neuron in order to introduce some non-linearity into the neuron calculation and make sure that small changes in the values of 160 

𝑤𝑖
𝑘 and 𝑏𝑘 result in small changes in the final output values when training the NN (Nielsen, 2015). The sigmoid function: 

𝑓(𝑁𝑘) =
1

1+ 𝑒−𝑁𝑘,                                                                                                                                                                       (5) 

is used as the activation function. Each neuron is linked to the final output value by a weight (𝑤𝑘). The output value is given 

by: 

𝑌̂ =  𝑓(∑ 𝑤𝑘𝑓(𝑁𝑘)𝑘
𝑖=1 + 𝑏),                                                                                                                                                     (6) 165 

where 𝑏 is the offset and everything else is as described as before. 

 

Applying the sigmoid activation function in Eq. 6 ensures that 𝑌̂ will have a value between 0 and 1. This is useful for binary 

classification, which in this case we would use the NN to classify the OCO-2 retrieval as either “good” or “bad” by equating 

a calculated value that is close to 0 as “good” and a calculated value that is close to 1 as “bad”. 170 

 

For the NN to work, the values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏 need to be determined. This was done by using a subset of the OCO-2 

coincident retrievals to train the NN. The coincident data set consists of co-located OCO-2 soundings at the following TCCON 

sites: East Trout Lake (et), Eureka (eu), Bremen (br), Białystok (bi), Sodankylä (so), Ny Ålesund (sp), and Rikubestu (rj). We 

withhold the Park Falls (pa) data set so that it can be a completely independent source of validation. The coincident data were 175 

split into three datasets: training, testing, and validation. For the training and testing data, 20% of the data were randomly 

selected to go into each data set, with the remaining 60% used for validating the results. In order to train the NN, one needs to 

know the input values of the training data set (which are the values of the features in the B10 lite files) and the expected output 

value (𝑌). The expected output value was set to 𝑌 = 0 if the difference between a coincident OCO-2 and TCCON retrieval is 

<= ±2.5 ppm and set to 𝑌 = 1 if the difference between the retrievals is > 2.5 ppm. Fig 2a shows the histogram of the difference 180 

between coincident OCO-2 and TCCON retrievals as well as the boundaries separating data into expected values of 0 and 1. 

All data between the red dashed lines was set to 𝑌 = 0 (or “good”) and set to 𝑌 = 1 (or “bad”) if outside of the boundary. 

 

To achieve the best results when training the NN, we standardize the values of the input features so that each feature has a 

similar range of values. This is helpful because the features have different units and orders of magnitude, and if left as is the 185 

NN will place much more importance on features that have large absolute values than other features with smaller values. To 

standardize the input features the following formula is used: 

𝑧𝑖 =  
𝐼𝑖−𝜇𝑖

𝜎𝑖
 ,                                                                                                                                                                                  (7) 

where 𝐼𝑖  is as before, 𝜇𝑖 is the mean of 𝐼𝑖  values from the training data set, and 𝜎𝑖 is the standard deviation of the 𝐼𝑖  values from 

the training data set. This means that 𝑧𝑖 is used in Eq. 4 instead of 𝐼𝑖 . The supplementary excel file (sheet Standardize values) 190 

contains the 𝜇𝑖 and 𝜎𝑖 for each of the features to be used to standardize the data before inputted into the NN.  
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To determine the values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏, they are initially set randomly to be between a value of ±1. Using the training 

data set, 𝑌̂ is calculated for all the data using the initial values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏. The performance of the NN is then 

determined by comparing the calculated value (𝑌̂) to the expected output value (𝑌) using the log loss entropy cost function: 195 

𝐶 =
−1

𝑛
∑ 𝑌𝑖𝑙𝑜𝑔(𝑌𝑖̂) + (1 − 𝑌𝑖) log(1 − 𝑌𝑖̂)𝑛

𝑖 ,                                                                                                                         (8) 

where 𝑛 is the total number of OCO-2 retrievals in the training data set. If 𝑌̂ = 𝑌 then 𝐶 will equal zero, meaning the values of 

𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏 are set to the best values that perfectly determine whether an OCO-2 retrieval is good or bad. This is unlikely 

to happen for the initial values of those variables since they are set randomly, so 𝐶 will be > 0. To minimize the value of 𝐶, 

the values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏 are adjusted. The adjustments are done by taking the partial derivative with respect to the cost 200 

function (i.e., 
𝜕𝐶

𝜕𝑤𝑖
𝑘 , 

𝜕𝐶

𝜕𝑏𝑘, 
𝜕𝐶

𝜕𝑤𝑘
, and 

𝜕𝐶

𝜕𝑏
). In principle, this should be iterated until 𝐶 = 0 but in practice, the classification of the 

training data setup is not perfect. The assumption made when setting up the classification of the training data is that if -2.5 

ppm < 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓  (Eq. 3) < 2.5 ppm then it is a good OCO-2 retrieval but this might not be true. It could be the case that the 

OCO-2 retrieval has adjusted parameters as much as possible to achieve the best possible fit to the measured spectra, but that 

the retrieved parameters deviate from the true values while still providing an integrated profile that is close to the TCCON 205 

XCO2. This retrieval would be mis-classified as good, so the cost function will never reach 0. 

 

To stop training the NN, a few cutoffs were placed: the maximum number of iterations is 5000 or the accuracy between the 

training and testing data < 3%. When training the NN, the accuracy of the training data and the testing data is calculated on 

each iteration and compared. Since the data were set up in a binary classification (i.e., 0 or 1), on each iteration, if a calculated 210 

value was <= 0.1 (unitless) the classification was set to 0 and > 0.1 the classification was set to 1.0. This threshold of 0.1 was 

determined by trying to balance throughput with degradation of precision as well as limiting the amount of individual retrievals 

with high absolute 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓  > 2.5 ppm passing the NN filter. These classification values were compared to the expected 

classification value on each iteration to get the accuracy of the training and testing data sets. The testing dataset is not used 

when determining the values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏, rather it is used as an independent data source to make sure that the NN is 215 

not overfitting the training data. The derived values of 𝑤𝑖
𝑘, 𝑏𝑘, 𝑤𝑘, and 𝑏 can be found in the supplementary excel file with 

values of 𝑤𝑖
𝑘 in sheet w1, 𝑏𝑘 in sheet b1, 𝑤𝑘 in sheet w2, and 𝑏 in sheet b2. 

  

Figure 3 shows the 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓  as a function of the value calculated by the NN for all three data sets. Fig. 3a shows that the 

OCO-2 retrievals with calculated values close to 0 have the smallest spread in 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓, while calculated values close to 1 220 

have the largest spread. This pattern is seen in all three of the datasets. The density plot shown in Fig. 3b confirms that for 

most of the data the calculated values are <= 0.1. There is no clear separation of data (i.e. good retrievals <= 0.1 and bad 

retrievals >= 0.9) as one would expect from a binary classifier. This could be because there are many combinations of feature 
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values that can lead to a bad retrieval.  Another possibility is that most of the training data were classified as good and so there 

are more examples of good retrievals than bad retrievals to learn from. Clearly there are retrievals with an ambiguous 225 

classification (𝑌̂ > 0 and < 1.0) even though all retrievals in the training data set were assigned a value of 0 or 1. For the NN 

to achieve an ambiguous value when training there would have to be retrievals with similar feature values, with no clear 

majority between “good” and “bad” examples in the training data. This could happen because 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓  is not a perfect 

classification metric which could lead to some portion of retrievals being incorrectly classified. Another possibility is a lack 

of data combined with the real variance in the scene could result in the no clear majority case leading to an ambiguous 230 

classification. Since the NN is not showing any confidence in the classification of these retrievals, they are manually classified 

as “bad” to err on the side of caution. There is also the possibility that actual bad retrievals can get through the NN filter due 

to insufficient training examples as well as incorrect classification of training data. 

4 Validation 

To validate the NN filtering, the validation data set was separated into two data sets. One data set was the OCO-2 bias-corrected 235 

XCO2 values filtered using the NN filter and the other was filtered using the B10 qc_flag=0. To validate the NN filtering, the 

NN filter was applied to the validation data set and compared to the same validation data set but with the B10 qc_flag=0 

applied to the soundings. Since the validation data set was not used in the training of the NN, it is an independent data set kept 

aside to assess the performance of the NN filter. Table 2 shows the bias, scatter, and number of retrievals for the entire 

validation data set (All) and at each site when applying either the NN or qc_flag filter. The overall XCO2 bias using the NN 240 

filter is half of the qc_flag filter, the scatter has been decreased by 0.18 ppm, and the throughput has been increased by 16%. 

The NN filter reduces the bias at every site except at Eureka and Rikubetsu. The precision is better at every site when the NN 

filter is applied to the validation data. The throughput has increased at every site, when the NN filter is used, except for the 

Arctic sites (Eureka and Ny Ålesund). Park Falls data was not used to train the NN filter because it is slightly outside of the 

Boreal domain and it is used as a completely independent data set to validate the NN filter. When the NN filter is applied to 245 

Park Falls data, the bias remains the same, the precision decreases by 0.09 ppm, and the throughput increases by ~20%.  

 

The reduction in throughput at the Arctic sites is because the distribution of data at the Arctic sites is different compared to all 

other sites as shown in Fig. 2b. The peaks of the histograms for the Arctic sites are closer to the boundaries used to classify 

the training data as “good” or “bad”, so almost half of the data is set to “bad” when training the NN. Fig. 4 shows the pass rate 250 

for the NN filter given the value of the solar zenith angle (Fig. 4a), sensor zenith angle (Fig. 4b) and altitude standard deviation 

(Fig. 4c). In all three plots the data are binned, with the blue dots showing the number of OCO-2 soundings that pass the NN 

filter divided by the total amount of data multiplied by 100 in each bin. The pink bars are the histogram of OCO-2 soundings 

coincident with Eureka TCCON data. Fig. 4a shows that the coincident OCO-2 soundings are made at solar zenith angles 

between 58o to 85o, with the blue dots showing that 30% to 0% of the soundings that have these values pass the NN filter. 255 
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Similarly Fig. 4b shows that the coincident OCO-2 soundings are made at high sensor zenith angles, which are less likely to 

pass the NN filter. Most of the coincident OCO-2 soundings at Eureka are made over land that contains significant topographic 

variability. Fig. 4c shows the altitude standard deviation, which is the standard deviation of the elevation (in meters) of the 

field of viewing of the sounding. The plot shows that at an altitude standard deviation of ~ 50 m only 30% of the soundings 

pass the NN filter. The combination of high airmass and variable topography decreases the throughput at Eureka. 260 

 

For further validation, the seasonal bias, scatter, and number of retrievals that pass the filters at each site is compared. Fig. 5 

shows the bias at each site for spring, summer, fall, and winter when the NN filter is applied to the validation data (solid bars) 

and also when the qc_flag filter (dashed bars) is used on the same validation data set. For most sites and seasons, the magnitude 

of the biases for the two different filtering schemes are similar, although in most cases the NN filter has a lower absolute bias 265 

compared to the qc_flag filter. The NN filter significantly improves the bias at Sodankylä and Rikubetsu during spring, Ny 

Ålesund during summer, and Rikubetsu and Bremen during winter. Both the NN filter and the qc_flag show there is a positive 

bias between OCO-2 and TCCON in summer. The NN filter is able to reduce this summer bias but it still remains. At Park 

Falls the bias between the two filters is similar for the different scenes, with the qc_flag showing a lower bias in summer and 

the NN filter decreasing the bias in winter. 270 

 

Figure 6 shows the precision at each site for spring, summer, fall, and winter when the different filters are applied to the 

validation data. The precision is very similar (i.e., within 0.2 ppm) for most sites during the different seasons. The NN filter 

improves the precision (by more than 0.2 ppm) at Rikubetsu during spring, Eureka and Ny Ålesund during summer, and 

Białystok and Rikubetsu during fall. However, the qc_flag filter has a much better precision at Sodankylä during spring when 275 

compared to the NN filter.      

 

Figure 7 shows the number of retrievals that pass each filter for the different sites during spring, summer, fall and winter. At 

most sites, the NN filter lets through more retrievals compared to the qc_flag filter during spring, fall, and winter. In summer 

the qc_flag filter has a slightly higher throughput compared to the NN filter at most sites. This decrease in throughput during 280 

summer helps improve the bias and precision as seen in Figs. 5b and 6b. There is a significant increase in throughput at East 

Trout Lake during spring with the NN filter, and it even produces some retrievals in winter. At Park Falls the throughput has 

increased in spring, fall, and winter but is significantly decreased during summer. The decrease in summer is because the NN 

filter is trained on data that show a bias during summer, which it decreases by filtering out more data compared to the qc_flag 

filter. Even though Park Falls is not in the Boreal domain, its scene type (forest) is similar to East Trout Lake. The NN has no 285 

information on time of year, but it does have information on the surface type through the albedo values, which change due to 

the time of year. It’s most likely that what the NN learned from the East Trout Lake data is influencing how the NN filters the 

data at Park Falls.     
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Some of the increase in throughput with the NN filter during spring, fall, and winter can be explained by the fact that the 290 

qc_flag filter tries to filter out spectra that have been recorded over snow scenes (Osterman et al., 2020). The snow_flag, found 

in the B10 lite files is used to indicate the presence of snow in the scene. We applied this snow_flag to the NN filtered data to 

see if the NN filter removes all soundings over snow. From the validation data set, 3219 retrievals have snow_flag = 1, with 

785 of those retrievals passing the NN filter. This means that the NN filter passes about 24% of the OCO-2 soundings made 

over snow. This is much lower compared to the general case (all scenes) where greater than 40% of the data pass both the NN 295 

and qc_flag filters. The bias over snow scenes compared to TCCON from all the retrievals that pass the NN filter in the 

validation data set is 0.13 ± 1.44. Since the precision is lower over snow, it makes sense that the throughput over snow is lower 

compared to the general case. At Park Falls 1032 soundings that pass the NN filter, with 727 in winter and 302 in spring, are 

snow scenes. So a significant amount of throughput during winter at Park Falls are made over snow scenes. The bias of snow 

scenes at Park Falls was found to be 0.12 ± 1.41. 300 

 

The NN filter was applied to all OCO-2 B10 data at latitudes greater than 45o N to determine the throughput in the Boreal and 

Arctic regions. Fig. 8 shows the percent difference (NN minus qc_flag, divided by qc_flag, and multiplied by 100) between 

the number of soundings that pass the filters. The maximum value for the percent difference was capped at 100%. The 

throughput with the NN filter is greater than the qc_flag filter in spring and winter, while the throughput with the qc_flag filter 305 

is greater than the NN filter in summer and fall. This is consistent with what is seen at the individual TCCON sites. Over 

Greenland the throughput has increased with the NN filter regardless of season because qc_flag filter removes all data over 

Greenland with the snow_flag filter. During fall, the throughput has increased at greater than 70o N, because the NN filter is 

letting through soundings that were recorded over snow scenes.  

5 Discussion and Conclusions    310 

In this study, a neural network was used to filter the OCO-2 bias-corrected XCO2 data collected near northern high-latitude 

TCCON stations as described in Section 3. The performance of the NN filter was assessed by comparing the bias, precision 

and throughput to the quality control filtered data. There was an improvement in the bias, precision, and throughput both 

overall and at most sites, as well as improvements in the bias in different seasons. However, the NN filter decreases the 

throughput at Eureka because it finds that OCO-2 soundings made at high solar zenith angles, high sensor zenith angles, and 315 

over variable topography are problematic.  

 

The main downside to using a neural network to filter OCO-2 retrievals is that it doesn’t readily provide information on why 

a retrieval was classified as “good” or “bad” which would be useful for improving the retrieval algorithm. Decision tree 

algorithms are binary classifiers which do provide information on the classification of data. However, a draw-back to decision 320 

trees is that they over fit the training data. In section 3, it was explained why some of the training data might be incorrectly 
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classified leading to the NN filter determining an ambiguous classification for some retrievals. The assumption with decision 

trees is that all the training data is correctly classified, which is not entirely true in this case. The NN calculating values that 

make the classification of some retrievals ambiguous can be interpreted as a confidence in the classification of retrievals. With 

a decision tree, there is no metric to measure the confidence in the classification of retrievals so you could get retrievals passing 325 

the decision tree filter that are actually closer to “bad” retrievals than “good”.     

 

There are also ways that the implementation of a NN to filter OCO-2 retrievals can be improved upon. Increasing the amount 

of retrievals used in the training data set would improve the performance of the NN filter. This can be done by incorporating 

new coincident TCCON measurements from the sites in this study, retrievals from new TCCON sites coming into operation 330 

and the potential use of other similar truth proxies such as the COllaborative Carbon Column Observing Network (COCCON) 

(Frey et al., 2019). To improve the training classification, other helpful truth proxies such as cloud and aerosol information 

can be combined with 𝑋𝐶𝑂2
𝐷𝑖𝑓𝑓 when classifying the retrievals for training. The current implementation of the NN as a binary 

classifier was done to make the problem as simple as possible in order to filter out retrievals where the forward model of the 

retrieval algorithm is suboptimal, rather than scenes of high variance. A possible alteration to the algorithm would be to do the 335 

classification on a continuum where the output of the NN (𝑌̂) would be related to the expected precision of the data. The 

downside to this configuration would be that the NN filter would be filtering out not only bad retrievals but also scenes with 

high variance. For example if you wanted a precision of better than 1 ppm chances are you would not have any retrievals over 

snow getting through the NN,   greatly reducing throughput in the winter and shoulder season at high latitudes. 

 340 

This study shows the potential of using a neural network to filter OCO-2 retrievals that could be useful in future filtering 

schemes for OCO-2 or other satellite missions. However, there are potential drawbacks to the methodology presented in this 

study. In this study, we focus on data near northern high-latitude TCCON stations and so do not sample globally representative 

ranges of surface properties or airmasses. Fig. 1 shows the limited coverage that the TCCON sites provide, with no coverage 

over Greenland and most of the Eurasian Boreal region. The effectiveness of the NN filter is dependent on how well the NN 345 

is trained. We train the NN using OCO-2 data coincident with TCCON data, so the NN filter is trained only under atmospheric 

conditions observed at the northern high-latitude TCCON sites. We have shown that this way of training the NN is effective 

when validated against northern high-latitude TCCON data. When the NN filter was applied to Park Falls data, which was not 

used in the training of the NN, we found that the bias was similar to the qc_flag filter, with a decrease of 0.09 ppm in precision, 

but a 20% increase in throughput. Although the throughput increased in spring, fall, and winter seasons, it decreased a lot 350 

during summer. The decrease in throughput in summer led to improved bias and precision values at all the TCCON sites used 

in the training of the NN, but not at Park Falls. This is because the NN has found a pattern that improves the training data set 

which is not as applicable to Park Falls data. The qc_flag filter lets through almost twice as much data compared to the NN 

filter during summer with a decrease in precision of only 0.09 ppm compared to the NN filter. The NN filter is sub-optimal at 
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Park Falls (during summer) and if one applied the NN filter to data that is not similar to northern high-latitude data used to 355 

train the NN it will not be as effective.  

 

The effectiveness of the NN filter is dependent on the data set used to train the NN. In this study we assume that the TCCON 

data represents the truth and any bias that we see is in the OCO-2 retrievals. The NN is trying to decrease the bias it sees as 

much as possible and if there is a bias in the TCCON data, it will attribute this to a bias in the OCO-2 data and treat that data 360 

as bad. One way to be less influenced by TCCON data is to use a small area approximation, where XCO2 is assumed constant 

within a small region (O’Dell et al., 2018). While the absolute value of the retrieval cannot be evaluated using a small area 

analysis, variability within the small area can, and this would vastly increase the dataset size used in the NN, and improve the 

range of surface properties, atmospheric conditions, and airmasses represented by the training dataset. This small area approach 

will be investigated in a future study. 365 

 

The NN filter passes some retrievals of soundings made over snow albeit at a lower throughput compared to non-snow scenes. 

This is expected because retrievals over snow are difficult due to the low albedo in the spectral regions of the CO2 bands, often 

providing insufficient signal for a good retrieval. However, the albedo of snow is dependent on the age of the snow with fresh 

snow having higher albedo compared to old snow, so there is a possibility that some of the soundings recorded over snow have 370 

enough signal to produce a good retrieval. Nevertheless, these retrievals are further complicated by the fact that the spectra are 

usually recorded through large solar zenith angles (SZA) due to the soundings being made at either high latitudes or at times 

of the year where the SZA is large which is challenging for the radiative transfer model of the retrieval algorithm to deal with. 

The results of this study show the potential of a machine learning algorithm to tease apart these factors and recover some of 

the retrievals over snow, although in this study there wasn’t enough coincident data over snow to get meaningful site statistics 375 

(bias and precision). A future study will investigate the potential of a machine learning algorithm to filter the retrievals over 

snow by folding in more training and validation data. 

 

The accuracy of XCO2 observations over the northern high latitudes and the loss of data there due to filtering has been a 

longstanding issue with OCO-2 and GOSAT data versions to date, which has limited the scientific community’s ability to 380 

apply their data to investigate important northern high-latitude carbon cycle science questions. This paper demonstrates that a 

neural network approach can be used to increase the number of soundings at northern high latitudes, while also improving the 

bias, precision and throughput depending on the site. One possible future application of the NN (or other machine learning 

algorithms) could be to improve the bias correction of OCO-2 retrievals. Le et al. (2020) used a convolution NN for 

spatiotemporal bias correction of satellite precipitation data and air quality forecasts have moved towards bias correction using 385 

a decision tree algorithm (Ivatt and Evans, 2020). Continual efforts at improving northern high-latitude retrievals and filtering 

will be beneficial not only to current missions, but also to future XCO2 missions like MicroCarb (Pasternak et al., 2017), 

GOSAT-GW (Kasahara et al., 2020), and CO2M (Sierk et al., 2019), which will make global observations that include northern 
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high latitudes and even more so for missions under consideration like AIM-North (Nassar et al., 2019), which is dedicated to 

observing the Arctic and Boreal atmosphere.  390 
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Table 1 List of all the features available to the input layer of the neural network and a brief description of the features based on the 

descriptions found in Osterman et al. 2020. 555 

Feature Name Description of Feature 

Retrieval co2_grad_del  Measure of how much the retrieved profile shape is different compared 

to the aprior profile. 

Retrieval dpfrac  Correction of XCO2 due to satellite pointing error. 

Retrieval eof3_3_rel  Scale factor for of the 3rd eof in the CO2 strong band 

Retrieval deltaT  Retrieved offset of a priori temperature profile 

Retrieval h2o_scale  Scale factor of retrieved H2O column 

Retrieval aod_oc  Retrieved aerosol optical depth of organic carbon 

Retrieval aod_water  Retrieved aerosol optical depth of water 

Retrieval aod_dust  Retrieved aerosol optical depth of dust 

Retrieval aod_bc  Retrieved aerosol optical depth of black carbon 

Retrieval aod_strataer  Retrieved aerosol optical depth of stratospheric aerosol  

Retrieval aod_seasalt Retrieved aerosol optical depth of sea salt 

Retrieval aod_sulfate  Retrieved aerosol optical depth of sulfate 

Retrieval aod_ice  Retrieved aerosol optical depth of ice 

Retrieval water_height  Retrieved central pressure of cloud water layer relative to surface 

pressure 

Retrieval ice_height  Retrieved central pressure of cloud ice layer relative to surface pressure 

Retrieval dust_height  Retrieved central pressure of dust aerosol layer relative to surface 

pressure  

Retrieval albedo_wco2  Retrieved albedo of weak CO2 band 

Retrieval albedo_slope_wco2  Retrieved albedo slope of weak CO2 band 

Retrieval albedo_quad_wco2  Retrieved albedo quadratic coefficient of weak CO2 band  

Retrieval albedo_sco2  Retrieved albedo of strong CO2 band 

Retrieval albedo_slope_sco2  Retrieved albedo slope of strong CO2 band 

Retrieval albedo_quad_sco2  Retrieved albedo quadratic coefficient of strong CO2 band  

Retrieval albedo_o2a  Retrieved albedo of O2 A-band 

Retrieval albedo_slope_o2a  Retrieved albedo slope of O2 A-band 
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Retrieval albedo_quad_o2a  Retrieved albedo quadratic coefficient of O2 A-band  

Retrieval rms_rel_o2a  Root mean square residual of O2 A-band relative to continuum signal. 

Retrieval rms_rel_wco2  Root mean square residual of weak CO2 band relative to continuum 

signal. 

Retrieval rms_rel_sco2  Root mean square residual of strong CO2 band relative to continuum 

signal. 

Sounding altitude_stddev  How much the surface elevation changes within the soundings field of 

view. 

Preprocessors max_declocking_sco2  Estimate of the clocking error in the strong CO2 band. 

Preprocessors max_declocking_o2a  Estimate of the clocking error in the O2 A-band. 

Preprocessors max_declocking_wco2 Estimate of the clocking error in the weak CO2 band. 

Preprocessors co2_ratio  Ratio of retrieved CO2 column from the strong and weak CO2 bands.  

Preprocessors h2o_ratio  Ratio of retrieved H2O column from the strong and weak CO2 bands. 

solar_zenith_angle  Solar zenith angle of sounding 

sensor_zenith_angle Sensor zenith angle of sounding 
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Table 2 The XCO2 bias and scatter (ppm), and number of OCO-2 retrievals at each TCCON site and overall for the OCO-2 bias-

corrected XCO2 after applying either the NN or qc_flag filter to the validation data set. All includes data from every site except for 

Park Falls (pa).  
Neural Network B10 qc_flag 

Site Bias ± precision Number of 

retrievals 

Bias ± precision Number of 

retrievals 

All 0.25 ± 1.27 23429 0.52 ± 1.45 20198 

Eureka (eu) -0.53 ± 2.35 59 0.34 ± 2.94 634 

Ny Ålesund (sp) 0.87 ± 2.30 91 2.09 ± 2.65 92 

Sodanklyä (so) 0.34 ± 1.23 5118 0.64 ± 1.30 4736 

East Trout Lake (et) 0.01 ± 1.34 5261 0.44 ± 1.48 3186 

Białystok (bi) 0.27 ± 1.16 6237 0.40 ± 1.18 5609 

Bremen (br) 0.42 ± 1.19 4066 0.85 ± 1.28 3672 

Rikubetsu (rj) 0.23 ± 1.39 2597 0.13 ± 1.70 2269 

Park Falls (pa) -0.12 ± 1.27 14859 -0.12 ± 1.18 12406 
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 580 
Figure 1: Map of the location of all TCCON sites used in this study.  
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Figure 2 a) Histogram of the bias between coincident TCCON and OCO-2 retrievals 𝑿𝑪𝑶𝟐
𝑫𝒊𝒇𝒇

 (Eq. 3), for the three datasets. The 

red dashed lines represent the boundary between setting the classification of the data. b) Same as plot ‘a)’ but shows the density of 

soundings for each of the sites. 585 
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Figure 3 a) The difference between the coincident TCCON and OCO-2 retrievals (𝑿𝑪𝑶𝟐
𝑫𝒊𝒇𝒇

) as a function of 𝒀̂ calculated by the 

NN (after training) for the training, testing, and validation data sets. b) Same as plot a) but shows the density of the all three data 

sets combined, with the color bar given on a log scale. The red dashed lines represent the boundary between setting the binary 

classification of the data. 590 
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Figure 4 The percentage of data that passes the NN filter (blue dots) for a given solar zenith angle (a), sensor zenith angle (b) and 

altitude standard deviation (stddev) (c). The bars are the histograms of the OCO-2 soundings coincident with the Eureka TCCON 

data. 595 
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Figure 5 The bias at each site for the different seasons when the NN filter (bars with solid lines) and qc_flag (bars with dashed 

lines) is used to filter the OCO-2 retrievals in the validation data set. a) Spring (March, April, May). b) Summer (June, July, 

August). c) Fall (September, October, November). d) Winter (December, January, February). Note the different y-axis ranges for 

each plot. Note that bars that show a bias of zero are due to no data rather than a bias of zero.  600 
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Figure 6 Same as Figure 5 but shows the precision at each site for each season. a) Spring (March, April, May). b) Summer (June, 

July, August). c) Fall (September, October, November). d) Winter (December, January, February). Solid bars indicate the NN 

filter, and dashed bars indicate the original B10 qc_filter. 
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 605 
 

Figure 7 Same as Figure 5 but shows the number of soundings that pass each filter at each site for the different seasons. a) Spring 

(March, April, May). b) Summer (June, July, August). c) Fall (September, October, and November). d) Winter (December, 

January, February). Solid bars indicate the NN filter, and dashed bars indicate the original B10 qc_filter. 
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 610 
Figure 8 Polar plots of the percent difference in the number of soundings that pass the NN filter compared to the qc_flag filter for 

spring (a), summer (b), fall (c), and winter (d). The data have been binned by 2o longitude by 2o latitude. 
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