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We’d like to thank the editor for handling our manuscript, as well as reviewer #1 for reading our 
manuscript and providing numerous helpful suggestions for improvement.  
 
We have carefully read through all the comments and questions and revised the manuscript 
accordingly. Please find our point-by-point response to reviewer #1 below. Here, the reviewer’s 
general remarks, as well as the specific questions/comments, are formatted to be left-aligned text 
in bold font. Our responses are indented and formatted in regular font.  
 
Here is a summary of the major changes in the revised manuscript:  
 

1) We defined an independent test data set that is not included in the determination of 
hyperparameters or the training of the ANNs. The new splits are 70%/20%/10% for the 
training/validation/test data set. We also excluded the training data set from the 
evaluation of the model performance. This means that, e.g., the histograms in Figure 5 or 
the global maps in Figure 6 are generated by profiles the ANN has not been trained on. 
This allows for a fairer evaluation of ANN performance. 

2) Since we removed profiles for the test data set and introduced new splits between training 
and validation data, we needed to repeat the k-fold cross validation and training of the 
ANNs. This turned out to be a necessary step, as we were able to fix three bugs in our 
algorithm setup: (i) We had not considered the number of hidden layers to be a 
hyperparameter. Tests revealed that models with only one hidden layer slightly 
outperformed those with two layers for the cloud classification scheme (the cloud top 
pressure models still use two layers). (ii) We had shuffled the training and validation data 
twice. While this had (obviously) no effect on training performance, it affected the 
correct recording of the respective profile indices. In other words, we did not correctly 
track the profiles in the training and validation data sets. This, in turn, means that the 
validation statistics presented in Figures 4 and 10 were inaccurate, as the presented 
“validation data” was actually comprised of random profiles from both the training and 
validation data set. Note that in the original manuscript version, model performance was 
evaluated for the combined training and validation data set (e.g., Figures 5 and 7), which 
means this mistake had no effect (i.e., the evaluation was based on a combined data set). 
(iii) The wrong control file provided the cloud top pressure model in the original 
manuscript version. That specific model had no weight decay (i.e., the model could learn 
training data very well, to the detriment of generalization) and early-stopping was turned 
off. This, together with the wrong recording of training and validation indices, resulted in 
the unrealistic correlation coefficients of 0.99. The model in the revised manuscript 
exhibits a much more reasonable correlation coefficient of 0.82. 

3) We added more detailed explanations of machine learning terminology and descriptions 
of the considered hyperparameters. 

4) We replaced one of the example scenes over South East Asia. In the original manuscript, 
the two scenes in Figure 9 looked very similar. Instead, we decided to present a more 
complex cloud field, which nicely illustrates the performance of the cloud classification 
model, while highlighting instances where the cloud top pressure prediction struggles. 

5) We extended the analysis of the cloud top pressure ANN performance considerably. That 
section now includes additional statistical analysis of the difference between predictions 
and observations, as well as the model’s ability to detect clouds <400, 350, and 300 hPa. 
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We also added global maps of the model performance, as well as comparisons between 
MODIS, ANN, and v4.2x data (similar to the cloud classification analysis). Example 
maps now contain the same scenes as for the cloud classification part. 

 
General comments  
 
This paper nicely illustrates that the implementation of machine learning to MLS cloud 
classification leads to an impressive improvement in MLS cloud detection, compared to 
current operational techniques.  
 
The paper is concise, well written, and discusses well-selected calculations. The discussion 
of both global statistics, and individual cases, is very appealing. The Summary and 
Conclusions section is very well written.  
 
The discussion of the machine learning methodology is very concise, but could benefit by 
briefly defining some of the machine learning terms which may not be familiar to the 
atmospheric science research community.  
 
 
 
Specific comments  
 
The use of machine learning techniques and terminology is likely unfamiliar to many in the 
atmospheric sciences. There are several places in the text in which a few additional words / 
sentences could help the reader understand better what is being done by the authors. There 
are some terms which need to be defined. Please discuss, for example, what is meant by 
“feedforward” on line 121. Other terms that should be defined (briefly discussed) are 
“imbalanced classes”, “learning rate”, “Nesterov momentum value”, and “weight decay”.  

We added the following descriptions to the manuscript. 
 
“Here, we constructed and trained a multilayer perceptron, which is a subcategory of 
feedforward ANNs that sequentially connects neurons between different layers. In a 
feedforward ANN information only gets propagated forward through the different model 
layers and is not directed back to affect previous layers.” 
 
And: 
“Generally, F1 assigns more relevance to false predictions and is more suitable for 
imbalanced classes, where the respective data sizes vary significantly.” 
 
And: 
“The hyperparameters to be determined are (i) the number of hidden layers, (ii) the 
number of neurons per hidden layer, (iii) the optimizer for the cloud classification, (iv) 
the mini-batch size, (v) the learning rate, and (vi) the value for the weight decay (i.e., the 
L2 regularization parameter). The number of hidden layers and neurons impact the 
complexity of the model. The choice of optimizer controls how fast and accurately the 
minimum of the loss function in Eq. (8) is determined, based on different feature sets and 
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minimization techniques. During each iteration the model computes an error gradient and 
updates the model weights accordingly. Instead of determining the error gradient from 
the full training data set, our models only use a random subset of the training data (called 
a mini-batch) during each iteration. This not only speeds up the training process, but also 
introduces noise in the estimates of the error gradient, which improves generalization of 
the models. The learning rate controls how quickly the weights are updated along the 
error gradient. Thus, the size of the learning rate affects the speed of convergence (higher 
is better) and ability to detect local minima in the loss function (lower is better). 
Meanwhile, L2 regularization is one method to specify the regularization term R in Eq. 
(8), where the sum of the squared weights is multiplied with the L2 parameter: 

 
𝑅 = 𝐿2	 ∙ 	∑𝜔!+𝜛! + Ω! (9) 
 
Note that for clarity we omitted the indices for the weights in Eq (8). The amount of 
regularization is directly proportional to the value of the L2 weight decay parameter. 
Regularization usually improves generalization of the models. More information about 
ANN hyperparameters and their impact on the reliability of model predictions can be 
found in, e.g., Reed and Marks (1999) and Goodfellow et al. (2016).” 
 
Note that due to changes in setting up the models, as well as the performance evaluation, 
we found that the Adam optimizer slightly outperforms the stochastic gradient one. We 
changed the description accordingly. 

 
Technical comments 
 
Line 21 the phrase “cloud amount” is vague. Please be more specific.  
 We changed the wording to “cloud cover”. 
 
Line 46, add commas, revising to e.g. “radiances, from lower in the atmosphere, and 
smaller downwelling radiances from above, into the MLS raypath” to improve readability. 
In my first reading of the sentence I had a hard time making sense of the sentence.  

We changed the sentence following the reviewer’s recommendation: “a mix of large 
upwelling radiances, from lower in the atmosphere, and smaller downwelling radiances, 
from above…”.  

 
Line 55, what is meant by “discount them” ?  

We meant to say that these radiances are discarded when the observation vector for the 
optimal estimation is constructed. We changed the wording to “discard”. 

 
Line 89, please specify Figures in Waters et al 2006 or other papers that illustrate the 
spectral sampling details of the AURA MLS experiment, so the reader can obtain a fuller 
understanding of the MLS experiment.  

We added “; see Table 4 in Waters et al. (2006) and Figure 2.1.1 in Livesey et al. 
(2020).” to the revised manuscript. 
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Line 130. It would be helpful to point out that Figure 1 is presented for illustrative 
purposes, since line 253 later points out that each hidden layer has 851 neurons (instead of 
2 neurons). “Figure 1 illustrates the general setup of a simplified multilayer perceptron 
that contains four layers, and is instructional. The full model setup is discussed in Section 
3.4”  

We changed the sentence as follows: “Figure 1 illustrates the general setup of a 
simplified multilayer perceptron that contains four layers, and is purely instructional. The 
complete model setup is more complex and is discussed in sections 3.2–3.4.” 

 
Line 168. Is the MLS aggregation at 1°x1° because the MLS data sampling is (line 100) 
near 165 km?  

We spent quite some time thinking about this detail. Indeed, the half and full distance 
between adjacent MLS profiles is close to 0.75° and 1.5°, respectively.  At the same time, 
the typical horizontal scales of clouds that can potentially impact MLS observations (i.e., 
optically thick mid-level cloud fields and high-reaching cumulonimbus) are in the range 
of 50-200 km (Guillaume et al. 2018). This gives us a range of ~0.5°-2.0°. 
 
We tested the aggregation for different scales 0.5°-3.0° in increments of 0.5° to get an 
idea about the importance of the aggregation perimeter. We noticed no significant 
difference in performance for scales between 0.5° and 2.0° (variability in Matthew’s 
Correlation Coefficient of <0.01). However, performance got gradually worse for 2.5° 
and 3.0°.  
 
In the end we decided on 1°x1°, which is (i) close to half of the distance between 
adjacent MLS profiles, and (ii) in the middle of the relevant horizontal cloud scales.  
 
We added some extra information to the manuscript at the end of the third paragraph of 
section 3.2: “Note that no significant decrease in classification performance is observed 
for varying aggregation scales between 0.5°x0.5° and 2°x2°.” 

 
Line 173 are the 5,000 samples MODIS, MLS, or MODIS-MLS samples?  
 This number refers to MODIS-MLS samples. We changed the sentence accordingly: 

“While not every grid box contains the same number of profiles, each area contains at 
least 2,100 MLS-MODIS samples. A maximum in sample frequency is observed over the 
regions with denser MLS coverage around the poles.” 
 
Note that we have changed the horizontal resolution from 60°x60° to 15°x15° in response 
to a comment from referee #2. We also added two separate maps, one for the statistics of 
the total MLS-MODIS data set, and one for the statistics of the clear and cloudy cases (as 
defined in section 3.2). 

 
Line 262. Approximately how many epochs are calculated?  

When we started to test different setups, we ran each model with a fixed number of 
10,000 epochs. However, we quickly noticed that each model starts to converge to a 
solution (i.e., the validation loss does not decrease any longer) much earlier. This number 
is comparatively low; indeed, more complex regression simulations performed by the 
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MLS group require 10-100 times more epochs. This means that the 2-class binning 
performed by the cloud classification models in this study is computationally inexpensive 
and only takes about 1 day.  
 
We added this information to the manuscript: “Note that the lowest validation loss 
usually occurred after ~2,000-3,000 epochs for both the cloud classification and pCT 
prediction.” 

 
Line 318 clarify what is meant by “classification going forward”.  

We meant to say that in this study, we use the model with the highest Matthew’s 
Correlation Coefficient (Mcc), out of the 100 we trained. One could think of other 
approaches, e.g., picking the one with the median Mcc, or another binary metric. 
However, since the validation scores are so close to each other, there really isn’t a 
practical difference between each of the models. 
 
We changed the sentence to: 
“Given the statistical robustness of the results, the model with the highest Mcc and lowest 
RMSD provide the ANN weights for cloud classification and pCT prediction in this study, 
respectively.” 

 
Line 549. If the current MLS data version is V5, why not include the new ANN capability 
in the V5 product instead of “future versions of the v4.2x” product?  

The way we phrased the outlook was confusing. We compared the ANN cloud flag to the 
operational v4.2x cloud flag, as v5.x data was still being processed at the time of writing. 
The MLS radiances and cloud detection code are identical between the two versions, 
however, revisions to the atmospheric composition retrieval algorithms yield some subtle 
differences in the cloud status flags. These differences have no impact on the conclusions 
reported in this manuscript. Since the ANN cloud classification scheme only uses MLS 
radiances as input, it is independent of the MLS L2 algorithm version. 
 
We plan to continue to provide both v4.2x and v5.x data products for the foreseeable 
future. In the revised manuscript we changed this sentence to:  
“This new cloud classification scheme, which will be included in future versions of the 
MLS dataset, provides the means to reliably identify profiles with potential mid- to high-
level cloud influence. Note that MLS radiances are not affected by the change from v4.2x 
to v5.0x.” 
 
We also added a clarifying statement to section 2: 
“Note that the sampled radiances are identical between the two versions, while revisions 
to the atmospheric composition retrieval algorithms yield subtle differences in the 
derived cloudiness flags.” 
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We’d like to thank the editor for handling our manuscript, as well as reviewer #2 for reading our 
manuscript and offering a large number of detailed suggestions and improvements.  
 
We have carefully read through all the comments and questions and revised the manuscript 
accordingly. Please find our point-by-point response to reviewer #2 below. Here, the reviewer’s 
general remarks, as well as the specific questions/comments, are formatted to be left-aligned text 
in bold font. Our responses are indented and formatted in regular font.  
 
Here is a summary of the major changes in the revised manuscript:  
 

1) We defined an independent test data set that is not included in the determination of 
hyperparameters or the training of the ANNs. The new splits are 70%/20%/10% for the 
training/validation/test data set. We also excluded the training data set from the 
evaluation of the model performance. This means that, e.g., the histograms in Figure 5 or 
the global maps in Figure 6 are generated by profiles the ANN has not been trained on. 
This allows for a fairer evaluation of ANN performance. 

2) Since we removed profiles for the test data set and introduced new splits between training 
and validation data, we needed to repeat the k-fold cross validation and training of the 
ANNs. This turned out to be a necessary step, as we were able to fix three bugs in our 
algorithm setup: (i) We had not considered the number of hidden layers to be a 
hyperparameter. Tests revealed that models with only one hidden layer slightly 
outperformed those with two layers for the cloud classification scheme (the cloud top 
pressure models still use two layers). (ii) We had accidentally shuffled the training and 
validation data twice. While this had (obviously) no effect on training performance, it 
affected the correct recording of the respective profile indices. In other words, we did not 
correctly track the profiles in the training and validation data sets. This, in turn, means 
that the validation statistics presented in Figures 4 and 10 were inaccurate, as the 
presented “validation data” was actually comprised of random profiles from both the 
training and validation data set. Note that in the original manuscript version, model 
performance was evaluated for the combined training and validation data set (e.g., 
Figures 5 and 7), which means this mistake had no effect (i.e., the evaluation was based 
on a combined data set). (iii) The wrong control file provided the cloud top pressure 
model in the original manuscript version. That specific model had no weight decay (i.e., 
the model could learn training data very well, to the detriment of generalization) and 
early-stopping was turned off. This, together with the wrong recording of training and 
validation indices, resulted in the unrealistic correlation coefficients of 0.99. The model 
in the revised manuscript exhibits a much more reasonable correlation coefficient of 0.82. 

3) We added more detailed explanations of machine learning terminology and descriptions 
of the considered hyperparameters. 

4) We replaced one of the example scenes over South East Asia. In the original manuscript, 
the two scenes in Figure 9 looked very similar. Instead, we decided to present a more 
complex cloud field, which nicely illustrates the performance of the cloud classification 
model, while highlighting instances where the cloud top pressure prediction struggles. 

5) We extended the analysis of the cloud top pressure ANN performance considerably. That 
section now includes additional statistical analysis of the difference between predictions 
and observations, as well as the model’s ability to detect clouds <400, 350, and 300 hPa. 
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We also added global maps of the model performance, as well as comparisons between 
MODIS, ANN, and v4.2x data (similar to the cloud classification analysis). Example 
maps now contain the same scenes as for the cloud classification part. 
 

Overall, in my view there are three aspects of the paper that could have been addressed 
differently:  
 
Dependance of the statistical inversion model on a given cloud properties dataset. I would 
say that this has not been properly emphasized in the paper. Retrieving cloud properties is 
not straightforward, and relatively large differences are found when comparing products. 
If the statistical model approximating MLS radiances and cloud properties would have 
been trained with, e.g., Calipso cloud properties, or even a previous version of the MODIS 
dataset, that would have resulted in a different model. This is not a criticism of the choice 
of the MODIS product, which is perfectly justified, but a reminder that this is an important 
part of the algorithm. For instance, biases on the cloud product are likely to be learned by 
the statistical model, and not be shown when evaluating the model performance with the 
same dataset used to train the model. Sentences like “This algorithm is designed to classify 
clear and cloudy conditions for individual MLS profiles, based purely on the sampled MLS 
radiances” do not help to convey this message.  

This point is well taken. The proposed models are only designed to reproduce the MODIS 
targets, which themselves exhibit their own retrieval uncertainties and biases. We 
certainly did not intend to portray our results as the actual, atmospheric truth. 
 
In particular, we made sure to avoid phrases like “true values” or “truth” when we discuss 
the observations. To make this point more clearly, we have added sufficient disclaimers 
about the relationship between MODIS targets and the ANN estimates, while re-writing 
some sentences to convey the fact that the models only replicate the MODIS results.  
 
This includes this paragraph in section 3.2: 
“The reader is also reminded of the fact that the proposed ANN schemes will try to 
reproduce, as best as they can, the MODIS-retrieved cloud variables. Those parameters, 
however, have their own uncertainties and biases, and the ANN will inherently learn 
those MODIS-specific characteristics. As a result, the ANN predictions should not be 
considered the true atmospheric state. Instead, they represent a close approximation of the 
observed values in the colocated MLS-MODIS data set.” 

 
Also, in section 4.1 and 4.3 (amongst others): 
“The analysis in section 3.4 indicates that the ANN setup can reliably reproduce the 
cloudiness conditions identified by the colocated MLS-MODIS data set.” 
 
“While the analysis in section 4.1 illustrates that the new ANN-based cloud classification 
can reliably identify cloudy profiles (based on the definitions in section 3.2), it is 
important to make sure that there is no latitudinal bias in the predictions…” 
 
We also added the following statement to the “Summary and conclusions” section: 
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“It is important to note that the predicted cloud parameters do not represent the true 
atmospheric state. Since each ANN was trained on the colocated MODIS targets, it 
follows that they, at best, will replicate the respective MODIS results. The MODIS 
retrievals, however, are characterized by their own uncertainties and biases, which are 
subsequently learned and reproduced by the derived models. This means that analyses of 
ANN performance in this study only provide an evaluation of how well each model can 
replicate the colocated MODIS retrievals.” 
 
There are more examples, and we believe that these steps assure the reader of the fact that 
the ANN predictions are not the “truth”. 

 
Description of the ANN. In my view, it seems a bit unbalanced in terms of the elements that 
are, and are not, described. On the one hand, most readers are likely to be familiar with the 
description of the architecture of a standard multi-layer perceptron, so Section 3.1 could 
have been considerably shortened. On the other hand, terms like L2 regularization, mini-
batches, Nesterov momentum, less arguably familiar concepts, are used without any 
further explanations. I know that it is difficult to strike the right balance there, as depends 
on the reader, but I feel that this could have been done in a more appropriate way.  

We added numerous explanations to the revised manuscript. This comprises small 
additions like the following: 
 
“In a feedforward ANN information only gets propagated forward through the different 
model layers and is not directed back to affect previous layers.” 
 
And: 
“Generally, F1 assigns more relevance to false predictions and is more suitable for 
imbalanced classes, where the respective data sizes vary significantly.” 
 
We also re-wrote section 3.4, adding subsections and more descriptive text about the 
various hyperparameters: 
“The hyperparameters to be determined are (i) the number of hidden layers, (ii) the 
number of neurons per hidden layer, (iii) the optimizer for the cloud classification, (iv) 
the mini-batch size, (v) the learning rate, and (vi) the value for the weight decay (i.e., the 
L2 regularization parameter). The number of hidden layers and neurons impact the 
complexity of the model. The choice of optimizer controls how fast and accurately the 
minimum of the loss function in Eq. (8) is determined, based on different feature sets and 
minimization techniques. During each iteration the model computes an error gradient and 
updates the model weights accordingly. Instead of determining the error gradient from 
the full training data set, our models only use a random subset of the training data (called 
a mini-batch) during each iteration. This not only speeds up the training process, but also 
introduces noise in the estimates of the error gradient, which improves generalization of 
the models. The learning rate controls how quickly the weights are updated along the 
error gradient. Thus, the size of the learning rate affects the speed of convergence (higher 
is better) and ability to detect local minima in the loss function (lower is better). 
Meanwhile, L2 regularization is one method to specify the regularization term R in Eq. 
8), where the sum of the squared weights is multiplied with the L2 parameter…” 
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However, the description of the model setup is very concise (about 1 page in the double-
spaced draft format) and can easily be ignored if the reader is not interested in the details. 
For those interested in the specifics, and those who want to replicate the results, we think 
it important to include this short section. Therefore, we decided to leave this part in the 
revised manuscript. 

 
Retrieval of cloud top pressure. The paper gives the impression that the retrieval of cloud 
top pressure is not integrated in the paper from the beginning. While the cloud flag takes 
more of the paper, with different sections and comprehensive analyses, the cloud top 
pressure retrieval is not mentioned in the introduction (only mentioned at the end when 
describing the paper contents), the work takes just one section at the end of the paper, and 
seems much less detailed in terms of modeling and analyses. This may be intentional, as the 
authors may want to give more value to the cloud detection than to the cloud top pressure 
retrieval. But it feels a bit awkward, as if the cloud top pressure was an afterthought. The 
paper may have looked more consistent if, for instance, the ANN for the cloud top  
pressure would have also been described in the algorithms section, mentioning that these 
are 2 different inversion problems requiring different ANN setups (a binary classification, 
and a continuous mapping between 2 finite spaces), or if the qualitative assessments would 
have used the same selected scenes with a bit more of a joint discussion.  

As the reviewer discerned, the paper started as a pure cloud classification paper and later 
was extended, once the cloud top pressure ANN was developed. We have now changed 
the paper extensively to integrate the cloud top pressure estimates more naturally in the 
revised manuscript. We also extended the associated analysis and added more discussion. 
 
This includes the abstract: 
“Training a similar model on MODIS-retrieved cloud top pressure (pCT) yields reliable 
predictions with correlation coefficients >0.82. It is shown that the model can correctly 
identify >85% of profiles with pCT <400 hPa. Similar to the cloud classification model, 
global maps and example cloud fields are provided, which reveal good agreement with 
MODIS results.” 
 
Also, the introduction: 
“The performance of the subsequent cloud top pressure predictions is presented in section 
5, which comprises an evaluation of the prediction performance and an assessment of the 
model’s ability to detect high clouds (section 5.1), global maps (section 5.2), and four 
example scenes comparing the ANN predictions to the MODIS results (section 5.3). 
 
We added information in the algorithm section: 
“The model for the cloud top pressure prediction uses a simple pass-through of the 
neuron output to the output layer.” 
And: 
“Conversely, the model for the cloud top pressure prediction minimizes the mean squared 
error.” 
 
Also, an extra paragraph on the most suitable hyperparameters in section 3.4: 



 5 

“For the pCT prediction, two-layer models noticeably outperformed single-layer ones, as 
the drop in average r was > 0.01. Again, the number of neurons had only a minimal 
impact on model performance, with variations in r of ≈ 0.02. However, models with 800–
1000 neurons performed best, so we again set this number to 856. The best optimizer, 
learning rate, L2 parameter, and mini-batch size were found to be Adam, 10−4, 50e−4, and 
1024, respectively.” 
 
We added the respective validation performance to Figure 4, illustrated in the new panels 
c and d. 
 
We extended the associated analysis in section 5 considerably. This section now 
discusses statistical differences in more detail, as well as the model’s performance at 
detecting high clouds for different cloud top pressure thresholds. The new section 5.2 
presents similar maps of global predictions and F1 scores, as well as comparisons to the 
MODIS observations and the current v4.2x flag. 
 
We believe that these changes integrate the cloud top pressure retrieval more organically 
into the revised manuscript. 

 
 
Some more specific comments are given below. There are mainly about the statistical 
inversion, as the MLS team knows very well its instrument, and the discussion concerning 
the instrument capabilities, and what it can be retrieved from its radiances, is already very 
solid.  
 
Specific comments  
L58. “However, the reliance on estimated clear sky radiances and the use of predefined 
thresholds induces uncertainties in the current algorithm”. This can be interpreted as a 
lack of confidence on the clear sky radiative transfer modelling, which is the basis of most 
of MLS retrieval work. I would say that the problem is more defining universal thresholds 
that can reliably identify the clouds, as illustrated later in the paper.  

Indeed, we did not mean to suggest any lack of confidence in the radiative transfer 
modelling. Instead, we wanted to convey the fact that fixed thresholds (which are defined 
rather conservatively) only allow identification of the thickest of the high-reaching clouds 
(see Figure 7d of our manuscript).  
 
We changed the sentence as follows: 
“However, the reliance on global, conservatively defined thresholds will inherently 
induce uncertainties in the current cloud detection scheme.” 

 
L70. “This algorithm is designed to classify clear and cloudy conditions for individual MLS 
profiles, based purely on the sampled MLS radiances.” I find this sentence misleading, as 
you always need something else than the radiances to do an inversion. The relationship 
between the radiances and your parameter of interest needs to be established, e.g, by a 
radiative transfer model (original cloud flag), or by a statistical model (proposed flag). For 
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this specific work, the statistical algorithm depends on the sampled MLS radiances and 
their relationship to the MODIS retrievals.  

This sentence was meant to convey the fact that we only use MLS radiances AS INPUT 
for the algorithm, i.e., no ancillary data from a forward model or other instrument are 
required. In other words, these predictions don’t require additional information (e.g., 
sensor zenith angle, geolocation, other MODIS parameters, simulated meteorological 
fields, etc.). Of course, we first need to establish the statistical model, which is needed to 
perform cloud classifications. 
 
We deleted the confusing part and the sentence now reads as follows:  
“This algorithm is derived from colocated MLS samples and MODIS cloud products and 
is designed to classify clear and cloudy conditions for individual MLS profiles.” 

 
L72. “both high and mid-level clouds (e.g., stratocumulus and altostratus)”. I know that the 
mentioned clouds are just examples, but they seem to coincide with mid-level clouds. It may 
give the impression that “cirro” clouds are not targeted, e.g., because of limitations of the 
MODIS cloud product.  

This was purely an oversight, as the original examples went missing in the submitted 
manuscript. The MODIS retrieval for reasonably thick cirrus is quite reliable (obviously, 
we don’t expect to detect subvisible cirrus with MLS radiances, nor do we expect those 
clouds to impact the MLS samples).  
 
We added the respective examples and the sentence now reads:  
“… detection of both high (e.g., cirrus and cumulonimbus) and mid-level (e.g., 
stratocumulus and altostratus) clouds, …” 

 
L75. “Aqua MODIS observations are ideal for this study”. Perhaps “ideal” is not the best 
word here, given the large difference with MLS in terms of observing geometry, spatial 
resolutions, etc. Suitable?  

Here, “Ideal” referred to the fact that (i) MODIS is installed on the Aqua spacecraft and 
thus provides the means for close temporal colocation, and (ii) the operational MODIS 
cloud data set provides reliable cloud products that cover the whole MLS mission period.  
 
Following the reviewer’s suggestion we changed the sentence as follows: “Of the major 
satellite instruments, Aqua MODIS observations are most suitable for this study, as they 
provide operational cloud products on a global scale that are essentially coincident and 
concurrent with the MLS observations.” 

 
L95. “The most recent MLS dataset is version 5; however, at the time the ANN was being 
developed, reprocessing of the entire 16-year MLS record with the v5 software had not yet 
been completed. Accordingly, L2GP cloudiness flags in this study are provided by the 
version 4.2x data products (Livesey et al., 2020), and v4.2x is also the source for the Level 1 
radiance measurements used herein”. Is there anything significantly different in the V5 
radiances that could have an impact on this work? I guess not, but it may be worth 
commenting that.  
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Indeed, this statement might be confusing for the reader. This also concerns the last 
paragraph in the Summary and Conclusions section. The MLS radiances and cloud 
detection code are identical between the two versions, however, revisions to the 
atmospheric composition retrieval algorithms yield some subtle differences in the cloud 
status flags. These differences have no impact on the conclusions reported in this 
manuscript. Since the ANN cloud classification scheme only uses MLS radiances as 
input, it is independent of the MLS L2 algorithm version. 

 
We added the following sentence to section 2 in the revised manuscript: “Note that the 
sampled radiances are identical between the two versions, while revisions to the 
atmospheric composition retrieval algorithms yield subtle differences in the derived 
cloudiness flags.” 
 
We also added the following information to the “Summary and conclusions” section: 
“Note that MLS radiances are not affected by the change from v4.2x to v5.0x.” 

 
L115. “Table 1 lists the 208 days that comprise the global data set used in this study. It 
consists of eleven random days from each year between 2005 and 2020, as well as a pair of 
two consecutive days to bring the yearly coverage to thirteen days.” In my view Table 1 is 
not really needed, i.e., knowing that in 2012 d06 was day-of -year 169 is not critical 
information to pass to the reader.  

We respectfully disagree with the reviewer on this point. Stating the data set is an 
essential part of every observational study. Usually that is done by mentioning the years 
covered by a specific analysis (e.g., 2004-2013). However, due to the vast amount of data 
and computational time required for the MLS-MODIS colocation, we can only use 
individual days for our analysis. Therefore, to guarantee transparency and the 
reproducibility of our results, we feel that Table 1 is needed in the manuscript.  
 
However, we concede that the majority of users are probably not interested in that 
information. Therefore, we moved the table to the Appendix. This means, the Table is 
clearly marked as ancillary information and most readers can ignore it, but those who are 
interested in the details can still look up the individual days. 

 
L118. “Particular attention was paid to ensure that each month is represented (close to) 
equally in the final data set”. I am a bit puzzled here. Why not something as simple as 
randomly selecting one day per month and year? Then all months are equally represented 
without any need for further checks.  

In fact, this is almost exactly what we did. However, occasionally there are days in the 
MLS data record, where not all MLS observations yield useable data. This can be due to 
spacecraft maneuvers, calibration procedures, or instrument issues. While this doesn’t 
happen often, we wanted to make sure not to include such days. 

 
We concede that this might be confusing to the reader, and represents a detail we can 
safely omit from the manuscript. We therefore re-wrote this part to:  
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“It consists of twelve random days annually, one for each month, for the years between 
2005 and 2020, as well as one additional day each year that forms a set of consecutive 
days. This brings the yearly coverage to thirteen days.” 

 
L131. I was wondering about the choice of two hidden layers and not just one. Perhaps 
because this is a binary classification problem and the ANN search a decision boundary to 
separate clear and cloudy? But using the log-sigmoid function of the output node, the ANN 
will not be just separating into 2 classes, but outputting the probability of having a cloud. 
This could be interpreted as an ANN approximating a continuous mapping between two 
finite spaces, the radiances and the probability of having a cloud, i.e., a number between 0 
and 1, and therefore one hidden layer may suffice.  

The reviewer is absolutely right. One hidden layer is enough to map between the two 
classes with high accuracy. This simplifies the final model considerably (i.e., fewer 
variables to determine by the algorithm).  
 
As mentioned earlier, we did not consider the number of hidden layers as a 
hyperparameter in the original version of the algorithm and manuscript, and simply 
assumed that two layers would yield the best results. 
 
After restructuring the setup (70%/20%/10% splits between training/validation/testing 
data sets), fixing errors associated with the recording of validation and training data, and 
determining the most appropriate hyperparameters again (including the number of hidden 
layers), we indeed found that one-layer models yield the best performance scores. Here, 
average differences in Ac are in the range of 0.005-0.01 (note that these differences, 
while consistently observed, are very small). 
 
We have changed the manuscript accordingly. 

 
L171. Why 60x60 degrees? A finer grid (e.g., 5x5 degrees) would be useful to better 
understand the geographical distribution of the samples. In fact, what is producing such an 
uneven distribution? Why the higher sampling over Africa?  

Regarding the first part of this comment: The resolution was connected to Figures 7a and 
b, where we require sufficient sampling statistics to reliably determine the respective F1 
scores (or other metrics, for that matter). We also wanted the spatial resolutions in the 
two Figures to be identical. 

 
We agree with the reviewer that an increase in spatial resolution captures the actual 
distribution better. After some testing, we found that a 15°x15° resolution (i) still yields 
sufficient statistics for the F1 calculation (>160 samples, from the validation and test data 
set, per grid box), and (ii) shows the distribution of data points in Figure 2 in more detail. 
 
Regarding the second part of this question: There are actually two data sets to consider 
here. The total number of profiles in the colocated MLS-MODIS data set are distributed 
quite evenly. The map in the original manuscript version, however, showed the 
distribution of clear sky and cloudy profiles, following the definitions in section 3.2. The 
uneven distribution is a direct result of these definitions. For example, the African 
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continent exhibits regions with very low and very high cloud cover (see Figure 7e-f). As 
a result, this specific (coarse) grid box contained more samples. Conversely, regions with 
~50% cloud cover on average will contain fewer samples. 
 
We added more panels to Figure 2, which now shows both the total number of profiles in 
the collocated data set and statistics for our cloudy and clear definitions. The two panels 
are shown below for convenience: 

 
 

Fig. 1: Sample frequency for the (c) complete MLS-MODIS data set and (d) 
cloudy and clear profiles, following the definitions in section 3.2. 

 
 We also discuss the reasons why certain areas contain more/fewer samples. 
 
L185. “Naturally, these definitions leave some profiles undefined (e.g., those with C in the 
range 1/3–2/3)”. The definition of clear and cloudy classes is perfectly justified, but 
excludes the undefined profiles from the training dataset, as properly stated in the text. 
Later on, when applying the ANN to classify the observations, the ANN will have to classify 
profiles similar to those unseen during the training. So, in principle, the ANN will be 
extrapolating. Could this be a problem? Could have been an alternative to train with all 
cases where pCT > 700 hPa, but targeting the continuous variable C with values in the 
range 0-1, instead of the two defined classes? The ANN would be similar, apart from 
choosing a loss function more appropriate for a continuous output space.  

This is an interesting suggestion. We actually tried to train a model, as suggested by the 
reviewer (albeit without going through the rigorous determination of hyperparameters). 
Unfortunately, this method doesn’t seem to be able to replicate the MODIS observations.  
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Fig. 2: Predicted cloud cover (C) vs MODIS-observed C. Data are provided by 
the colocated MLS-MODIS data set. 

 
While there is a general positive correlation for the relationship, the correlation 
coefficient is only r=0.14. It appears that MLS radiances can be successfully employed to 
detect clouds (and their associated pressure levels), but the sensitivity towards cloud 
fraction seems very limited. 
 
As we demonstrate in the revised manuscript, the model performance for the validation 
and test data set is basically identical, and the performance for a modified classification is 
similarly high (as long as the observed cloud top pressure is below 700 hPa). If low 
clouds are also considered, model performance decreases significantly. However, that 
drop can be attributed to the number of false negatives, i.e., the model simply misses 
those low-level clouds. Since we don’t expect MLS to be sensitive to those observations, 
we don’t consider this to be a problem (it would be a problem, if the number of false 
positives, i.e., false cloudy predictions, increased).  
 
Note that we also tried to predict total water path, similarly unsuccessfully (which is not 
surprising). 

 
L245. “Overall, the input matrix for the training and validation of the ANN is of shape 
1,710 × 162,117”. 1710 features are still a relatively large number. Even if a channel 
selection has been applied, one may wonder about the possibility of further reducing the 
dimensionality of the input space with some of the typical feature extraction techniques. 
Doing so is a common procedure to decrease computational burden and enhance the 
generalization properties of the ANN. I do not know well the MLS radiances, but I assume 
that there is some degree of correlation between the 1710 features, which could make 
possible this further dimensionality reduction.  

We tested this extensively in the beginning of the analysis. Specifically, we used 
Principal Component Analysis to reduce the dimensionality of the input matrix. 
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However, we found that, in order to explain 95% of the variability, we still needed to 
consider ~1,000 features.  
 
Note that we are not concerned about the computational expense associated with the 
rather large dimensionality of the ANN. Training 100 models with our current setup takes 
~1 day on our computing cluster, while predictions for individual days finish in less than 
1 minute. Considering that we are not limited by computational constraints, we decided 
to keep the model as complex as possible (following the results of the k-fold cross 
validation) to ensure optimal classification performance. 
 
We added information about the computational costs in the revised manuscript to inform 
the reader about the fact that the complexity of the ANN is not an issue:  
“Training of these 100 models took ∼1 day.” 
 

L253. “The number of neurons per hidden layer is set to 856, which corresponds to the 
average between the number of nodes in the input and output layers”. This sentence may 
make the reader think that this is a sort of standard procedure to fix the number of 
neurons, which is not. The number of nodes sets the capacity of the model to learn complex 
mappings, with small (large) ANNs having the risk to underfit (overfit). But the number of 
nodes is not typically considered as an hyperparameter to control model complexity. 
Instead, training techniques similar to the one applied in the paper are applied to control 
the generalization capacity of the ANN.  

Our explanation was not sufficient. We did determine the number of neurons in a manner 
similar to that of the other hyperparameters. We varied this parameter between 100 and 
1200, in increments of 100 neurons per layer. Starting from about 400 neurons per hidden 
layer, the observed changes in Ac are in the range of 0.0002. Nonetheless the maximum 
Ac value is observed for 800 neurons per layer, closely followed by models with 900 
neurons per layer.  
 
We did not think it useful to test performance for increments <100 neurons per layer. 
Again, the differences in derived Ac are very small. As the maximum was supposedly 
somewhere between 800 and 900 neurons, we simply chose to use the average between 
the number of features (nf) and labels (nl) to determine the final setup. As the reviewer 
mentions, this is not a standard procedure, although a considerable number of discussion 
posts found online do recommend to set this value to 2/3*(nf+nl) or 1/2*(nf+nl). For us, 
it is just a convenient coincidence that the average between nf and nl is in the region of 
maximum Ac. 
 
This is the corresponding statement in the revised manuscript: 
“The number of neurons per hidden layer had a negligible impact, as long as the number 
was larger than 200. However, the models with 800 and 900 neurons exhibited average 
Ac values that were 0.0002 higher than those of other setups. We ultimately set it to 856, 
which corresponds to the average between the number of nodes in the input 
and output layers (i.e., 1,710 and 1, respectively).” 
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L253. The 856 nodes in the hidden layer results in a very large ANN. If you are using a 
fully connected ANN of the type described, the number of weights to be adjusted during the 
training is 1710 (inputs) x 856 (hidden layer one) + 856 x 856 (hidden layer 2) + 856 x 
1(output), and then you have 856 + 856 + 1 biases. This is around 2 million of model 
parameters, even larger than the number of samples x input features in the training 
dataset. I may be missing something, but it is hard to believe that a simpler ANN cannot be 
setup to classify the radiances into the two clear and cloudy cases.  

The reviewer is correct; a simpler model absolutely suffices, and classification 
performance, while reduced with a simpler setup, is still high. However, the highest Ac 
values are still observed for ~800 neurons per hidden layer. In our testing, the spread in 
derived Ac was in the range of 0.015 (as long as the number of nodes was >200 and L2 
parameter <10-3. The lowest value of Ac~0.78 was recorded for 100 neurons per layer, 
with an L2 parameter of 10-1. 
 
Reducing the number of hidden layers from 2 to 1 reduces the number of model 
parameters considerably, from 2,199,922 to 1,466,330. 
 
We changed the manuscript accordingly. 
 

L255. “(ii) the learning rate, (iii) the mini- batch size, and (iv) the value for the weight 
decay (i.e., the L2 regularization parameter)”. What do you mean by mini-batch? What is 
L2 regularization? Square of the weights instead of absolute values?  

This is one of the big changes in the revised manuscript, as we added a lot of extra 
information about the different hyperparameters in section 3.4: 
“The hyperparameters to be determined are (i) the number of hidden layers, (ii) the 
number of neurons per hidden layer, (iii) the optimizer for the cloud classification, (iv) 
the mini-batch size, (v) the learning rate, and (vi) the value for the weight decay (i.e., the 
L2 regularization parameter). The number of hidden layers and neurons impact the 
complexity of the model. The choice of optimizer controls how fast and accurately the 
minimum of the loss function in Eq. (8) is determined, based on different feature sets and 
minimization techniques. During each iteration the model computes an error gradient and 
updates the model weights accordingly. Instead of determining the error gradient from 
the full training data set, our models only use a random subset of the training data (called 
a mini-batch) during each iteration. This not only speeds up the training process, but also 
introduces noise in the estimates of the error gradient, which improves generalization of 
the models. The learning rate controls how quickly the weights are updated along the 
error gradient. Thus, the size of the learning rate affects the speed of convergence (higher 
is better) and ability to detect local minima in the loss function (lower is better). 
Meanwhile, L2 regularization is one method to specify the regularization term R in Eq. 
(8), where the sum of the squared weights is multiplied with the L2 parameter: 

 
𝑅 = 𝐿2	 ∙ 	∑𝜔!+𝜛! + Ω! (9) 
 
Note that for clarity we omitted the indices for the weights in Eq (8). The amount of 
regularization is directly proportional to the value of the L2 weight decay parameter. 
Regularization usually improves generalization of the models. More information about 
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ANN hyperparameters and their impact on the reliability of model predictions can be 
found in, e.g., Reed and Marks (1999) and Goodfellow et al. (2016).” 

 
L256. If a weight decay term is used, should not have been included in the loss function of 
Eq. 8? That will make clear what L2 means.  

We added a regularization term (R) to Eq. (8). In the “Training and validation” section 
(section 3.4) we then describe that regularization term in more detail (see previous 
answer). 

 
L257. “of the cost function in Eq. (8)”. Perhaps saying loss function, to refer to Eq. 8 with a 
single name throughout the paper?  
 We changed this to “loss function”. 
 
L262. “Instead, the models are run with a large number of epochs, and the lowest 
validation loss is recorded, so an increase in validation loss during the training (i.e., cases 
where the model is overfitting the training data at some point) has no impact on the overall 
performance evaluation”. It is not clear to me how you apply an “early-stopping 
technique” to control model complexity here. There can be situations where the validation 
loss starts to be smaller than the training loss, i.e., an indication of over-fitting, but, 
nevertheless, it keeps decreasing, although with a smaller rate than the training loss. At 
some point, the validation loss may reach a minimum. Is that minimum the “lowest 
validation loss” you describe, where you consider your ANN properly trained, so those are 
the selected ANN weights? But it could be the case that at that point the training loss was 
already smaller that the validation loss for a large number of epochs, so in principle the 
ANN could be already overfitting. Perhaps it is just not well explained, or I am missing 
something.  

There is a very small gap between the training and validation loss at the point of the 
minimum. However, for reasonably complex models this is to be expected. 
 
As mentioned in the revised manuscript, we tested different model setups with varying 
degrees of regularization (we also tested models with Gaussian noise applied to the layer 
outputs). For large amounts of regularization, the small gap between training and 
validation loss disappears. However, these models also consistently exhibited the lowest 
performance scores. For example, changing the weight decay term from 10-4 to 10-2 
mitigated the gap between training and validation loss. However, it also decreased Ac by 
0.05 (for the cloud classification models) and the correlation coefficients by 0.04 (for the 
cloud top pressure models). Similarly, qualitative assessment of model performance by 
means of example maps (like those presented in Figures 8 and 9 in the manuscript) 
confirmed the poorer performance. 
 
Regarding the impact of the “early-stopping”, we found that the validation loss never 
really increased, even for a large number of epochs. This is true for both model setups 
(using the final set of hyperparameters). The validation loss basically converges and stays 
at a global minimum. We confirmed this by running models without “early-stopping”, 
and those performed almost identically to the reported models. 
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We added this information to the revised manuscript: “Note that the lowest validation 
loss usually occurred after ~2,000–3,000 epochs for both the cloud classification and pCT 
prediction. No obvious increase in validation loss was observed, even for a large number 
of epochs. 

 
L273. “The ideal setup for the ANN”. Perhaps “ideal” is not the best word here, as there 
will exist a number of ANNs performing very closely (e.g., close but different number of 
nodes). An “appropriate” setup for the ANN?  
 We changed it according to the reviewer’s suggestions. 
 
L288. “This analysis revealed that the stochastic gradient descent optimizer, using a 
learning rate of 0.001, and a Nesterov momentum value of 0.9 yielded the overall best 
validation scores. The best weight decay and mini-batch size values were found to be 5 × 
10−4 and 1024 (i.e., 0.8% of the training data), respectively.” Stochastic gradient descent? 
Nesterov momentum? 

This part is not included in the revised manuscript. As mentioned earlier, we revised the 
ANN training setup (split of the data set into 70%/20%/10% training/validation/test data, 
correct assignment of the profile indices, treating the number of hidden layers as a 
hyperparameter). After re-running the k-fold cross validation with this setup, we found 
that the Adam optimizer yields (slightly) higher performance scores.  
 
The revised manuscript now states the following: 
“The Adam optimizer with a learning rate of 10−5 yielded the overall best validation 
scores for the cloud classification. Note that we applied the Adam optimizer with the 
standard settings described in the “Keras” documentation.” 

 
L292. “By chance, the most obvious cloud cases (e.g., C = 1 and very large QT values) 
might have ended up in the validation data set, or vice versa, and the trained weights might 
be inappropriate”. I would say that your random selection of training and validation cases, 
together with the relatively large number of samples, makes this very unlikely to happen. If 
it is happening, I would revise the sample selection strategy.  

We do not fully agree with the reviewer on this point, although we concede that the 
described scenario is rather unlikely (and, obviously, did not happen in our study). 
However, had we only developed a single model, even with a large data set, our 
confidence in the reliability of the derived weights would have been considerably lower. 
Only after training a large number of models and confirming that the performance scores 
were virtually identical, were we assured that the derived models were reliable. 
 
As a result, we decided to keep that statement in the revised manuscript. 

 
L294. “Moreover, a large disparity in validation scores for multiple models might be 
indicative of an ill-posed problem, where the MLS observations do not provide a 
reasonable answer to the cloud classification problem”. Yes, this is for me the valid reason 
to undertake these tests.  
 Thank you.  
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L297. “In this study, 100 different models are developed “. To be clear, the only thing that 
changes is the split in the training-validation datasets, the model hyperparameters are set 
to your final configuration, right?  

Correct. The same model setup, but a different random split between training and 
validation data. 
 
We added the following sentence to the revised manuscript: “The hyperparameters are 
identical for each model.” 

 
L300. “The output of each ANN model is a cloudiness probability (P ) between 0 (clear) and 
1 (cloudy)“. Perhaps this should have been already mentioned earlier in the text, e.g., 
around Eq. 7, as this is the consequence of building the binary classifier with a softmax 
function in the output node.  

We changed the respective sentence in section 3.1 (right before stating our choice of 
activation function): “We aim for a binary, two-class classification setup (i.e., either 
cloudy or clear designations) and information about the probability for each predicted 
class. As a result, the softmax function...” 

 
L339. Perhaps there is no need to give both absolute number of cases and percentages of 
the total. I personally found the percentages more informative.  

We removed the absolute numbers and only mention the percentages in the revised 
manuscript. 

 
L345. “Only 1.7% of clear profiles are falsely classified as cloudy by the new ANN 
algorithm, while the current v4.2x status flag mislabels 6.2% of these profiles”. I do not 
have doubts that the new cloud flag performs better than the V4.2 one. But I think it is 
worth mentioning that the V4.2 flag will always be penalized in these comparisons. The 
new flag has been trained on the same dataset used for the evaluation, while the V4.2 is 
independent of that dataset. For instance, biases in the MODIS cloud properties are likely 
to be learned by the ANN, and not shown in the evaluation. The V4.2 cloud, on the 
contrary, knows nothing about those biases.  

Indeed, the ANN will learn the idiosyncrasies of the MODIS data set, and the current 
v4.2x flag will always be penalized. Additionally, the L2 flag was not designed to detect 
all kinds of clouds, but only the thickest ones that reach high enough into the upper 
troposphere.  
 
Due to the revised analysis the number of false positives (i.e., cloudy predictions for clear 
profiles) is now closer to the v4.2x results. Therefore, the difference in classification 
performance between the ANN and v4.2x can be almost exclusively explained by their 
ability to detect clouds. We mention in the manuscript that the current flag is designed to 
only detect high-reaching convection, for which associated clouds are sufficiently opaque 
(note that the ANN appears to perform better for both the very opaque and the high 
clouds). It is unlikely that the poor v4.2x performance can be explained by uncertainties 
and biases in the MODIS retrievals. After all, the MODIS data set, while not indicative of 
the atmospheric truth, is widely considered to be one of the most reliable sources of cloud 
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information. We can safely assume that the MODIS results are a good approximation of 
the actual cloud conditions.  
 
However, we agree that it is still important to add a disclaimer to the revised manuscript 
(in addition to the other discussion concerning the fact that the MODIS results are not the 
actual atmospheric truth). We added the following statements at the beginning of sections 
4 and 5: 
“Note that a comparison between v4.2x and ANN results will naturally favor the ANN 
predictions, particularly any comparison made with reference to MODIS observations. 
Evaluating the performance of each cloud flag is based on the respective agreement to the 
MODIS-observed cloud conditions. However, the ANN is designed to replicate the 
MODIS results, while the v4.2x algorithm is not aware of the MODIS data set (including 
its uncertainties and biases).” 
And: 
“Similar to the cloud classification analysis, a comparison between v4.2x and ANN 
prediction performance will favor the ANN results, since the ANN is designed to 
replicate the MODIS observations.” 
 

L358. “It is essential to understand the ANN performance for the undefined, in-between 
cases”. Yes, I fully agree. As mentioned above, the ANN has never seen the undefined cases, 
so in principle it is extrapolating to classify those profiles.  

While the reviewer is correct, the ANN also has never learned the validation and test data 
(although profiles in the validation data set were used to determine the best set of 
hyperparameters). As stated in our reply to the prior comment (and demonstrated in the 
manuscript), the ANN provides good performance for previously unseen data. 
 
If the observed cloud top pressure is below 700 hPa, the performance scores are only 
slightly lower than for the validation and test data set. For example, the F1 score for the 
in-between cases is 0.90, while it is 0.94/0.96 for the validation/test data. This indicates 
that, even though the model is extrapolating to classify those samples, it does a 
reasonably good job.  No changes to the text were made in response to this comment. 

 
L379. “Due to the looser definitions, there is a significant drop in performance scores”. 
Could it be not just the looser definitions, but the fact that now the classes include cases 
never seen by the ANN as they were not part of the training dataset? Perhaps this is a more 
realistic assessment of how the ANN will perform later when faced with all MSL radiances.  

As mentioned earlier, this is definitely not the case. The revised manuscript now 
summarizes the classification performance for the validation and test data sets. All 
profiles from the training data are excluded from the analysis. The results for the 
undefined cases, which are also presented in the revised manuscript, are very close to the 
performance scores of the training/validation data.  

 
L399. “Each grid box covers an area of 60°x60° (latitude and longitude)”. Why not showing 
in a finer grid? For instance, the 3°x5° used for the remaining plots.  

In order to reliably calculate the binary statistics (e.g., F1 score or Mcc), we not only 
need to collect enough data points per grid box, but also the denominator in Eqs. (11-13) 
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needs to be non-zero. Figure 3 of this reply shows the results for the F1 score, if we use 
grid boxes with a 3x5 degree spatial resolution: 

 
Fig.3: F1 scores derived from the ANN (left panel) and v4.2x algorithm (right 
panel). Each grid box covers an area of 3°x5°. 

 
Note the large number of grid boxes for which the calculation of the F1 score fails, 
especially for the v4.2x algorithm. Here, there are either not enough data points or the 
denominator in Eq. (12) becomes 0. We only use the validation and test data set for this 
analysis. This is not a problem for the other panels in Figure 7 (panels c-f), as we use 
multiple years to calculate those statistics. 
 
However, similar to the maps in Figure 2, we changed the resolution to 15x15 degrees. 
This ensures that we have >160 profiles per grid box and, apart from a few grid boxes in 
the v4.2x analysis (mostly in the high latitudes), we can always calculate the F1 score. 
The respective maps are included in this reply for convenience: 
 

 
Fig. 4: Like Fig.3, but now each grid box covers an area of 15°x15°. 

 
L399. “In contrast to the results for the ANN algorithm, there is a clear latitudinal  
dependence for the performance of the v4.2x algorithm”. As I mentioned above, these 
comparisons penalize v4.2 as we are evaluating not with true cloud properties, but with the 
MODIS cloud properties targeted by the new flag. For instance, there may be the case that 
there is a latitudinal bias in the MODIS cloud parameters, and the ANN may learn it. But 
as he F1 scores are so poor for v4.2, we can still conclude that the new flag outperforms the 
v4.2 flag on the basis that MODIS C6 provides a realistic representation of clouds, even if 
not free from errors.  
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It is very unlikely that the difference in classification performance can be explained by 
the fact that the ANN learned any MODIS uncertainties or biases. Additionally, the 
shortcomings in the v4.2x predictions can be well explained.  
 
However, as mentioned in the reply to an earlier comment, we added disclaimers at the 
beginning of section 4 and section 5 that remind the reader of the fact that the ANN flag 
will be naturally favored in these comparisons. Also, the analysis in the revised 
manuscript is now only based on the validation and test data, i.e., the training data is 
excluded from the statistics. 
 
Note that, since the MODIS cloud retrievals have an excellent reputation, we consider it a 
success of this study that we can (reasonably) replicate the MODIS observations.  
 

L429. “Due to the reduced sensitivity towards such clouds (see the discussion in section 
3.3), the cloud covers predicted by the ANN are much closer to the MODIS results 430 that 
do not include low clouds”. This was a nice test, with a very reasonable agreement.  
 Thank you. 
 
L442. “Figure 8 shows two example cloud fields over the North American monsoon region. 
Nice and very illustrative examples.  
 Thank you. 
 
L480. “The input layer and the two hidden layers remain unchanged from the cloud 
classification setup. The labels in the output layer, instead of being set to either “0” or “1” 
(i.e., clear sky or cloudy), now contain the respective pCT reported by the colocated MLS- 
MODIS data set”. Two hidden layers are probably not required here, as this is definitely a 
continuous mapping between two finite spaces, so one hidden layer has the capability to 
approximate this mapping. Because of that, the ANN may look even more over- 
dimensioned than when acting as a binary classifier.  

While we agree that this is surprising, the two-layer models consistently outperformed 
one-layer models in our tests. If all other parameters remain fixed, the difference in 
correlation coefficient between one- and two-layer models is consistently in the range of 
0.01.  
 
This change is certainly small (about half the size of the drop in correlation coefficient 
associated with decreasing the number of neurons per layer). In fact, for the cloud top 
pressure models the lowest correlations were found to be ~0.75 (recorded for 100 neurons 
and a L2 parameter of 10-1) and even those models performed reasonably well. 
 
However, as stated earlier, we are not concerned about the complexity of the model and 
the associated computational costs. With our current setup, training 100 models takes ~1 
day on our computing cluster, while the predictions for a full day take <1 min. It is 
simply not necessary to reduce the complexity of the models, even though much simpler 
setups exhibit similarly high performance scores. No changes to the text were made in 
response to this comment. 
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L483. “Similarly, the model optimizer, learning rate and mini-batch size reported in 
section 3.4 for the cloud classification ANN provide the best set of hyperparameters”. Does 
it mean that you are using exactly the same hyperparameters? That looks strange to me, as 
you have a different mapping to approximate, so the optimal hyperparameters may not be 
necessarily the same.  

As stated earlier, this was a mistake. We not only fixed an unfortunate mix-up between 
training and validation data, we also defined an independent test data set (which required 
a new split of 70%/20%/10% for the training/validation/test data). We also added the 
number of hidden layers as a hyperparameter and correctly applied early-stopping. 
 
As a result, the number of hidden layers and learning rate differ from the cloud 
classification model, as described in the revised manuscript. 

 
L484. “here the only change concerns the weight decay parameter, which is turned off.” Is 
there a reason for that? Why approximating the new mapping does not require a weight- 
based regularization of the loss function, while the previous one required one?  

Again, this was a mistake. The model read the wrong control file (which summarizes the 
model parameters). This has been corrected in the revised manuscript.  

 
L487. “Joint histograms of true (in the sense that they are the prescribed labels to train the 
ANN)”. This is a good reminder about the fact that true here means MODIS-retrieved. It 
would have been nice to also introduce a bit more this idea when evaluating the results of 
the previous ANN with MODIS-retrieved cloudiness.  

We made sure that the revised manuscript does not contain phrases like “true values” or 
“truth” when referring to the MODIS targets. We also added paragraphs in section 3.2 
and the “Summary and conclusions section” that discuss the fact that the ANN will learn 
the MODIS uncertainties and biases. 
 
That particular sentence now reads as follows: 
“Joint histograms of observed and predicted pCT for all cloudy profiles in the validation 
and test data set are presented in Figures 10a and b, respectively.” 

 
L488. “are presented in Figure 10”. This seems like a much less detailed analysis of the 
ANN performance when retrieving pCT, compared with the cloud flag analysis. Even if the 
goal is only to differentiate between mid-to-low level clouds and high-reaching convection, 
other metrics than just the correlation, and how those metrics may depend on cloud type, 
altitude, location, and so on, could have been assessed.  

We extended the cloud top pressure analysis considerably, by adding more discussion 
about the statistical differences between observed and predicted results and the ability to 
detect high clouds (section 5.1). We also added global maps that illustrate the model 
performance and present average distributions of the predicted values, similar to those 
presented for the cloud classification algorithm (section 5.2). 

 
L494. “Three example scenes with the MODIS pCT”. Not suggesting that the presented 
cases are not interesting, but another option could have been to reuse the cases presented 
for the cloud flag. Specially the second example there seem to have the right mixture of 
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high and low clouds to permit an analysis of the pCT retrieval. Likewise, it could have been 
interesting to see the performance of the cloud classifier on the pCT scenes.  

We agree that it is best to present examples of cloud classification and cloud top pressure 
for the same example scenes. We changed Figure 12 accordingly. 

 
L515. “In this study, we present an improved cloud detection scheme based on the popular 
“Keras” Python library for setting up, testing, and validating feedforward artificial neural 
networks (ANNs)”. Perhaps more interesting than mentioning the library would have been 
to briefly describe the setup, i.e., something like a “standard multilayer perceptron 
configured to act as a binary classifier by using a softmax activation function in the output 
node and a cross-entropy loss function to derive the weights”.  
 The revised manuscript now states the following: 

“In this study, we present an improved cloud detection scheme based on a standard 
multilayer perceptron, a subcategory of feedforward artificial neural networks (ANNs). It 
applies a softmax activation function in the output layer for binary classifications (i.e., 
clear sky or cloudy), while a log–loss function is minimized to determine the model 
weights. A second setup, which applies a linear output in the output layer and determines 
the model weights by minimizing the mean squared error, is used to produce a cloud top 
pressure (pCT) estimate from MLS radiances that approximates the MODIS retrievals.” 

 
L533. “A comparison with the current v4.2x status flags reveals that for the complete data 
set in this study the new ANN results provide a significant improvement in cloud 
classification”. Perhaps a good place to briefly mention than the “truth” here is the target 
of the ANN calibration used to derive the new cloud flag.  
 We added the following paragraph before discussing the results: 

“It is important to note that the predicted cloud parameters do not represent the true 
atmospheric state. Since each ANN was trained on the colocated MODIS targets, it 
follows that they, at best, will replicate the respective MODIS results. The MODIS 
retrievals, however, are characterized by their own uncertainties and biases, which are 
subsequently learned and reproduced by the derived models. This means that analyses of 
ANN performance in this study only provide an evaluation of how well each model can 
replicate the colocated MODIS retrievals.” 

 
L550. “in future versions of the MLS v4.2x”. This may seem confusing, as a V5 has already 
been mentioned in the text. Or perhaps v4.2x does not supersede v5 and both will be 
coexisting, with both v4.2x and v5 benefiting from the new cloud flag algorithm?  

The way we phrased the outlook was confusing. We compared the ANN cloud flag to the 
operational v4.2x cloud flag, as v5.x data was still being processed at the time of writing. 
However, while the change in version includes revisions to the atmospheric composition 
retrieval algorithms, the MLS radiances and cloud detection code are identical between 
the two versions. This means that the ANN cloud classification is independent of the 
MLS L2 algorithm version. 
 
We plan to continue to provide both v4.2x and v5.x data products for the foreseeable 
future. In the revised manuscript we changed this sentence to: “This new cloud 
classification scheme, which will be included in future versions of the MLS dataset, 
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provides the means to reliably identify profiles with potential mid- to high-level cloud 
influence. Note that MLS radiances are not affected by the change from v4.2x to v5.0x.” 


