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Abstract. An improved cloud detection algorithm for the Aura Microwave Limb Sounder (MLS) is presented. This new

algorithm is based on a feedforward artificial neural network and uses as input, for each MLS limb scan, a vector consisting of

1,710 brightness temperatures provided by MLS observations from 15 different tangent altitudes and up to 13 spectral channels

in each of 10 different MLS bands. The model has been trained on global cloud properties reported by Aqua’s Moderate

Resolution Imaging Spectroradiometer (MODIS). In total, the colocated MLS-MODIS data set consists of 162,117 combined5

scenes sampled on 208 days over 2005–2020. We show that the algorithm can correctly classify > 96% of cloudy and clear

instances for previously unseen MLS scans. A comparison to the current MLS cloudiness flag used in “Level 2” processing

reveals a huge improvement in classification performance. For all profiles in the colocated MLS-MODIS dataset
✿✿✿✿✿✿✿✿✿

previously

✿✿✿✿✿✿

unseen
✿✿✿✿

data, the algorithm successfully detects 97.8%
✿✿✿✿✿

> 93%
✿

of profiles affected by clouds, up from 15.8%
✿✿✿✿✿✿

≈ 16% for the

Level 2 flagging. Meanwhile
✿✿

At
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time, false positives reported for actually clear profiles are reduced to 1.7%, down10

from 6.2% in Level 2.
✿✿✿✿✿✿✿✿✿✿

comparable
✿✿

to
✿✿✿

the
✿✿✿✿✿

Level
✿✿

2
✿✿✿✿✿✿

results.
✿

The classification performance is not dependent on geolocation
✿

,

✿✿✿

but
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿

decreases
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

low-cloud
✿✿✿✿✿

cover
✿✿✿✿✿✿

regions. The new cloudiness flag is applied to determine average global cloud

cover between 2015 and 2019
✿✿✿✿

maps
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

2015–2019, successfully reproducing the spatial patterns of mid-level to high clouds

reported in previous studies
✿✿✿

seen
✿✿

in
✿✿✿✿✿✿✿✿

MODIS
✿✿✿✿

data. It is also applied to four example cloud fields to illustrate the
✿✿

its
✿

reliable

performance for different cloud structures with varying degrees of complexity. Training a similar model on MODIS-retrieved15

cloud top pressure
✿✿✿✿

(pCT)
✿

yields reliable predictions with correlation coefficients greater than 0.99.
✿✿✿✿✿✿

> 0.82.
✿✿

It
✿✿

is
✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿

model
✿✿✿

can
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿

identify
✿✿✿✿✿✿

> 85%
✿✿

of
✿✿✿✿✿✿

profiles
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa.
✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿

model,
✿✿✿✿✿✿

global
✿✿✿✿

maps
✿✿✿✿

and

✿✿✿✿✿✿✿

example
✿✿✿✿✿

cloud
✿✿✿✿✿

fields
✿✿

are
✿✿✿✿✿✿✿✿✿

provided,
✿✿✿✿✿

which
✿✿✿✿✿

reveal
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

agreement
✿✿✿✿✿

with
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

results. The combination of cloudiness flag and

predicted cloud top pressure provides the means to identify MLS profiles in the presence of high-reaching convection.
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1 Introduction

The impact of clouds on Earth’s hydrological, chemical, and radiative budget is well established (e.g., Warren et al., 1988;

Ramanathan et al., 1989; Stephens, 2005). With the introduction of satellite imagery, the first studies of cloud observations from

space concentrated on the determination of cloud amount
✿✿✿✿

cover
✿

(e.g., Arking, 1964; Clapp, 1964). After the advent of multi-

spectral satellite radiometry, retrievals of increasingly comprehensive suites of cloud macrophysical, microphysical, and optical25

characteristics were developed (e.g., Rossow et al., 1983; Arking and Childs, 1985; Minnis et al., 1992; Kaufman and Nakajima,

1993; Han et al., 1994; Platnick and Twomey, 1994). Such efforts require a reliable cloud detection prior to the actual retrieval

process. Conversely, there are remote sensing applications where clouds, rather than being the subject of interest, are a source of

artifacts that negatively impact the observation of desired geophysical variables. For land and water classifications, clouds and

cloud shadows represent unusable data points that need to be detected accurately and discarded (e.g., Ratté-Fortin et al., 2018;30

Wang et al., 2019). Because of the similar spectral behavior of aerosols and clouds, and their complicated interactions, deriving

reliable aerosol properties from space requires careful cloud detection with high spatial resolution (e.g., Varnai and Marshak,

2018). Meanwhile, instruments
✿✿✿✿✿✿✿✿✿✿

Instruments operating in the ultraviolet to infrared spectral wavelength ranges cannot penetrate

any but the optically thinnest clouds. As a result, retrievals of atmospheric composition in the presence of clouds are severely

limited.35

Approaches to cloud detection from satellite-based imagers are characterized by varying levels of complexity, from simple

thresholding and contrast methods to multi-level decision trees (e.g., Ackerman et al., 1998; Ackerman et al., 2008; Zhao and Di Girolamo,

2007; Saponaro et al., 2013; Werner et al., 2016). In recent years fast machine learning algorithms have been employed to de-

tect cloudiness based on observed spatial and spectral patterns (e.g., Saponaro et al., 2013; Jeppesen et al., 2019; Sun et al.,

2020). Regardless of the technique, each algorithm must be designed purposefully and with the respective application in mind,40

as discussed in Yang and Di Girolamo (2008).

The Aura Microwave Limb Sounder (MLS), which has provided global retrievals of atmospheric constituent profiles from

∼10 km to ∼90 km since 2004, operates at frequencies from 118 GHz to 2.5 THz. In this spectral range clouds are much

more transparent than at shorter wavelengths, and the impact on the measured radiances is low. Only clouds with high liquid

and/or ice water content reaching altitudes of ∼9 km and higher can significantly impact the sampled radiances. The current45

MLS “Level 2” cloud detection algorithm is based on the computation of cloud induced radiances (Tcir), which represent the

difference between individual observations and calculated clear sky radiances (Wu et al., 2006). The latter are derived after

the retrieval of the other MLS data products. To first order, scattering from thick clouds diverts a mix of large upwelling

radiances,
✿

from lower in the atmosphere
✿

,
✿

and smaller downwelling radiancesfrom above ,
✿✿✿✿✿

from
✿✿✿✿✿

above,
✿

into the MLS raypath.

Accordingly, for sufficiently thick clouds within the MLS field of view, Tcir will be positive for limb pointings above an altitude50

of ∼ 9 km
✿✿✿✿✿✿

∼ 9 km, where non-scattered limb views are characterized by low radiances. Conversely, Tcir will be negative below

∼ 9 km
✿✿✿✿✿✿

∼ 9 km, where non-scattered signals would otherwise be large. In the MLS Level 2 processing, if the absolute value

of Tcir exceeds predefined detection thresholds, then the respective profile is flagged as being influenced by high or low

clouds, respectively. The thresholds are set for individual retrieval phases and spectral bands; e.g., for MLS bands 7–9, around
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a center frequency of 240 GHz, radiances are flagged where Tcir > 30K or Tcir <−20K. Subsequently, separate retrieval55

algorithms deduce ice water content and path from the Tcir information (Wu et al., 2008). Note that in earlier phases of the

MLS Level 2 processing, a similar scheme, computing clear sky radiances based on preliminary retrievals of temperature and

composition, is used to identify MLS radiances that have been significantly affected by clouds and discount
✿✿✿✿✿✿

discard
✿

them in

the final atmospheric composition retrievals.

The focus for the Level 2 flagging is on identifying cases where clouds impact the MLS signals sufficiently to potentially60

affect the MLS composition retrievals. However, the reliance on estimated clear sky radiances and the use of predefined

thresholds induces
✿✿✿✿✿✿

global,
✿✿✿✿✿✿✿✿✿✿✿✿

conservatively
✿✿✿✿✿✿

defined
✿✿✿✿✿✿✿✿✿

thresholds
✿✿✿✿

will
✿✿✿✿✿✿✿✿

inherently
✿✿✿✿✿✿

induce
✿

uncertainties in the current algorithm
✿✿✿✿✿

cloud

✿✿✿✿✿✿✿

detection
✿✿✿✿✿✿✿

scheme. For optically thinner clouds, where Tcir values are close to but do not exceed the prescribed thresholds, the

current cloud flag will provide a false clear classification. Improvements to the current cloud detection scheme could allow: (i) a

comprehensive uncertainty analysis of the retrieval bias induced by clouds, (ii) more reliable MLS retrievals in the presence65

of clouds, where a potential future correction of MLS radiances could account for the cloud influence, (iii) identification of

composition profiles that can be confidently considered to be completely clear sky, and (iv) the reliable identification of profiles

in the presence of high-reaching convection. Points (iii) and (iv) have the potential to enable new science studies. For example, a

reliable cloud mask for individual MLS profiles would enable more comprehensive analysis of lower-stratospheric water vapor

enhancements associated with overshooting convection. Currently, studies of these events rely on computationally expensive70

colocation of water vapor profiles with cloud properties from different observational sources (e.g., Tinney and Homeyer, 2020;

Werner et al., 2020; Yu et al., 2020).

This study describes the training and validation of an improved MLS cloud detection scheme employing a feedforward

artificial neural network (“ANN” hereinafter). This algorithm is
✿✿✿✿✿

derived
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

colocated
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

samples
✿✿✿

and
✿✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

cloud

✿✿✿✿✿✿✿

products
✿✿✿

and
✿✿

is designed to classify clear and cloudy conditions for individual MLS profiles, based purely on the sampled MLS75

radiances. Two specific goals are set for the new algorithm: (i) detection of both high and
✿✿✿✿

(e.g.,
✿✿✿✿✿

cirrus
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

cumulonimbus)
✿✿✿✿

and

mid-level clouds (e.g., stratocumulus and altostratus)
✿✿✿✿✿

clouds, and (ii) detection of less opaque clouds containing lower amounts

of liquid or ice water. Observed cloud conditions
✿✿✿✿✿✿✿

variables, used to train the ANN, are provided by the cloud products reported

by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua platform. Of the major satellite in-

struments, Aqua MODIS observations are ideal
✿✿✿✿

most
✿✿✿✿✿✿✿

suitable for this study, as they provide operational cloud products on a80

global scale that are essentially coincident and concurrent with the MLS observations.

The manuscript is structured as follows: section 2 describes both the MLS and MODIS data used in this study. Then a

short introduction to the general setup of a feedforward ANN is given in section 3.1, followed by specifics on the output

(section 3.2), input (section 3.3), and the training and validation procedure (section 3.4) of the developed models. Results of

applying the new
✿✿✿✿

from
✿✿✿✿✿✿✿✿

applying
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿

detection algorithm to MLS data are given in section 4, which includes a statistical85

comparison of the prediction performance between the Level 2 and new cloud detection schemes
✿✿✿✿✿

ANN
✿✿✿✿✿

results
✿

(section 4.1), a

discussion about ANN performance for uncertain cases (section 4.2), a global performance evaluation and cloud cover analysis

(section 4.3), and four examples scenes contrasting the performance of the Level 2 flag and the new algorithm for different

cloud fields in section 4.4. Subsequent training on MODIS-retrieved
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsequent
✿

cloud top pressure ,
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✿✿✿✿✿✿✿✿✿

predictions
✿✿

is
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿✿

section
✿✿

5,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

comprises
✿

an evaluation of the prediction performance , and three example scenes90

are presented in section5
✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿✿✿

assessment
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

model’s
✿✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿

detect
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿✿✿✿✿✿

(section
✿✿✿✿

5.1),
✿✿✿✿✿

global
✿✿✿✿✿

maps
✿✿✿✿✿✿✿

(section
✿✿✿✿

5.2),

✿✿✿

and
✿✿✿✿

four
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿

scenes
✿✿✿✿✿✿✿✿✿

comparing
✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

predictions
✿✿

to
✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿

(section
✿✿✿

5.3). The main conclusions and a brief

summary are given in section 6.

2 Data

Aura MLS samples brightness temperatures (TB) in five spectral frequency ranges around 118, 190, 240, 640, and 2,500 GHz95

(Waters et al., 2006) (the latter, measured with separate, independent optics, was deactivated in 2010 and is not considered

here). Multiple bands, consisting of 4–25 spectral channels, cover each of these frequency ranges
✿

;
✿✿✿

see
✿✿✿✿

Table
✿✿

4
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Waters et al. (2006)

✿✿✿

and
✿✿✿✿✿✿

Figure
✿✿✿✿

2.1.1
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Livesey et al. (2020). The exact position of the respective bands is dictated by
✿✿✿✿✿✿

specific
✿✿✿✿✿

bands
✿✿✿✿

was
✿✿✿✿✿✿

chosen

✿✿✿✿✿

based
✿✿

on
✿

the different absorption features
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿

of the various atmospheric constituents that MLS observes. MLS

makes ≈ 3500 daily vertical limb scans (called major frames; MAFs), each consisting of 125 minor frames (MIFs) that can100

be associated with tangent pressures (ptan) at different altitudes in the atmosphere. These observations provide the input for

profile retrievals of
✿✿✿✿✿✿✿

retrievals
✿✿✿

of
✿✿✿✿✿✿

profiles
✿✿

of
✿

a wide-ranging set of atmospheric trace gas concentrationsincluding water vapor,

ozone, and nitric acid. The respective Level 2 Geophysical Product (L2GP) files also report a status diagnostic for every MLS

profile, which includes flags indicating high and low cloud influence. The most recent MLS dataset is version 5; however,

at the time the ANN was being developed, reprocessing of the entire 16-year MLS record
✿✿✿✿

MLS
✿✿✿✿✿

record
✿✿✿

to
✿✿✿✿

date with the v5105

software had not yet been completed. Accordingly, L2GP cloudiness flags in this study are provided by the version 4.2x data

products (Livesey et al., 2020), and v4.2x is also the source for the Level 1 radiance measurements used herein.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿✿✿

sampled
✿✿✿✿✿✿✿✿

radiances
✿✿✿

are
✿✿✿✿✿✿✿

identical
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿

versions,
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿

revisions
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿✿

composition
✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿✿

algorithms

✿✿✿✿

yield
✿✿✿✿✿

subtle
✿✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿✿✿

cloudiness
✿✿✿✿✿

flags. The spatial resolution of MLS Level 2 products varies from species to

species, but typical values are 3 km in the vertical and 5× 500km in the cross-track and along-track dimensions. The distance110

along the orbit track between adjacent sampled profiles is ≈ 165 km
✿✿✿✿✿✿

profiles
✿✿

is
✿✿✿✿✿✿✿✿✿

≈ 165 km.

Global cloud variables used in this study are provided by retrievals from the Aqua-MODIS instrument, which precedes the

Aura overpass by about 15 minutes. However, because of the differences in their viewing geometries, the true time separation

between MLS and MODIS measurements is substantially smaller than 15 minutes (see section 3.2). MODIS collects radiance

data from 36 spectral bands in the wavelength range between 0.415–14.235µm. For a majority of the channel observations115

and subsequently retrieved cloud properties, the spatial resolution at nadir is 1,000m, although the pixel dimensions increase

towards the edges of a MODIS granule. Each granule has a viewing swath width of 2,330km, enabling MODIS to provide

global coverage every two days. More information on MODIS and its cloud product algorithms (the current version is Data

Collection 6.1) is given in Ardanuy et al. (1992); Barnes et al. (1998); Platnick et al. (2017). Each pixel, j, within a MODIS

granule reports a value for the cloud flag, a cloud top pressure (pjCT), cloud optical thickness (τ j), and effective droplet radius120

(rjeff ). These last two variables are used to derive the total water path (Qj
T), which contains both the liquid and ice water path

and characterizes the amount of water in a remotely sensed cloud column. It can be calculated following the discussions in

4



Brenguier et al. (2000); Miller et al. (2016):

Qj
T = Γ · ρj · τ j · rjeff, (1)

where ρj is the bulk density of water in either the liquid or ice phase (following the cloud phase retrieval for pixel j), and the125

factor Γ accounts for the vertical cloud structure. For vertically homogeneous clouds it can be shown that Γ = 2/3.

Table A1
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Appendix lists the 208 days that comprise the global data set used in this study. It consists of eleven random

days from each year
✿✿✿✿✿✿

twelve
✿✿✿✿✿✿

random
✿✿✿✿✿

days
✿✿✿✿✿✿✿✿

annually,
✿✿✿

one
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿

month,
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

years between 2005 and 2020, as well as a

pair of two consecutive daysto bring
✿✿✿

one
✿✿✿✿✿✿✿✿

additional
✿✿✿✿

day
✿✿✿✿

each
✿✿✿✿

year
✿✿✿

that
✿✿✿✿✿✿

forms
✿

a
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿

consecutive
✿✿✿✿✿

days.
✿✿✿✿

This
✿✿✿✿✿

brings
✿

the yearly

coverage to thirteen days. Particular attention was paid to ensure that each month is represented (close to) equally in the final130

data set.

3 Artificial neural network

This section provides details about the ANN setup and training. Here, we constructed and trained a multilayer perceptron,

which is a subcategory of feedforward ANNs that sequentially connects neurons between different layers.
✿✿

In
✿

a
✿✿✿✿✿✿✿✿✿✿✿

feedforward

✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

only
✿✿✿✿

gets
✿✿✿✿✿✿✿✿✿✿

propagated
✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

model
✿✿✿✿✿

layers
✿✿✿✿

and
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

directed
✿✿✿✿

back
✿✿

to
✿✿✿✿✿

affect
✿✿✿✿✿✿✿✿

previous135

✿✿✿✿✿

layers.
✿

An introduction to multilayer perceptrons is given in section 3.1. The output vector containing the labels (i.e., the binary

cloud classifications) based on a colocated MLS-MODIS data set, and the input matrices
✿✿✿✿✿✿

features
✿✿✿✿

(i.e.,
✿✿✿

the
✿✿✿✿✿

input
✿✿✿✿✿✿

matrix), which

consist of MLS TB observations, are described in sections 3.2 and 3.3, respectively. The choice of hyperparameters, the training

setup, and the validation results from the algorithm are provided in section 3.4.

The weights that connect the input to the output data are determined by the “Keras” library for Python (version 2.2.4;140

Chollet et al., 2015) with “TensorFlow” (version 1.13.1) as the backend (Abadi et al., 2016).

3.1 Algorithm description

Figure 1 illustrates the general setup of a simplified multilayer perceptron that contains four layers. The
✿

,
✿✿✿✿

and
✿✿

is
✿✿✿✿✿✿

purely

✿✿✿✿✿✿✿✿✿✿

instructional.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿

model
✿✿✿✿✿

setup
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿

sections
✿✿✿✿✿✿✿

3.2–3.4.
✿✿✿✿

The
✿

input layer (shown in

blue) consists of m= 3 vectors that contain selected MLS brightness temperatures TB1, TB2, and TB3. The input layer is145

succeeded by two hidden layers (shown in green) with two neurons each (Nh1−1 and Nh1−2, as well as Nh2−1 and Nh2−2)

and the respective bias vectors (B1 and B2). The following output layer (shown in orange) consists of a single vector (L;

containing the predicted labels) and a corresponding bias (BL). The brightness temperature vectors (TBi; i= 1,2,3) used as

input for the ANN are provided by TB observations in selected channels, bands, and minor frames. They are of length n, which

describes the number of scalar MLS observations (T j
Bi). This means, that i= 1,2,3 brightness temperatures were sampled by150

MLS at j = 1, . . . ,n major frames. Similarly, there is a scalar label Lj for each MAF, so L is also of length n.
✿✿✿

All
✿✿✿

bias
✿✿✿✿✿✿✿

vectors

✿✿

are
✿✿✿✿✿✿✿✿✿

initialized
✿✿

to
✿✿

1.
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At each neuron Nh1−k, k =1–2 in the first hidden layer
✿

, a scalar value γj
1−1 and γj

1−2 for each of the j MAFs is calculated:

γj
1−1 = B1−1 ·ω0,1 +T j

B1 ·ω1,1+T j
B2 ·ω2,1+T j

B3 ·ω3,1 (2)

γj
1−2 = B1−2 ·ω0,2 +T j

B1 ·ω1,2+T j
B2 ·ω2,2+T j

B3 ·ω3,2. (3)155

These values are subsequently modified by an activation function, which introduces non–linearity into the neuron output.

The hyperbolic tangent activation function is applied, which is shown to be very efficient during training because of its steep

gradients (e.g., LeCun et al., 1989; LeCun et al., 1998) ) and yields new values Γj
1−1 and Γj

1−2. For the second hidden layer,

the scalar neuron values at Nh2−k, k =1–2 for each MAF j are derived as:

γj
2−1 = B2−1 ·̟0,1 +Γj

1−1 ·̟1,1 +Γj
1−2 ·̟2,1 (4)160

γj
2−2 = B2−2 ·̟0,2 +Γj

1−1 ·̟1,2 +Γj
1−2 ·̟2,2. (5)

As before, these values are transformed by the hyperbolic tangent activation function, which yields the transformed neuron

values Γj
2−1 and Γj

2−2.

Finally, the neuron output from Nh2−1 and Nh2−2 is connected to the single vector L in the output layer. For each MAF j

the respective scalar value λj is calculated as:165

λj =BL ·Ω0 +Γj
2−1 ·Ω1 +Γj

2−2 ·Ω2. (6)

We aim for a binary, two–class
✿✿✿✿✿✿✿

two-class
✿✿✿✿✿

cloud
✿

classification setup (i.e., either cloudy or clear designations)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

information

✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

class. As a result, the softmax function normalizes the λj results at the output layer.

The softmax activation function is identical to the logistic sigmoid function for a binary, two–class classification setup. This

means that the predicted neuron output in the output layer is calculated as:170

L̂j =
1

1+ exp(−λj)
. (7)

The
✿✿✿✿✿

model
✿✿

for
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿

prediction
✿✿✿✿

uses
✿✿

a
✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿✿✿✿

pass-through
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

neuron
✿✿✿✿✿

output
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

output
✿✿✿✿✿

layer.
✿✿✿

The
✿

ideal

weights in Eqs. (2), (3), (4), (5) and (6) need to be derived iteratively by evaluating a loss function (χ), which is the log–loss

function (or cross-entropy) in the classification setup. If Lj and L̂j are the individual elements of the two output vectors L and

L̂ (i.e., the prescribed and currently predicted labels), χ for two classes is defined as:175

χ=−

n
∑

j=1

Lj
· ln(L̂j)+ (1−Lj) · ln(1− L̂j)+R

✿✿✿

. (8)

✿✿✿✿

Here,
✿✿

R
✿✿

is
✿✿

an
✿✿✿✿✿✿✿

optional
✿✿✿✿✿✿✿✿✿✿✿✿

regularization
✿✿✿✿

term
✿✿✿

that
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

control
✿✿✿

the
✿✿✿✿✿✿✿

stability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿

model.
✿

Note that in case of Lj = 0

or L̂j = 0 an infinitesimal quantity ǫ≈ 0 is added to the respective label to avoid the undefined ln0.
✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

for

✿✿

the
✿✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿✿✿

minimizes
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿✿

squared
✿✿✿✿✿

error. The “Keras” algorithm includes multiple optimizers to

solve Eq. (8) in a numerically efficient way. The exact setup and choice of hyperparameters need to be determined carefully180

via cross-validation during the training process (see section 3.4).
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3.2 The labels from colocated MLS-MODIS cloud data

Training data for the output vector L, which contains the prescribed labels for Eq. (8), is provided by the MODIS C6.1 data set

described in section 2. The reported MODIS cloud products are first colocated with individual MLS profiles.

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿✿✿✿

MLS
✿✿✿✿

orbit
✿✿

on
✿✿✿

19
✿✿✿✿

May
✿✿✿✿✿

2019
✿✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

2a.
✿✿✿✿

Each
✿✿✿✿

blue
✿✿✿

dot
✿✿✿✿✿✿✿✿✿

represents
✿✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

≈ 3500
✿✿✿✿

daily
✿✿✿✿✿✿✿

profiles185

✿✿✿✿✿✿✿

sampled
✿✿

by
✿✿✿✿✿

MLS.
✿✿✿✿✿

Note
✿✿✿✿

that
✿✿✿✿

there
✿✿✿

are
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿✿✿

ranges
✿✿✿

(in
✿✿✿

the
✿✿✿✿✿✿✿

tropics,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿

northern
✿✿✿✿

and
✿✿✿✿✿✿✿

southern
✿✿✿✿✿✿✿✿✿✿✿✿✿

mid-latitudes),

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿

orbits
✿✿✿✿✿

cross
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

times
✿

a
✿✿✿✿

day.
✿✿✿✿✿

Since
✿✿✿

the
✿✿✿✿✿✿✿✿✿

inclination
✿✿✿✿✿

angle
✿✿

of
✿✿✿✿

Aura
✿✿

is
✿✿✿✿✿

close
✿✿

to
✿✿✿✿

90◦,
✿✿✿✿

both

✿✿✿✿

polar
✿✿✿✿✿✿

regions
✿✿✿✿✿✿✿

contain
✿✿✿✿

more
✿✿✿✿✿

MLS
✿✿✿✿✿✿✿

profiles
✿✿✿✿

than
✿✿✿✿

other
✿✿✿✿✿✿✿✿

locations.
✿

The illustration in Figure 2a
✿

b depicts how colocation is performed. If nper is the number of MODIS pixels (gray shaded

squares) within a 1◦ × 1◦ box (in latitude and longitude; blue box) around an MLS profile (blue “x”), then each of the nper190

pixels reports a cloudiness flag, as well as a total water path (Qj
T) and a cloud top pressure (pjCT), with j = 1,2, ...,nper denoting

the individual pixels within the 1◦×1◦ box. Note that for legibility the cloud properties of only three MODIS pixels are shown.

For the respective MLS profile, these parameters are aggregated to more general cloud statistics consisting of the cloud cover

(C) within the 1◦× 1◦ box, as well as the median total water path (QT) and median cloud top pressure (pCT).
✿✿✿

Note
✿✿✿✿

that
✿✿✿

no

✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿✿✿✿

performance
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿

for
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿✿✿✿

aggregation
✿✿✿✿✿

scales
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

0.5◦× 0.5◦
✿✿✿

and
✿✿✿✿✿✿✿

2◦× 2◦.
✿

195

Figure 2b
✿

c
✿

shows the global distribution of sample frequencies for the colocated MLS-MODIS training data set within grid

boxes of length 60◦× 60◦
✿✿✿✿✿✿✿✿✿

15◦× 15◦ (latitude and longitude). While not every grid box contains the same number of profiles,

each area contains at least 5,000 samples. Apart from a single grid box over Africa, the higher latitudes tend to contain more

samples, because both Aqua and Aura are polar-orbiting satellites. A majority of grid boxes contain more than 8,000 samples.

✿✿✿✿✿

2,100
✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿✿✿✿✿

samples.
✿

A
✿✿✿✿✿✿✿✿✿

maximum
✿✿

in
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿

frequency
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿✿✿

denser
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

coverage
✿✿✿✿✿✿

around200

✿✿

the
✿✿✿✿✿✿

poles.

The aggregated profile-level cloud statistics are used to define the observed clear sky and cloudy conditions. All profiles

that are characterized by C ≥ 2/3, pCT < 700hPa, and QT > 50 g m−2 are labeled as cloudy, while profiles with C < 1/3

and QT < 25 g m−2 are considered to be associated with clear sky samples. While the cloud cover threshold is somewhat

arbitrary, the pCT limit for cloudy observations and theQT thresholds are carefully selected. The large opacity of the atmosphere205

for longer path lengths means that MLS shows almost no sensitivity towards clouds with pCT > 700hPa
✿✿✿✿✿✿✿✿✿✿✿✿

pCT ≥ 700hPa
✿

(see

section 3.3). This upper pressure limit, which in the 1976 US Standard Atmosphere (COESA, 1976) is located at an altitude of

∼ 3 km, is around the lower limit of observed cloud tops of mid-level cloud types (e.g., altostratus, altocumulus). Meanwhile,

the
✿✿✿

The
✿

10th and 25th percentiles of all profiles containing clouds within the 1◦ perimeter, regardless of C, are QT ≈ 25 g m−2

and QT ≈ 50 g m−2, respectively. These definitions have an additional benefit: they almost evenly split the data set into cloudy210

and clear sky profiles (52.0% and 48.0%, respectively), which improves the reliability of the trained weights for the cloud

classification.

Naturally, these definitions leave some profiles undefined (e.g., those with C in the range 1/3–2/3). These profiles (about the

number of the combined cloudy and clear classes) cannot be included in the training of the ANN, as they lack a prescribed
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label. The discussion in section 4.1 provides an analysis of the ANN performance for a redefined classification based on a215

simple threshold of C = 0.5 (in addition to a positive QT) to distinguish between cloudy and clear sky profiles.

✿✿✿✿✿

Figure
✿✿✿

2d
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿✿

frequencies
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

data
✿✿✿✿

set,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

comprises
✿✿✿✿

the
✿✿✿✿

clear
✿✿✿✿

sky

✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿

labels
✿✿✿✿✿✿

defined
✿✿✿✿✿✿✿

earlier.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿

depend
✿✿✿✿✿✿✿

strongly
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-observed
✿✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿

conditions

✿✿✿

(see
✿✿✿✿✿✿✿

section
✿✿✿

4.3
✿✿✿

for
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿✿

information).
✿✿✿✿✿✿✿

Regions
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

comparatively
✿✿✿✿

low
✿✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿✿✿✿

(most
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

African
✿✿✿✿✿✿✿✿✿

continent,
✿✿✿

as

✿✿✿

well
✿✿✿

as
✿✿✿✿✿✿✿✿

Australia
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Antarctica)
✿✿✿

and
✿✿✿✿✿

those
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿✿✿✿

occurrences
✿✿

of
✿✿✿✿

high
✿✿✿✿

and
✿✿✿✿✿✿✿✿

mid-level
✿✿✿✿✿✿✿

clouds
✿✿✿✿✿✿

(mostly
✿✿✿✿✿

over
✿✿✿✿✿

land)220

✿✿✿✿

show
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿✿

frequencies
✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿✿

areas
✿✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿

oceans.
✿✿✿✿✿

Three
✿✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿

low
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿✿✿

frequencies,
✿✿✿✿

west
✿✿✿

of

✿✿✿✿✿

South
✿✿✿✿✿✿✿✿

America,
✿✿✿✿✿✿

Africa,
✿✿✿✿

and
✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿

stand
✿✿✿✿

out.
✿✿✿✿✿

Those
✿✿✿✿✿

areas
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿✿✿

increased
✿✿

C
✿✿✿

of
✿✿✿

low
✿✿✿✿✿✿

clouds
✿✿✿

of
✿✿

up
✿✿

to
✿✿✿✿✿

80%

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Muhlbauer et al., 2014)
✿

.
✿✿✿✿✿✿✿

Similar
✿✿✿✿✿✿✿

patterns
✿✿✿

are
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

North
✿✿✿✿✿✿

Pacific
✿✿✿✿

and
✿✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿

Oceans,
✿✿✿✿✿

albeit
✿✿✿

to
✿

a
✿✿✿✿✿✿

lesser

✿✿✿✿✿

extent.
✿✿✿✿✿✿

Those
✿✿✿✿

MLS
✿✿✿✿✿✿✿

profiles
✿✿✿

are
✿✿✿✿✿✿✿✿✿

influenced
✿✿

by
✿✿✿✿✿✿

clouds
✿✿✿

that
✿✿✿

are
✿✿✿✿✿

either
✿✿✿

too
✿✿✿✿

low
✿✿

or
✿✿✿✿✿✿

exhibit
✿✿✿✿✿✿✿✿

C < 1/3,
✿✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿

therefore
✿✿✿

not
✿✿✿✿✿✿✿✿

included

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

data
✿✿✿

set
✿✿✿✿

(i.e.,
✿✿✿

are
✿✿✿

part
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

undefined
✿✿✿✿

class
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿✿

earlier).
✿

225

It is important to note that the difference in viewing geometry between MLS and MODIS (i.e., limb geometry versus nadir

viewing) induces a considerable degree of uncertainty in the colocation. While it is reasonable to assume that the majority of

a potential cloud signal (or lack thereof) will come from the 1◦ × 1◦ box around the respective MLS profile, there are certain

scenarios that will lead to a false classification. The most likely such scenario consists of an MLS line-of-sight that passes

through a high-altitude cloud before a clear sky 1◦ × 1◦ box. Here, MLS will detect a strong cloud signal, even though the230

nadir-viewing MODIS instrument does not record any cloudiness at the location of the respective MLS profile. Less likely is

the scenario of a very low-altitude cloud located right after (in terms of an MLS line-of-sight) a clear sky 1◦× 1◦ box. This

would also result in a false cloud classification (if the MODIS observations are taken as reference). However, because of the

increase in atmospheric opacity, the sensitivity of the MLS instrument towards signals further along the line-of-sight decreases,

and it is less likely that MLS would detect these cloud signals in any case. One contributor to the overall uncertainty that is of235

less concern is the time difference between the Aqua and Aura orbits (≈ 15minutes). Because MLS looks forward in the limb,

the temporal discrepancy between the sampling of individual MLS profiles and the colocated MODIS pixels is in the range of

0.6–1.4 minutes. The results presented in section 3.4 illustrate that by training the ANN with a large data set, as well as cross-

validating the training results against a large number of random validation data, the contributions of uncertainties associated

with colocation (both in space and time) can be considered small and do not overly impact the reliability of the cloud detection240

algorithm.

✿✿✿

The
✿✿✿✿✿✿

reader
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿

reminded
✿✿✿

of
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

proposed
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿

schemes
✿✿✿✿

will
✿✿✿

try
✿✿

to
✿✿✿✿✿✿✿✿✿✿

reproduce,
✿✿

as
✿✿✿✿

best
✿✿

as
✿✿✿✿✿

they
✿✿✿✿

can,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿

variables.
✿✿✿✿✿

Those
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿

have
✿✿✿✿

their
✿✿✿✿

own
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

and
✿✿✿✿✿✿

biases,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿

will

✿✿✿✿✿✿✿✿

inherently
✿✿✿✿✿

learn
✿✿✿✿✿

those
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-specific
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics.
✿✿✿

As
✿✿

a
✿✿✿✿✿✿

result,
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿

predictions
✿✿✿✿✿✿

should
✿✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿✿✿

considered
✿✿✿

the
✿✿✿✿

true

✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

state.
✿✿✿✿✿✿✿

Instead,
✿✿✿✿

they
✿✿✿✿✿✿✿✿

represent
✿

a
✿✿✿✿✿

close
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

values
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data
✿✿✿

set.245
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3.3 The input matrix from MLS brightness temperature observations

Figures 3a-c show the spectral behavior of TB sampled in MLS bands 2, 33, and 14 at MIF=15, which on average corresponds to

ptan ∼ 576hPa (at an altitude of ∼ 4.5km in the 1976 US Standard Atmosphere). In this section we mostly omit the superscript

“j” to indicate the statistical analysis of all T j
B in the respective band (j = 1,2, · · · ,n). The median TB for profiles associated250

with clear sky (orange) and cloudy conditions (blue), based on the classifications from the colocated MLS-MODIS data set

described in section 3.2, are shown by the solid lines and circles. The shaded orange and blue areas indicate the interquartile

range (IQR; 75th-25th percentile of data points) of clear and cloudy profiles. Data are from profiles sampled in the latitudinal

range of −30◦ to +30◦.

Median clear sky profiles exhibit consistently larger TB than cloudy observations, with differences of up to 10 K. This255

behavior confirms the findings in Wu et al. (2006), where ice clouds at an altitude of 4.7 km reduce band 33 TB at the lower

minor frames (i.e., larger ptan). The IQR ranges of the two different data sets are very close for band 2 observations (i.e., within

1–2 K), while there is overlap for the TB sampled in bands 33 and 14.

To illustrate the reduced sensitivity of MLS to signals from very low clouds, the median TB from profiles with pCT > 700hPa

✿✿✿✿✿✿✿✿✿✿✿✿

pCT ≥ 700hPa is shown in green (for clarity the corresponding IQR is omitted). These profiles behave similarly to clear sky260

observations, and the difference in median TB is less than 1 K.

Figures 3d-f illustrate the spectral behavior of TB sampled at MIF=33, which corresponds to an average ptan of ∼ 200hPa

(at an altitude of ∼ 12km in the 1976 US Standard Atmosphere). Similar to the results for the lower MIF, a clear separation

between median TB from clear sky and cloudy (100hPa ≤ pCT < 700hPa) profiles is observed, while those profiles associ-

ated with low clouds (pCT > 700hPa
✿✿✿✿✿✿✿✿✿✿✿

pCT ≥ 700hPa) again behave similarly to clear samples. For
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

from bands 2265

and 33observations
✿

, the cloudy profiles show significantly higher TB. Again, this confirms the reported behavior in Wu et al.

(2006), who found an increase in band 33 TB for cloudy conditions compared to the clear background. Conversely, band 14

observations behave similarly to those sampled at MIF=15,
✿

and the cloudy profiles exhibit lower TB.

The significant contrast in median TB between clear sky and cloudy profiles, especially for band 2 and partly for band 33,

might suggest the possibility of a simple cloud detection approach via thresholds. However, the respective IQR ranges often270

overlap, which indicates that a simple TB threshold would miss about 25% of
✿✿✿✿

both the clear and cloudy data, respectively
✿✿✿

the

✿✿✿✿✿

cloudy
✿✿✿✿

data. Moreover, the behavior illustrated in Figure 3 is specific to the latitudinal range of −30◦ to +30◦. For higher

latitudes, changes in atmospheric temperature and composition yield a noticeable decrease in the observed contrast, while

close to the poles the clear sky profiles almost always have lower TB than the cloudy observations (even at the lower MIFs).

A more sophisticated classification approach, with TB samples from additional MLS bands and minor frames, is necessary to275

derive a more reliable global cloud detection.

Table 2 details the MLS bands, as well as the respective
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

associated channels and MIFs, that comprise the m×n

input matrix for the ANN. The input matrix consists of m different T j
B, sampled in individual channels (within the respective

MLS bands) and MIFs, at n different times. To reduce the computational costs during the training of the model, not all MLS

observations are considered. Instead, three different bands are chosen from the 190, 240, and 640 GHz regions, respectively.280
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Those are bands 2, 3, 6,
✿

; bands 7, 8, 33,
✿

; and bands 10, 14, 28 for the three receivers
✿

,
✿✿✿✿✿✿✿✿✿✿

respectively. These bands were carefully

selected after a statistical analysis of the altitude-dependent contrast in observed TB between clear and cloudy profiles. This

contrast is generally low (in the range of 1 K) for the observations from the 118 GHz region, so only band 1 from this receiver

is included in the model input. For most bands, every second channel is included in the input (except for band 33, which only

has 4 channels in total), while considering every third MIF in the range 7–49 yields a decent vertical resolution between 15 hPa285

(for the highest altitudes) and 150 hPa (at the lowest altitudes). Overall, the input matrix for the training and validation of the

ANN is of shape 1,710× 162,117, ;
✿

i.e., it consists of m= 1,710 different features (T j
B at different frequencies and altitudes)

from n= 162,117 MAFs (either classified as clear sky or cloudy).

3.4 Training and validation

The “Keras” python library provides convenient ways to manage the setup, training, and validation of ANN models. The290

optimal weights for Eqs. (2), (3), (4), (5) and (6) are derived in three
✿✿✿

four
✿

steps: (i)
✿✿✿✿✿✿✿

defining
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

test
✿✿✿✿

data
✿✿✿✿

set,

✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

comprises
✿✿✿✿

10%
✿✿

of
✿✿✿

the
✿✿✿✿✿

clear
✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿

cases,
✿✿✿

and
✿✿✿✿

will
✿✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿

final
✿✿✿✿✿✿

model,
✿✿✿

(ii) determining the most

appropriate hyperparameters via k-fold cross-validation, (ii
✿✿

iii) training and validating a number of different models with the

best set of hyperparameters on multiple, random splits between training and validation data sets, and (iii
✿✿

iv) comparing the

performance scores for the different model runs to evaluate the stability of the approach and pick the best set of weights. Each295

model is set up with two hidden layers. The

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameters
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿

are
✿✿

(i)
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

hidden
✿✿✿✿✿✿

layers,
✿✿✿

(ii)
✿✿✿

the
✿

number of neurons per hidden layeris

set to 856, which corresponds to the average between the number of nodes in the input and output layers (i.e., 1,710 and 1,

respectively).

The hyperparameters to be determined are (i)
✿

,
✿✿✿

(iii) the optimizer for the cloud classification, (ii
✿✿

iv) the learning rate, (iii
✿✿✿✿✿✿✿✿

mini-batch300

✿✿✿✿

size,
✿✿

(v) the mini-batch size
✿✿✿✿✿✿

learning
✿✿✿✿

rate, and (iv
✿✿

vi) the value for the weight decay (i.e., the L2 regularization parameter). While

the optimizer choice and learning rate control how quickly
✿✿✿

The
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

hidden
✿✿✿✿✿✿

layers
✿✿✿

and
✿✿✿✿✿✿✿

neurons
✿✿✿✿✿✿

impact
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

complexity

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model.
✿✿✿✿

The
✿✿✿✿✿✿

choice
✿✿

of
✿✿✿✿✿✿✿✿

optimizer
✿✿✿✿✿✿✿

controls
✿✿✿✿

how
✿✿✿✿

fast
✿

and accurately the minimum of the cost
✿✿✿

loss
✿

function in Eq. (8) is

determined,
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

feature
✿✿✿✿

sets
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

minimization
✿✿✿✿✿✿✿✿✿✿

techniques.
✿✿✿✿✿✿

During
✿✿✿✿✿

each
✿✿✿✿✿✿✿

iteration
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

computes
✿✿

an
✿✿✿✿✿

error

✿✿✿✿✿✿✿

gradient
✿✿✿

and
✿✿✿✿✿✿✿

updates
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿

weights
✿✿✿✿✿✿✿✿✿✿

accordingly.
✿✿✿✿✿✿✿

Instead
✿✿

of
✿✿✿✿✿✿✿✿✿✿

determining
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿

gradient
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

full
✿✿✿✿✿✿✿

training
✿✿✿

data
✿✿✿✿

set,305

✿✿✿

our
✿✿✿✿✿✿

models
✿✿✿✿

only
✿✿✿

use
✿

a
✿✿✿✿✿✿✿

random
✿✿✿✿✿

subset
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

data
✿✿✿✿✿

(called
✿✿

a
✿✿✿✿✿✿✿✿✿

mini-batch)
✿✿✿✿✿✿

during
✿✿✿✿

each
✿✿✿✿✿✿✿✿

iteration.
✿✿✿✿

This
✿✿✿

not
✿✿✿✿

only
✿✿✿✿✿

speeds
✿✿✿

up
✿✿✿

the

✿✿✿✿✿✿

training
✿✿✿✿✿✿✿

process,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿✿✿✿✿

introduces
✿✿✿✿✿

noise
✿✿

in the values for mini-batches and the
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

gradient,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

improves

✿✿✿✿✿✿✿✿✿✿✿

generalization
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

models.
✿✿✿

The
✿✿✿✿✿✿✿

learning
✿✿✿✿

rate
✿✿✿✿✿✿✿

controls
✿✿✿✿

how
✿✿✿✿✿✿✿

quickly
✿✿✿

the
✿✿✿✿✿✿

weights
✿✿✿

are
✿✿✿✿✿✿✿

updated
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

gradient.
✿✿✿✿✿

Thus,

✿✿

the
✿✿✿✿

size
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

learning
✿✿✿

rate
✿✿✿✿✿✿

affects
✿✿✿

the
✿✿✿✿✿✿

speed
✿✿

of
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿✿

(higher
✿✿

is
✿✿✿✿✿✿

better)
✿✿✿

and
✿✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿

detect
✿✿✿✿✿

local
✿✿✿✿✿✿✿

minima
✿✿

in
✿✿✿

the
✿✿✿✿

loss

✿✿✿✿✿✿✿

function
✿✿✿✿✿

(lower
✿✿

is
✿✿✿✿✿✿✿

better).
✿✿✿✿✿✿✿✿✿✿

Meanwhile, L2 regularization characterize the level of noise and degree of freedom in the models,310

which have a noticeable impact on model performance for new, previously unseen data.
✿✿✿✿✿✿✿✿✿✿✿

regularization
✿✿

is
✿✿✿

one
✿✿✿✿✿✿

method
✿✿

to
✿✿✿✿✿✿✿

specify

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

regularization
✿✿✿✿

term
✿✿

R
✿✿

in
✿✿✿

Eq.
✿✿✿✿

(8),
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

sum
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

squared
✿✿✿✿✿✿✿

weights
✿

is
✿✿✿✿✿✿✿✿✿

multiplied
✿✿✿✿

with
✿✿✿

the
✿✿✿

L2
✿✿✿✿✿✿✿✿✿

parameter:

R= L2 ·
∑

ω2+̟2 +Ω2.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(9)
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✿✿✿✿

Note
✿✿✿

that
✿✿✿

for
✿✿✿✿✿✿

clarity
✿✿

we
✿✿✿✿✿✿✿

omitted
✿✿✿

the
✿✿✿✿✿✿

indices
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿

weights
✿✿

in
✿✿✿

Eq
✿✿✿

(9).
✿✿✿

The
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

regularization
✿✿

is
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿✿✿

the

✿✿✿✿

value
✿✿

of
✿✿✿

the
✿✿✿

L2
✿✿✿✿✿✿

weight
✿✿✿✿✿

decay
✿✿✿✿✿✿✿✿✿

parameter.
✿✿✿✿✿✿✿✿✿✿✿✿

Regularization
✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿

improves
✿✿✿✿✿✿✿✿✿✿✿✿

generalization
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

models.
✿

More information about315

ANN hyperparameters and their impact on the reliability of model predictions can be found in, e.g., Reed and Marks ll (1999); Goodfellow et al.

. Note that the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Reed and Marks ll (1999)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Goodfellow et al. (2016).
✿

✿✿✿

The
✿✿✿✿✿✿✿

optimal
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿

hidden
✿✿✿✿✿

layers
✿✿✿

and
✿✿✿✿✿✿✿

neurons
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

to
✿✿

be
✿✿

in
✿✿✿

the
✿✿✿✿✿

range
✿✿✿✿

1–2
✿✿✿

and
✿✿✿✿✿✿✿✿✿

100–1,200
✿✿✿

(in
✿✿✿✿✿✿✿✿✿

increments
✿✿✿

of

✿✿✿✿

100),
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

mini-batch
✿✿✿✿

size
✿✿✿✿✿✿✿✿

alternated
✿✿✿✿✿✿✿

between
✿✿✿

25
✿✿✿

and
✿✿✿✿

213.
✿✿✿

The
✿✿✿✿✿✿✿

learning
✿✿✿✿

rate
✿✿✿✿

was
✿✿✿✿✿

varied
✿✿✿✿✿✿✿

between
✿✿✿✿✿

10−6
✿✿✿

and
✿✿✿✿✿

10−2
✿✿

in

✿✿✿✿✿✿✿✿✿

increments
✿✿

of
✿

2
✿✿✿✿✿✿

levels
✿✿✿

per
✿✿✿✿✿✿

decade;
✿✿✿

the
✿✿✿

L2
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿

covered
✿✿

a
✿✿✿✿

range
✿✿✿✿✿✿✿✿

between
✿✿✿✿

10−7
✿✿✿✿

and
✿✿✿✿

10−1
✿✿✿

(as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿

L2 = 0).320

✿✿✿

The
✿

number of epochs (i.e., the number of iterations during the training process) is not considered an important hyperpa-

rameter for this study. Instead, the models are run with a large number of epochs, and the lowest validation loss is recorded, so

an increase in validation loss during the training (i.e., cases where the model is overfitting the training data at some point) has

no impact on the overall performance evaluation.
✿✿✿✿

Note
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿✿✿✿

validation
✿✿✿

loss
✿✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿

occurred
✿✿✿✿

after
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∼ 2,000− 3,000

✿✿✿✿✿✿

epochs
✿✿✿

for
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿

and
✿✿✿✿

pCT
✿✿✿✿✿✿✿✿✿

prediction.
✿✿✿

No
✿✿✿✿✿✿✿

obvious
✿✿✿✿✿✿✿

increase
✿✿✿

in
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

loss
✿✿✿✿

was
✿✿✿✿✿✿✿✿

observed,
✿✿✿✿

even
✿✿✿

for
✿✿

a325

✿✿✿✿

large
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

epochs.
✿

3.4.1
✿✿✿✿✿✿✿✿✿✿✿

Determining
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameters

At first, the data set is
✿✿✿✿✿✿✿✿

remaining
✿✿✿✿

90%
✿✿✿

of
✿✿✿✿

data
✿✿✿✿✿

points
✿✿✿✿✿

(after
✿✿✿✿✿✿✿✿

removing
✿✿✿

the
✿✿✿✿✿✿✿

random
✿✿✿

test
✿✿✿✿

data
✿✿✿

set)
✿✿✿

are
✿

randomly shuffled and split

into k = 4 parts. Subsequently, one of the four parts is used as the validation data set, and the other three are used to train the

ANN with a certain set of hyperparameters. Here, each of the 1,710 features is individually standardized, i.e., each feature330

✿✿✿✿

input
✿✿✿✿✿✿✿

variable
✿

is transformed to have a mean value of 0 and unit variance. This step is essential for a successful ANN training,

as the individual features are characterized by different dynamic ranges. Meanwhile, the labels for clear and cloudy profiles

are simply set to 0 and 1, respectively.
✿✿

For
✿✿✿

the
✿✿✿✿

pCT
✿✿✿✿✿✿

models
✿✿✿

the
✿✿✿✿✿

labels
✿✿✿

are
✿✿✿✿✿✿

simply
✿✿✿

set
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿

pCT
✿✿✿✿✿✿

values.
✿

After model

convergence and determination of a set of performance scores, the model is discarded and a different set of three parts is used

for training (the remaining fourth part is again used for validation). After cycling through each of the four parts (and recording335

four sets of performance scores), the set of hyperparameters is changed and the process begins anew. An evaluation of each set

of performance scores, for each set of hyperparameters, reveals the ideal
✿✿✿✿✿✿✿✿✿

appropriate
✿

setup for the ANN.

The performance scores employed in this study
✿✿

for
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿

training are three commonly used binary classi-

fication metrics, based on the calculation of a confusion matrix M for the two classes (i.e, clear sky and cloudy profiles). If

tp and tn are the number of true positives and negatives, respectively, and fp and fn are the number of false positives and340

negatives, respectively, then the confusion matrix is defined as:

M=





tp fp

fn tn



 . (10)
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From M the accuracy (Ac), F1 score (F1) and Matthews correlation coefficient (Mcc) can be derived as:

Ac=
tp+ tn

tp+ tn+ fp+ fn
(11)

F1 =
2 · tp

2 · tp+ fp+ fn
(12)345

Mcc=
tp · tn− fp · fn

√

(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)
. (13)

While Ac quantifies the proportion of correctly classified samples, F1 describes the harmonic mean value between precision

(proportion of true positives in the positively predicted ensemble, i.e., the ratio of tp to tp+fp) and recall (proportion of

correctly predicted true positives, i.e., the ratio of tp to tp+fn). Generally, F1 assigns more relevance to false predictions and

is more suitable for imbalanced classes. Meanwhile, all
✿

,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿

data
✿✿✿✿

sizes
✿✿✿✿✿

vary
✿✿✿✿✿✿✿✿✿✿

significantly.
✿✿✿✿

All elements of350

the confusion matrix are important in determining the Mcc, which yields values between −1 and 1 and thus is analogous to a

correlation coefficient.

This
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿✿✿✿✿

evaluation
✿✿✿

for
✿✿✿

the
✿✿✿

pCT
✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿✿✿✿

application,
✿✿✿

on
✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

Pearson
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

product-moment

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

(r)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

root-mean-square
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿

(RMSD).
✿

✿✿✿

For
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿✿✿✿

application,
✿✿✿✿

this analysis revealed that the stochastic gradient descent optimizer, using a learning355

rate of 0.001,
✿✿✿✿✿✿

models
✿✿✿✿✿

using
✿✿✿

one
✿✿✿✿✿✿

hidden
✿✿✿✿✿

layer
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿

outperformed
✿✿✿✿✿

those
✿✿✿✿

with
✿✿✿

two
✿✿✿✿✿✿

hidden
✿✿✿✿✿✿

layers.
✿✿✿✿

The
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

neurons
✿✿✿

per

✿✿✿✿✿

hidden
✿✿✿✿✿

layer
✿✿✿

had
✿✿

a
✿✿✿✿✿✿✿✿

negligible
✿✿✿✿✿✿

impact,
✿✿✿

as
✿✿✿✿

long
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿✿

was
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿✿

200.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿

models
✿✿✿✿

with
✿✿✿

800
✿

and a Nesterov

momentum value of 0.9
✿✿✿

900
✿✿✿✿✿✿✿✿

neurons
✿✿✿✿✿✿✿✿

exhibited
✿✿✿✿✿✿✿

average
✿✿✿

Ac
✿✿✿✿✿

values
✿✿✿✿

that
✿✿✿✿✿

were
✿✿✿✿✿✿

0.0002
✿✿✿✿✿✿

higher
✿✿✿✿

than
✿✿✿✿✿

those
✿✿

of
✿✿✿✿✿

other
✿✿✿✿✿✿

setups.
✿✿✿✿

We

✿✿✿✿✿✿✿✿

ultimately
✿✿✿

set
✿✿

it
✿✿

to
✿✿✿✿

856,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

nodes
✿✿

in
✿✿✿

the
✿✿✿✿✿

input
✿✿✿

and
✿✿✿✿✿✿

output
✿✿✿✿✿

layers
✿✿✿✿✿

(i.e.,

✿✿✿✿✿

1,710
✿✿✿

and
✿✿

1,
✿✿✿✿✿✿✿✿✿✿✿✿

respectively).
✿✿✿

The
✿✿✿✿✿✿

Adam
✿✿✿✿✿✿✿✿

optimizer
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿

learning
✿✿✿

rate
✿✿✿

of
✿✿✿✿

10−5
✿

yielded the overall best validation scores . The360

best weight decay
✿✿

for
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿✿

classification.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿

applied
✿✿✿✿

the
✿✿✿✿✿

Adam
✿✿✿✿✿✿✿✿

optimizer
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿

settings
✿✿✿✿✿✿✿✿✿

described

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

“Keras”
✿✿✿✿✿✿✿✿✿✿✿✿✿

documentation.
✿✿✿

The
✿✿✿✿

best
✿✿✿

L2
✿✿✿✿✿✿✿✿

parameter
✿

and mini-batch size values were found to be 5× 10−4 and 1024
✿✿✿✿

50−4

✿✿✿

and
✿✿✿✿✿

1,024
✿

(i.e., 0.8% of the training data), respectively.
✿✿✿

Note
✿✿✿✿

that
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿

choice
✿✿

of
✿✿✿

L2
✿✿✿✿

had
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿✿✿

performance,
✿✿✿

the
✿✿✿✿✿

impact
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

mini-batch
✿✿✿

size
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿

comparable
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿

neurons
✿✿✿

(as
✿✿✿✿

long
✿✿

as
✿✿

it
✿✿✿✿

was
✿✿✿✿✿

> 26).
✿

✿✿✿

For
✿✿✿

the
✿✿✿

pCT
✿✿✿✿✿✿✿✿✿✿

prediction,
✿✿✿✿✿✿✿✿

two-layer
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿

noticeably
✿✿✿✿✿✿✿✿✿✿✿✿

outperformed
✿✿✿✿✿

single
✿✿✿✿✿

layer
✿✿✿✿

ones,
✿✿✿

as
✿✿✿

the
✿✿✿✿

drop
✿✿

in
✿✿✿✿✿✿✿

average
✿

r
✿✿✿✿

was
✿✿✿✿✿✿✿

> 0.01.365

✿✿✿✿✿

Again,
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿

neurons
✿✿✿

had
✿✿✿✿

only
✿✿

a
✿✿✿✿✿✿✿

minimal
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

performance,
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

variations
✿✿

in
✿

r
✿✿✿

of
✿✿✿✿✿✿

≈ 0.02.
✿✿✿✿✿✿✿✿✿

However,

✿✿✿✿✿✿

models
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

800–1,000
✿✿✿✿✿✿✿

neurons
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

best,
✿✿

so
✿✿✿

we
✿✿✿✿✿

again
✿✿✿

set
✿✿✿✿

this
✿✿✿✿✿✿

number
✿✿✿

to
✿✿✿✿

856.
✿✿✿✿

The
✿✿✿✿

best
✿✿✿✿✿✿✿✿

optimizer,
✿✿✿✿✿✿✿✿

learning
✿✿✿✿

rate,
✿✿✿

L2

✿✿✿✿✿✿✿✿

parameter,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

mini-batch
✿✿✿✿

size
✿✿✿✿

were
✿✿✿✿✿

found
✿✿

to
✿✿✿

be
✿✿✿✿✿

Adam,
✿✿✿✿✿✿

10−4,
✿✿✿✿✿

50−4,
✿✿✿

and
✿✿✿✿✿✿

1,024,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿

3.4.2
✿✿✿✿✿✿✿✿✿

Validation
✿✿✿✿✿✿✿✿

statistics

Due to randomness during the assignment of individual observations to either the training or validation data set, developing370

a single model might result in evaluation scores that are overly optimistic or pessimistic. By chance, the most obvious cloud

cases (e.g., C = 1 and very large QT values) might have ended up in the validation data set, or vice versa, and the trained

weights might be inappropriate. Moreover, a large disparity in validation scores for multiple models might be indicative of

an ill-posed problem, where the MLS observations do not provide a reasonable answer to the cloud classification problem.
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Therefore, developing multiple models with a reasonable split of training and validation data, as well as careful monitoring375

of the spread in validation scores, is imperative. In this study, 100 different models are developed. Before each model run,

the data set
✿✿✿✿✿

(minus
✿✿✿✿

the
✿✿✿

test
✿✿✿✿

data
✿✿✿✿

set) is randomly shuffled and split into 75% training and 25%
✿✿✿✿✿✿

training
✿✿✿✿

and validation data.

✿✿✿

The
✿✿✿✿✿

splits
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

training/validation/test
✿✿✿✿

data
✿✿✿

are
✿✿✿

set
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

70/20/10%.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameters
✿✿✿

are
✿✿✿✿✿✿✿✿

identical
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿

model.
✿

As

mentioned earlier, each model is run with a large number of epochs, and the weights associated with the lowest validation loss

are recorded.
✿✿✿✿✿✿✿

Training
✿✿

of
✿✿✿✿✿

these
✿✿✿

100
✿✿✿✿✿✿

models
✿✿✿✿

took
✿✿✿

∼1
✿✿✿✿

day.
✿

380

The output of each ANN
✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification model is a cloudiness probability (P ) between 0 (clear) and 1 (cloudy). Note that

throughout this study we simply group each prediction in either the clear or cloudy class, i.e., MAFs with predicted probabilities

0≤ P < 0.5 are considered to be sampled under clear sky conditions, while MAFs with 0.5≤ P ≤ 1 are considered to be

cloudy. The one exception is the discussion in section 4.2, where the actually predicted P are employed to study the ANN

performance for undefined cloud conditions (with respect to the clear sky and cloudy definitions presented in section 3.2).385

A summary of the derived prediction statistics is shown in Figure 4a. Each histogram shows the average percentage of

correctly predicted clear sky (i.e., tn, orange shading) and cloudy (i.e., tp, blue shading) labels for all 100 validation data sets.

Also shown are the percentages of false classifications (the blue and orange lines for fp and fn
✿✿✿

and
✿✿

fp, respectively). The gray

shaded horizontal areas at the top of each histogram illustrate the standard deviation for each class, calculated from the 100

validation data sets. The average percentage of correct clear sky and cloudy predictions is 97.4% and 96.8%
✿✿✿✿✿

93.7%
✿✿✿✿

and
✿✿✿✿✿

93.2%,390

respectively, while a false cloudy or clear sky prediction occurs for 2.6% and 3.2%
✿✿✿✿✿

6.3%
✿✿✿

and
✿✿✿✿✿

6.8% of profiles in the validation

data. The standard deviation for all four groups is 0.3%
✿✿✿✿

0.2%.

Figure 4b shows a scatter plot of all Mcc values as a function of the respective F1. Even though the Mcc penalizes false

classifications more severely than F1, a high Pearson’s product-moment correlation coefficient of> 0.99
✿✿✿✿✿✿✿

r = 0.97 is observed.

Moreover, there is little variability in the 100 derived binary statistical metrics, with average Ac, F1, and Mcc values of395

0.971± 0.001, 0.971± 0.001, and 0.942± 0.003
✿✿✿✿✿✿✿✿✿✿✿✿

0.934± 0.001,
✿✿✿✿✿✿✿✿✿✿✿✿

0.937± 0.001,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

0.868± 0.003. These results illustrate that

the derived models are well suited to predict cloudiness for new MLS data (i.e., measurements not involved in the training of

the models) and that the trained weights are very stable (i.e., all models exhibit very similar binary statistics, regardless of the

✿✿✿✿✿✿✿✿

respective
✿

training or validation data set).

✿✿✿✿✿✿✿✿

Similarly,
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

of
✿✿

r
✿✿✿

and
✿✿✿✿✿✿✿

RMSD
✿✿✿✿✿✿✿✿

(referring
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿

and
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿

the400

✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿

data),
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿✿

variables,
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figures
✿✿✿✿✿

4c-d,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿✿✿

Average
✿✿✿✿✿✿

values
✿✿

of

✿✿✿✿✿✿✿✿✿✿✿

0.819± 0.001
✿✿✿

(r)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

80.268± 0.160hPa
✿✿✿✿✿✿✿

(RMSD)
✿✿✿

are
✿✿✿✿✿✿✿✿

observed.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿

parameters
✿✿

is
✿✿✿✿✿✿✿✿✿

r =−0.77.
✿

Given the statistical robustness of the results, the model with the highest Mcc provides the
✿✿✿

and
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿

RMSD
✿✿✿✿✿✿✿

provide
✿✿✿

the

✿✿✿✿

ANN
✿

weights for cloud classification going forward
✿✿✿

and
✿✿✿

pCT
✿✿✿✿✿✿✿✿✿

prediction
✿✿

in
✿✿✿

this
✿✿✿✿✿

study,
✿✿✿✿✿✿✿✿✿✿

respectively.

4
✿✿✿✿✿

Cloud
✿✿✿✿✿✿✿✿✿

detection:
✿

Results and examples405

This section includes a detailed comparison between the
✿✿✿✿✿✿✿✿

predicted cloud classifications from the current MLS v4.2x and the

new ANN-based algorithms in section 4.1, followed in section 4.2 by a discussion of predicted cloudiness probabilities that
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illustrates the performance of the new ANN cloud flag for less confident cases (i.e., those outside of the trainingand validation
✿

,

✿✿✿✿✿✿✿✿

validation,
✿✿✿✿

and
✿✿✿

test
✿

data sets). This section also presents an analysis of the latitudinal dependence of the ANN performance

and derived global cloud cover statistics in section 4.3, as well as a close-up look at cloudiness predictions for some example410

scenes over both the North American and Asian monsoon regions (section 4.4).

✿✿✿✿

Note
✿✿✿

that
✿✿

a
✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿

between
✿✿✿✿✿

v4.2x
✿✿✿

and
✿✿✿✿✿

ANN
✿✿✿✿✿✿

results
✿✿✿

will
✿✿✿✿✿✿✿✿

naturally
✿✿✿✿

favor
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

predictions,
✿✿✿✿✿✿✿✿✿

particularly
✿✿✿

any
✿✿✿✿✿✿✿✿✿✿

comparison

✿✿✿✿

made
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

reference
✿✿

to
✿✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿✿✿✿✿✿✿

Evaluating
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿✿✿

each
✿✿✿✿✿

cloud
✿✿✿✿

flag
✿✿

is
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective

✿✿✿✿✿✿✿✿

agreement
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-observed
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿

the
✿✿✿✿✿

ANN
✿✿

is
✿✿✿✿✿✿✿

designed
✿✿✿

to
✿✿✿✿✿✿✿

replicate
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

results,
✿✿✿✿✿

while

✿✿

the
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

is
✿✿✿

not
✿✿✿✿✿

aware
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿

data
✿✿

set
✿✿✿✿✿✿✿✿✿

(including
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

and
✿✿✿✿✿✿

biases).
✿

415

4.1 Prediction performance of current L2GP and new ANN cloud flag

The analysis in section 3.4 indicates that the ANN setup can reliably identify MLS profiles that have been influenced by

substantial cloudiness within a 1◦× 1◦ box
✿✿✿✿✿✿✿✿

reproduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿

cloudiness
✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿

identified
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data

✿✿

set. Figure 5 provides a closer look at the performance of the new ANN-based and v4.2x cloud flags for all n= 162,117

✿✿✿✿✿✿✿✿✿

n= 32,425
✿✿✿✿✿✿✿✿

(16,211)
✿

profiles associated with either the clear sky or cloudy class . Note that these results include scenes taken420

from both the training and the validation data sets. This yields a slight increase in classification performance compared to the

results shown in Figure 4, because the comparison includes data the models have been trained on. This increase in classification

performance is in the range of∼ 1% and is expected to decrease if future versions of the ANN are trained on even larger, more

comprehensive data sets.
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿

(test)
✿✿✿✿

data
✿✿✿

set.

Figures 5a and c
✿

b present the percentage of correctly classified (blue) and falsely classified (orange) cloudy
✿✿✿✿✿✿✿✿

validation425

profiles, as determined by the cloudiness definition for the colocated MLS-MODIS data set described in section 3.2. The

frequency of predicted labels from the (a) new ANN-based algorithm and (c
✿

b) v4.2x cloud flag are shown as a function

of QT. Note that because of the general cloudiness definition, only those profiles with QT > 50 g m−2 are considered (see

section 3.2). The flags predicted by the ANN correctly classify 82,503 (97.8%)
✿✿✿✿✿

93.3%
✿

of the cloudy profiles. In particular, the

thickest clouds, those with QT ≥ 1,000 g m−2, are detected in 95.8%
✿✿✿✿✿

78.0%
✿

of cases. Conversely, the current v4.2x status flag430

only detects 13,338 of the 84,323 cloudy profiles(i. e., 15.8%).
✿✿✿✿✿

15.6%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿✿

profiles.
✿

A peak of 15.2% of clouds are

✿✿✿✿✿

15.4%
✿✿✿

of
✿✿✿✿✿

clouds
✿✿

is
✿

missed for low QT, where the ANN performs significantly better. This is understandable, as the current

v4.2x status flags for high and low cloud influences should only be set for profiles where the extinction along the line-of-sight is

large enough to be attributed to a fairly thick cloud. However, even for very large QT ≥ 1,000 g m−2, only 187 of 645 (29.0%)

of
✿✿✿✿✿

25.8%
✿✿✿

of the cloudy profiles are detected.435

Histograms for clear sky observations
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿

set
✿

as a function of C are presented in Figures 5b
✿

c and d. Only

1.7%
✿✿✿✿

5.7%
✿

of clear profiles are falsely classified as cloudy by the new ANN algorithm, while the current v4.2x status flag

mislabels 6.2% of these profiles. Most of the clear observations occur for very low values of C < 0.05, of which the ANN and

v4.2x flags detect 51.6% and 48.1%
✿✿✿✿✿

50.4%
✿✿✿

and
✿✿✿✿✿✿

48.5%, respectively. Note that the slightly larger fraction of false positives from

the v4.2x flag is not necessarily incorrect, i.e., there might actually be clouds in the line-of-sight of one or more MLS scans440
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associated with the respective profiles. They might, however, be well before (very high clouds) or past (very low clouds) the

tangent point and outside of the 1◦ × 1◦ box defined in section 3.2.

✿✿✿✿✿✿

Similar
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿

the
✿✿✿✿

test
✿✿✿✿

data
✿✿

set
✿✿✿✿

are
✿✿✿✿✿

shown
✿✿✿

in
✿✿✿✿✿✿

Figures
✿✿✿✿✿

5e-h.
✿✿✿✿

The
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿

identifies
✿✿✿✿✿✿

95.0%
✿✿✿✿

and
✿✿✿✿✿

96.2%
✿✿✿

of
✿✿✿

the

✿✿✿✿✿

cloudy
✿✿✿✿

and
✿✿✿✿✿

clear
✿✿✿✿✿

cases,
✿✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿✿✿✿

76.6%
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

QT ≥ 1,000 g
✿✿✿✿

m−2
✿✿✿✿

and
✿✿✿✿✿✿

51.0%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

C < 0.05
✿✿✿✿✿✿✿

profiles.
✿✿✿✿

The

✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿

fractions
✿✿✿✿✿✿✿

detected
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿✿

status
✿✿✿✿

flag
✿✿✿

are
✿✿✿✿✿✿

15.4%,
✿✿✿✿✿✿

93.8%,
✿✿✿✿✿✿

26.6%,
✿✿✿✿

and
✿✿✿✿✿✿

48.2%.
✿

445

Table 3 gives an overview of the confusion matrix elements for each cloud flagging scheme, as well as metrics to evaluate

binary statistics. The
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿✿

the new ANN algorithm yields values of Ac= 0.98, F1 = 0.98, and Mcc= 0.96,

✿✿✿✿✿✿✿✿✿

Ac= 0.94,
✿✿✿✿✿✿✿✿✿✿

F1 = 0.94,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Mcc= 0.87
✿✿✿✿✿✿✿✿✿✿

(Ac= 0.96,
✿✿✿✿✿✿✿✿✿✿

F1 = 0.96,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Mcc= 0.91
✿✿✿

for
✿✿✿

the
✿✿✿

test
✿✿✿✿✿

data),
✿

confirming the reliable

classification performance shown in Figure 5. The v4.2x flag yields low binary performance scores of Ac= 0.53, F1 = 0.26,

and Mcc= 0.15 ,
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

(Ac= 0.55,
✿✿✿✿✿✿✿✿✿✿

F1 = 0.25,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Mcc= 0.15
✿✿✿

for
✿✿✿

the
✿✿✿✿

test
✿✿✿✿✿

data),
✿

mainly due to the low450

fraction of true positives.

4.2 Probabilities for different cloud conditions

The clear sky and cloudy classes defined in section 3.2 leave a number of profiles unaccounted for (i.e., neither clear sky nor

cloudy), such as those with 1/3≤ C < 2/3 or pCT > 700
✿✿✿✿✿✿✿✿

pCT ≥ 700 hPa. While it is reasonable to only train the model on the

confidently clear and cloudy conditions, it is essential to understand the ANN performance for the undefined, in-between cases.455

Figure 6a shows average ANN-predicted cloudiness probabilities as a function of C and QT with no restrictions on pCT.

✿✿✿✿

Data
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿

was
✿✿✿✿✿✿

trained
✿✿✿

on
✿✿✿

are
✿✿✿✿✿✿✿✿

excluded
✿✿✿✿✿

from
✿✿✿

this
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿

Figure
✿✿

6b
✿✿✿✿✿✿✿✿✿

illustrates
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿

when P values are

distributed into four groups: confidently clear (“Conf. Clr.”; P < 0.25), probably clear (“Prob. Clr.”; 0.25≤ P < 0.5), probably

cloudy (“Prob. Cld.”; 0.5≤ P < 0.75), and confidently cloudy (“Conf. Cld.”; P ≥ 0.75). The previously defined clear sky and

cloudy regions , which comprise the training and validation data sets, are indicated by the white and black dashed lines,460

respectively. Profiles with low C < 1/3 and QT < 25 g m−2, regardless of pCT, are characterized by the lowest P values,

reliably reproducing the clear sky class defined in section 3.2. Meanwhile, almost all profiles with C > 0.8
✿✿✿✿✿✿✿

C > 0.7 are flagged

to be probably cloudy (P > 0.5). However, only profiles that also have QT > 100 g m−2 are reliably predicted to have P >

0.75. The less-confident identification of the QT > 100 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

QT > 100 g m−2
✿

cases reflects the fact that many of them have

low cloud tops, pCT > 700
✿✿✿✿✿✿✿✿✿

pCT ≥ 700 hPa, and are thus not readily observed by MLS. As noted in section 3.3, these profiles465

exhibit similar spectral behavior to clear ones
✿

, and the ANN is expected to miss most of these clouds. With increasing QT
✿

,

even profiles with smaller cloud fractions (as little as C = 0.25) are flagged as cloudy. Note that the P results become noisy for

very large QT > 500 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿

QT > 500 g m−2, conditions that are only observed for less than 4% of the total samples (< 1%

for QT > 1000 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

QT > 1000 g m−2).

The behavior of predicted P for observations with pCT < 700 hPa is shown inFigure 6b.Here, the confidently clear predictions470

remain largely unchanged. However, probably cloudy predictions are observed for C > 0.5, even for low QT. Confidently

cloudy predictions dominate the previously defined cloudy class (C > 2/3 and QT > 50 g m−2).

In order to evaluate the ANN performance when more of these uncertain cases are encompassedin the validation, we included

in Table 3 a comparison of the binary performance scores for a redefined set of the cases classified as clear and cloudy according
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to less conservative thresholds for the cloud cover and the total water path (C < 0.5 and QT < 25 g m−2 for clear sky profiles,475

C ≥ 0.5 andQT ≥ 25 g m−2 for cloudy profiles).
✿✿✿

No
✿✿✿✿✿✿✿✿✿

limitations
✿✿

on
✿✿✿

pCT
✿✿✿

are
✿✿✿✿✿✿✿✿

imposed. These changes increase the validation data

set from n= 162,117 to n= 328,286 profiles.
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

profiles
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

n= 48,636
✿✿✿✿✿✿✿✿✿

(validation
✿✿✿✿

and
✿✿✿

test
✿✿✿✿✿

data)
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

n= 214,805

✿✿✿✿✿✿

profiles.
✿✿✿✿✿✿✿

Again,
✿✿✿✿✿✿✿

samples
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

data
✿✿✿

set
✿✿✿

are
✿✿✿✿✿✿✿✿✿

excluded. Due to the looser definitions, there is a significant drop in

performance scores, which can mostly be attributed to a lower true positive rate (i.e., cloud detection) of 0.69 and 0.08
✿✿✿✿

0.58

✿✿✿

and
✿✿✿✿

0.05
✿

for the ANN classification and v4.2x, respectively. The fraction of false positives (i.e., false prediction of cloudiness480

for actually clear profiles) remains basically unchanged (increases of 0.02 and 0.00
✿✿✿✿✿✿

changes
✿✿✿

of
✿✿✿✿✿✿✿

≈+0.04
✿✿✿✿

and
✿✿✿✿✿✿

−0.01 for the

ANN and v4.2x flags, respectively). This means that even with a looser cloudiness definition, the ANN does not yield a

multitude of false cloud classifications; rather, the algorithm fails to detect a larger fraction of cloudy profiles. This mostly

applies to lower-level clouds and those with small QT. The ANN still detects 73.0% of cloudy profiles with QT ≥ 1,000 g

m−2 (compared to 17.3% for the v4.2x flag). As a consequence of the reduced true positive rates for the redefined
✿✿✿✿✿✿✿

modified485

class definitions, the derived F1 for the ANN score is reduced to 0.81 (from 0.98
✿✿✿✿

0.58
✿✿✿✿✿

(from
✿✿✿✿✿✿

≈ 0.94), while F1 for the current

v4.2x flag drops from 0.26 to 0.14.
✿✿✿✿✿

≈ 0.26
✿✿

to
✿✿✿✿✿

0.09.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿

almost
✿✿✿✿✿✿✿✿✿

exclusively
✿✿✿✿

due
✿✿

to
✿✿

an
✿✿✿✿✿✿✿✿

inability
✿✿

to
✿✿✿✿✿

detect
✿✿✿✿✿✿✿✿✿

lower-level
✿✿✿✿✿✿✿

clouds.

✿✿

As
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

3.3,
✿✿✿✿✿

MLS
✿✿✿✿✿✿

cannot
✿✿✿✿✿✿✿✿✿✿

distinguish
✿✿✿✿✿✿✿

between
✿✿✿✿✿

clear
✿✿✿

sky
✿✿✿✿

and
✿✿✿✿✿

cloud
✿✿✿✿✿✿

signals
✿✿

if
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT ≥ 700 hPa.
✿✿✿✿✿✿✿

Adding
✿✿

a

✿✿✿✿✿✿✿

threshold
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 700 hPa
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

loosened
✿✿✿✿✿✿✿✿✿✿

definitions,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

for
✿✿✿

the
✿✿✿✿

now
✿✿✿✿✿✿✿✿✿✿

n= 89,697
✿✿✿✿✿✿✿

profiles
✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿

closer
✿✿

to
✿✿✿

the

✿✿✿

one
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

validation
✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿

set.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿

and
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿✿✿✿

exhibit
✿✿✿✿✿✿✿✿✿✿

Ac= 0.90,
✿✿✿✿✿✿✿✿✿

F1 = 0.90,
✿✿✿✿✿✿✿✿✿✿✿

Mcc= 0.81490

✿✿✿

and
✿✿✿✿✿✿✿✿✿

Ac= 0.54,
✿✿✿✿✿✿✿✿✿✿

F1 = 0.22,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Mcc= 0.13,
✿✿✿✿✿✿✿✿✿✿✿

respectively.

4.3 Geolocation-dependent performance and global cloud cover distribution

The spectral behavior for clear sky and cloudy profiles shown in Figure 3 only applies for observations made in the latitudinal

range of −30◦ to +30◦. As mentioned in section 3.3, the contrast between the two classes of data decreases for increasing

latitude. While the analysis in section 4.1 illustrates that the new ANN-based cloud classification can reliable
✿✿✿✿✿✿

reliably
✿

identify495

cloudy profiles
✿✿✿✿✿✿

(based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

definitions
✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

3.2), it is important to make sure that there is no latitudinal bias in the cloud

detection
✿✿✿✿✿✿✿✿✿

predictions, i.e., assuring that the algorithm performance is good for MLS observations at all latitude bands.

Calculated F1 determined from the ANN model setup is shown in Figure 7a for different regions of the globe. Each grid

box covers
✿✿✿✿✿✿✿

Statistics
✿✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿✿

in
✿✿✿✿

grid
✿✿✿✿✿✿

boxes
✿✿✿✿

that
✿✿✿✿✿

cover
✿

an area of 60◦× 60◦
✿✿✿✿✿✿✿✿

15◦× 15◦
✿

(latitude and longitude) and

includes on average 9,007 profiles. A negligible dependence on geographical region is observed and the binary performance500

metrics exhibit high values throughout. Derived
✿✿✿✿✿

include
✿✿✿

on
✿✿✿✿✿✿

average
✿✿✿✿

168
✿✿✿✿✿✿✿

profiles.
✿✿✿✿

High
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿

F1> 0.85
✿✿✿

are
✿✿✿✿✿✿✿✿

observed
✿✿

for
✿✿✿✿✿

most

✿✿✿✿✿✿

regions;
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿

areas
✿✿✿✿

with
✿✿✿✿✿✿✿✿

generally
✿✿✿✿

low
✿✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿✿✿

(over
✿✿✿✿✿✿

Africa
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Antarctica,
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿✿✿

west
✿✿

of
✿✿✿✿✿✿

South
✿✿✿✿✿✿✿

America
✿✿✿✿

and

✿✿✿✿✿✿✿✿

Australia,
✿✿✿

see
✿✿✿✿✿✿

Figure
✿✿✿

7e)
✿✿✿✿✿✿

exhibit
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿✿✿✿✿

performance,
✿✿✿✿✿✿✿✿

indicated
✿✿

by
✿✿✿

the
✿✿✿✿

light
✿✿✿✿

blue
✿✿✿✿

and
✿✿✿✿✿

green
✿✿✿✿✿✿

colors.
✿✿✿✿✿

Here,

✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿

statistics
✿✿✿✿

yield
✿✿

a
✿✿✿

less
✿✿✿✿✿✿✿

reliable F1 values vary between 0.972–0.986, with an average and standard deviation of

0.981± 0.003. The range in Mcc (not shown) is 0.931–0.972, with an average and standard deviation of 0.957± 0.01
✿✿✿✿✿✿

metric,505

✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

profiles
✿✿✿✿

per
✿✿✿✿

grid
✿✿✿

box
✿✿

is
✿✿

as
✿✿✿✿

low
✿✿

as
✿✿✿✿

18.
✿✿✿✿✿✿

Further
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿

reduced
✿✿✿✿

F1
✿✿✿✿✿

scores
✿✿✿✿✿✿

within
✿✿✿✿✿

these
✿✿✿✿

grid

✿✿✿✿✿

boxes
✿✿✿

are
✿✿✿✿✿✿✿✿✿

exclusively
✿✿✿✿

due
✿✿

to
✿✿

an
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

false
✿✿✿✿✿✿✿✿✿

negatives,
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿

misses
✿✿✿✿✿

some
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿✿

profiles.
✿✿✿✿✿✿✿

Overall,
✿✿✿

the
✿✿✿✿✿✿✿

average

✿✿✿✿✿✿✿

observed
✿✿✿

F1
✿✿

is
✿✿✿✿✿✿✿✿✿✿

0.91± 0.11.
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In contrast to the results for the ANN algorithm, there is a clear
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

noticeable latitudinal dependence for the performance

of the
✿✿✿✿✿

current
✿

v4.2x algorithm, illustrated in Figure 7b. F1 values are in the range of 0.39–0.48 in the tropics and < 0.24510

everywhere else(note the different
✿✿✿

can
✿✿✿

be
✿✿

as
✿✿✿✿

high
✿✿

as
✿✿✿✿

0.67
✿✿

in
✿✿✿

the
✿✿✿✿✿

tropics
✿✿✿✿

and
✿✿✿✿✿✿

< 0.25
✿✿✿✿✿✿✿✿✿

everywhere
✿✿✿✿

else.
✿✿✿✿✿✿✿✿✿✿

Occasional
✿✿✿✿

gaps,
✿✿✿✿✿✿✿✿✿

especially

✿✿✿

over
✿✿✿

the
✿✿✿✿✿

polar
✿✿✿✿✿✿✿

regions,
✿✿✿

are
✿✿✿

due
✿✿

to
✿✿

a
✿✿✿✿✿

failed F1 scales in panels a and b)
✿✿✿✿✿✿✿✿✿✿

calculation.
✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

denominator
✿✿

in
✿✿✿

Eq.
✿✿✿✿

(12)
✿✿✿✿✿✿✿✿

becomes

✿✿

0,
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿

v4.2x
✿✿✿

flag
✿✿✿✿

only
✿✿✿✿✿✿

reports
✿✿✿✿✿

clear
✿✿✿

sky
✿✿✿✿✿✿✿✿✿✿✿✿

classifications.
✿✿✿✿

The
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

observed
✿✿✿

F1
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

0.23± 0.16.

As there is no significant geographical dependence in prediction performance
✿✿✿

the
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

is
✿✿✿✿

high
✿✿✿

for
✿✿

a

✿✿✿✿✿✿✿

majority
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

geographical
✿✿✿✿✿✿

regions, the ANN algorithm is applied to derive global cloud cover maps, based solely on the MLS515

observed TB and the calculated model weights. A map of cloudiness from all MLS profiles sampled over 2015–2019, av-

eraged within 3◦ × 5◦ (latitude and longitude) grid boxes, is shown in Figure 7c. Note that this data set includes more than

6 million MLS profiles, while only 65 days in the 5-year span were part of the training data. Profiles are considered to be

cloudy when predicted P ≥ 0.5. Three large-scale regions close to the equator show the largest average cloud covers with

C > 80% (dark orange colors): (i) an area over the northern part of South America, (ii) central Africa, and (iii) a large band520

encompassing the Maritime Continent. Large zonal bands of C ≈ 60% are observed in the mid-latitudes of both hemispheres.

Conversely, large areas of low C < 20% are observed west of the North American, South American, and African continents,

as well as over Australia, northern Africa, and Antarctica. The derived cloud covers, as well as the observed spatial patterns

of mid to high clouds, agree well with those reported in King et al. (2013); Lacagnina and Selten (2014)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

King et al. (2013)
✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lacagnina and Selten (2014).525

As before, we are interested in comparing the results of the new ANN classification to the ones from the current v4.2x cloud

flag. Therefore, a similar map of derived global cloud cover from the current v4.2x cloud flag is shown in Figure 7d. In contrast

to the ANN results, calculated
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿

suggests C < 32% almost everywhere. This behavior is consistent with the focus of the

v4.2x classification, where only very opaque clouds around ∼300 hPa are flagged. The global patterns identified by the new

ANN flag are reproduced, albeit with much lower results for C. However, the v4.2x flag yields a global maximum of C > 72%530

over Antarctica. Here, the new ANN flag reports C as low as 3%. This behavior in the v4.2x cloud flag is a well-understood

feature caused by misinterpretation of radiances that are reflected by the surface (
✿✿

W.
✿✿✿

G.
✿✿✿✿✿

Read,
✿✿✿✿✿✿✿

personal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

communications,
✿✿✿✿✿✿

2021).

✿✿✿✿

Here,
✿

the unique combination of high topography and low optical depth makes Antarctica one of the few places where MLS

can observe the Earth’s surface).

Figures 7e-f show similar cloud cover maps generated from Aqua-MODIS observations. Due to the size of that data set and535

the high computational costs, only samples from 2019 are included here. The cloud cover maps were generated considering

cloud mask flag values of 0 and 1 (confident cloudy and probably cloudy) as defined in Menzel et al. (2008). All available

1 km-resolution MODIS cloud mask data was
✿✿✿✿

were considered. The aggregation used the high-resolution cloud top pressure

product, not generally available as a global aggregation. This cloud top pressure producthowever ,
✿✿✿✿✿✿✿✿

however,
✿

is the one utilized

by retrievals of MODIS cloud optical properties. Such custom aggregation thus ensures the maximum dataset consistency540

across variables. While all clouds are considered in the map in panel e, only clouds with pCT < 700 hPa are included to derive

C in panel f. It is obvious that including clouds with pCT > 700
✿✿✿✿✿✿✿✿✿

pCT ≥ 700 hPa dramatically increases the derived cloud covers.

Due to the reduced sensitivity towards such clouds (see the discussion in section 3.3), the cloud covers predicted by the ANN
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are much closer to the MODIS results that do not include low clouds. Nonetheless, the ANN-derived C are, on average, ∼ 9%

higher than the MODIS results, suggesting that MLS is able to detect some of the lower clouds with pCT > 700
✿✿✿✿✿✿✿✿

pCT ≥ 700 hPa.545

This behavior is also illustrated in the example scenes in Figure
✿✿✿✿✿✿

Figures 8–9 in section 4.4. In comparison, there is a much lower

✿✿✿✿

much
✿✿✿✿✿✿

poorer
✿

agreement between the MODIS and v4.2x results, which are
✿✿✿✿

with
✿✿✿✿✿

v4.2x
✿

on average ∼ 26% lower
✿✿✿

than
✿✿✿✿✿✿✿

MODIS.

This analysis indicates that the new ANN algorithm can produce considerably more reliable cloud classifications
✿✿✿✿

than
✿✿✿

the

✿✿✿✿✿

v4.2x
✿✿✿✿

MLS
✿✿✿✿✿

cloud
✿✿✿✿

flag, on a global scale.

4.4 Example scenes550

The analysis in the previous sections centered on statistical metrics and the reproduction of large-scale, global cloud patterns.

There, the cloud flag based on the new ANN algorithm yields reliable results, both in comparison to the current v4.2x status

flag and as a standalone product. However, a more qualitative assessment of the model performance for individual cloud scenes

provides additional confidence in the technique, as well as insights into the classification performance for different cloud types.

Again, profiles are flagged as cloudy when P ≥ 0.5.555

Figure 8 shows two example cloud fields over the North American monsoon region. During the summer months of July

and August, this area is characterized by the regular occurrence of mesoscale convective systems that can occasionally

overshoot into the lowermost stratosphere, where the sublimation of ice particles can lead to local humidity enhancements

(Anderson et al., 2012; Schwartz et al., 2013; Werner et al., 2020). Observed pCT and QT derived from Aqua MODIS observa-

tions over the first example scene, sampled on 31 August 2017, are shown in Figures 8a and 8b, respectively. The MLS overpass560

is illustrated in gray transparent circles. A cloud system with pCT < 500hPa exists in the northern part of the scene, with the

lowest pCT ∼ 200hPa. The MLS track passes some smaller cloud clusters characterized by large QT, which are indicated in

yellow. In the south, low clouds with QT = 50− 450g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

QT = 50− 450g m−2
✿

are observed. The new ANN and current

v4.2x cloud flags are shown in Figures 8c-d. The ANN algorithm flags every profile in the northern part of the scene as cloudy,

while also detecting the very low clouds in the south. Conversely, the classifications from the current v4.2x flag identify a cloud565

influence for a single MLS profile in the north, which happens to actually be over an area with low QT. A second example

cloud field is shown in Figures 8e-h. This scene consists of clouds all along the MLS track , and large areas with elevated QT

up to 1,000 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

QT up to 1,000 g m−2. Note that there is a gap in the MLS track, where the level 2 products are screened

out, according to the rules in the MLS quality document (Livesey et al., 2020). The ANN algorithm correctly determines that

every profile along the path was sampled under cloudy conditions. However, even for the very high clouds that contain large570

water abundances, the v4.2x algorithm only occasionally flags the respective profiles as cloudy. In the northern part of the

track, the flag actually alternates between clear sky and cloudy classifications.

Similarly, Figure 9 shows two example cloud fields over the Asian summer monsoon region, which also regularly contains

overshooting convection from mesoscale cloud systems. The first scene, shown in Figures 9a-d, displays a mix of different

cloud conditions. There are high clouds with pCT < 350hPa and QT = 50− 450g m−2 in the northern part, a large clear sky575

area in the middle, and then a mix of very high and low-level clouds in the south that exhibits low QT and likely represents a

multi-layer cloud structure with thin cirrus above boundary layer clouds. The new ANN-based flag successfully detects both
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the northern and southern cloud fields, while the current v4.2x flag only detects a single profile with cloud influence. The last

example scene, illustrated in Figures 9e-h, displays the kind of clouds that are hardest to detect by means of MLS observations:

very lowclouds with QT < 150 g m−2
✿✿✿✿✿✿✿

similarly
✿✿✿✿✿✿✿

displays
✿✿

a
✿✿✿

mix
✿✿✿

of
✿✿✿

low,
✿✿✿✿✿✿✿✿✿

mid-level,
✿✿✿

and
✿✿✿✿

high
✿✿✿✿✿✿

clouds. As expected, no MLS profile580

is considered to be influenced by clouds according to the current v4.2x status flag
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿

only
✿✿✿✿

flags
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿

profile
✿✿✿

as

✿✿✿✿✿✿✿✿

influenced
✿✿✿

by
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿

(in
✿✿✿

the
✿✿✿✿✿

south
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

scene). However, the ANN algorithm detects those boundary layer
✿✿✿

the
✿✿✿✿✿✿✿✿

mid-level

clouds in the south of
✿✿✿✿✿

North,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿

mix
✿✿

of
✿✿✿✿✿

cloud
✿✿✿✿

types
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

South
✿✿

of
✿✿✿

the
✿✿✿✿✿

scene.
✿✿

In
✿✿✿✿✿

those
✿✿✿✿✿

places
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

mostly

✿✿✿✿✿✿✿

captured
✿✿✿✿✿

either
✿✿✿

low
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer
✿✿✿✿✿

clouds
✿✿✿✿✿✿✿

(yellow
✿✿✿✿✿✿

colors)
✿✿

or
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿

property
✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿

failed
✿✿✿✿✿

(very
✿✿✿

low
✿✿✿✿✿

QT), the scene, while

correctly identifying the clear sky region along the rest of the track
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

associates
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

profiles
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

clear
✿✿✿✿

sky585

✿✿✿✿

class.

Note that the two example scenes in Figure 9 represent previously unseen data for the ANN, i.e., the models were not trained

on these MLS
✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS observations.

5 Predicting cloud top pressure
✿

:
✿✿✿✿✿✿

Results
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

examples

The results in section 4 illustrate that the proposed ANN algorithm can successfully detect the subtle cloud signatures in the590

spectral TB profiles shown in Figure 3. For many MLS bands, the differences between cloudy and clear sky TB are usually

in the range of just a few Kelvin, and the spectral behavior heavily depends on the respective MIF (i.e., pressure level at

the tangent point of each scan). This section demonstrates how this behavior can be used in a similar ANN setup to infer the

MODIS-retrieved pCT. Here, our goal is to reliably differentiate between mid- to low-level clouds and high-reaching convection

with pCT < 300
✿✿✿✿✿✿✿✿✿✿

pCT <≈ 350 hPa. As mentioned in the introduction, not only can these high clouds impact the MLS retrieval of595

atmospheric constituents, but they can also breach the tropopause and inject ice particles into the lowermost stratosphere.

Only slight changes to the ANN algorithm are required to predict
✿✿✿✿

This
✿✿✿✿✿✿

section
✿✿✿✿✿✿✿

presents
✿

a
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿✿✿✿✿✿

evaluation

✿✿

of
✿✿✿

the pCT , while the development and testing procedures remain identical to the steps described in section 3.4. The input layer

and the two hidden layers remain unchanged from the cloud classification setup. The labels in the output layer, instead of being

set to either “0” or “
✿✿✿✿✿✿✿✿

prediction
✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

5.1,
✿

a
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT-distributions
✿✿

in
✿✿✿✿✿✿✿

section
✿✿✿

5.2,
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿

close-up
✿✿✿✿

look600

✿

at
✿✿✿✿

pCT
✿✿✿✿✿✿✿✿✿

predictions
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿

scenes
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

North
✿✿✿✿✿✿✿✿

American
✿✿✿✿

and
✿✿✿✿✿

Asian
✿✿✿✿✿✿✿✿

monsoon
✿✿✿✿✿✿

regions
✿✿✿✿

that
✿✿✿✿

were
✿✿✿✿✿✿

shown
✿✿✿✿✿✿

earlier

✿✿✿✿✿✿

(section
✿✿✿✿

5.3).
✿

✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿✿

analysis,
✿✿

a
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿

between
✿✿✿✿✿

v4.2x
✿✿✿✿

and
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿

will
✿✿✿✿✿

favor
✿✿✿

the

✿✿✿✿

ANN
✿✿✿✿✿✿✿

results,
✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿

ANN
✿✿

is
✿✿✿✿✿✿✿

designed
✿✿

to
✿✿✿✿✿✿✿✿

replicate
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿✿✿

observations.

5.1
✿✿✿✿✿✿✿✿✿✿✿

Performance
✿✿✿✿✿✿✿✿✿

evaluation605

✿✿✿✿

Joint
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

of
✿✿✿✿✿✿✿✿

observed
✿✿✿

and
✿✿✿✿✿✿✿✿✿

predicted
✿✿✿

pCT
✿✿✿

for
✿✿✿

all
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿✿

profiles
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and
✿✿✿✿

test
✿✿✿✿

data
✿✿✿

set
✿✿✿

are
✿✿✿✿✿✿✿✿

presented
✿✿✿

in

✿✿✿✿✿✿

Figures
✿✿✿✿

10a
✿✿✿

and
✿✿✿

b,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿✿

While
✿✿✿✿✿

there
✿✿

is
✿

a
✿✿✿✿

fair
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿

scatter,
✿✿✿✿

the
✿✿✿✿✿✿✿

majority
✿✿✿

of
✿✿✿✿

data
✿✿✿✿✿

points
✿✿✿

are
✿✿✿✿✿

close
✿✿✿

to
✿✿✿

the
✿

1”
✿✿

:1

✿✿✿

line.
✿✿✿✿✿

This
✿

is
✿✿✿✿✿✿✿✿✿

illustrated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

envelope
✿✿✿✿✿✿✿✿

indicated
✿✿

by
✿✿✿

the
✿✿✿✿✿

white
✿✿✿✿✿✿

dashed
✿✿✿✿

line,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

by
✿✿✿

the
✿✿✿

5th
✿✿✿

and
✿✿✿✿

95th
✿✿✿✿✿✿✿✿✿✿

percentiles
✿✿

of

✿✿✿✿✿✿✿

predicted
✿✿✿✿

pCT
✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

pCT-bin (i.e., clear sky or cloudy), now contain the respective
✿✿

the
✿✿✿✿✿✿✿✿

envelope
✿✿✿✿✿✿✿

indicates
✿✿✿✿✿✿

where
✿✿✿✿

90%

19



✿✿

of
✿✿✿✿✿✿✿✿

predicted pCT reported by the colocated MLS-MODIS data set. A simple linear function replaces the “softmax” activation610

in the output layer, i. e., L̂j = λj in Eq. (7) . Similarly, the model optimizer, learning rate and mini-batch size reported

in section 3.4 for the cloud classification ANN provide the best set of hyperparameters; here the only change concerns the

weight decay parameter, which is turned off. As before, the model with the best validation loss provides the weights for the

following evaluation.
✿✿✿✿

are).
✿✿✿✿

High
✿✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿✿✿✿✿

r = 0.825
✿✿✿

and
✿✿✿✿✿✿✿✿✿

r = 0.839,
✿✿✿✿

with
✿✿✿✿✿✿

RMSD
✿✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿✿✿

79.2 hPa
✿✿✿

and
✿✿✿✿✿✿✿✿

76.9 hPa,
✿✿✿

are
✿✿✿✿✿✿✿✿

observed

✿✿

for
✿✿✿

the
✿✿✿✿

two
✿✿✿✿

data
✿✿✿✿

sets.
✿✿✿✿✿✿✿✿

However,
✿✿

a
✿✿✿✿✿✿

decline
✿✿✿

in
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

performance
✿✿

is
✿✿✿✿✿✿✿✿✿

noticeable
✿✿✿

for
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT > 400 hPa,
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿

predictions615

✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT > 600 hPa
✿✿✿✿✿✿

exhibit
✿✿

an
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation
✿✿

of
✿✿✿✿✿✿✿

126 hPa
✿✿✿✿✿✿✿✿

(19.2%).
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

findings
✿✿✿✿✿✿✿✿

presented
✿✿✿

in

✿✿✿✿✿✿

section
✿✿✿

3.3,
✿✿✿✿✿✿

which
✿✿✿✿✿✿

showed
✿✿

a
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿✿

sensitivity
✿✿✿

of
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

to
✿✿✿✿✿✿✿✿

low-level
✿✿✿✿✿✿

clouds.
✿✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿

difference

✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

predictions
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

is
✿✿✿✿✿✿✿

+25 hPa
✿✿✿✿✿✿

(9.5%)
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa.
✿

Joint histograms of true (
✿✿✿✿✿✿✿✿✿

Histograms
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

predicted
✿✿✿

and
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

pCT
✿✿

for
✿✿✿✿✿✿✿

profiles
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and

✿✿✿

test
✿✿✿✿

data
✿✿✿

sets
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿✿

10c.
✿✿✿

The
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿

look
✿✿✿✿✿✿

almost
✿✿✿✿✿✿✿✿

identical
✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿

centered
✿✿✿✿✿✿

around
✿✿

a
✿✿✿✿✿✿✿✿

difference
✿✿✿

of
✿✿✿

−8620

✿✿✿

and
✿✿✿✿✿✿✿✿

−10 hPa,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿

validation
✿✿✿

data
✿✿✿

set,
✿✿✿✿✿✿

65.6%
✿✿✿✿✿✿✿

(88.0%)
✿✿

of
✿✿✿✿✿✿✿✿✿✿

predictions
✿✿

are
✿✿✿✿✿✿

within
✿✿✿✿✿✿

50 hPa
✿✿✿✿✿✿✿✿

(100 hPa)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

MODIS

✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿✿

while
✿✿✿✿✿

66.9%
✿✿✿✿

and
✿✿✿✿✿

88.0%
✿✿✿

of
✿✿✿✿✿✿

profiles
✿✿

in
✿✿✿

the
✿✿✿

test
✿✿✿✿

data
✿✿✿

set
✿✿✿

are
✿✿✿✿✿

within
✿✿✿✿✿

these
✿✿✿✿✿✿

ranges.
✿

✿✿

As
✿✿✿✿✿✿✿✿✿

mentioned
✿✿

in
✿✿✿

the
✿✿

1,
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿

interested
✿✿✿

in
✿✿

the
✿✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿✿

detect
✿✿✿✿

high
✿✿✿✿✿

clouds
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa.
✿✿✿✿

Not
✿✿✿✿

only
✿✿✿

can
✿✿✿✿✿

these

✿✿✿✿✿

clouds
✿✿✿✿✿

affect
✿✿✿

the
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

radiances
✿✿✿✿

and
✿✿✿✿✿✿✿✿

retrievals,
✿✿✿✿

they
✿✿✿

can
✿✿✿

also
✿✿✿✿✿✿

impact
✿✿✿✿✿

water
✿✿✿✿✿

vapor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Werner et al., 2020; Tinney and Homeyer, 2020)

✿✿✿

and
✿✿✿✿✿✿

HNO3
✿✿✿✿✿✿✿✿

(e.g., ??)
✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿

in
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿✿✿✿✿✿

troposphere
✿✿✿

and
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿✿

stratosphere.
✿✿✿✿✿✿

Figure
✿✿✿

10d
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

percent
✿✿

of
✿✿✿✿✿✿✿

profiles625

✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿

set,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿✿

reproduces
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-observed
✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿

for

✿✿✿✿✿✿✿✿

thresholds
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400,350,
✿✿✿

and
✿✿✿✿✿✿✿✿

300 hPa.
✿✿

To
✿✿✿✿✿✿✿

provide
✿✿

a
✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿✿✿✿

performance,
✿✿✿

we
✿✿✿✿✿✿

simply

✿✿✿✿✿✿✿✿

calculated
✿✿✿

the
✿✿✿✿✿✿

percent
✿✿✿

of
✿✿✿✿✿✿✿✿

successful
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿

detection
✿✿✿

for
✿✿✿✿

each
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT-thresholds.
✿✿✿

The
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿

identifies
✿✿✿✿✿✿✿✿✿

85.4,80.0,

✿✿✿

and
✿✿✿✿✿✿

78.5%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

profiles
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400,350,
✿✿✿

and
✿✿✿✿✿✿✿

300 hPa,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿

In
✿✿✿✿✿✿✿✿

contrast,
✿✿✿

the
✿✿✿✿✿

v4.2x
✿✿✿

flag
✿✿✿✿

only
✿✿✿✿✿✿

detects
✿✿✿✿✿✿✿

8.5,8.6,
✿✿✿✿

and

✿✿✿✿

8.7%
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿

profiles.630

✿✿✿

The
✿✿✿✿✿✿✿

analysis
✿✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

section
✿✿✿✿✿✿

reveals
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿

setup
✿✿✿

can
✿✿✿✿✿✿

predict
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿✿

pCT
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿✿✿✿✿✿

accuracy,

✿✿✿✿✿

which
✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿✿

reliably
✿✿✿✿✿✿✿

identify
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa.

5.2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Geolocation-dependent
✿✿✿✿✿✿✿✿✿✿✿✿

performance

✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

the
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿✿

earlier,
✿

it
✿✿

is
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿✿✿✿✿✿✿

understand
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

geolocation-dependent
✿✿✿✿✿✿✿✿✿

prediction

✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

of
✿✿✿

the
✿✿✿

pCT
✿✿✿✿✿✿✿

model.
✿✿✿✿✿✿

Figure
✿✿✿

11a
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿

derived
✿

r
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

and
✿✿✿✿✿✿✿✿

predicted635

✿✿✿

pCT.
✿✿✿✿✿✿✿

Profiles
✿✿✿✿✿

from
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿✿

sets
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿✿✿✿✿

Statistics
✿✿✿✿

are
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿

within
✿✿✿✿✿✿✿✿✿

15◦× 15◦
✿✿✿

grid
✿✿✿✿✿✿

boxes

✿✿✿✿✿✿✿

(latitude
✿✿✿

and
✿✿✿✿✿✿✿✿✿

longitude)
✿✿✿✿

that
✿✿✿✿✿✿

contain
✿✿✿

an
✿✿✿✿✿✿

average
✿✿✿

of
✿✿✿

116
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿

(following
✿✿✿

the
✿✿✿✿✿✿✿✿

definition
✿✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

3.2).
✿✿✿✿

The
✿✿✿✿✿✿✿

average

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

in
✿✿✿✿

each
✿✿✿✿

grid
✿✿✿

box
✿✿

is
✿✿✿✿✿✿✿✿

r = 0.75,
✿✿✿✿

and
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿

correlations,
✿✿✿✿✿✿✿✿

r > 0.80,
✿✿✿

are
✿✿✿✿✿✿✿✿

recorded
✿✿✿✿✿

within
✿✿✿

all
✿✿✿✿✿✿

latitude
✿✿✿✿✿✿✿

ranges.

✿✿✿✿✿✿✿✿

However,
✿✿✿✿

areas
✿✿✿✿✿

with
✿✿✿✿✿✿

weaker
✿✿✿✿✿✿✿✿✿✿

correlation,
✿✿✿✿✿✿✿✿✿✿✿✿

r ≈ 0.4− 0.7,
✿✿✿✿✿

(light
✿✿✿✿

blue
✿✿✿

and
✿✿✿✿✿

green
✿✿✿✿✿✿✿

colors)
✿✿✿✿✿✿

appear
✿✿

to
✿✿✿✿✿✿✿

coincide
✿✿✿✿

with
✿✿✿✿✿✿✿

regions
✿✿

of
✿✿✿✿

low

✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿✿

(see
✿✿✿✿✿✿

Figure
✿✿

7).
✿✿✿✿✿✿✿

Further
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

decreased
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

in
✿✿✿✿✿

these
✿✿✿✿

areas
✿✿✿

can
✿✿✿✿✿✿

almost
✿✿✿✿✿✿✿✿✿✿

exclusively640

✿✿

be
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿

prediction
✿✿✿

for
✿✿✿✿✿✿

clouds
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT > 400 hPa
✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿

and
✿✿

C
✿✿

is
✿✿✿✿✿✿✿✿✿

confirmed
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿✿

11b,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

illustrates
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

RMSD.
✿✿✿✿✿✿✿✿

Increased
✿✿✿✿✿✿

values
✿✿✿

are

✿✿✿✿✿✿✿

primarily
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

over
✿✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿

low
✿✿

C;
✿✿✿✿

e.g.,
✿✿✿

the
✿✿✿✿✿✿✿

highest
✿✿✿✿✿✿

RMSD
✿✿

of
✿✿✿✿✿✿✿✿✿

181.6 hPa
✿✿✿✿✿✿

(bright
✿✿✿✿✿✿

yellow
✿✿✿✿✿

color)
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

west
✿✿✿

of

20



✿✿

the
✿✿✿✿✿✿

South
✿✿✿✿✿✿✿✿

American
✿✿✿✿✿✿✿✿✿

continent,
✿✿✿✿✿

which
✿✿✿✿✿✿✿

exhibits
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿

C
✿✿✿✿✿✿✿

globally
✿✿✿✿

(see
✿✿✿✿✿✿

Figure
✿✿✿

7).
✿✿✿✿✿✿✿✿

Similarly,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

RMSD> 100 hPa
✿✿✿

are

✿✿✿✿✿✿✿

observed
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

Antarctica,
✿✿✿✿✿✿✿✿

Australia,
✿✿✿

off
✿✿✿

the
✿✿✿✿

coast
✿✿

of
✿✿✿✿✿✿

Africa
✿✿✿

and
✿✿✿✿✿✿

South
✿✿✿✿✿✿✿

America,
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

northeastern
✿✿✿✿✿✿✿✿✿

Greenland.
✿

645

✿✿✿✿✿

Global
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿

pCT
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

ANN
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿

Figures
✿✿✿

11c
✿✿✿✿

and
✿✿

d,

✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿✿✿✿✿

ANN
✿✿✿

can
✿✿✿✿✿✿✿

reliably
✿✿✿✿✿✿✿

recreate
✿✿✿

the
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿✿

observed
✿✿✿

by
✿✿✿✿✿✿✿

MODIS,
✿✿✿✿✿

with
✿✿✿✿

high
✿✿✿

pCT
✿

in the sense that they are the

prescribed labels to train the ANN)and predicted
✿✿✿

high
✿✿✿✿✿✿✿✿

latitudes,
✿✿✿✿✿✿✿✿✿

mid-level
✿✿✿✿✿✿

clouds
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿

Ocean
✿✿✿✿

and
✿✿✿✿✿✿✿✿

northern

✿✿✿✿✿✿✿✿✿✿✿

mid-latitudes,
✿✿✿✿

and
✿✿✿

low
✿

pCT for all cloudy profiles in the colocated MLS-MODIS data set are presented in
✿✿✿

over
✿✿✿✿

the
✿✿✿✿✿✿

tropics

✿✿✿

and
✿✿✿✿✿✿✿✿✿

subtropics.
✿✿✿✿✿✿✿✿✿

Especially
✿✿✿

the
✿✿✿✿✿

region
✿✿✿✿✿

with
✿✿✿

low
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 250 hPa
✿✿✿✿

over
✿✿✿✿✿✿✿✿

Southeast
✿✿✿✿✿

Asia
✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿✿

reproduced
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

ANN.650

✿✿✿✿✿

Again,
✿✿✿✿✿

there
✿✿

is
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿

interest
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

of
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿

to
✿✿✿✿✿✿✿

identify
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa. Figure 10. Here,

panels a and b show the results for the 63,242 and 21,081 samples in the training and validation data sets, respectively. High

values of Pearson’s product-moment correlation coefficient of r > 0.99 are observed for both data sets, and a majority of

data are aligned along the 1:1 line (indicated by the yellow colors). The white dashed line illustrates the envelope defined by

the 1st and 99th percentiles of predicted
✿

d
✿✿✿✿✿✿✿✿

indicated
✿✿✿✿

that,
✿✿✿✿✿✿✿

overall,
✿✿✿

the
✿

pCT for each true pCT-bin
✿✿✿✿✿

model
✿✿✿

can
✿✿✿✿✿✿✿

reliably
✿✿✿✿✿✿✿

identify655

✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿

high
✿✿✿✿✿✿✿

clouds.
✿✿✿✿✿

Figure
✿✿✿✿

11e
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿✿✿✿✿✿

successful
✿✿✿✿✿

high
✿✿✿✿✿

cloud

✿✿✿✿✿✿✿✿✿

detections.
✿✿✿

The
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿

predicts
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa
✿✿✿

for
✿✿✿✿✿✿

> 80%
✿✿

of
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿✿

within
✿✿✿✿

grid
✿✿✿✿✿

boxes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

latitude
✿✿✿✿✿

range
✿✿✿✿✿

−60◦
✿✿

to

✿✿✿✿✿

+60◦.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿✿✿

predictions
✿✿

is
✿✿✿✿✿✿

85.6%.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿

outside
✿✿

of
✿✿✿✿

that
✿✿✿✿✿

range
✿✿✿✿

(i.e.,
✿✿

in
✿✿✿

the
✿✿✿✿✿

high
✿✿✿✿✿✿✿✿

latitudes)

✿✿

the
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿

per
✿✿✿✿

grid
✿✿✿✿

box
✿

is
✿✿✿✿✿

only
✿✿✿✿✿✿

47.7%.
✿✿

It
✿

is
✿✿✿✿✿

likely
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿

simply
✿✿✿✿

did
✿✿✿

not
✿✿✿✿

learn
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective

✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿

in
✿✿✿✿

these
✿✿✿✿✿✿✿

regions,
✿✿✿✿✿

where
✿✿✿✿

only
✿✿✿✿✿

5.6%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

occur
✿✿✿

(at
✿✿✿✿

least660

✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿✿

validation
✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿✿

set).
✿

✿✿✿✿✿

Figure
✿✿✿

11f
✿✿✿✿✿✿✿

presents
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿

map
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿✿✿✿

successful
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa-detections
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿✿

algorithm.

✿✿✿✿✿✿

Overall,
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿✿

dramatically
✿✿✿✿✿✿✿✿✿✿

outperforms
✿✿✿

the
✿✿✿✿✿

v4.2x
✿✿✿✿✿

flag,
✿✿✿✿✿

which
✿✿✿

on
✿✿✿✿✿✿

average
✿✿✿✿✿

only
✿✿✿✿✿✿✿

identifies
✿✿✿✿✿✿

20.8%
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

profiles

✿✿✿✿✿

within
✿✿✿✿✿

each
✿✿✿✿

grid
✿✿✿✿

box.
✿✿

A
✿✿✿✿

few
✿✿✿✿✿

areas
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿

Antarctica
✿✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿

exception,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿

manages
✿✿

to
✿✿✿✿✿✿✿✿✿

recognize

✿✿✿✿✿

100%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

profiles
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa.
✿✿✿✿✿

This
✿✿✿✿✿✿✿

success,
✿✿✿✿✿✿✿✿

however,
✿✿

is
✿✿✿✿✿

likely
✿✿

a
✿✿✿✿✿✿✿✿✿✿

coincidence
✿✿✿✿

and
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

attributed665

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

misinterpretation
✿✿✿

of
✿✿✿✿✿✿✿✿

radiances
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

reflected
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

surface.
✿✿✿✿✿

This
✿✿✿✿✿✿✿

behavior
✿✿✿✿

also
✿✿✿✿✿✿✿

caused
✿✿✿

the
✿✿✿✿

high
✿✿

C
✿✿✿✿✿✿

values
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿

region,
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

7d.
✿✿

As
✿✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿

earlier,
✿✿✿✿

these
✿✿✿✿✿✿✿

samples
✿✿✿✿✿

only
✿✿✿✿✿✿✿

represent
✿✿

a
✿✿✿✿✿

small
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

occurrence
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa;
✿✿✿✿✿✿✿✿✿

excluding
✿✿✿✿

these
✿✿✿✿✿

areas
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

statistics
✿✿✿✿✿✿

causes
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿✿✿

performance
✿✿

to
✿✿✿✿✿

drop
✿✿

by
✿✿✿✿

only
✿✿✿✿✿

0.8%.

5.3
✿✿✿✿✿✿✿

Example
✿✿✿✿✿✿

scenes

Similar to the discussion
✿✿✿✿✿✿✿

analysis in section 4.4, comparisons between maps of predicted and MODIS-retrieved
✿✿✿

and
✿✿✿✿✿✿✿✿

predicted670

pCT for individual cloud fields provide a qualitative assessment of the model performance. Three example scenes with the

MODIS pCT are
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿

same
✿✿✿✿

four
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿

scenes
✿✿✿

that
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

previously
✿

shown in Figures 11
✿✿✿

8-9
✿✿✿

are
✿✿✿✿✿✿✿✿

presented

✿✿

in
✿✿✿✿✿✿

Figures
✿✿✿

12a, c, and e, while the respective predictions from the ANN algorithm
✿✿

e,
✿✿✿

and
✿✿

f.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

predictions

are shown in Figures 11
✿✿

12b, d, and f. Each scene was
✿

f,
✿✿✿✿

and
✿✿

h.
✿✿✿✿

The
✿✿✿✿

first
✿✿✿

two
✿✿✿✿✿✿

scenes
✿✿✿

are
✿

sampled over the North American

monsoon anticyclone, where large convective systems are prevalent over the continental United States during summer .
✿✿✿✿✿✿

region,675

✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

two
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

Asian
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿

monsoon
✿✿✿✿✿✿✿✿✿✿

anticyclone.
✿
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The first example (panels a-b) is characterized by
✿

a
✿✿✿✿

and
✿✿

b)
✿✿✿✿✿✿✿

consists
✿✿

of
✿

high clouds in the northern part with pCT as low as

∼200 hPa, while at the southern tip there are low clouds with pCT > 600 hPa
✿✿

of
✿✿✿

the
✿✿✿✿✿

scene,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿✿✿✿✿✿✿

pCT ∼ 200hPa
✿✿✿✿✿✿

around

✿✿✿

40◦
✿✿✿✿✿✿

latitude. The ANN can reliably reproduce the low cloud top pressures in the north; however, the pCT values for the
✿✿✿✿✿✿

reliably

✿✿✿✿✿✿✿✿✿

reproduces
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

results
✿✿✿✿

and
✿✿✿✿✿✿

predicts
✿✿✿

the
✿✿✿✿✿✿✿

highest
✿✿✿✿✿

clouds
✿✿

at
✿✿✿

the
✿✿✿✿

right
✿✿✿✿✿✿✿✿

position.
✿✿✿✿✿

Mixed
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿✿✿

achieved
✿✿

for
✿✿✿

the
✿✿✿✿

very
✿

low680

clouds in the southare slightly underestimated, with predicted pCT ≈ 500− 550hPa,
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿

outside
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MLS-detectable

✿✿✿✿✿✿✿

pressure
✿✿✿✿✿

range.
✿✿✿

For
✿✿✿✿✿

these
✿✿✿

two
✿✿✿✿✿✿✿

profiles,
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿

predicts
✿✿✿✿✿✿✿✿✿

pCT = 585
✿✿✿

and
✿✿✿✿✿✿✿

434hPa.
✿✿✿✿✿

While
✿✿✿✿✿✿

clearly
✿✿✿

too
✿✿✿✿

low,
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

successfully

✿✿✿✿✿✿✿✿

associates
✿✿✿✿✿

these
✿✿✿✿✿✿✿

samples
✿✿✿✿

with
✿✿✿✿

low
✿✿✿✿✿✿

clouds. The second example scene (panels c-d) consists of a mix of high and
✿

c
✿✿✿

and
✿✿✿

d)

✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿✿✿

high
✿✿✿

C
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿✿

throughout,
✿✿✿✿

with
✿✿✿✿

low
✿✿

to mid-level clouds with pCT < 450 hPa, which the ANN predictions

correctly reproduce. The last example scene (panels e-f) shows
✿✿

in
✿✿✿

the
✿✿✿✿

very
✿✿✿✿✿

north
✿✿✿✿

and a complicated mix of low, mid-level,685

and high clouds that basically covers the full
✿✿✿✿✿✿✿

different
✿✿✿✿✿

cloud
✿✿✿✿✿

types
✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿

rest
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

scene.
✿✿✿

Not
✿✿✿✿✿✿✿✿✿✿✿

surprisingly,
✿✿✿

the
✿✿✿✿✿

ANN

✿✿✿✿✿✿✿

identifies
✿✿✿

all
✿✿✿

but
✿✿✿✿

three
✿✿✿✿✿✿✿

profiles
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿

medium
✿✿

to
✿✿✿✿

high
✿✿✿✿✿✿

clouds.
✿✿✿✿✿

Here,
✿✿✿✿

even
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

occurrences
✿✿

of
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿

perimeter
✿✿

of
✿✿

an
✿✿✿✿✿

MLS
✿✿✿✿✿✿

profile
✿✿✿✿✿

yields
✿✿

a
✿✿✿

low
✿

pCT range, as well as some clear sky areas in between. The ANN algorithm detects

the small
✿✿✿✿✿✿✿✿

prediction.
✿

✿✿✿✿✿

Three
✿✿✿✿✿✿✿

samples
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

vicinity
✿✿✿

of mid-level convection in the north, followed by very low clouds and the cloud gap over the690

center of the scene. It also correctly detects the subsequent large band of high clouds with pCT < 350
✿✿✿✿✿✿

clouds
✿✿✿

are
✿✿✿✿✿✿

visible
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿

northern
✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿

third
✿✿✿✿

scene
✿✿✿✿✿✿✿

(panels
✿

e
✿✿✿

and
✿✿

f),
✿✿✿

as
✿✿✿

well
✿✿✿

as
✿✿✿

two
✿✿✿✿✿✿

profiles
✿✿✿✿✿✿

above
✿✿✿✿

very
✿✿✿

low
✿✿✿

and
✿✿✿✿

two
✿✿✿✿✿✿

profiles
✿✿✿✿✿

above
✿✿✿✿

high
✿✿✿✿✿✿

clouds
✿✿

in
✿✿✿

the

✿✿✿✿✿

south.
✿✿✿✿✿

While
✿✿✿

the
✿✿✿✿✿

ANN
✿✿

is
✿✿✿

not
✿✿✿✿

able
✿✿

to
✿✿✿✿✿

detect
✿✿✿

the
✿✿✿✿✿✿✿✿✿

pCT > 700
✿✿✿✿✿✿✿✿✿

hPa-region,
✿✿

it
✿✿✿✿✿✿✿✿✿✿

successfully
✿✿✿✿✿✿✿

predicts
✿✿✿✿✿

clouds
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT = 343− 511hPa

✿✿✿✿✿✿✿✿

northward
✿✿

of
✿✿✿✿

35◦
✿✿✿✿✿✿

latitude
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 206 hPa
✿✿

in
✿✿

the
✿✿✿✿✿✿

south.
✿✿✿✿✿✿

Finally,
✿✿✿✿✿✿✿

another
✿✿✿✿✿✿✿✿✿✿

complicated
✿✿✿✿✿

scene
✿✿

is
✿✿✿✿✿✿✿

depicted
✿✿

in
✿✿✿✿✿

panels
✿✿

g
✿✿✿

and
✿✿

h.
✿✿✿✿

The

✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

southernmost
✿✿✿✿✿✿✿

profiles
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-observed
✿✿✿✿

pCT
✿✿

of
✿✿✿✿

390 hPa over the southern continental United States.
✿✿✿

and
✿✿✿✿✿✿✿✿

285 hPa,695

✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿✿✿

reproduced
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

ANN.
✿✿✿✿✿✿✿✿✿

Predicted
✿✿✿

pCT
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿✿

northernmost
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿

agree
✿✿✿✿✿✿✿

similarly
✿✿✿✿

well
✿✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿

predictions
✿✿✿

are
✿✿✿

too
✿✿✿✿

low
✿✿✿

for
✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿

between
✿✿✿

25◦
✿✿✿

and
✿✿✿✿

30◦
✿✿✿✿✿✿✿

latitude,
✿✿✿✿

and
✿✿✿

too
✿✿✿✿

high
✿✿✿

for
✿✿✿

the
✿✿✿✿

lone

✿✿✿✿✿

cloudy
✿✿✿✿✿✿

profile
✿✿✿✿✿✿

around
✿✿✿✿

33◦
✿✿✿✿✿✿✿

latitude.

Similar to the cloud detection algorithm, the prediction
✿✿

As
✿✿✿✿✿

noted
✿✿✿

in
✿✿✿✿✿✿✿

sections
✿✿✿✿✿✿✿

5.1-5.2,
✿✿✿

the
✿

performance for pCT appears

✿✿✿✿✿✿✿✿✿

predictions
✿✿✿✿✿

seems
✿

to decline with an increase in cloud top pressure, consistent with the reduced contrast between clear sky and700

cloudy TB around pCT ∼ 700 hPa, as shown in Figure 3. However, the ANN can reliably distinguish between high-reaching

convection with pCT < 300 hPa and mid- to low-level clouds.

6 Summary and conclusions

The current MLS cloud flags, reported in the Level 2 Geophysical Product
✿✿✿

files
✿

of version 4.2x, are designed to identify profiles

that are influenced by significantly opaque clouds, with the main goal being to identify cases where retrieved composition705

profiles may have been adversely affected either by the clouds or by the steps taken in the retrieval to exclude cloud-affected

radiances. In this study, we present an improved cloud detection scheme based on the popular “Keras” Python library for setting

up, testing, and validating a
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

multilayer
✿✿✿✿✿✿✿✿✿

perceptron,
✿✿

a
✿✿✿✿✿✿✿✿✿✿

subcategory
✿✿

of
✿

feedforward artificial neural networks (ANNs).

✿

It
✿✿✿✿✿✿

applies
✿✿

a
✿✿✿✿✿✿✿

softmax
✿✿✿✿✿✿✿✿

activation
✿✿✿✿✿✿✿

function
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

output
✿✿✿✿

layer
✿✿✿

for
✿✿✿✿✿✿

binary
✿✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿✿

(i.e.,
✿✿✿✿✿

clear
✿✿✿

sky
✿✿

or
✿✿✿✿✿✿✿

cloudy),
✿✿✿✿✿

while
✿✿

a
✿✿✿✿✿✿✿

log–loss
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✿✿✿✿✿✿✿

function
✿✿

is
✿✿✿✿✿✿✿✿✿

minimized
✿✿

to
✿✿✿✿✿✿✿✿

determine
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

weights.
✿✿

A
✿✿✿✿✿✿✿

second
✿✿✿✿✿

setup,
✿✿✿✿✿

which
✿✿✿✿✿✿✿

applies
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿

output
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

output
✿✿✿✿

layer
✿✿✿✿

and710

✿✿✿✿✿✿✿✿✿

determines
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿

weights
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

minimizing
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿

squared
✿✿✿✿✿

error,
✿✿

is
✿✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

produce
✿

a
✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿✿

pressure
✿✿✿✿

(pCT)
✿✿✿✿✿✿✿✿

estimate

✿✿✿✿

from
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

radiances
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

approximates
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿

retrievals.
✿

This new algorithm is shown to not only reliably detect high and

mid-level convection containing even small amounts of cloud water, but also to distinguish between high-reaching and mid- to

low-level convection.

To train the ANN models we colocated global MLS brightness temperatures (TB), sampled on 208 days between 2005 and715

2020, with nadir-viewing MODIS-retrieved cloud properties aggregated within a 1◦×1◦ box (in latitude and longitude) around

each MLS profile. This yielded a median cloud cover (C), cloud top pressure (pCT), and cloud water path (QT) associated

with each of the 162,117 MLS scans in the colocated data set. These variables are used to discriminate clear sky (C < 1/3

and QT < 25 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿

QT < 25 g m−2) from cloudy (C ≥ 2/3, 100hPa ≤ pCT < 700hPa, and QT > 50 g m−2
✿✿✿✿✿✿✿✿✿✿✿✿✿

QT > 50 g m−2)

profiles. Overall, the input variables for the ANN consist of 1,710 MLS-observed TB from different spectral bands, chan-720

nels, and minor frames (i.e., views at different altitudes in the atmosphere). Comprehensive
✿✿✿✿

After
✿✿✿✿✿✿

setting
✿✿✿✿✿

aside
✿✿✿✿

10%
✿✿✿

of
✿✿✿

the

✿✿✿

data
✿✿✿

to
✿✿✿✿

serve
✿✿✿

as
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

test
✿✿✿✿

data
✿✿✿✿

set,
✿✿✿✿✿✿✿✿✿✿✿✿

comprehensive
✿

testing and cross-validation procedures are conducted to iden-

tify the right set of hyperparameters (i.e., model settings). The ideal model parameters are used to train 100 different ANN

models, where the colocated data are randomly shuffled and split into 75% training and 25% validation data
✿✿✿✿

70%
✿✿✿✿✿✿✿

training

✿✿✿

and
✿✿✿✿

20%
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿

(referenced
✿✿

to
✿✿✿

the
✿✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿

data
✿✿✿

set). Three binary classification metrics are calculated for725

every model run to evaluate the respective prediction
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classification
✿

performance for unseen data: the accuracy (Ac),

F1 Score (F1), and Matthew’s correlation coefficient (Mcc).
✿✿✿✿✿✿✿✿

Similarly,
✿✿✿

the
✿✿✿✿✿✿✿

Pearson
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

product-moment
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿

coefficient

✿✿

(r)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

root-mean-square
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿

(RMSD)
✿✿✿✿✿✿✿

provide
✿✿✿

the
✿✿✿✿✿✿

means
✿✿

to
✿✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

pCT-models.
✿

Average

values and standard deviations from the
✿✿✿✿

each
✿✿✿

set
✿✿

of
✿

100 different model runs are Ac= 0.971± 0.001, F1 = 0.971± 0.002,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ac= 0.934± 0.001,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

F1 = 0.937± 0.001,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mcc= 0.868± 0.003,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

r = 0.819± 0.001, andMcc= 0.942± 0.003, and, on average,730

the models correctly classify ∼ 97.0% of the clear sky and cloudy profiles
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

RMSD= 80.268± 0.160hPa. The high statistical

scores and low variability in the results illustrate that the ANN algorithm yields
✿✿✿

two
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿✿

yield
✿

reliable cloud

classifications
✿✿✿

and
✿✿✿

pCT
✿✿✿✿✿✿✿✿

estimates for previously unseen MLS observations.

✿

It
✿✿

is
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿

note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

state.
✿✿✿✿✿

Since
✿✿✿✿

each
✿✿✿✿✿

ANN
✿✿✿✿

was

✿✿✿✿✿✿

trained
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

targets,
✿✿

it
✿✿✿✿✿✿✿

follows
✿✿✿

that
✿✿✿✿

they,
✿✿

at
✿✿✿✿

best,
✿✿✿✿

will
✿✿✿✿✿✿✿

replicate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

results.
✿✿✿✿

The
✿✿✿✿✿✿✿

MODIS735

✿✿✿✿✿✿✿✿

retrievals,
✿✿✿✿✿✿✿

however,
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿✿✿

their
✿✿✿✿

own
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

and
✿✿✿✿✿✿

biases,
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

subsequently
✿✿✿✿✿✿

learned
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

reproduced
✿✿✿

by

✿✿

the
✿✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿

models.
✿✿✿✿

This
✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿✿✿✿✿

analyses
✿✿✿

of
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

in
✿✿✿✿

this
✿✿✿✿

study
✿✿✿✿✿

only
✿✿✿✿✿✿

provide
✿✿✿

an
✿✿✿✿✿✿✿✿

evaluation
✿✿✿

of
✿✿✿✿

how
✿✿✿✿

well
✿✿✿✿

each

✿✿✿✿✿

model
✿✿✿✿

can
✿✿✿✿✿✿✿✿

replicate
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿

retrievals.
✿

A comparison with the current v4.2x status flags reveals thatfor ,
✿✿✿

for
✿✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿✿✿

sets, the complete

data set in this study the new ANN results provide a significant improvement in cloud classification. The ANN algorithm740

correctly identifies 97.8%
✿✿✿✿✿✿

> 93% of cloudy profiles, while only 1.7%
✿✿✿

less
✿✿✿✿

than
✿✿✿

6%
✿

of the clear profiles are falsely flagged. No

significant dependence on geolocation is observed, indicating that the ANN flag yields reliable classification results on a global

scale. In contrast, the current v4.2x flag detects only 15.8%
✿✿✿✿✿✿

≈ 16% of cloudy profiles, and even though it is designed to identify

sufficiently opaque clouds, it only correctly classifies 29.0%
✿✿✿✿✿✿

< 27% of cloudy profiles with QT > 1,000 g m−2. The fraction

23



of falsely flagged clear profiles (6.2%) is also higher compared
✿✿

is
✿✿✿✿✿✿✿✿✿✿

comparable
✿

to the ANN results.
✿✿✿✿

Apart
✿✿✿✿✿

from
✿✿

a
✿✿✿✿✿✿✿

reduced745

✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿✿

detect
✿✿✿✿✿✿

clouds
✿✿✿✿

over
✿✿✿✿✿✿

regions
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

generally
✿✿✿

low
✿✿✿✿✿

cloud
✿✿✿✿✿✿

cover,
✿✿✿

no
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿

on
✿✿✿✿✿✿✿✿✿✿

geolocation
✿✿

is
✿✿✿✿✿✿✿✿✿

observed,

✿✿✿✿✿✿✿✿

indicating
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿

flag
✿✿✿✿✿

yields
✿✿✿✿✿✿

reliable
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿✿✿

results
✿✿✿

on
✿

a
✿✿✿✿✿

global
✿✿✿✿✿

scale.
✿

A global cloud cover map for data collected

between 2005 and 2019 is presented, generated solely from MLS-sampled TB and the determined ANN weights. Typically

observed cloud patterns and reported cloud fractions are reproduced by the ANN algorithm
✿✿✿✿✿✿

derived
✿✿

C
✿✿✿✿✿

agree
✿✿✿✿✿✿✿✿✿✿

reasonably
✿✿✿✿

well

✿✿✿✿

with
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

results. Moreover, detailed examination of four examples
✿✿✿✿✿✿✿

example scenes from the North American and Asian750

summer monsoon regions reveals that the ANN can reliably identify diverse cloud fields, including those characterized by

low-level clouds and low QT. Together with the consistently large statistical agreement, these global and regional examples of

successful cloud detection illustrate that the predefined cloudiness conditions (following thresholds for C, pCT, and QT) are

reasonable. Moreover, the uncertainties arising from associating MLS observations in the limb with nadir MODIS images do

not seem to substantially impact the reliability of the ANN algorithm.755

This study demonstrates that the ANN algorithm can not only detect cloud influences for individual MLS profiles , but also

that it can reliably predict
✿✿✿✿✿✿✿✿

Similarly,
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿

ANN
✿✿✿✿✿

setup
✿✿

is
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

reliably
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿

MODIS-retrieved
✿✿✿

pCT
✿✿✿

for
✿✿✿✿✿✿✿

profiles

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿

set,
✿✿✿✿

with
✿✿✿✿✿✿✿✿

r > 0.82
✿✿✿

and
✿✿✿✿✿✿

RMSD
✿✿✿✿✿✿✿✿✿

< 80 hPa.
✿

It
✿✿

is
✿✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿✿

66%
✿✿

of pCT
✿✿✿✿✿✿✿✿✿

predictions
✿✿✿

are

✿✿✿✿✿

within
✿✿✿✿✿✿

50 hPa
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

results.
✿✿✿✿✿✿✿

Derived
✿✿✿✿✿✿

global
✿✿✿✿✿

maps
✿✿

of
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿✿

ANN-predicted
✿✿✿

pCT
✿✿✿

can
✿✿✿✿✿✿✿✿✿

reproduce
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

patterns
✿✿

in

✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

retrievals.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

this
✿✿✿✿✿

model
✿✿

is
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿

identify
✿✿✿✿✿✿

> 85%
✿✿

of
✿✿✿✿✿✿

profiles
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa
✿✿

in
✿✿✿

the
✿✿✿✿✿

−60◦760

✿✿

to
✿✿✿✿✿

+60◦
✿✿✿✿✿✿

latitude
✿✿✿✿✿✿

range.
✿✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿

flags
✿✿✿✿✿

only
✿✿✿✿✿

≈ 9%
✿✿

of
✿✿✿✿

such
✿✿✿✿✿✿✿

profiles
✿✿

as
✿✿✿✿✿✿

cloudy. This is

illustrated by high correlation coefficients of > 0.99 and objectively good model performance for three example cloud fields

of varying degrees of complexity.

This new cloud classification scheme, which will be included in future versions of the MLS v4.2x
✿✿✿✿✿

dataset, provides the

means to reliably identify profiles with potential
✿✿✿✿

mid-
✿✿

to
✿✿✿✿✿✿✿✿✿

high-level cloud influence. As mention
✿✿✿

Note
✿✿✿✿

that
✿✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

radiances
✿✿✿

are765

✿✿✿

not
✿✿✿✿✿✿✿

affected
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

change
✿✿✿✿

from
✿✿✿✿✿✿

v4.2x
✿✿

to
✿✿✿✿✿

v5.0x.
✿✿✿

As
✿✿✿✿✿✿✿✿✿

mentioned
✿

in the introduction, this new algorithm will facilitate future

research on reducing uncertainties in the retrieval of atmospheric constituents in the presence of clouds. Moreover, studies on

convective moistening of the lowermost stratosphere, as well cloud scavenging of atmospheric pollutants, will benefit from

these new capabilities.

Data availability. MLS brightness temperatures and L2GP data, including status flags, are available at https://mls.jpl.nasa.gov. Aqua-770

MODIS data are obtained from the LAADS-DAAC at https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MODIS:Aqua

©2020. California Institute of Technology. Government sponsorship acknowledged. The research was carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space

Administration (80NM0018D0004) .

Simplified sketch of the algorithm setup, including three vectors in the input layer (blue) that contain MLS brightness775

temperatures (Ti; i=1–3), two hidden layers (green) with two neurons (Nh1−k and Nh2−k; k =1–2) and one “bias” node each

(Bk; k =1–2), and output layer (orange) with the labels vector (L) and “bias” node (BL). Also shown are the input weights
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(ωi,k; i=0–3, k =1–2), connecting weights (̟k,l; k =0–2, l =1–2), and output weights (Ωl; l =0–2) that connect the input

variables to the neurons in the first hidden layer, the neurons from the two hidden layers, and the neurons from the second

hidden layer to the labels vector, respectively.780
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(a) Illustration of the colocation ofMLS and MODIS data. (b) Global map ofsample frequencies for the colocated MLS-MODIS

data set used in the training of the ANN.

Appendix A:
✿✿✿✿

Days
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data
✿✿✿

set

✿✿✿

The
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿

table
✿✿✿

lists
✿✿✿

the
✿✿✿✿

days
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿

data
✿✿✿

set.
✿✿✿✿✿

Days
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-randomly
✿✿✿✿✿✿

chosen
✿✿

to
✿✿✿✿✿✿

ensure

✿✿✿

that
✿✿✿✿

each
✿✿✿✿✿✿

month
✿✿

is
✿✿✿✿✿✿✿✿✿

represented
✿✿✿✿✿✿✿

equally
✿✿✿

and
✿✿✿✿

only
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

days
✿✿✿✿

(i.e.,
✿✿

to
✿✿✿✿✿✿✿✿

technical
✿✿✿✿✿

issues
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

instruments)
✿✿✿

are785

✿✿✿✿✿✿✿

included.
✿

(a) Statistic of the brightness temperature (TB) from MLS observations sampled in band 2 of receiver 2 at minor frame

(MIF) 15 (at an altitude of≈ 4.5km) in the latitudinal range of−30◦ to +30◦ as a function of frequency. The orange, blue, and

green curves show the median TB associated with clear sky conditions, clouds with a cloud top pressure pCT < 700hPa, and

clouds with pCT ≥ 700hPa, respectively. The shaded orange and blue areas indicate the interquartile range of the respective TB790

(omitted for low clouds to enhance legibility). Samples are provided by the colocated MLS-MODIS data set. (b) Same as (a),

but for band 33 of radiometer 3. (c) Same as (a), but for band 14 of radiometer 4. (d)–(f) Same as (a)–(c), but at MIF=33 (at an

altitude of ≈ 12km).

(a) Histograms of classifications from the ANN algorithm for 100 random combinations of training and validation data sets.

Orange and blue shading depicts the percent of correctly predicted clear (i.e., true negatives, tn) and cloudy (i.e., true positives,795

tp) labels for actually observed clear and cloudy profiles, respectively. Blue and orange lines depict the percent of falsely

predicted cloudy (i.e., false positives, fp) and clear (i.e., false negatives, tn) labels for actually observed clear and cloudy

profiles, respectively. The vertical extent of the gray horizontal bars on top of each histogram indicates the standard deviation

derived from all 100 predictions (the horizontal extent is arbitrary). (b) Scatter plot of Matthews correlation coefficient (Mcc)

and F1 score for the same 100 random combinations of training and validation data sets shown in (a).800

(a) Histograms of classifications from the new ANN-based cloud flag for actually observed cloudy profiles as a function of

total water path (QT). Orange and blue colors depict the distributions of predicted clear and cloudy labels, respectively. The

number of clear and cloudy predictions is also given. (b) Similar to (a), but for actually observed clear profiles as a function of

cloud cover (C). (c)-(d) Same as (a)-(b), but for classifications from the current v4.2x cloud flag.

(a) Average probability of cloudiness (P ) predicted by the ANN as a function of C and QT. P are grouped into four805

classes: confidently clear (“Conf. Clr.”; P < 0.25), probably clear (“Prob. Clr.”; 0.25≤ P < 0.5), probably cloudy (“Prob.

Cld.”; 0.5≤ P < 0.75), and confidently cloudy (“Conf. Cld.”; P ≥ 0.75). No restrictions on cloud top pressure (pCT) are

imposed. (b) Same as (a), but for profiles with pCT < 700hPa.

(a) Latitudinal and longitudinal dependence of the performance of the ANN algorithm, determined by the F1 score for binary

classifications. Observations and actual cloudiness flags are provided by the colocated MLS-MODIS data set. (b) Same as (a),810

but for the current v4.2x cloud flag. (c) Average global cloud cover derived from MLS brightness temperature observations

and the weights determined from the trained ANN. All MLS observations sampled between 2015 and 2019 are represented.
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Table A1. Details about the colocated MLS-MODIS data set, which contains observations from thirteen random Julian days (d01-d13) for

each year over 2005–2020.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

d01 001 005 006 018 031 021 010 004 014 002 015 010 021 008 010 008

d02 034 041 041 055 055 041 040 036 037 052 016 031 053 043 041 048

d03 064 045 066 064 056 064 076 061 079 065 033 044 069 075 083 087

d04 117 066 092 068 079 092 077 101 113 101 064 076 106 109 109 181

d05 121 098 134 076 092 126 112 134 121 139 116 110 107 124 139 192

d06 122 099 173 119 145 164 142 169 154 167 124 140 143 163 181 196

d07 158 140 197 122 164 201 177 187 206 202 159 172 169 183 189 214

d08 206 161 230 158 212 240 185 224 238 238 186 212 205 223 239 215

d09 223 194 265 197 221 264 224 225 273 255 216 213 243 269 256 247

d10 244 242 302 198 251 275 261 246 274 256 248 233 270 280 257 251

d11 286 259 322 224 286 276 293 300 313 290 284 266 283 281 286 258

d12 319 301 323 292 314 308 317 332 337 330 309 299 332 324 308 284

d13 349 323 360 328 353 356 359 350 338 354 342 323 358 358 341 310

(d) Same as (c), but for the current v4.2x cloud flag. (e) Same as (c), but from Aqua-Modis observations sampled in 2019. (f)

Same as (e), but with retrieved cloud top pressure < 700 hPa.

(a) Map of cloud top pressure (pCT) retrieved from MODIS observations on 31 August 2017 over North America. Transparent815

circles indicate the MLS orbit. (b) Same as (a), but for the total water path (Qt). (c) Clear (orange) and cloudy (blue) profiles

as determined from the new ANN algorithm. (d) Same as (c), but determined from the current v4.2x status flags. (e)-(h) Same

as (a)-(d), but for MLS and MODIS observations on 5 July 2015.

Similar to Figure 8, but for MLS and MODIS observations on (a)-(d) 28 June 2019 and (e)-(h) 4 July 2018, respectively,

over South Asia. These scenes were captured over the Asian summer monsoon region.820

(a) Normalized joint histograms of true and predicted cloud top pressure (pCT). Data are from the training data set. (b) Same

as (a), but for the validation data set.

(a) Map of cloud top pressure (pCT) retrieved from MODIS observations on 30 August 2017 over North America. Transparent

circles indicate the MLS orbit. (b) Same as (a), but for the predicted pCT based on the ANN algorithm. (c)-(d) Same as (a)-(b),

but for MLS and MODIS observations on 28 August 2019. (e)-(f) Same as (a)-(b), but for MLS and MODIS observations on825

27 August 2019.
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Figure 1.
✿✿✿✿✿✿✿✿

Simplified
✿✿✿✿✿

sketch
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

setup,
✿✿✿✿✿✿✿

including
✿✿✿✿

three
✿✿✿✿✿✿

vectors
✿✿

in
✿✿

the
✿✿✿✿✿

input
✿✿✿✿

layer
✿✿✿✿

(blue)
✿✿✿

that
✿✿✿✿✿✿

contain
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperatures

✿✿✿✿

(TBi;
✿✿✿✿✿✿✿

i=1–3),
✿✿✿

two
✿✿✿✿✿✿

hidden
✿✿✿✿✿

layers
✿✿✿✿✿✿

(green)
✿✿✿

with
✿✿✿✿

two
✿✿✿✿✿✿

neurons
✿✿✿✿✿✿

(Nh1−k
✿✿✿✿

and
✿✿✿✿✿✿

Nh2−k;
✿✿✿✿✿✿✿

k =1–2)
✿✿✿

and
✿✿✿

one
✿✿✿✿✿

“bias”
✿✿✿✿

node
✿✿✿✿

each
✿✿✿✿

(Bk;
✿✿✿✿✿✿✿✿

k =1–2),
✿✿✿

and

✿✿

an
✿✿✿✿✿

output
✿✿✿✿

layer
✿✿✿✿✿✿✿

(orange)
✿✿✿✿

with
✿✿

the
✿✿✿✿✿

labels
✿✿✿✿✿

vector
✿✿✿

(L)
✿✿✿

and
✿✿✿✿

one
✿✿✿✿✿

“bias”
✿✿✿✿

node
✿✿✿✿

(BL).
✿✿✿✿

Also
✿✿✿✿✿✿

shown
✿✿

are
✿✿✿

the
✿✿✿✿✿

input
✿✿✿✿✿✿

weights
✿✿✿✿

(ωi,k;
✿✿✿✿✿✿✿

i=0–3,
✿✿✿✿✿✿✿

k =1–2),

✿✿✿✿✿✿✿✿

connecting
✿✿✿✿✿✿

weights
✿✿✿✿✿

(̟k,l;
✿✿✿✿✿✿

k =0–2,
✿✿✿✿✿✿✿

l =1–2),
✿✿✿

and
✿✿✿✿✿

output
✿✿✿✿✿✿

weights
✿✿✿

(Ωl;
✿✿✿✿✿✿

l =0–2)
✿✿✿

that
✿✿✿✿✿✿

connect
✿✿✿

the
✿✿✿✿

input
✿✿✿✿✿✿

variables
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

neurons
✿✿

in
✿✿

the
✿✿✿

first
✿✿✿✿✿✿

hidden

✿✿✿✿

layer,
✿✿✿

the
✿✿✿✿✿✿

neurons
✿✿✿✿

from
✿✿

the
✿✿✿✿

two
✿✿✿✿✿

hidden
✿✿✿✿✿

layers,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

neurons
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿

hidden
✿✿✿✿

layer
✿✿

to
✿✿✿

the
✿✿✿✿

labels
✿✿✿✿✿✿

vector,
✿✿✿✿✿✿✿✿✿

respectively.

Figure 2.
✿

(a)
✿✿✿✿✿✿✿

Example
✿✿✿✿✿

MLS
✿✿✿✿

orbit
✿✿

on
✿✿

19
✿✿✿✿

May
✿✿✿✿✿

2019.
✿✿

(b)
✿✿✿✿✿✿✿✿✿

Illustration
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

colocation
✿✿

of
✿✿✿✿

MLS
✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿

data.
✿✿✿

(c)
✿✿✿✿✿

Global
✿✿✿✿

map
✿✿

of
✿✿✿✿✿✿

sample

✿✿✿✿✿✿✿✿

frequencies
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data
✿✿

set
✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿

study.
✿✿✿

(d)
✿✿✿✿

Same
✿✿

as
✿✿✿

(c),
✿✿✿

but
✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿

frequencies
✿✿

of
✿✿✿✿✿✿✿

observed
✿✿✿✿

clear

✿✿✿

and
✿✿✿✿✿

cloudy
✿✿✿✿✿✿

profiles,
✿✿✿✿✿✿✿✿

following
✿✿

the
✿✿✿✿✿✿✿✿

definitions
✿✿

in
✿✿✿✿✿✿

section
✿✿✿

3.2.
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Figure 3.
✿✿

(a)
✿✿✿✿✿✿

Statistic
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

(TB)
✿✿✿✿

from
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

sampled
✿✿

in
✿✿✿✿

band
✿

2
✿✿

of
✿✿✿✿✿✿✿

receiver
✿

2
✿✿

at
✿✿✿✿✿

minor
✿✿✿✿✿

frame
✿✿✿✿✿

(MIF)

✿✿

15
✿✿

(at
✿✿✿

an
✿✿✿✿✿✿

altitude
✿✿

of
✿✿✿✿✿✿✿✿

≈ 4.5km)
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿

range
✿✿

of
✿✿✿✿✿

−30
◦

✿✿

to
✿✿✿✿✿

+30
◦

✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿✿

frequency.
✿✿✿✿

The
✿✿✿✿✿

orange,
✿✿✿✿✿

blue,
✿✿✿

and
✿✿✿✿

green
✿✿✿✿✿✿

curves

✿✿✿✿

show
✿✿

the
✿✿✿✿✿✿

median
✿✿✿

TB
✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿

clear
✿✿

sky
✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿✿

clouds
✿✿✿✿

with
✿

a
✿✿✿✿✿

cloud
✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿✿✿✿

pCT < 700hPa,
✿✿✿

and
✿✿✿✿✿✿

clouds
✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

pCT ≥ 700hPa,

✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿✿

shaded
✿✿✿✿✿✿

orange
✿✿✿

and
✿✿✿✿

blue
✿✿✿✿

areas
✿✿✿✿✿✿

indicate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interquartile
✿✿✿✿

range
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿

TB
✿✿✿✿✿✿✿

(omitted
✿✿

for
✿✿✿✿

low
✿✿✿✿✿

clouds
✿✿

to
✿✿✿✿✿✿✿

enhance

✿✿✿✿✿✿✿✿

legibility).
✿✿✿✿✿✿

Samples
✿✿✿

are
✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿

data
✿✿✿

set.
✿✿✿

(b)
✿✿✿✿

Same
✿✿

as
✿✿✿

(a),
✿✿✿

but
✿✿

for
✿✿✿✿

band
✿✿✿

33
✿✿

of
✿✿✿✿✿✿✿✿

radiometer
✿✿

3.
✿✿

(c)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(a),

✿✿

but
✿✿✿

for
✿✿✿✿

band
✿✿

14
✿✿

of
✿✿✿✿✿✿✿✿

radiometer
✿✿

4.
✿✿✿✿✿

(d)–(f)
✿✿✿✿✿

Same
✿✿

as
✿✿✿✿✿

(a)–(c),
✿✿✿

but
✿✿

at
✿✿✿✿✿✿

MIF=33
✿✿✿

(at
✿✿

an
✿✿✿✿✿✿

altitude
✿✿

of
✿✿✿✿✿✿✿✿

≈ 12km).
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Figure 4.
✿✿

(a)
✿✿✿✿✿✿✿✿✿

Histograms
✿✿

of
✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

ANN
✿✿✿✿✿✿✿

algorithm
✿✿✿

for
✿✿✿

100
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿✿✿

combinations
✿✿

of
✿✿✿✿✿✿

training
✿✿✿

and
✿✿✿✿✿✿✿✿

validation
✿✿✿

data
✿✿✿✿

sets.

✿✿✿✿✿

Orange
✿✿✿

and
✿✿✿✿

blue
✿✿✿✿✿✿

shading
✿✿✿✿✿✿

depicts
✿✿✿

the
✿✿✿✿✿

percent
✿✿

of
✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿

clear
✿✿✿

(i.e.,
✿✿✿✿

true
✿✿✿✿✿✿✿

negatives,
✿✿✿

tn)
✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿

(i.e.,
✿✿✿

true
✿✿✿✿✿✿✿

positives,
✿✿✿

tp)
✿✿✿✿✿

labels

✿✿

for
✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿

observed
✿✿✿✿

clear
✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿

profiles,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿

Orange
✿✿✿

and
✿✿✿✿

blue
✿✿✿✿

lines
✿✿✿✿✿

depict
✿✿

the
✿✿✿✿✿✿

percent
✿✿

of
✿✿✿✿✿✿

falsely
✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

cloudy
✿✿✿✿

(i.e.,
✿✿✿✿

false

✿✿✿✿✿✿✿

positives,
✿✿✿

fp)
✿✿✿

and
✿✿✿✿

clear
✿✿✿✿

(i.e.,
✿✿✿✿

false
✿✿✿✿✿✿✿

negatives,
✿✿✿✿

fn)
✿✿✿✿

labels
✿✿✿

for
✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿

observed
✿✿✿✿

clear
✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿✿✿

profiles,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿✿

vertical
✿✿✿✿✿

extent
✿✿

of

✿✿

the
✿✿✿✿

gray
✿✿✿✿✿✿✿✿

horizontal
✿✿✿

bars
✿✿✿

on
✿✿✿

top
✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿✿✿

histogram
✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿

all
✿✿✿

100
✿✿✿✿✿✿✿✿

predictions
✿✿✿✿

(the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿

extent

✿

is
✿✿✿✿✿✿✿✿

arbitrary).
✿✿✿

(b)
✿✿✿✿✿

Scatter
✿✿✿✿

plot
✿✿

of
✿✿✿✿✿✿✿✿

Matthews
✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿✿

(Mcc)
✿✿✿

and
✿✿

F1
✿✿✿✿✿

score
✿✿

for
✿✿✿

the
✿✿✿✿✿

same
✿✿✿

100
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿✿✿

combinations
✿✿✿

of
✿✿✿✿✿✿

training

✿✿✿

and
✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿✿

sets
✿✿✿✿✿

shown
✿✿

in
✿✿✿

(a).
✿✿

(c)
✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

(a),
✿✿✿

but
✿✿✿✿✿✿

showing
✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿✿✿✿

derived
✿✿✿✿✿✿

Pearson
✿✿✿✿✿✿✿✿✿✿✿✿

product-moment
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

coefficient

✿✿

(r)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

root-mean-square
✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿

(RMSD)
✿✿✿✿

from
✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿

algorithm.
✿✿✿

(d)
✿✿✿✿✿

Similar
✿✿

to
✿✿✿

(b),
✿✿✿

but
✿✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿✿✿✿✿

relationship

✿✿✿✿✿✿

between
✿

r
✿✿✿

and
✿✿✿✿✿✿

RMSD.
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Figure 5.
✿✿

(a)
✿✿✿✿✿✿✿✿✿

Histograms
✿✿

of
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿✿

from
✿✿✿

the
✿✿✿

new
✿✿✿✿✿✿✿✿✿

ANN-based
✿✿✿✿✿

cloud
✿✿✿

flag
✿✿✿

for
✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿

observed
✿✿✿✿✿

cloudy
✿✿✿✿✿✿

profiles
✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of

✿✿✿

total
✿✿✿✿✿

water
✿✿✿

path
✿✿✿✿✿

(QT).
✿✿✿✿

Only
✿✿✿✿✿✿

profiles
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿

set
✿✿✿

are
✿✿✿✿✿✿✿✿

considered.
✿✿✿✿✿✿

Orange
✿✿✿

and
✿✿✿✿

blue
✿✿✿✿✿

colors
✿✿✿✿✿

depict
✿✿

the
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿✿✿✿

predicted

✿✿✿

clear
✿✿✿✿

and
✿✿✿✿✿

cloudy
✿✿✿✿✿

labels,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

clear
✿✿✿

and
✿✿✿✿✿

cloudy
✿✿✿✿✿✿✿✿✿

predictions
✿✿

is
✿✿✿

also
✿✿✿✿✿

given.
✿✿

(b)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(a),
✿✿✿

but
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

classifications
✿✿✿✿

from

✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿

v4.2x
✿✿✿✿✿

cloud
✿✿✿

flag.
✿✿✿✿✿✿

(c)-(d)
✿✿✿✿✿

Similar
✿✿

to
✿✿✿✿✿✿

(a)-(b),
✿✿

but
✿✿✿

for
✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿

observed
✿✿✿✿

clear
✿✿✿✿✿✿

profiles
✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿

(C).
✿✿✿✿✿

(e)-(h)
✿✿✿✿✿

Same

✿

as
✿✿✿✿✿✿

(a)-(d),
✿✿✿

but
✿✿

for
✿✿✿✿✿✿

profiles
✿✿✿✿

from
✿✿✿

the
✿✿✿

test
✿✿✿

data
✿✿✿

set.
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Figure 6.
✿✿

(a)
✿✿✿✿✿✿✿

Average
✿✿✿✿✿✿✿✿

probability
✿✿

of
✿✿✿✿✿✿✿✿

cloudiness
✿✿✿

(P )
✿✿✿✿✿✿✿

predicted
✿✿✿

by
✿✿

the
✿✿✿✿✿

ANN
✿✿

as
✿

a
✿✿✿✿✿✿

function
✿✿

of
✿✿

C
✿✿✿

and
✿✿✿✿

QT.
✿✿

No
✿✿✿✿✿✿✿✿✿

restrictions
✿✿

on
✿✿✿✿✿

cloud
✿✿

top
✿✿✿✿✿✿✿

pressure

✿✿✿✿

(pCT)
✿✿✿

are
✿✿✿✿✿✿✿

imposed.
✿✿

(b)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(a),
✿✿✿

but
✿✿

P
✿✿

is
✿✿✿✿✿✿

grouped
✿✿✿

into
✿✿✿✿

four
✿✿✿✿✿✿

classes:
✿✿✿✿✿✿✿✿✿

confidently
✿✿✿✿

clear
✿✿✿✿✿✿

(“Conf.
✿✿✿✿

Clr.”;
✿✿✿✿✿✿✿✿✿

P < 0.25),
✿✿✿✿✿✿✿

probably
✿✿✿✿

clear
✿✿✿✿✿✿

(“Prob.

✿✿✿✿

Clr.”;
✿✿✿✿✿✿✿✿✿✿✿✿✿

0.25≤ P < 0.5),
✿✿✿✿✿✿✿

probably
✿✿✿✿✿

cloudy
✿✿✿✿✿✿

(“Prob.
✿✿✿✿

Cld.”;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

0.5≤ P < 0.75),
✿✿✿

and
✿✿✿✿✿✿✿✿

confidently
✿✿✿✿✿

cloudy
✿✿✿✿✿✿

(“Conf.
✿✿✿✿✿

Cld.”;
✿✿✿✿✿✿✿✿✿

P ≥ 0.75).

Table 2. Details of the input variables for the ANN algorithm, which consist of MLS brightness temperature observations in 10 different

bands from 4 radiometers. Besides the official radiometer and band designations, the local oscillator (LO) and primary species of interest in

the respective band are given, as well as the ranges of minor frames (MIFs) and channels used as input for the ANN.

Spectrometer Band LO (GHz) Species MIF Channel

R1A B1F 118 ptan [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R2 B2F 190 H2O [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R2 B3F 190 N2O [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R2 B6F 190 O3 [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R3 B7F 240 O3 [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R3 B8F 240 ptan [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R3 B33W 240 O3 [7, 10, 13, . . ., 49] [1, 2, 3, 4]

R4 B10F 640 ClO [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R4 B14F 640 O3 [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 25]

R4 B28M 640 HO2 [7, 10, 13, . . ., 49] [1, 3, 5 , . . ., 11]
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Figure 7.
✿✿

(a)
✿✿✿✿✿✿✿✿

Latitudinal
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿✿✿

dependence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

performance
✿✿✿

of
✿✿

the
✿✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

algorithm,
✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿✿✿

the
✿✿

F1
✿✿✿✿✿

score
✿✿✿

for
✿✿✿✿✿

binary

✿✿✿✿✿✿✿✿✿✿✿

classifications.
✿✿✿✿✿✿✿✿✿

Observations
✿✿✿

and
✿✿✿✿✿

actual
✿✿✿✿✿✿✿✿

cloudiness
✿✿✿✿

flags
✿✿

are
✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data
✿✿✿

set;
✿✿✿

only
✿✿✿✿✿✿

profiles
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿✿✿

validation

✿✿✿

and
✿✿✿✿✿✿

training
✿✿✿

data
✿✿✿

set
✿✿

are
✿✿✿✿✿✿✿✿✿

considered.
✿✿✿

(b)
✿✿✿✿

Same
✿✿

as
✿✿✿

(a),
✿✿✿

but
✿✿

for
✿✿✿

the
✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿

cloud
✿✿✿✿

flag.
✿✿✿

(c)
✿✿✿✿✿✿

Average
✿✿✿✿✿

global
✿✿✿✿

cloud
✿✿✿✿✿

cover
✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿

MLS

✿✿✿✿✿✿✿

brightness
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

weights
✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿

trained
✿✿✿✿

ANN
✿

.
✿✿✿

All
✿✿✿✿

MLS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

sampled
✿✿✿✿✿✿

between
✿✿✿✿✿

2015
✿✿✿

and

✿✿✿✿

2019
✿✿

are
✿✿✿✿✿✿✿✿✿

represented.
✿✿✿

(d)
✿✿✿✿✿

Same
✿

as
✿✿✿

(c),
✿✿✿

but
✿✿✿

for
✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿

v4.2x
✿✿✿✿✿

cloud
✿✿✿✿

flag.
✿✿

(e)
✿✿✿✿

Same
✿✿

as
✿✿✿

(c),
✿✿✿

but
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

Aqua-MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

sampled
✿✿

in

✿✿✿✿

2019.
✿✿

(f)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(e),
✿✿

but
✿✿✿✿

with
✿✿✿✿✿✿✿

retrieved
✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿✿

< 700 hPa.
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Figure 8.
✿✿

(a)
✿✿✿

Map
✿✿✿

of
✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿✿

(pCT)
✿✿✿✿✿✿✿

retrieved
✿✿✿✿

from
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

on
✿✿✿

31
✿✿✿✿✿✿

August
✿✿✿✿

2017
✿✿✿✿

over
✿✿✿✿

North
✿✿✿✿✿✿✿✿

America.
✿✿✿✿✿✿✿✿✿

Transparent

✿✿✿✿✿

circles
✿✿✿✿✿✿

indicate
✿✿

the
✿✿✿✿✿

MLS
✿✿✿✿

orbit.
✿✿

(b)
✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

(a),
✿✿

but
✿✿✿

for
✿✿✿

the
✿✿✿

total
✿✿✿✿✿

water
✿✿✿

path
✿✿✿✿

(Qt).
✿✿✿

(c)
✿✿✿✿

Clear
✿✿✿✿✿✿

(orange)
✿✿✿

and
✿✿✿✿✿✿

cloudy
✿✿✿✿

(blue)
✿✿✿✿✿✿

profiles
✿✿

as
✿✿✿✿✿✿✿✿✿

determined

✿✿✿

from
✿✿✿

the
✿✿✿✿

new
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

algorithm.
✿✿

(d)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(c),
✿✿✿

but
✿✿✿✿✿✿✿✿

determined
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

current
✿✿✿✿✿

v4.2x
✿✿✿✿✿

status
✿✿✿✿

flags.
✿✿✿✿✿

(e)-(h)
✿✿✿✿✿

Same
✿✿

as
✿✿✿✿✿

(a)-(d),
✿✿✿

but
✿✿

for
✿✿✿✿✿

MLS
✿✿✿

and

✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿

5
✿✿✿

July
✿✿✿✿✿

2015.
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Figure 9.
✿✿✿✿✿

Similar
✿✿

to
✿✿✿✿✿

Figure
✿✿

8,
✿✿✿

but
✿✿✿

for
✿✿✿✿

MLS
✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿✿✿✿✿

(a)-(d)
✿✿

28
✿✿✿✿

June
✿✿✿✿

2019
✿✿✿

and
✿✿✿✿✿✿

(e)-(h)
✿

5
✿✿✿✿

July
✿✿✿✿

2018,
✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿

over

✿✿✿✿

South
✿✿✿✿

Asia.
✿✿✿✿✿

These
✿✿✿✿✿

scenes
✿✿✿✿

were
✿✿✿✿✿✿✿

captured
✿✿✿

over
✿✿✿

the
✿✿✿✿✿

Asian
✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿

monsoon
✿✿✿✿✿✿

region.
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Figure 10.
✿✿

(a)
✿✿✿✿✿✿✿✿✿

Normalized
✿✿✿✿

joint
✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿

true
✿✿✿

and
✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿

pressure
✿✿✿✿✿

(pCT).
✿✿✿✿

Data
✿✿✿

are
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿

data
✿✿✿

set.
✿✿

(b)
✿✿✿✿✿

Same

✿

as
✿✿✿

(a),
✿✿✿

but
✿✿✿

for
✿✿

the
✿✿✿✿✿✿

training
✿✿✿✿

data
✿✿✿

set.
✿✿

(c)
✿✿✿✿✿✿✿✿✿

Histograms
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

predicted
✿✿✿

and
✿✿✿✿✿✿✿

observed
✿✿✿

pCT,
✿✿✿

for
✿✿✿✿✿✿

profiles
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿

(blue)

✿✿✿

and
✿✿✿

test
✿✿✿✿✿✿

(orange)
✿✿✿✿

data
✿✿✿

set.
✿✿✿

(d)
✿✿✿✿✿

Percent
✿✿✿

of
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 400,350,300 hPa
✿✿✿

that
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

successfully
✿✿✿✿✿✿✿

detected
✿✿

by
✿✿✿

the
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿✿

(color-filled
✿✿✿✿

bars)

✿✿✿

and
✿✿✿✿✿

flagged
✿✿✿

by
✿✿

the
✿✿✿✿✿

v4.2x
✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿

(transparent
✿✿✿✿✿

bars).
✿✿✿✿

Data
✿✿

are
✿✿✿✿

from
✿✿✿✿

both
✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿

sets.
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Figure 11.
✿✿

(a)
✿✿✿✿

Map
✿✿

of
✿✿✿✿✿✿

derived
✿✿✿✿✿✿

Pearson
✿✿✿✿✿✿✿✿✿✿✿✿✿

product-moment
✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

coefficient
✿✿✿

(r)
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

ANN-predicted
✿✿✿✿✿

cloud

✿✿

top
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿

(pCT).
✿✿✿✿✿✿✿✿✿✿

Observations
✿✿✿

are
✿✿✿✿✿✿✿

provided
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

colocated
✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿

data
✿✿✿✿

set;
✿✿✿✿

only
✿✿✿✿✿✿

profiles
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿

and
✿✿✿✿✿✿✿

training

✿✿✿

data
✿✿✿

set
✿✿✿

are
✿✿✿✿✿✿✿✿✿

considered.
✿✿✿

(b)
✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

(a),
✿✿✿

but
✿✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

root-mean-square
✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿✿

(RMSD).
✿✿

(c)
✿✿✿✿✿✿

Similar
✿✿✿

to
✿✿✿

(a),
✿✿✿

but
✿✿✿✿✿✿✿

showing
✿✿✿

the

✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿✿

MODIS-retrieved
✿✿✿

pCT.
✿✿✿

(d)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(c),
✿✿

but
✿✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿✿

predictions.
✿✿✿

(e)
✿✿✿✿✿✿

Similar
✿✿

to
✿✿✿

(a),
✿✿

but
✿✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿✿

percent
✿✿

of
✿✿✿✿✿✿✿

observed

✿✿✿✿✿✿✿✿✿✿✿

pCT < 400 hPa
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿

successfully
✿✿✿✿✿✿✿

detected
✿✿

by
✿✿✿

the
✿✿✿✿✿

ANN.
✿✿

(f)
✿✿✿✿✿

Same
✿✿

as
✿✿✿

(e),
✿✿✿

but
✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿✿

percent
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿

detected
✿✿

a

✿✿✿✿

cloud.
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Figure 12.
✿✿

(a)
✿✿✿✿

Map
✿✿

of
✿✿✿✿✿

cloud
✿✿✿

top
✿✿✿✿✿✿

pressure
✿✿✿✿✿

(pCT)
✿✿✿✿✿✿

retrieved
✿✿✿✿

from
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿✿

31
✿✿✿✿✿✿

August
✿✿✿✿

2017
✿✿✿✿

over
✿✿✿✿

North
✿✿✿✿✿✿✿✿

America.
✿✿✿✿✿✿✿✿✿

Transparent

✿✿✿✿✿

circles
✿✿✿✿✿✿

indicate
✿✿✿

the
✿✿✿✿

MLS
✿✿✿✿

orbit.
✿✿✿

(b)
✿✿✿✿

Same
✿✿

as
✿✿✿

(a),
✿✿✿

but
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

predicted
✿✿✿

pCT
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

algorithm.
✿✿✿✿✿

(c)-(d)
✿✿✿✿✿

Same
✿✿

as
✿✿✿✿✿

(a)-(b),
✿✿✿

but
✿✿✿

for
✿✿✿✿

MLS

✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿

5
✿✿✿

July
✿✿✿✿✿

2015.
✿✿✿✿✿

(e)-(f)
✿✿✿✿✿✿

Similar
✿

to
✿✿✿✿✿✿

(a)-(b),
✿✿✿

but
✿✿

for
✿✿✿✿

MLS
✿✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿✿

28
✿✿✿✿

June
✿✿✿✿

2019.
✿✿✿✿✿

(g)-(h)
✿✿✿✿✿

Same
✿✿

as

✿✿✿✿✿

(a)-(b),
✿✿✿

but
✿✿

for
✿✿✿✿✿

MLS
✿✿✿

and
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

observations
✿✿✿

on
✿

5
✿✿✿

July
✿✿✿✿✿

2018.
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Table 3. Binary classification statistics for the new ANN algorithm, as well as the classification provided by the current MLS v4.2x status

flag. Prescribed labels (i.e., clear sky or cloudy) are provided by the standard definitions presented in section 3.2, as well as a redefined

classification ;
✿✿✿✿✿✿✿

statistics
✿✿✿

are
✿✿✿✿

given
✿✿✿

for
✿✿✿✿

both
✿✿

the
✿✿✿✿✿✿✿✿

validation
✿✿✿

and
✿✿✿

test
✿✿✿✿

data
✿✿✿

sets.
✿✿✿✿✿✿

Results
✿✿✿

for
✿✿✿

two
✿✿✿✿✿✿✿

modified
✿✿✿✿✿✿✿✿

definitions based on looser thresholds

✿✿

are
✿✿✿✿

also
✿✿✿✿✿

given;
✿✿✿

here
✿✿✿✿✿✿✿

statistics
✿✿✿

are
✿✿✿✿

based
✿✿✿

on
✿✿

all
✿✿✿✿✿✿

profiles
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

MLS-MODIS
✿✿✿✿

data
✿✿

set
✿✿✿✿✿✿

(minus
✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

data). The fraction of true positives

and negatives (tp and tn), as well as false positives and negatives (fp and fn), are given. Finally, three measures for the evaluation of binary

statistics are listed: the accuracy (Ac), the F1 score (F1), and the Matthews correlation coefficient (Mcc).

tp tn fp fn Ac F1 Mcc

ANN
✿✿✿✿✿✿✿✿

(validation) 0.98
✿✿✿✿

0.93 0.98
✿✿✿✿

0.94 0.02
✿✿✿✿

0.06 0.02
✿✿✿✿

0.07 0.98
✿✿✿✿

0.94 0.98
✿✿✿✿

0.94 0.96
✿✿✿✿

0.87

v4.2x
✿✿✿✿✿✿✿✿

(validation) 0.16 0.94 0.06 0.84 0.53 0.26 0.15

ANN (redefined
✿✿

test) 0.69
✿✿✿✿

0.95 0.96 0.04 0.31
✿✿✿✿

0.05 0.77
✿✿✿✿

0.96 0.81
✿✿✿✿

0.96 0.60
✿✿✿✿

0.91

v4.2x (redefined
✿✿

test) 0.08
✿✿✿✿

0.15 0.94 0.06 0.92
✿✿✿✿

0.85 0.34
✿✿✿✿

0.55 0.14
✿✿✿✿

0.25 0.04
✿✿✿✿

0.15

✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

(modified,
✿✿

all
✿✿✿✿

pCT)
✿✿✿

0.58
✿✿✿

0.91
✿✿✿

0.09
✿✿✿

0.42
✿✿✿

0.65
✿✿✿

0.73
✿✿✿✿

0.41

✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿

(modified,
✿✿

all
✿✿✿✿

pCT)
✿✿✿

0.05
✿✿✿

0.95
✿✿✿

0.05
✿✿✿

0.95
✿✿✿

0.24
✿✿✿

0.09
✿✿✿✿

0.00

✿✿✿✿

ANN
✿✿✿✿✿✿✿✿

(modified,
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 700hPa)
✿✿✿

0.89
✿✿✿

0.91
✿✿✿

0.09
✿✿✿

0.11
✿✿✿

0.90
✿✿✿

0.90
✿✿✿✿

0.81

✿✿✿✿

v4.2x
✿✿✿✿✿✿✿✿

(modified,
✿✿✿✿✿✿✿✿✿✿✿✿

pCT < 700hPa)
✿✿✿

0.13
✿✿✿

0.95
✿✿✿

0.05
✿✿✿

0.87
✿✿✿

0.54
✿✿✿

0.22
✿✿✿✿

0.13
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