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Abstract. Quantitative calibration of analytes using chemical ionization mass spectrometers (CIMS) has been hindered by the 

lack of commercially available standards of atmospheric oxidation products. To accurately calibrate analytes without 

standards, techniques have been recently developed to log-linearly correlate analyte sensitivity with instrument operating 

conditions. However, there is an inherent bias when applying log-linear calibration relationships that is typically ignored. In 10 

this study, we examine the bias in a log-linear based calibration curve based on prior mathematical work. We quantify the 

potential bias within the context of a CIMS-relevant relationship between analyte sensitivity and instrument voltage 

differentials. Uncertainty in three parameters has the potential to contribute to the bias, specifically the inherent extent to which 

the nominal relationship can capture true sensitivity, the slope of the relationship, and the voltage differential below which 

maximum sensitivity is achieved. Using a prior published case study, we estimate an average bias of 30%, with one order of 15 

magnitude for less sensitive compounds in some circumstances. A parameter-explicit solution is proposed in this work for 

completely removing the inherent bias generated in the log-linear calibration relationships. A simplified correction method is 

also suggested for cases where a comprehensive bias correction is not possible due to unknown uncertainties of calibration 

parameters, which is shown to eliminate the bias on average but not for each individual compound. 

1. Introduction 20 

The time-of-flight chemical ionization mass spectrometer (Tof-CIMS) has been widely used for online characterization of 

organic compounds in the atmosphere. Gas-phase analytes are reacted with reagent ions to form analyte ions, then detected 

and classified by mass spectrometry. Many reagent ions have been examined, with some of the most popular being 

hydronium (Yuan et al., 2016; Lindinger et al., 1998), acetate (Bertram et al., 2011; Brophy and Farmer, 2016), nitrate 

(Jokinen et al., 2012; Krechmer et al., 2015), CF3O- (Crounse et al., 2006; St Clair et al., 2010), and iodide (Lee et al., 2014; 25 

Slusher, 2004). Each reagent ion accesses a different region of chemical space (Riva et al., 2019; Isaacman-Vanwertz et al., 

2017) and differs in its range of sensitivities, from relatively universal to highly variable. For example, proton-transfer-

reaction is commonly used for measurements of less oxidized compounds with a sensitivity that varies only by a factor of up 
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to 3 or 4 for most analytes (Sekimoto et al., 2017). In contrast, iodide is most useful for semivolatile, oxidized compounds, 

but sensitivity varies by several orders of magnitude (Iyer et al., 2016; Lopez-Hilfiker et al., 2016).  30 

 

Unfortunately, these wide ranges in sensitivity pose significant issues in the quantitative measurement of ambient 

atmospheres. For many atmospheric constituents, it is not possible or not feasible to calibrate using authentic standards, due 

to a  lack of commercial availability and/or chemical instability (thermal lability, flammability, etc.) (Brophy, 2016). Several 

approaches have consequently been developed to estimate the sensitivity of a CIMS instrument to a given analyte based on 35 

either its physicochemical properties (e.g., dipole moment and polarizability) (Sekimoto et al., 2017) or its observed response 

(e.g., induced dissociation) changing instrument conditions (Zaytsev et al., 2019; Lopez-Hilfiker et al., 2016). Estimating 

instrument sensitivity based on derived relationships between sensitivity and other properties inherently carries some 

uncertainty, as the relationship is unlikely to be ideal and typically includes some scatters. Nevertheless, this approach of 

“derived sensitivity” is often the best (or only) tool available for calibration, so a close look is warranted into the 40 

implications of this approach on the error of a single analyte, as well as the combined error of the sum of many analytes.  

 

Previous work, which we discuss in detail in the following section, has examined the uncertainty in estimating a parameter 

from a derived relationship (i.e., using a regression model to predict a value). Specifically, prediction of a value (e.g., 

sensitivity) from a linear model introduces no bias and has normally distributed error, but in more complex relationships 45 

(e.g., involving log-transformations, step functions, etc.), bias and other errors may be introduced. Many of the derived 

sensitivity relationships used for CIMS have more complex forms, so the overarching goal of this work is to evaluate and 

correct for biases and other errors in the types of relationships used for estimating CIMS sensitivities. 

 

We focus in this work on the calibrations of analytes in an iodide-CIMS because: (1) this measurement technique is widely 50 

used, (2) it has orders of magnitude variance in sensitivities (Iyer et al., 2016), and (3) estimating its sensitivity often relies 

on a complex (log-linear, piece-wise) sensitivity relationship. Iyer et al. (2016) have shown that the sensitivities of analytes 

in an iodide-CIMS are log-linearly correlated with the binding-enthalpy of the iodide-analyte adduct, with some maximum 

sensitivity that is limited by the rate of collisions between the analyte and the reagent ion. Lopez-Hilfiker et al. (2016) further 

suggested that modulating voltage differences in certain component of the mass spectrometer (i.e., between the skimmer of 55 

the small-segmented quadrupole and the entrance of the big-segmented quadrupole) can introduce de-clustering of the 

iodide-molecule adduct. The parameter, dV50, which is the voltage difference where signals of a compound are at half-

maximum, is reported to be an indicator of the binding-enthalpy of the adduct (Lopez-Hilfiker et al., 2016; Iyer et al., 2016). 

Therefore, the iodide-CIMS sensitivities can be predicted by dV50 based on a log-linear relationship, up to a plateau of 

maximum sensitivity at sufficiently high binding enthalpies.  60 
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The objective of this study is to understand the error in the calibrated mass of an analyte or the sum of multiple analytes 

measured by a CIMS. The work here focuses on sensitivities that are predicted using log-transformed derived relationships 

as in the case of the iodide-CIMS voltage scan method, but any calibration approach that relies on mathematically 

transformed relationships should be studied in this manner and biases should be corrected. We first examine the problem by 65 

comparing simple linear and log-linear models used to estimate instrument sensitivity, then expand these ideas to the more 

complex relationship used in iodide-CIMS voltage scanning, and finally provide and evaluate corrections to reduce or even 

remove the bias. 

2. Prior work on uncertainty analysis 

2.1 Linear fits 70 

In some cases, the sensitivity of an instrument can be estimated from a direct linear fit to a property or parameter. For 

example, sensitivity of a flame ionization detector is linearly correlated with oxygen-to-carbon content of an analyte (Hurley 

et al., 2020). In a linear model such as this, the average residual of the fit (i.e., the difference between the true sensitivity and 

the predicted sensitivity) will necessarily be equal to zero. In other words, there is no difference between average true and 

average modeled sensitivity. The sensitivity of any given analyte might be uncertain, but those uncertainties are normally 75 

distributed around the model, so the potential overprediction is equal in scale to the potential underprediction. The average 

sensitivity measured for each analyte is therefore unbiased, and the summed mass of multiple ions is consequently unbiased. 

Specifically, relative uncertainty, σsum, in the summed mass or concentration, Csum,  of N analytes is the sum of the squares of 

the relative uncertainty in each individual analyte, σi and their individual concentrations, Ci: 

 𝜎𝑠𝑢𝑚 =
√∑ 𝐶𝑖

2𝜎𝑖
2𝑁

𝑖

𝐶𝑠𝑢𝑚
 (1) 80 

In cases where relative uncertainty of each analyte is equal (e.g., “instrument uncertainty is 20%”), 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑁 and 

Equation 1 can be re-written as: 

 𝜎𝑠𝑢𝑚 =
√∑ 𝐶𝑖

2𝑁
𝑖

𝐶𝑠𝑢𝑚
𝜎𝑖 (2) 

This equation has two extreme conditions. When one compound dominates total mass, Csum is essentially equal to Ci and this 

equation collapses to: 85 

 𝜎𝑠𝑢𝑚 =
√𝐶𝑖

2

𝐶𝑖
𝜎𝑖 = 𝜎𝑖  (3) 

In this case, relative uncertainty is equal to that of a single analyte. At the other extreme condition, when all N analytes are 

equal in concentration, this equation collapses to: 
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 𝜎𝑠𝑢𝑚 =
√𝑁𝐶𝑖

2

𝑁𝐶𝑖
𝜎𝑖 =

𝜎𝑖

√𝑁
  (4) 

In most cases, neither a single analyte will dominate summed mass, nor will all analytes be evenly distributed, so 90 

uncertainties in the summed mass of real-world measurements likely fall between the extremes of 𝜎𝑖/√𝑁 and σi. From 

Equations 3 and 4 it is clear then that, when calibration relies on linear fits, relative uncertainty in summed mass is generally 

lower than uncertainty in the mass of an individual analyte. In other words, as a set of analytes gets larger, their average 

predicted sensitivities is increasingly well described by the average model.  

2.2 Log-transformed fits 95 

It is tempting to assume that the conclusions drawn from linear fits are generalizable: that the sum of many analytes is less 

uncertain than any given analyte. However, this conclusion has some truth, as well as some limitations, when a mathematical 

transformation (e.g., the logarithm) is applied to data to linearize it. The case we address here is specifically when 

log(sensitivity), not sensitivity, is correlated to some other parameter, as in the case of iodide-CIMS voltage scanning. What 

we present here is substantively similar to the treatment by Miller (1984) of the case of linear fits to natural-log-transformed 100 

data, through the lens of its implications for atmospheric measurements. 

 

A linear fit through log-transformed data can be described as: 

 log(Y) =  + βX + ε  (5) 

where the log-transformed value of Y is described by two coefficients ( and β) describing a linear relationship with X, and 105 

an error term, ε, describing deviation in the true value from the fit. In such a fit, the error term is assumed to be normally 

distributed in logarithmic terms will be evenly distributed in logarithmic terms, meaning it is log-normally distributed in 

linear terms (i.e., ε is normally distributed).  
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Figure 1. Simulated samples relationship between log(sensitivity) and dV50 for an iodide-CIMS based on an assumed log-110 

linear relationship (i.e., slope = -1 log unit/V, maximum sensitivity = 10 @ dV50 ≥ 6 V). Nominal relationship is the black 

line, with simulated sensitivities for 100 analytes around this relationship as circles. Blue markers demonstrate bias in the 

average value as described in the text. The shading indicates the probability density of sensitivities around the fitted 

relationship. 

To understand the effect of this error term on a real instrument, we consider a thought experiment presented in Figure 1, 115 

though the discussion here applies to linear fits through any log-transformed data. A distribution of points is shown with a 

normal distribution of “scatter” around an average linear fit describing the relationship between log(sensitivity) and the 

parameter, dV50, that is an empirical description of the binding enthalpy of the analyte with the reagent ionanalyte-reagent 

ion binding-enthalpy. Sensitivity and dV50 of 100 analytes are back-calculated from a pre-defined log-linear fit (i.e., slope 

and intercept of the line) Sensitivities of 100 simulated analytes are shown with a distribution of scatter described by σscatter = 120 

0.4 log units (i.e., a factor of 2.5, similar to previously-estimated uncertainty in an iodide-CIMS (Isaacman-Vanwertz et al., 

2018)). Consider two analytes of dV50 = 5.0 V (i.e., blue circles in Figure 1), which have an equal probability of occurring at 

one sigma above or below this fit. Using this log-linear fit, the sensitivity that would be assigned to both analytes is 100 = 1 

(in units of signal per mass, scaled arbitrarily). However, one analyte has a true sensitivity of 100.4 = 2.5 signal/mass while 

the other has a true sensitivity of 10-0.4 = 0.4 signal/mass. The average sensitivity of these two components is therefore 1.45 125 

signal/mass, 45% higher than the predicted value. In other words, uncertainty in log terms is implicitly “factor”-based 

uncertainty as opposed to “percentage”-based uncertainty, and a factor of 2.5 times (i.e., 0.4 log unit) larger is a higher 

difference than a factor of 2.5 times smaller. Taking this example one step further, consider an environment in which both 

analytes are present in equal mass, e.g., one mass unit each = two mass units total. Signal generated by this instrument from 

both analytes would equal 0.4 + 2.5 signal units = 2.9 signal units. In turn, the 2.9 signal units would be interpreted using the 130 

predicted sensitivities of 1 signal/mass, calculating a total mass of 2.9 mass units, 45% higher than the true mass of 2 mass 
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units. Summing increasingly large numbers of ions does not remove this bias. Instead, a correction must be made to the log-

linear model to account for this difference between true and predicted average sensitivity. 

 

Correcting this bias requires a proper consideration of the true average of the error term, ε, in linear terms. The true value of 135 

Y can be calculated as: 

 Y = 1010βX10ε  (6) 

The median of a log-normal distribution is equal to the median of the log-transformed distribution, so the median value of Y 

is correctly represented by this equation. However, as observed in the example shown in Figure 1, the mean value of a log-

normal distribution is higher than the mean of the log-transformed distribution. Specifically, the mean value of a log-normal 140 

distribution with a width of σ and a median of 0, for any logarithm base, B is: 

 Mean of a base-B-log-normal distribution = 𝑒
1

2
(ln(𝐵)𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟)2

= 𝐵ln(𝐵)
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

2
  (7) 

Both forms of this equation given are equivalent, and for a natural-log-normal distribution, it collapses to the expected form 

of 𝑒
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

2
(Miller, 1984). Equations 6 and 7 can be combined to yield a full equation for accurately estimating the mean 

expected value of Y using a linear fit through base-10-log-transformed data: 145 

 �̂� = 10𝛼10𝛽𝑋10ln(10)
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

2
 (8) 

Implementation of this error-correction term removes the expected bias. Figure 2 demonstrates the bias in average mass in 

the simple scenario discussed above as a function of the scatter around a log-linear model. Inherent bias in the sensitivity, 

and thus measured mass, of ions is reasonable for small values of σscatter, but quickly becomes substantial with increasing 

σscatter. Introducing the bias correction term removes bias entirely. The magnitude of this bias is independent of assumptions 150 

about the relationship shown in Figure 1, such as its slope or the range of dV50 across which is applied. 
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Figure 2. Average of bias (percentage) in mass of one or multiple analytes with and without bias correction. 

3. Method for quantifying error in sums of analytes 

Equations 4 and 8 suggest two important conclusions: (1) summing multiple analytes reduces the uncertainty in the summed 155 

concentration, and (2) analytes and sums of analytes calibrated using log-transformed relationships are inherently biased. To 

explore the combined effects of these two conclusions, we perform a Monte Carlo analysis that simulates the real-world 

application of log-transformed sensitivity models. N number of simulated analytes are generated with a randomly assigned 

“true sensitivity” defined by the relationship shown in Figure 1 with a Gaussian distribution of error, σ. Each analyte is 

assigned a random “true sampled mass” spanning six orders of magnitude (i.e., 10-3 to 103 arbitrary mass units). A simulated 160 

signal produced by each analyte is calculated by multiplying its true sensitivity by its true sampled mass. The nominal log-

linear model is used to estimate a fitted sensitivity for each analyte, which is used to convert the signal to the fitted mass of 

an analyte. The summed fitted mass of all N analytes is compared to the summed true sampled mass to calculate the error in 

the fitted mass; 100,000 such simulations of N analytes yield a probability distribution of expected error.  
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 165 

Figure 3. Probability distribution of percent error in the summed mass of N analytes based on the Monte Carlo analysis 

described in the text. Distributions of 5, 50, and 500 analytes are shown (left) without bias correction and (right) with bias 

correction using Equation 8. 

The combined effects of the two statistical trends implied by Equations 4 and 8 are clear in Figure 3. As the number of 

analytes, N, increases, the sum of the mass converges toward a tighter distribution of uncertainty (i.e., the sum becomes less 170 

uncertain). However, the mass to which the distribution converges is inherently biased. In other words, the sum of 5 analytes 

may span a wide range of potential error, but on average they will be biased high by ~50%. Increasing the number of 

analytes just improves the probability that the sum is ~50% too high. The sum of 500 analytes, each with an uncertainty of a 

factor of 2.5 has high precision, but inherently biased accuracy. 

 175 

This approach assumes that true sensitivities are not perfectly represented by the nominal relationship (i.e., scatter is “real”); 

this is in contrast to the case in which each analyte is actually truly described by the fit and deviations are due to 

measurement uncertainties (i.e., scatter is measurement error). If the latter is discovered in subsequent literature to be the 

case, no bias would truly exist and the work in this manuscript is extraneous. However, we believe the more likely case is 

that the scatter is a real consequence of the calibration approach for two reasons. Firstly, it is unlikely that an empirically 180 

derived relationship captures with perfect fidelity the sensitivity of an analyte. Secondly, because an iodide-CIMS classifies 

analytes by elemental formula with no regard to molecular structure, the dV50 of each analyte (i.e., ion) is typically some 

combination of multiple compounds (Bi et al., 2021). It therefore inherently represents some composite of a distribution of 

analytes and is unlikely to equally represent all analytes in the mixture. Nevertheless, scatter measured by a real instrument 

provides some insight into true scatter; imperfect measurements of many compounds scattered around the nominal 185 

relationship would yield the nominal relationship with some uncertainty that represents the true variability (at least to some 

greater or lesser degree).  For the purposes of real-world instruments, then, we suggest that it is reasonable to use observed 
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uncertainty in model parameters as an estimate of their true variability and will do so throughout this work. However, we 

note that the sensitivity of some compounds predicted by the log-linear relationship between sensitivity and dV50 may have 

high uncertainty, likely due to the empirical nature of the relationship (Bi et al., 2021). 190 

4. Expanding to CIMS-specific parameters 

4.1 Sources of uncertainty 

So far, this work has treated a fairly simple case: normally distributed error in log-transformed data. However, in the case of 

an iodide-CIMS calibration using voltage scans, this may not accurately represent the form of uncertainty. The true 

relationship between log(sensitivity) and dV50 has several parameters, each of which could be uncertain or may represent a 195 

central tendency of an inherently imperfect relationship. Figure 4 shows the nominal relationship between sensitivity and 

dV50 of a form that is typically considered for an iodide-CIMS using voltage scans, as well as an illustrative potential spread 

of true sensitivities around this relationship. At some dV50,max, the instrument reaches maximum sensitivity, Smax, and it 

might be reasonable to expect that analytes closer to this value adhere more closely to the general relationship than 

compounds that diverge significantly from maximum sensitivity. In this case, variability in sensitivity may itself be partly 200 

(but perhaps only partly) a function of dV50 (i.e., heteroscedastic). Note that while compounds near maximum sensitivity are 

generally well predicted, the nominal relationship in Figure 4 assumes that sensitivities of low-sensitivity analytes may 

diverge by roughly an order of magnitude from the general trend. 

 

σSmax 

σdV50,max σscatter 

σslope 

Possible 
relationship 

σSmax 

σdV50,max σscatter 

σslope 

Possible 
relationship 
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Figure 4. Nominal (black line) log-linear relationship between sensitivity and dV50 following a typical iodide-CIMS 205 

calibration form, with labels on the four sources of uncertainty described in the text. Each circle represents one simulated ion 

generated from the log-linear relationship determined by Isaacman-Vanwertz et al. (2018) within a distribution of 

uncertainty defined by the values listed in the figure.Each circle represents one ion with the distribution of uncertainties 

listed. Dashed line illustrates one possible relationship representing one standard deviation away from each nominal value. 

Note that the use of ΔdV50 in Equation 9 has changed the sign of the slope compared to when it is plotted against dV50. 210 

The relationship shown in Figure 4 is defined by four critical parameters that may have some uncertainty or may deviate 

from the nominal relationship. The distribution of sensitivities can be described by some distribution in each of the four 

parameters, in the units and forms they have been previously considered (Isaacman-Vanwertz et al., 2018). 

1) σscatter: Scatter in true sensitivity around the nominal relationship (i.e., the extent to which the average relationship 

inherently describes the data). Units of log units of sensitivity. 215 

2) σslope: Variability in the slope of the relationship between log(sensitivity) and dV50. Units of log units of sensitivity 

per volt. 

3) σdV50,max: Variability in the inflection point, the dV50 voltage at which sensitivity reaches its maximum. Units of 

volts. 

4) σSmax: Extent to which the nominal maximum sensitivity describes the sensitivity of compounds that are expected to 220 

be maximally sensitive. Units of percent. 

Each deviation from the nominal relationship will lead to inherent bias as in the simple log-transformed example discussed 

above. The exception to this issue is the fourth source of variability, variability in maximum sensitivity. Because this 

parameter is typically known reasonably well, uncertainty is low and best considered as a percentage. Uncertainty in this 

parameter is therefore not in log terms, and does not introduce bias (i.e., 10% lower and 10% higher are equally different 225 

from the nominal maximum sensitivity).  

4.2 Bias correction 

To correct for the three potential sources of bias, we introduce Equation 9 to calculate the expected sensitivity, S, of an 

analyte of a given dV50: 

�̂� = 𝑆𝑚𝑎𝑥(10𝑠𝑙𝑜𝑝𝑒×𝛥𝑑𝑉50) (10ln(10)
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

2
) (10ln(10)

1

2
(𝛥𝑑𝑉50×𝜎𝑠𝑙𝑜𝑝𝑒)

2

) (10ln(10)
1

2
(𝑠𝑙𝑜𝑝𝑒×𝜎𝑑𝑉50,𝑚𝑎𝑥)

2

) (9) 230 

A critical term in this calculation is the extent to which the dV50 of an analyte is below the nominal inflection point dV50,max, 

which is defined as going to 0 in the region of maximum sensitivity, ΔdV50 = max(dV50,max- dV50 , 0). The use of ΔdV50 has 

changed the sign of the slope compared to when it is plotted against dV50 (top x-axis in Figure 4). The slope is defined as 

change in log(sensitivity) per unit ΔdV50, and is therefore necessarily a negative value (i.e., sensitivity decreases with 

ΔdV50). The first two terms in this equation (i.e., 𝑆𝑚𝑎𝑥(10𝑠𝑙𝑜𝑝𝑒×𝛥𝑑𝑉50)) constituent the nominal relationship, while the last 235 

three terms introduce corrections for bias due to σscatter, σslope, and σdV50,max, respectively. We note that the first two terms are 
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identical in form to the sensitivity equation used in previous work (Isaacman-Vanwertz et al., 2018), except Equation 9 

excludes an additional correction term (“S0”) that is outside the scope of the present work but is typically included to account 

for partial declustering at ΔdV50 = 0. 

 240 

Unlike in the simple case of σscatter, note that bias correction factors for σslope and σdV50,max are not independent of parameters 

in the nominal relationship. Bias caused by σslope increases with the range of dV50 across which the relationship is applied. 

Bias caused by σdV50,max  increases with the slope, which makes sense when considered at its extreme - if there were no 

decrease in sensitivity with dV50 then the inflection point is irrelevant.  Given these dependencies, the scope of bias and the 

efficacy of the bias correction term must be explored using some approximation of typical CIMS conditions. We use for this 245 

work the calibration parameters used by Isaacman-Vanwertz et al. (2018): dV50,max = 6.3 V, slope = -0.9  log units sensitivity 

per volt, up to a maximum ΔdV50 = 2.3 (a minimum effective sensitivity was applied by Isaacman-Vanwertz et al. (2018), 

which is irrelevant to this work). Using these bounding conditions, the bias introduced by the model parameters is shown in 

Figure 5, in which the other sources of variability are held at 0 to isolate the effect of each parameter. As in Figure 2, bias 

quickly increases with σ for all parameters except σSmax (as expected). The correction factors introduced in Equation 9 almost 250 

fully remove all bias.  

Figure 5. The influence of σscatter, σslope, σdV50,max, and σSmax on the average percent bias in analytes calibrated using the 

typical iodide-CIMS relationship shown in Figure 4. Each curve is calculated empirically using a simulation of N = 106 

analytes, with operating conditions of dV50,max = 6.3 V, slope = -0.9  log units sensitivity per volt, up to a maximum ΔdV50 = 

2.3, following Isaacman-VanWertz et al. (2018). Uncertainty in each parameter not being investigated is held at 0.  255 

To examine the combined effect of variability in all four parameters, we investigate the conditions described for a real-world 

iodide-CIMS by Isaacman-Vanwertz et al. (2018). Uncertainty was estimated based on reported values in that work: σscatter = 
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0.2 log units, σslope = 0.125 log units per volt, σdV50,max = 0.125 volts, σSmax = 85% (calculated as the approximate standard 

deviation of their two reported possible values for Smax). No value for σscatter was actually reported as no measurements were 

available to constrain the inherent scatter in sensitivity, so 0.2 log units is assigned here as an estimate that produces 260 

approximately the same average uncertainty reported in that work for individual ions (a factor of ~2.5). 

 

Figure 6. Errors in summed mass of ions with and without bias corrections in the case study of the CIMS conditions 

described by Isaacman-VanWertz et al. (2018), represented by the listed uncertainties and number of analytes. Probability 

distributions of errors are shown for calibration without including any bias correction (red), including the parameter-explicit 265 

bias correction described by Equation 9 (blue), and including the simplified bias correction described by Equations. 10 and 

11 (green). 

The example shown in Figure 6 provides a case study to examine the importance and the limitations of bias correction. 

Without introducing the correction parameters, the sum of 225 analytes (ions measured by iodide-CIMS) is expected to yield 

a mass roughly 30% too high, with a range of possible measurements spanning from negative error to nearly a factor of 2. As 270 

described in Section 2.2, this 30% bias in the sum is caused by an average 30% in each individual analyte, so the bias exists 

for one analyte as well as for the sum of analytes. Introducing the correction parameters in Equation 9 removes this bias and 

tightens the distribution, but the range of possible sums is still substantial. In the work upon which this case study is based, 

Isaacman-VanWertz et al. (2018) used a similar Monte Carlo approach to calibrate all ions, explicitly considering a 

distribution of uncertainty in calibration parameters, so likely avoided introducing bias. Notably, they estimated that a factor 275 

of three uncertainty in any given analyte led to an uncertainty of ~60% in the sum of the 225 ions measured, comparable to 

the width of the distribution shown in Figure 6. The approach described here alleviates the need to perform a full Monte 

Carlo approach in future work seeking to calibrate large numbers of ions, instead using Equation 9 to remove the bias in 

average sensitivities. 



13 

 

5. Corrections in real-world applications 280 

To remove bias in CIMS calibration, the correction terms in Equation 9 should be included in the calculation of an analyte’s 

sensitivity. However, in many real-world cases, the number of calibrants to establish the log-linear relationship is limited 

(e.g., fewer than 10 in Lopez-Hilfiker et al. (2016) and Mattila et al. (2020)), so it may not be feasible to separately treat 

uncertainty in all four parameters. A simplification of the detailed, parameter-explicit approach here could instead treat all 

forms of uncertainty as some average residual between the nominal and true sensitivities with an effective scatter, 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

. 285 

Such an approach would apply only the first correction term using this average scatter, ignoring the terms dependent on dV50 

and slope, and implicitly assumes that uncertainty is homoscedastic. This simplified approach, shown below in Equation 10, 

is mathematically equivalent to the basic log-transformed case of Equation 8 and roughly works for low to moderate 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

, 

but loses skill as the slope and the range in dV50 increase.  

 �̂� = 𝑆𝑚𝑎𝑥(10𝑠𝑙𝑜𝑝𝑒×𝛥𝑑𝑉50) (10ln(10)
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

𝑒𝑓𝑓 2

) (10) 290 

Application of Equation 10 represents a more feasible approach to the implementation of bias correction under many real-

world scenarios than the full, parameter-explicit form of Equation 9, but requires a careful consideration of the best approach 

to estimate 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

. In the specific case that σscatter is the only source of uncertainty (i.e., σslope= σdV50,max=0 ), 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 must 

equal σscatter and error is homoscedastic. Because σscatter  is by definition a description of the error in the model relationship, it 

can be estimated as the standard deviation of the residual of the log-linear fit (σresidual) and this value must represent a 295 

reasonable estimate of 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

. However, a non-negligible caveat to this approach is that σSmax quantiatively impacts the 

residual of the log-linear fit, but does not introduce bias and thus should not influence the bias correction term. 

Consequently, the effect of σSmax needs to be removed from the residual before using it as an estimate of 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

. 

Fortunately, uncertainty in Smax is often reasonably well constrained based on experimental parameters (e.g., uncertainty in 

the calibration of a maximum senstivity analyte), so 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 can be estimated as: 300 

 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

= √𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2 − 𝜎𝑆𝑚𝑎𝑥(𝑙𝑜𝑔)

2 (11) 

where σSmax(log) is the log-equivalent uncertainty in Smax, which is typically considered in linear terms. For example in the 

case of σSmax = 10% (i.e., a factor of 0.9), the log-equivalent uncertainty σSmax(log) is, log(0.9)×(-1) = 0.045. This linear-to-log 

conversion is only meaningful for relatively low uncertainty (< ~50%), for which σSmax(log) can be estimated as: 

 𝜎𝑆𝑚𝑎𝑥(𝑙𝑜𝑔) =  − log(1 − 𝜎𝑆𝑚𝑎𝑥)  (12) 305 

For uncertainty in σSmax beyond 50%, the conversion is provided as Equation S1, but uncertainty is probably sufficiently high 

that it should be considered in log terms in any case. In some cases, σSmax may not be available, so in the Supporting 
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Information, we examine alternative statistical parameters as 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 but find that Equation 11 is most effective in 

eliminating the bias.  

 310 

As shown in Figure 6 (green line), the average bias in the calibrated mass of analytes can be fully eliminated using the 

simplified 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 bias corrections. However, a significant shortcoming of this simplified approach is its implicit assumption 

of homoscedastic error. Some single average correction will necessarily underestimate the bias in some analytes and 

overestimate the bias in others. Because uncertainty is expected to increase with decreasing sensitivity, this simplified 

correction will lead to a systematic bias toward overcorrecting high sensitivity analytes and undercorrecting low sensitivity 315 

analytes. This issue is demonstrated in Figure 7, in which the simplified bias correction (green line) represents some average 

representation of the true bias correction (blue). The effect of this issue is strongly dependent on the relative importance of 

each source of error. Limitations of the simplified approach are more severe in cases where heteroscedastic errors (e.g., 

σslope) are significant (Figure S5). Not enough data is yet available in the literature to determine the relative importance of 

uncertainties in each parameter, so the potential downsides of the simplified approach are not yet well constrained. 320 

Therefore, parameter-explicit bias correction should be implemented in cases where all four parameters can be reasonably 

estimated, but a simplified approach remains reasonable. 

 

 

Figure 7. The nominal (black line), parameter-explicit bias corrected (blue line), and 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 bias corrected (green line) log-325 

linear relationship between sensitivity and dV50. Each pink circle represents one simulated ion generated from the log-linear 

relationship determined by Isaacman-Vanwertz et al. (2018) with uncertainties replaced with those listed in the figure.Each 

pink circle represents one ion with uncertainties listed. 
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An additional value of 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 is that it can be considered as an indicator of magnitude of the potential bias in retrospective 

analyses of past datasets. In two previous studies implementing the voltage scan calibration, we found that the calculated 330 

𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 can be as low as 0.012 (Mattila et al., 2020), or as high as 0.29 (Lopez-Hilfiker et al., 2016; Iyer et al., 2016). Based 

on the log-linear fit and the calculated 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 in the two previous studies, the average bias in the summed mass of 100 

simulated ions would be approximate 2% and 28% in Mattila et al. (2020) and Lopez-Hilfiker et al. (2016), respectively, if 

sensitivities were determined by voltage scanning. However, these two extremes represent voltage scanning of two different 

instrument voltage regions and are calculated using limited number of calibrants. The potential range of the 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 therefore 335 

remains unclear and future work is needed to examine this approach in real-world applications, and the real potential for bias 

in voltage scanning approaches. Furthermore, the number of calibrants in a voltage scan calibration is often limited due to 

the lack of commercially available standards covering the entire sensitivity range, so σresidual (and thus 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

) may not 

adequately capture the true scatter of residuals. 

 Uncertainty of instrumental measurements is frequently reported in the literature, which is typically a measure of the 340 

combined instrument precision and accuracy. In contrast, bias represents a systematic error in the accuracy and is distinct 

from these reported uncertainties. It is theoretically worth comparing the relative magnitude of the two types of errors, as a 

small bias would likely be negligible in the case of large uncertainty. However, this is difficult as bias may vary significantly 

depending on the uncertainties of the log-linear fit, with examples shown in Figure S5 ranging from 8 to 300% bias in 

summed mass of analytes. Recent work by Bi et al. (2021) found uncertainties of a factor of 3-10 for individual ions and 345 

~30% for the sum of many ions using the voltage scanning method. This summed uncertainty is comparable in scale to the 

bias determined for the data from Isaacman-VanWertz et al (2018), indicating bias is likely non-negligible. For individual 

ions, the importance of bias correction depends strongly on the dV50 of the compound and the scale of the bias correction, 

though a parameter-explicit bias correction always increases accuracy. 

6. Conclusions 350 

In this work, we examine uncertainty in the case where instrument sensitivity is itself a function of some parameter, with a 

focus on uncertainty in the summation of multiple analytes. We show that when sensitivity is a linear function of a 

parameter, the sum of multiple analytes necessarily has lower relative uncertainty than any given analyte. However, when an 

iodide-CIMS is calibrated by the voltage scanning method utilizing the linear relationship between log transformation of 

sensitivity and a parameter,a log transformation is used to linearize the relationship between sensitivity and a parameter, as 355 

in the case of an iodide-CIMS, an inherent bias is introduced into the sensitivity of analytes. While summing multiple 

analytes increases the precision of the sum, the bias can only be eliminated by specifically introducing correction terms to 

the relationship. Although the discussions of this work mainly focus on iodide-CIMS, we believe that this correction can be 
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applied to other CIMS or more broadly, other atmospheric measurement instruments using log-linear calibration 

relationships. 360 

 

The correction terms introduced in this work for both the general case of log-transformed relationships, and the special case 

of an iodide-CIMS (i.e., Equation 9), fully remove this bias. We propose that these corrections terms should be introduced 

into any such calibration schemes in future work in order to minimize bias and reduce uncertainty in the literature. Given that 

real-world calibration scenarios are complex and consequently not all parameters have known uncertainties, we suggest that, 365 

at least, a term to correct for the average observed scatter around the nominal relationship, i.e., Equation 10, should be 

incorporated in calibrations to remove a major portion of the bias. For the convenience of method users, we summarize 

correction procedures as a step-by-step guidance to apply the simplified bias correction method in Table 1. 
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Table 1. Step-by-step guidance to apply the simplified bias correction method 

Step 1 : Fit the log-transformed sensitivities with obtained dV50 using a linear relationship. 

Step 2 : Calculate σresidual, the standard deviation of the residuals of the fit, log(Smeasured,i) – log(Sfitted, i). 

Step 3: Calculate σSmax(log)
*: 

𝜎𝑆𝑚𝑎𝑥(𝑙𝑜𝑔) =  − log(1 − 𝜎𝑆𝑚𝑎𝑥) 

Step 4 : Calculate 𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

 using obtained σresidual and σSmax(log) 

𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓

= √𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2 − 𝜎𝑆𝑚𝑎𝑥(𝑙𝑜𝑔)

2 

Step 5 : Calculate bias-corrected sensitivity by adding a correction term, 10ln(10)
1

2
𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟

𝑒𝑓𝑓 2

, to the nominal fit: 

�̂� = 𝑆𝑚𝑎𝑥(10𝑠𝑙𝑜𝑝𝑒×𝛥𝑑𝑉50) (10ln(10)
1
2

𝜎𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑒𝑓𝑓 2

) 

*: Equation S1 should be used to calculate σSmax(log) when σSmax>50%. 370 

 

However, we do recommend that this simplified approach be used cautiously to avoid overcorrections of sensitivity for more 

sensitive analytes and undercorrections for less sensitive ones. While data is limited on the uncertainty in each calibration 

parameter and the relative merits of simplified vs. parameter-explicit correction, bias-corrected results are expected to be 

more accurate than uncorrected values and some form of bias correction should be introduced into instrument calibrations 375 

relying on log-transformed calibrations.  
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