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Abstract. We consider the problem of reconstructing the
number size distribution (or particle size distribution) in the
atmosphere from lidar measurements of the extinction and
backscattering coefficients. We assume that the number size
distribution can be modeled as a superposition of log-normal5

distributions, each one defined by three parameters: mode,
width and height. We use a Bayesian model and a Monte
Carlo algorithm to estimate these parameters. We test the de-
veloped method on synthetic data generated by distributions
containing one or two modes and perturbed by Gaussian10

noise as well as on three datasets obtained from AERONET.
We show that the proposed algorithm provides good results
when the right number of modes is selected. In general, an
overestimate of the number of modes provides better results
than an underestimate. In all cases, the PM1, PM2.5 and PM1015

concentrations are reconstructed with tolerable deviations.

1 Introduction

Lidar (light detection and ranging) is a remote sensing tech-
nique similar to radar (radio detecting and ranging) which
uses light in the form of short laser pulses to invest a target20

and obtain, through elastic and inelastic scattering processes,
information on the target properties as a function of the dis-
tance from the lidar system.

In the atmospheric application, lidar systems can be used
to obtain spatially resolved information about the optical25

properties of the atmospheric aerosols (desert dust, vol-
canic ash, smog and many other types of substances) (Gi-
annakaki et al., 2010; Ritter et al., 2018; Lee and Wong,
2018; Stelitano et al., 2019; Chazette, 2020) over a distance
of several kilometers and with high spatial and temporal res- 30

olutions. Advanced, multiwavelength lidar systems are ca-
pable of giving information on the spectral dependence of
the aerosol optical properties and can therefore be used to
obtain information on the aerosol microphysical properties
(Weitkamp, 2006; Pérez-Ramírez et al., 2013; Granados- 35

Muñoz et al., 2014; Giannakaki et al., 2016; Müller et al.,
2016; Chemyakin et al., 2016; Ortiz-Amezcua et al., 2017;
Molero et al., 2020).

However, information on the microphysical properties of
the atmospheric aerosols is seldom obtained using the lidar 40

signal alone. This information, which is essential for a com-
plete aerosol characterization useful to understand their ef-
fect on climate, is instead frequently obtained through the
synergistic use of in situ instruments; incidentally these mea-
surements also allow a validation of the lidar retrievals, but 45

only for those values that are closest to the ground and for
a particular aerosol typology (Saharan dust, biomass burn-
ing aerosol, etc.); alternatively, validation can be done using
synthetic data (Alados-Arboledas et al., 2011; Di Girolamo
et al., 2012; Veselovskii et al., 2013; Osterloh et al., 2013; 50

Samaras et al., 2015; Whiteman et al., 2018).
In order to retrieve the microphysical properties of the

aerosol from lidar measurements, two inverse problems must
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be solved in sequence: in the first inverse problem, one uses
the measured backscattered power to obtain an estimate of
the aerosol optical parameters; in the second problem, one
uses the estimated optical parameters (at different wave-
lengths), derived from lidar observations, to obtain an es-5

timate of the number size distribution, i.e., the density of
particles as a function of the particle size. This latter prob-
lem is particularly challenging because of the limited num-
ber of data due to the practical problem of measuring at
many different wavelengths. Moreover, from a mathemati-10

cal point of view, the microphysical parameters are generally
derived from the optical ones through integral equations that
cannot be solved analytically and whose numerical solution
leads to a so-called ill-posed problem. This last is charac-
terized by a strong sensitivity of the solution from the in-15

put data uncertainties and by the non-uniqueness of the solu-
tion. Remarkably, from a mathematical viewpoint there can
be several ways to overcome ill-posedness; however, not all
of them actually reflect realistic physical conditions. In ad-
dition, numerical studies showed that a poor selection of the20

constraints can affect the quality of the solution and com-
promise the microphysical retrieval in spite of the strength
of the regularization algorithm. Therefore, in order to obtain
stable and physically acceptable solutions, mathematical and
physical constraints variously combined with regularization25

methods are applied (Müller et al., 1999; Böckmann, 2001;
Veselovskii et al., 2002; Böckmann et al., 2005; Kolgotin and
Müller, 2008).

In the past decade, a number of studies have focused on the
retrieval of the microphysical aerosol parameters from multi-30

wavelength lidar measurements using the standard “3β+2α”
configuration (i.e., the measurement of the backscattering co-
efficient at three wavelengths and the extinction coefficient
at two wavelengths) (Müller et al., 1998, 2001; Wandinger
et al., 2002; Müller et al., 2003; Murayama et al., 2004;35

Müller et al., 2006; Tesche et al., 2008; Noh et al., 2009;
Balis et al., 2010; Alados-Arboledas et al., 2011; Navas-
Guzman et al., 2013; Nicolae et al., 2013; Sawamura et al.,
2014; Chemyakin et al., 2014; Burton et al., 2016; Tesche
et al., 2019; Pérez-Ramírez et al., 2019, 2020; McLean40

et al., 2021). Most of these studies refer mainly to data from
ground-based elastic and Raman lidars working at 355, 532
and 1064 nm. However, the validation of such retrievals is a
challenging task due to the unavailability of direct collocated
measurements.45

Other studies have compared the “3β+2α” lidar retrievals
to the AERONET (Aerosol Robotic Network) retrievals
(Holben et al., 1998; Veselovskii et al., 2009; Sawamura
et al., 2014). Nevertheless, AERONET retrieval of columnar
volume concentrations, assuming the aerosol is uniformly50

mixed throughout the boundary layer, is not directly com-
parable to vertically resolved lidar results. Intercomparison
studies between “3β + 2α” lidar retrievals and AERONET
retrievals or ground-based in situ measurements are not suit-

able to properly evaluate the performance of the lidar micro- 55

physical retrievals obtained for different altitudes.
Despite these difficulties, the possibility of characterizing

the atmospheric particulate using only the lidar instrument
would be very advantageous, and for these reasons it is cur-
rently a much studied topic (Di et al., 2018a; Kolgotin et al., 60

2016; De Rosa et al., 2020).
Following the state of the art, we retrieve the particle size

distribution from “3β+2α” lidar system parameters. In order
to mitigate the ill-posedness, we adopt a parametric model
for the number size distribution. Several authors referred to 65

this shape as triangular, such as in (Veselovskii et al., 2004),
defined on equidistant or a logarithmic-equidistant grid for
the effective radius of the particles. In agreement with Di
et al. (2018b) and Sun et al. (2013) and with the standard
AERONET inversion procedure (Dubovik et al., 2006), we 70

find it more viable to work with log-normal distributions. In
particular we reconstruct the particle size distribution as a
superposition of a small number of log-normal distributions
on a logarithmic interval of particle radius. In practice, this
entails that the number of unknowns to be estimated is ei- 75

ther three, in the unimodal case, or six, in the bimodal case;
the problem is therefore overdetermined in the unimodal case
and underdetermined in the bimodal case. In both cases, it is
very useful to have the possibility of exploiting any informa-
tion one might have a priori, for instance on the plausible in- 80

terval range for the values of these unknowns; to this aim, we
set up a Bayesian model where such a priori information can
be coded in proper prior distributions, and we then use uni-
form priors in selected intervals. Then, because of the non-
linearity of the problem, we adopt a Markov Chain Monte 85

Carlo algorithm (Metropolis–Hastings) to approximate the
posterior distribution of the parameters of interest. Monte
Carlo methods have long been considered to be of little prac-
tical use due to their high computational cost; however, the
steady growth of available computational power that char- 90

acterized the last decades has made them largely usable in
the applications. We reckon the proposed method features
three main advantages with respect to the state of the art:
(i) because it is based on a Bayesian model, it naturally pro-
vides uncertainty quantification on the estimated parameters, 95

which is not always the case for competitors; (ii) because it
makes use of a Monte Carlo algorithm, it does not get stuck
in local minima like deterministic optimization algorithms
often do; and (iii) for the same reason it can be easily gen-
eralized to include, for instance, a non-Gaussian distribution 100

of the noise term.
This article is organized as follows: in the “Methods” sec-

tion, we provide the mathematical formulation of the prob-
lem and a description of the Monte Carlo algorithm; in the
following section, we analyze the results obtained for syn- 105

thetic data using five exemplar cases; in the final section we
briefly summarize our conclusions.

Atmos. Meas. Tech., 14, 1–16, 2021 https://doi.org/10.5194/amt-14-1-2021



A. Sorrentino et al.: A Bayesian parametric approach 3

2 Methods

Lidar instruments measure the backscattered light power at
wavelength λ, coming from distance z, given by the follow-
ing equation:

P(λ,z)=
Cβ(λ,z)

z2 exp

− z∫
0

α(λ,x)dx

 , (1)5

where α(λ,z) and β(λ,z) are the extinction and backscat-
tering coefficients, respectively, and C is a constant that de-
pends on the instrument characteristics. Equation (1) can be
looked at as an inverse problem, where one aims at recover-
ing the extinction and backscattering coefficients from lidar10

data. By solving the inverse problem, (see Ansmann et al.,
1990, 1992; Shcherbakov, 2007; Pornsawad et al., 2008; Gar-
barino et al., 2016; Denevi et al., 2017), one obtains extinc-
tion and backscattering coefficients at every altitude z for a
usually small set of λ. The present article is concerned with15

the subsequent problem of estimating the number size distri-
bution from these indirect measures of α(λ,z) and β(λ,z).
In the following, we omit the dependence on z because the
problem can be solved independently at different altitudes.

2.1 Definition of the problem20

The extinction and backscattering coefficients carry informa-
tion on the number size distribution through the Mie scatter-
ing theory. Specifically, let n(r) be the number size distri-
bution; then, under the approximation of spherical homoge-
neous particles, the extinction and backscattering coefficients25

are given by

α(λ)=

rb∫
ra

kα(r,λ,m)n(r)dr (2)

β(λ)=

rb∫
ra

kβ(r,λ,m)n(r)dr, (3)

where ra and rb are the lower and upper bounds for the par-
ticles’ size, m is the complex refractive index (CRI) of the30

target atmosphere, and kα/β(r,λ,m) are integral kernels de-
fined as follows.

kα(r,λ,m)=
2π
k2

∞∑
n=1
(2n+ 1)R(an+ bn) (4)

kβ(r,λ,m)=
π

k2

∣∣∣∣∣ ∞∑
n=1
(2n+ 1)(−1)n(an− bn)2

∣∣∣∣∣ , (5)

where an and bn are defined as follows:35

an(x,m)=
mψn(mx)ψ

′
n(x)−ψn(x)ψ

′
n(mx)

mψn(mx)ξ ′n(x)− ξn(x)ψ
′
n(mx)

(6)

bn(x,m)=
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ ′n(x)−mξn(x)ψ
′
n(mx)

, (7)

ψn and ξn being the Riccati–Bessel functions.
The problem we want to solve consists of retrieving the

number size distribution n(r) from a set of measurements 40

{α(λi)}i=1,...,I and {β(λj )}j=1,...,J . By defining a data ar-
ray y = (α(λ1), . . .,α(λI ),β(λ1), . . .,β(λJ )) and discretiz-
ing the possible values of r , we get an inverse problem of
the formTS1

y =Kn+ ε, (8) 45

where n is a vector such that ni = n(ri), K is the discretiza-
tion of the integral kernels, and ε is the noise affecting the
data. Typical experimental values are such that α is measured
at two wavelengths (λ= 355,532 nm), and β is measured at
three wavelengths (λ= 355,532,1064 nm). 50

2.2 Parametric model

Solving the linear inverse problem defined by Eq. (8) with a
reasonable discretization of the r variable (say, at least 200
points) entails recovering a large number of unknowns from a
very small dataset. One viable option is to reduce the number 55

of unknowns by using a variable support function, such as in
Osterloh et al. (2011). Here we take a different approach and
assume that the number size distribution has a pre-defined
shape that depends on a small number of parameters (Os-
terloh et al., 2013). Specifically, we assume that the number 60

size distribution is the superposition of a small number N of
log-normal distributions.

n(r)=

N∑
i

hi

r
exp

(
−(log(r)− log(µi))2/2log(σ 2

i )
)

(9)

Each log-normal distribution is completely defined by three
parameters: its mean µ, its standard deviation σ and its 65

height h. The total number of parameters to be estimated
is therefore 3N , which is substantially smaller than the
number of parameters for solving the unconstrained, linear
case. However, the problem is now non-linear and cannot
be solved with standard Tikhonov regularization. Indeed, we 70

can rewrite Eq. (8) as

y =

N∑
i=1

hiKm(µi,σi)+ ε, (10)

where Km(·, ·) represents non-linear functions of the mode
and width of each component and can be derived by inserting
Eq. (9) into Eqs. (2)–(3). We observe that the dependence 75

on the CRI m is indicated here by the subscript because we
consider m to be fixed and known throughout this study.

In this work, we set up a Bayesian model and apply a
Monte Carlo technique to find the best parameters of uni-
modal (N = 1) and bimodal (N = 2) distributions, given a 80

priori information and the data.
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2.3 Bayesian approach

In the Bayesian framework, probability distributions are used
to code our degree of knowledge on the values of unknown or
unobservable quantities: perfect knowledge is represented by
a probability distribution which is non-zero only in the cor-5

rect value, and partial knowledge is represented by a prob-
ability distribution which assigns high probability to likely
values and low probability to unlikely values. The Bayesian
framework is useful to combine a priori information, i.e., in-
formation available before the data are collected, with the10

information content of the data: a priori information is coded
in the so-called prior distribution, while the information con-
tent of the data is conveyed by the likelihood function.

Let us define the vector x = {µi,σi,hi}i=1,...,N contain-
ing all the unknown parameters. We denote its prior density15

as p(x); in this work, we assume that individual parameters
are independent of each other so that their joint density is
the product of single densities. We also assume that no ad-
ditional prior information is available and use uniform prior
distribution for each of them in a suitable interval. This leads20

us to define the prior as

p(x)=

N∏
i=1

U(µi)U(σi)U(hi),

where U() denotes the uniform distribution.
As far as the likelihood is concerned, we assume that the

data are affected by Gaussian noise, which leads us to define25

the likelihood as

p(y|x)=N (y;
N∑
i=1

hiKm(µi,σi),σε),

where N (y;a,b) denotes the Gaussian distribution for the
y variable, with mean a and standard deviation b. We can
finally derive the posterior distribution as given by the Bayes30

theorem:

p(x|y)=
p(y|x)p(x)

p(y)
, (11)

where p(y) is a normalization constant whose value is un-
known but can be neglected as it does not depend on x. The
posterior distribution represents all the available information35

of the values of the unknown set of parameters x, given the
data y. As such, it represents the solution to the inverse prob-
lem. However, it is a probability distribution on a relatively
high-dimensional space R3N and is therefore difficult to vi-
sualize. In the next section we illustrate a computational al-40

gorithm that allows samples from this distribution to be ob-
tained and, in particular, the set of parameters that maximizes
the posterior itself to be found.

Finally, let us observe that in this work we assume that
N is known; while this is, in general, not true, it makes the45

problem more tractable. In practice,N can be selected by the

user, and solutions with different values can be calculated
and compared. Future work will be devoted to considering
the general case of unknown N .

2.4 Monte Carlo algorithm 50

The posterior distribution defined in Eq. (11) is a complicated
function on a relatively high-dimensional space: characteri-
zation of such distribution requires a computational tool that
is able to deal with narrow peaks and local modes. In this
work we produce a numerical approximation of the posterior 55

distribution using a Markov chain Monte Carlo (MCMC) ap-
proach.

The general idea of Monte Carlo methods is to sample the
target distribution p(x|y), i.e., to obtain a set of realizations
x(1), . . .,x(N) of random variables X(1), . . .,X(n) distributed 60

according to the target distribution p(x|y); indeed, the law of
large numbers then guarantees that, for any suitable function
f (X), the following approximation holds:

∫
�

f (x)π(x|y)dx '
1
N

N∑
i=1

f (x(i)),

where� is a given domain. The possibility of approximating 65

the integral of any function f () implies that one has a full
characterization of the target distribution.

MCMC methods work by constructing a Markov Chain
whose invariant distribution is the target posterior distribu-
tion, i.e.the transition kernel P(x′|x) of the Markov Chain 70

satisfies

π(x′|y)=

∫
P(x′|x)π(x|y)dx. (12)

The implications of this choice are obvious: if X(k) is dis-
tributed according to π(x|y), then each X(n) has the same
distribution for n≥ k. Importantly, if a set of technical condi- 75

tions are met, after an initial “wandering” time, referred to as
burn-in, the Markov Chain will hit the target distribution in-
dependently of the initialization. Therefore, once a transition
kernel satisfying Eq. (12) has been constructed, it is enough
to simulate from it, starting with a random initialization. 80

In this work we use the Metropolis–Hastings construction
of the kernel, which has the form

P(x′|x)= α(x,x′)Q(x′|x)+ (1−α(x,x′))δ(x′,x) (13)

and has to be interpreted as follows: given the current state
x, the Markov Chain will evolve with probability α(x,x′) 85

according to a proposal distribution Q(x′|x), and with prob-
ability 1−α(x,x′) it will remain in x; the delta function
δ(x′,x) here is the Dirac delta that gives all the probability
mass to the point x′ = x. A sufficient condition that guaran-
tees that the transition kernel defined in Eq. (13) is invari- 90

ant with respect to π(x|y) is that the acceptance probability
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α(x,x′) is set as follows:

α(x,x′)=
π(x′|y)Q(x|x′)

π(x|y)Q(x′|x)
. (14)

In the numerical simulations below we use Gaussian pro-
posal distributions; Gaussian distributions have the pleasant
propertyQ(x′|x)=Q(x|x′) so that the acceptance ratio sim-5

plifies, as detailed below.
Eventually, the MCMC algorithm works as follows. We

start from an initializing value x(1), drawn from the prior dis-
tribution. Then for k > 1,

– for every and each parameter within x(k), a new value10

is proposed by drawing a Gaussian perturbation around
the current value; this way, a new state is proposed x∗

which is identical to x(k) for all but one value (e.g., as-
sumingN = 1, x∗ = (h(k),µ∗,σ (k)), whereµ∗ is drawn
from a Gaussian distribution of mean µ(k)).15

– compute the acceptance ratio α; given our previous
choices of uniform distribution and symmetric proposal
distribution,

α =
p(y|x∗)

p(y|x(k))
. (15)

– accept the proposed value with probability min(1,α): if20

α ≥ 1, then set x(k+1)
= x∗; otherwise, draw a uniform

number r ∈ [0,1], and accept the proposed value if r <
α; otherwise, set x(k+1)

= x(k) (i.e., do not move).

The algorithm proceeds for a fairly large number of samples;
in the simulations below, we use 5000 samples.25

3 Numerical tests

We show several examples of applications of the Monte
Carlo method to completely synthetic data as well as to data
derived from experimental recordings, in the following de-
noted as quasi-real data. We first consider unimodal distri-30

butions with variable modal radius from “fine” to “coarse”
and then with bimodal distributions with components of vari-
able amplitude. Synthetic distributions are generated so as
to represent typical atmospheric aerosol distributions; for
this reason, an analysis of the distributions deriving from35

the observations of the AERONET network has been made.
We then analyze three quasi-real datasets derived from the
AERONET network. As already mentioned, throughout this
study the complex refractive index m is considered to be
known; the possibility of also estimating the CRI will be the40

subject of future developments.

3.1 Performance evaluation

In order to perform a quantitative analysis of reconstruction
accuracy, we use two different methods.

The first method is based on the deviation between the size 45

distribution (SD) reconstructed by the inversion algorithm
and the simulated exact SD. Indeed, the algorithm determines
the SD that reproduces the set of measured parameters with
some tolerance to account for the presence of noise; it is first
necessary to define a method for quantitatively measuring the 50

distance between the synthetic SD and the reconstructed SD.
This can be done using the deviation defined as

deviation=
rmax∑
ri=rmin

(
SDT(ri)−SDR(ri)∑rmax
rk=rmin

SDT(rk)
1rk
rk

)2
1ri

ri
,

whereTS2 SDT is the true size distribution (simulated); SDR
is the size distribution reconstructed by the algorithm; and 55

rmin and rmax are minimum and maximum values of the ra-
dius, determined on the basis of the condition that within the
interval the SDT values are higher than 10−5

× maximum of
the SDT. This last condition allows only the significant parts
of the distribution to be taken into account. 60

The second method of evaluating the accuracy of the solu-
tions is based on the calculation of integral properties of the
size distributions. Since our algorithm allows us to determine
the dimensional distribution expressed as

dN(r)
dln(r)

, 65

it is possible to derive the concentration in volume

dV (r)
dln(r)

=
4πr3

3
dN(r)
dln(r)

,

and therefore the particulate matter parameters PM1, PM2.5
and PM10, defined as the amount of particulate matter with
sizes smaller than 1, 2.5 and 10 µm, respectively, can be com- 70

puted as

PM= ρ

R∫
0

dN(r)
dln(r)

dln(r),

where ρ represents the particulate matter density, which is
here assumed constant and equal to 1, and R assumes the
values 1, 2.5 or 10 µm for PM1, PM2.5 and PM10, respec- 75

tively.
In addition, we also take into consideration the effective

radius reff and the mean volume radius rv, defined as

reff =

∫ rmax
rmin

r3 dN(r)
dln(r)dln(r)∫ rmax

rmin
r2 dN(r)

dln(r)dln(r)

and 80

lnrv =

∫ rmax
rmin

ln(r) dN(r)
dln(r)dln(r)∫ rmax

rmin

dN(r)
dln(r)dln(r)

,

where rmin and rmax assume in our case the values 0.01 and
20 µm, respectively.
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3.2 Numerical validation

We first proceed to show that the deviation measure is a good
indicator of the performances in the sense that its value gives
a quantitative evaluation of the distance between true and es-
timated size distributions. To this aim, we simulated in Simu-5

lation 1 a unimodal distribution with the parameters given in
Table 1 (middle column). We then run the reconstruction al-
gorithm multiple times, from different random initializations
and with different numbers of iterations ranging between 100
and 5000, so as to reach a diverse population of final es-10

timates. In the inversion we assumed that the optical input
parameters (2α+ 3β) are determined with the 5 % error and
imposed the constraints on the parameters given in Table 1.
We observe that a 5 % error in the retrieved optical parame-
ters might seem unrealistically small; however, as the inverse15

method is applied to a single set of optical parameters, these
can be obtained by averaging across different altitudes and/or
times, thus effectively reducing the impact of noise and mak-
ing our assumption plausible. Future studies will be devoted
to investigate the impact of the noise level more in detail.20

Discretization of the r variable used 500 values logarith-
mically spaced between 0.01 and 20 µm. Notably, these val-
ues correspond to ra and rb in Eqs. (2) and (3); i.e., they
define the discretization range in the integration and shall not
be interpreted as extrema of a range for which the method can25

obtain reliable reconstructions. Indeed, it is typically hard to
retrieve modes corresponding to particles larger than 7 µm.

Figure 1 shows the comparison between the simulated size
distribution and the reconstructed size distribution in cases
where the deviation is < 0.0001 (left), 0.001 (center) and30

0.01 (right), respectively. This figure suggests that the devia-
tion is a good indicator of the quality of the reconstruction.

Having ascertained that the deviation is a good measure
of the “closeness” of the reconstruction to the real distribu-
tion, it is obvious to assume that a reconstruction with a small35

value of deviation must correspond to a low value of the
discrepancy between measured and predicted optical coeffi-
cients, but the inverse statement is not true. In fact, since the
discrepancy only measures the distance of the reconstructed
optical parameters with respect to the input ones, small dif-40

ferences in the optical parameters (low values of the discrep-
ancy) can correspond to very large differences in the size dis-
tribution parameters.

The statistical nature of the Monte Carlo method includes
an intrinsic instability in the sense that a repetition of the cal-45

culation with the same set of input optical parameters, even if
without error, leads to different reconstructions. The disper-
sion of the reconstructions with the same initial conditions is
a measure of the stability of the method.

Another issue is the effect of noise on the optical input pa-50

rameters. This random perturbation causes a further increase
in the instability of the reconstruction, which may also pre-
vail over the intrinsic instability of the method.

In order to have a quantitative evaluation of the influence
of the instability of the method with respect to the noise in 55

the input parameters, we have made a statistical analysis of
the discrepancy. A bimodal distribution was simulated with
the parameter values given in Table 1

The values of the extinction coefficients at the wavelengths
of 355 and 532 nm and of the backscattering coefficients at 60

the wavelengths of 355, 532 and 1064 nm were then deter-
mined with the Mie theory, considering homogeneous spher-
ical particles. The values of the optical coefficients were then
used as input data for the reconstruction. The reconstruction
was repeated 30 times, each time perturbing the set of input 65

parameters in order to simulate a 5 % error in each of them.
We then calculated the discrepancy of each of the 30 sets of
optical parameters perturbed with respect to the unperturbed
set (input discrepancy). The distribution of the input discrep-
ancy is shown in Fig. 2, left plot, and the distribution of the 70

values of the discrepancy of the corresponding 30 reconstruc-
tions (output discrepancy) is shown in the right plot in the
same figure.

It should be kept in mind that the discrepancy input repre-
sents the “distance” between each set of perturbed param- 75

eters and the theoretical set, while the discrepancy output
represents the “distance” between the set of parameters cor-
responding to each reconstruction with respect to the set of
input parameters of the same reconstruction. From Fig. 2 we
see that (1) the uncertainty of 5 % in the optical input parame- 80

ters corresponds to a much greater fluctuation in the solution
than the one produced by the instability of the algorithm, and
(2) the algorithm always finds the solutions corresponding to
a set of optical parameters very close to the input one. To
take this into account, our method is based on repetition of 85

the calculation; at each repetition, the set of optical parame-
ters is disrupted, and each of the parameters is subjected to
a variation that takes into account the experimental error. In
practice, each parameter is assigned a value extracted from
a Gaussian distribution around the experimental value and 90

width equal to the error itself. With each set of optical in-
put parameters thus determined, the Monte Carlo is executed
with a fixed number of iterations. The standard deviation of
the coefficients of the size distributions thus obtained is con-
sidered a good evaluation of the uncertainty in the final solu- 95

tion.
The uncertainty obviously takes into account both the in-

stability of the method and the errors in the input parameters.
In the tests conducted so far the distribution of the optical
parameters has been considered Gaussian, but in view of the 100

simple logical structure of the algorithm, it is in principle
possible to introduce arbitrary distributions to take into ac-
count, for example, the contribution of systematic errors in
the input optical parameters (consider for example that the er-
ror in the backscattering coefficient at 1064 nm can be domi- 105

nated by the uncertainty in the lidar ratio, whose value should
be fixed a priori in a more or less arbitrary manner).

Atmos. Meas. Tech., 14, 1–16, 2021 https://doi.org/10.5194/amt-14-1-2021
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Table 1. True values of log-normal distributions used for testing purposes in Sect. 3.2 and corresponding constraints imposed in the inversion
algorithm.

Simulation 1 Simulation 2

Parameter Mode Mode 1 Mode 2 Inversion
constraints

h 0.02 0.02 0.02 0.0001–0.3
σ 1.52 1.52 2.4 1.3–5.5
µ [µm] 1.56 0.15 1.35 0.1–20
Re 1.49 1.49 1.49 1.49
Im 0.019 0.019 0.019 0.019

Figure 1. Reconstructions of number size distribution that show increasingly large deviation from the true one; from (a) to (c), we show
reconstructions whose deviation is lower than 0.0001 (a), 0.001 (b) and 0.01 (c).

3.3 Results with synthetic data

In the following we show the results of different tests for
simulated SDs representing realistic cases. The reconstruc-
tion has been obtained by setting the number of iterations to
5000 and by running the algorithm 30 times, with noise equal5

to 5 %. For each run, we collect the best solution, and we pro-
vide uncertainty quantification, shown as a shaded area in the
pictures below, using the standard deviation of the best solu-
tion across these runs.

Figure 3 shows the reconstructions of unimodal distribu-10

tions obtained by requiring the reconstruction to be unimodal
and by using the parameters listed in Table 2.

The (a) and (b) cases simulate a unimodal SD centered on
the coarse mode of a realistic bimodal distribution; the (c)
and (d) cases simulate a unimodal SD which approximates a15

fine mode of a realistic bimodal distribution.
In Table 3 we report the deviation for each of the recon-

structions in Fig. 3 and the percentage deviation of the pa-
rameters PM1, PM2.5, PM10, PM, reff and rv with respect to
the simulated SD.20

Figure 4 shows the reconstructions with minimum discrep-
ancy of a simulated bimodal distribution with two modes
with similar width. The goal of this test is to evaluate the
accuracy of the reconstruction of a realistic bimodal distribu-
tion obtained by a unimodal distribution whose parameters25

have the same constraint as those in Fig. 3.
Figures 5 and 6 show the reconstructions of the same dis-

tributions simulated in Figs. 3 and 4, obtained by using a
bimodal distribution with the parameters given in Table 2.

Table 2. True values of unimodal and bimodal log-normal distri-
butions used for testing purposes in Sect. 3.3 and corresponding
constraints imposed in the inversion algorithm.

Unimodal case

Parameter (a) (b) (c) (d) Inversion
constraints

h 0.025 0.05 0.02 0.02 0.0002–0.3
σ 2 2 1.7 1.7 1.3–5.0
µ [µm] 2.5 2.5 0.5 0.2 0.1–20

Bimodal case

h1 2 2 0.02 0.02 0.00005–0.2
σ1 1.7 1.7 1.7 1.7 1.3–2.8
µ1 [µm] 0.5 0.5 0.2 0.2 0.1–0.9
h2 0.025 0.05 0.025 0.05 0.00005–0.3
σ2 2 2 2 2 1.3–2.8
µ2 [µm] 2.5 2.5 2.5 2 1–5.2

Re 1.49 1.49 1.49 1.49 1.49
Im 0.019 0.019 0.019 0.019 0.019

Tables 3, 4, 5 and 6 report the deviations of each recon- 30

struction of the Figs. 3, 4, 5 and 6 and the percentage devi-
ations of the parameters PM1, PM2.5, PM10, PM, reff and rv
with respect to the simulated SD.
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Figure 2. The algorithm always provides output (predicted) optical parameters α and β very close to the true ones: over 30 repetitions,
in (a) we plot a histogram of the discrepancies between the input noisy parameters and the exact ones; in (b), we plot a histogram of the
discrepancies between the output parameters and the exact ones. Notice also the different scale on the x axis.

Table 3. Performance metrics obtained by running the inversion al-
gorithm with a unimodal distribution, when the data are generated
by a synthetic unimodal distribution (see Fig. 3).

a b c d

SD deviation (10−3) 1.5 0.1 0.0 10
1PM1 (%) 0.7 0.9 −0.1 −1.6
1PM2.5 (%) −0.6 −1.1 −0.05 −1.6
1PM10 (%) 4.6 −1.0 −0.05 −1.6
1PM (%) −5.0 −0.9 −0.05 −1.6
1reff (%) −3.0 −0.3 −0.2 11.4
1rv (%) 1.6 −2.7 −0.7 25.6

Table 4. Performance metrics obtained by running the inversion al-
gorithm with a unimodal distribution, when data are generated by a
synthetic bimodal distribution (see Fig. 4).

a b c d

SD deviation (10−3) 54 46 120 67
1PM1 (%) 5.2 6.9 14.4 20.6
1PM2.5 (%) −5.34 −3.9 −12.5 −5.6
1PM10 (%) −26 −23 −35.1 −20.4
1PM (%) −27 −24 −35.9 −17.8
1reff (%) −32 −26 −34.8 −46.9
1rv (%) −56 −64 −65.9 −85.2

3.4 Results with quasi-real data

We finally validate our proposed method on three datasets
that have been obtained from experimental data recorded
by AERONET by applying the direct calculation of Mie
functions to the size distribution reported in the AERONET5

database. For all three datasets, we attempt reconstruction

Table 5. Performance metrics obtained by running the inversion al-
gorithm with a bimodal distribution, when data are generated by a
synthetic unimodal distribution (see Fig. 5).

a b c d

SD deviation (10−3) 2.5 15 0.08 24
1PM1 (%) −6.8 −7.5 −0.8 2.3
1PM2.5 (%) −1.9 0.8 −0.6 6.2
1PM10 (%) 4.4 5.2 −0.4 17.9
1PM (%) 4.7 5.2 −0.4 21.2
1reff (%) 2.8 3.9 −0.7 4.5
1rv (%) −8.7 −6.5 2.1 −21.5

Table 6. Performance metrics obtained by running the inversion al-
gorithm with a bimodal distribution, when the data are generated by
a synthetic bimodal distribution (see Fig. 6).

a b c d

SD deviation (10−3) 11.0 25 100 6
1PM1 (%) −0.4 4.1 −1.9 3.8
1PM2.5 (%) 45. TS3 −6.3 1.9 −0.7
1PM10 (%) 10.9 −18.4 34.5 5.9
1PM (%) 10.4 −18.4 43.9 7.7
1reff (%) 7.5 −24.3 37.5 −9.5
1rv (%) 2.4 −57.5 −16.4 −24.6

with a unimodal and a bimodal distribution: constraints for
the parameter values are reported in Table 7. In order to ex-
emplify how the quality of the retrieval may depend on the
actual value of the CRI, in addition to using the CRI value 10

estimated by AERONET, we also use a very different value,
i.e., one with a larger imaginary part. Specifically, the used
CRI (1.57+ i0.43) corresponds to the maximum value of

Atmos. Meas. Tech., 14, 1–16, 2021 https://doi.org/10.5194/amt-14-1-2021
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Figure 3. Reconstructions obtained by running the inversion algorithm with a unimodal distribution, when data are generated by a unimodal
distribution. Different panels from (a) to (d) correspond to different parameters characterizing the unimodal distributions: the respective
parameter values are given in Table 2 (“Unimodal case” section).

Figure 4. Reconstructions obtained by running the inversion algorithm with a unimodal distribution, when data are generated by a bimodal
distribution. Different panels from (a) to (d) correspond to different parameters characterizing the bimodal distributions: the respective
parameter values are given in Table 2 (“Bimodal case” section for the data generation, “Unimodal case” section for the inversion constraints).

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–16, 2021
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Figure 5. Reconstructions obtained by running the inversion algorithm with a bimodal distribution, when data are generated by a unimodal
distribution. Different panels from (a) to (d) correspond to different parameters characterizing the unimodal distributions: the respective
parameter values are given in Table 2 (“Unimodal case” section for the data generation, “Bimodal case” section for the inversion constraints).

Figure 6. Reconstructions obtained by running the inversion algorithm with a bimodal distribution, when data are generated by a bimodal
distribution. Different panels from (a) to (d) correspond to different parameters characterizing the bimodal distributions: the respective
parameter values are given in Table 2 (“Bimodal case” section).
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Table 7. Constraints used in the analysis of the quasi-real data.

Unimodal case 1 Bimodal case

Parameter Mode (min–max) Mode 1 (min–max) Mode 2 (min–max)

h 0.0001–0.25 0.0001–0.11 0.0001–0.25
logσ 1.35–4 1.35–4 1.35–4
µ [µm] 0.06–5.7 0.06–0.5 0.4–5.7

Table 8. Details of the three experimental datasets used in Sect. 3.4, algorithm settings and the corresponding performance evaluation.

Site Date Modes Refractive index 1PM1 (%) 1 PM2.5 ( %) 1 PM10 ( %) 1PM10 TOT (%)

Bucharest Inoe 22 July 2010 1 1.37+ i0.0057 23.5 8.9 −8.8 −9.7
2 1.37+ i0.0057 8.8 8.9 16.2 18.2
2 1.57+ i0.043 −2.4 4.2 60 73

Etna 17 July 2016 1 1.57+ i0.0017 29 −23 −25 −24.9
2 1.57+ i0.0017 0.3 0.6 −14.9 −15.1
2 1.57+ i0.043 14.9 −15.7 −22.9 −22.9

Gozo 2 January 2015 1 1.41+ i0.0005 24 9.3 −16 −14.8
2 1.41+ i0.0005 −2.0 15 −0.7 −1.4
2 1.57+ i0.043 −1.5 2.3 39.8 54.4

both the real and the imaginary part as measured for the Sa-
haran dust in several measurement campaigns (Wagner et al.,
2012).

All reconstructions were obtained with 5000 iterations, 20
repetitions and 5 % noise in the optical parameters. In Ta-5

ble 8 we report details of the datasets, including registration
site and date as well as performance evaluation of our recon-
structions.

4 Discussion

The comparisons between the reconstructed and the simu-10

lated distributions, shown in Figs. 3–6, with 5 % noise in the
optical parameters allow some conclusions to be drawn.

As shown in Fig. 3 and Table 3, the reconstructions of
simulated unimodal distributions with unimodal distributions
give excellent results. The distributions with modal radius15

between 0.2 and 2.5 µm are reconstructed with high accu-
racy both for the shape of the distribution and for the integral
properties (PM1, PM2.5, PM10, PM). More critical is the re-
construction of the effective radius and the mean volume ra-
dius; however the worst case happens when the size distribu-20

tion is simulated with modal radius equal to 0.2 mm, in which
case the difference with the values of the simulated distribu-
tion is equal to 11 % and 25 % for reff and rv, respectively.
Note that the above results are obtained with very large, not
realistic, constraints to the parameters of the reconstructed25

distribution.
The reconstruction of bimodal distributions, with realis-

tic values of the parameters, by using unimodal distributions

(see Fig. 4 and Table 4) gives solutions which show very im-
portant deviations with respect to the simulated distributions; 30

nevertheless, the values of the integral parameters have devi-
ations which are less than 35 %. In these cases, reff and rv
are always underestimated and show percentage deviations
with respect to the real value of 50 % and 80 %, respectively.
These values are comparable to those routinely obtained in 35

the inversion of lidar data, which typically provide errors
around 50 % (Di et al., 2018a).

Figures 5 and 6 and the respective Tables 5 and 6 re-
fer to reconstructions with bimodal SDs of a simulated uni-
modal distribution and a simulated bimodal distribution, re- 40

spectively. In this case, the reconstructions are done by im-
posing more strict constraints than in the cases of unimodal
distributions. The constraints are the product of a statistical
analysis of the parameters of the size distributions from the
AERONET network. In these cases the reconstruction of uni- 45

modal distributions gives solutions which have deviation less
than 5 % except for the case of distributions with modal ra-
dius equal to 0.2 µm, in which case PM10 and PM have de-
viations around 8 % and 21 %, respectively; such deviations
(see Fig. 5d) are due to the fact that often the algorithm in- 50

troduces some contribution of particles with a radius around
5 µm. In all the cases, reff is reconstructed with an accuracy
of around 5 %, while the accuracy of rv is less than 9 %, but
in the case of distribution simulated with modal radius equal
to 0.2 mm, rv is underestimated by 22 %. 55

In the bimodal SD reconstruction (Fig. 6 and Table 6), the
“fine” mode is always reconstructed better than the “coarse”
mode. This effect is connected to the wavelengths used for
determining the optical parameters of the lidar measures.

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–16, 2021
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Figure 7. Results obtained by applying our proposed method to the experimental dataset corresponding to the AERONET size distribution
measured in Bucharest: in (a) and (b) we show the retrieval with a unimodal and bimodal distribution, respectively, using the CRI determined
by AERONET. In (c) we show, as a comparison, the retrieval with a bimodal distribution using an extreme CRI value of 1.57+ i0.043.

Figure 8. Results obtained by applying our proposed method to the experimental dataset corresponding to the AERONET size distribution
measured on Etna: in (a) and (b) we show the retrieval with a unimodal and bimodal distribution, respectively, using the CRI determined by
AERONET. In (c) we show, as a comparison, the retrieval with a bimodal distribution using an extreme CRI value of 1.57+ i0.043.

Overall the integral properties are reconstructed with an ac-
curacy of less than 6 % for PM1 and PM2.5 and an accuracy
between 6 % and 44 % for PM10 and PM; reff and rv are re-
covered with an accuracy between 7 % and 37 % and between
2 % and 57 %, respectively.5

The analysis of quasi-real data (Figs. 7–9) confirmed that
the inversion algorithm is capable of recovering realistically
shaped SDs.

We observe that reconstructions obtained with bimodal
distributions provide consistently better results than those10

obtained with unimodal distributions and that the error
in assessing the PM concentrations remains at more-than-
acceptable levels, particularly with bimodal distributions.
This result is particularly reasonable because all the datasets
were indeed generated by bimodal distributions, including15

the one recorded on Etna (Fig. 8), which may be erroneously
thought to correspond to a unimodal distribution.

Our analysis also highlights a few limitations of the pro-
posed technique. First, the technique presents an inherent
subjectivity as regards the choice of unimodal versus bimodal20

distributions; while, on average, the bimodal settings per-
forms better, it can also produce some spurious modes such
as those in Fig. 5d. Our recommendation is to use a unimodal
distribution when there is strong a priori indication in favor
of it and a bimodal distribution elsewhere. Future studies will25

investigate the possibility of including the number of modes
among the unknowns and provide a posterior probability for

different numbers of modes in the same fashion as was done
in Sorrentino et al. (2014) for a neuroimaging application.

A second limitation concerns the subjectivity in the choice 30

of the CRI, which was assumed to be known in the present
study. Our analysis of quasi-real data showed how the quality
of the retrieval may depend on the value of the CRI and partly
deteriorates when the imaginary part grows, particularly for
larger modes. This is a known issue with lidar data that can 35

possibly be solved in a Bayesian framework by devising bet-
ter priors. In addition, a full Bayesian model including the
CRI among the unknowns can be devised; however, with an
increased number of unknowns it will be necessary to exploit
more prior information to reduce the degree of ill-posedness. 40

To conclude, we observe that the uncertainty quantifica-
tion currently implemented seems to provide, at times, opti-
mistic results, to the extent that the true distribution is not
always included in the confidence bands. We reckon that
these limitations can be overcome by using more complex 45

but more powerful Monte Carlo sampling techniques, such
as those described in Sorrentino et al. (2014), Luria et al.
(2019), Sciacchitano et al. (2019) and Viani et al. (2021);
this will also be the topic of future studies.

5 Conclusions 50

The preliminary results presented in this paper indicate that
the proposed method can retrieve uni- and bimodal distri-
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Figure 9. Results obtained by applying our proposed method to the experimental dataset corresponding to the AERONET size distribution
measured in Gozo: in (a) and (b) we show the retrieval with a unimodal and bimodal distribution, respectively, using the CRI determined by
AERONET. In (c) we show, as a comparison, the retrieval with a bimodal distribution using an extreme CRI value of 1.57+ i0.043.

butions from extinction coefficients measured at two wave-
lengths and backscattering coefficients measured at three
wavelengths when the correct number of modes is selected.
The reconstruction of three-modal distributions is more chal-
lenging, and more constraints might be necessary to obtain5

reliable and stable solutions. The extension of the method
to three-modal distributions and variable refractive index, to-
gether with better uncertainty quantification and automatic
model selection, will be the subject of future studies.
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