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Abstract. Understanding and improving the quality of data generated from low-cost sensors is a crucial step in using these 5 

sensors to fill gaps in air quality measurement and understanding. This paper shows results from a 10-month long campaign 

that included side-by-side measurements and comparison between EPA-approved reference instruments and low-cost 

particulate matter sensors in Bartlesville, Oklahoma. At this rural site in the Midwestern United States the instruments typically 

encountered only low (under 20 µg/m3) concentrations of particulate matter, however higher concentrations (50-400 µg/m3) 

were observed on three different days during what were likely agricultural burning events. This study focused on methods for 10 

understanding and improving data quality for low-cost particulate matter sensors. The data offered insights on how averaging 

time, choice of reference instrument, and the observation of higher pollutant concentrations can all impact performance 

indicators (R2 and root mean square error) for an evaluation. The influence of these factors should be considered when 

comparing one sensor to another or when determining whether a sensor can produce data that fits a specific need. Though R2 

and root mean square error remain the dominant metrics in sensor evaluations, an alternative approach using a prediction 15 

interval may offer more consistency between evaluations and a more direct interpretation of sensor data following an 

evaluation. Ongoing quality assurance for sensor data is needed to ensure data continues to meet expectations. Observations 

of trends in linear regression parameters and sensor bias were used to analyze calibration and other quality assurance 

techniques.  

1 Introduction 20 

Traditional particulate matter measurements are taken using stationary instruments that cost tens, if not hundreds of 

thousands of dollars. The high cost limits data collection to certain entities such as government agencies and research 

institutions that take measurements through field campaigns and through networks of stationary sensors. However, research 

has shown that these traditional measurements do not capture the spatial variations in particulate matter (Apte et al., 2017; 

Mazaheri et al., 2018). Low-cost sensors are increasingly being used in attempts to better map the spatial and temporal 25 

variations in particulate matter (Ahangar et al., 2019; Bi et al., 2020; Gao et al., 2015; Li et al., 2020; Zikova et al., 2017). 

Governments, citizen scientists, and device manufacturers are connecting these low-cost devices to build large air quality 

measurement networks. Understanding and improving the quality of this type of data is crucial in determining its appropriate 

applications. Though there has been a significant amount of research in recent years on the topic (Feenstra et al., 2019; Holstius 
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et al., 2014; Jiao et al., 2016; Malings et al., 2020; Papapostolou et al., 2017; Williams et al., 2019; Williams et al., 2018), 30 

there is an ongoing effort to understand 1) how to concisely describe the performance of a low-cost sensor, and 2) what best 

practices can maximize data quality while keeping costs down. Rather than presenting evaluation results for specific low-cost 

sensors, this study focuses on evaluation methods that can improve the use of all low-cost sensors. 

Much of the performance characterization has focused on correlation (R2) and root mean square error (RMSE) 

(Karagulian et al., 2019; Williams et al., 2019; Williams et al., 2018). However, these performance metrics can be influenced 35 

by the conditions during a sensor evaluation. Higher concentration episodes during an evaluation can impact R2 and RMSE 

(Zusman et al., 2020). The choice of instrument for comparison can also be a factor (Giordano et al., 2021; Mukherjee et al., 

2017; Stavroulas et al., 2020; Zusman et al., 2020) as some reference instruments are more inherently similar to the low-cost 

sensors and will likely show better comparisons. Finally, the averaging time can be a significant factor in performance metrics 

(Giordano et al., 2021). Some of these evaluation inconsistencies (instrument comparison choice, averaging time) can be 40 

mitigated by implementing standard evaluation protocols. Other inconsistencies, such as influence of observed concentration 

range, may be better managed by shifting away from R2 and RMSE. While these metrics can be useful in comparing one sensor 

to another, they are not as useful in interpreting future sensor measurements. An alternative evaluation method using prediction 

interval is outlined in Sect. 3.2. 

A past evaluation of a sensor is a useful predictor of future data quality, but quality assurance techniques are needed 45 

to ensure data quality continues to meet expectations. Calibrations are an important component of quality assurance. The root 

of a calibration for low-cost particulate matter sensors is simple:During a calibration low-cost  sensors and reference 

instruments measure the same mass of air for a period and then adjustments are made to better align sensor measurements. 

Though laboratory comparisons would be more consistent, only location-specific field comparisons are able to capture the full 

variety of particle sizes and compositions that a sensor will encounter once deployed (Datta et al., 2020; Jayaratne et al., 2020). 50 

However, there are different calibration techniques with varying cost (Hasenfratz et al., 2015; Holstius et al., 2014; Malings 

et al., 2020; Stanton et al., 2018; Williams et al., 2019) and the needed requirements are not always clear for a successful field 

calibration. This technical gap is explored in this study by evaluating changes in linear regression parameters over time and 

their dependence on the amount of data that is included. A recent publication from the United States Environmental Protection 

Agency (Duvall et al., 2021) begins to address these issues and standardize evaluation practices, though they acknowledge that 55 

this is an evolving topic. 

This study of low-cost particulate matter sensors was conducted in a rural area of the Midwestern United States 

(Bartlesville, Oklahoma). This area is interesting for evaluation as it typically sees lower concentrations of PM2.5 but 

occasionally encounters much higher concentrations, such as during agricultural burning events. Data was collected for a total 

of 10 months in 2018 and 2019. This large, mixed dataset allowed exploration of both evaluation and quality assurance 60 

techniques. These techniques are crucial in finding ways to fill existing knowledge gaps in spatial and temporal air quality 

variation using data from low-cost sensors.  
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2 Experimental methods and materials 

2.1 Site description 

 Data was collected at the Phillips 66 Research Center in Bartlesville, Oklahoma.  Bartlesville is approximately 47 65 

miles north of Tulsa and has a population of approximately 36,000. Measurements were collected over 9 months from May 

2018 to January 2019, and for one additional month in April 2019. Particulate matter concentrations were typically low (under 

20 µg/m3 for 1-hour averaged data), which is characteristic of many rural areas. The exception is during times when agricultural 

burning emissions are observed, in which case concentrations of PM2.5 observed were as high as 400 µg/m3 for 1-hour averaged 

data.  70 

2.2 Instrumentation 

Reference measurements were collected using a Met One Beta Attenuation Monitor 1020 (BAM) and a Teledyne 

T640 (T640). Though both instruments are considered Federal Equivalent Methods (FEM) by the United States Environmental 

Protection Agency (EPA), the BAM uses beta ray attenuation to measure the mass of PM2.5 collected on filter tape, while the 

T640 uses an optical counting method that is more similar to the method used by the low-cost particulate matter sensors. The 75 

BAM was used throughout the entire period of evaluation but often struggled to maintain sample relative humidity below 35%, 

which is a FEM requirement. Any data from the BAM which did not meet this relative humidity criterion was removed prior 

to analysis. The T640 was only available for approximately one month of comparison in April 2019, but still provided a useful 

dataset as it employs a different sampling technique and samples at a higher frequency (one sample per minute). 

Low-cost particulate matter sensors were evaluated by comparing samples taken within 12 feet of the reference 80 

instruments. Four brands of low-cost (less than $300/sensor) nephelometric-type particulate matter sensors were initially 

evaluated through comparison with reference measurements for one month in May 2018. The specific brands of sensors are 

not identified here, as the primary goal of this work is exploration of different methods of evaluation. Each sensor provided 

measurements in near real-time, but was averaged to 1-hour intervals for comparison with the BAM. The correlation (R2) 

between sensors and the BAM during May 2018 testing was 0.67, 0.53, 0.24, and 0.12 for the four different sensors. Though 85 

this one-month test may not have definitively identified the best of the four sensors, it allowed selection of a useful sensor for 

additional testing and method exploration, which is the primary purpose of this study. After this initial testing, long-term 

testing continued only for the best performing sensor (R2 = 0.67), which was evaluated over a total of 10 months. The remainder 

of this study focuses on the 10 months of data from the best performing sensor. 
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3 Results and discussion 90 

3.1 Data quality 

Eight replicas of the best performing brand of low-cost particulate matter sensor were placed with the BAM from 

May 2018 to January 2019. The overall correlation (R2) between these sensors and the BAM during this time was as high as 

0.55 for sensors that performed well, but for a few sensors the correlation was 0.15 or lower. Upon inspection it was found 

that poor correlation often resulted from just a small handful of odd measurements. For example, one sensor logged 10 95 

measurements of 500-2000 µg/m3 during a time when the BAM reported below 10 µg/m3. A relatively inexpensive way to 

identify these erroneous data points is by collocating two sensors in any deployment. Figure 1 shows impact to data quality 

when pairing sensors together with increasingly stringent requirements for data agreement. Each point in the figure is the 

correlation between reference data for the entire time period and the average of any two data points that meet the allowable 

different requirement shown on the x-axis. For perspective, 95% of sensor measurements were below 30 µg/m3. No data is 100 

removed for points on the left side of the graph, but the average of two sensors is often much less correlated with reference 

measurements. An allowed difference between sensor measurements of 50 µg/m3 results in only a small portion of the data 

being removed (bottom of Fig. 1) but has a significant positive impact on RMSE and correlation with the reference. As more 

stringent data agreement requirements are put in place (moving to the right in Fig. 1) there are not significant improvements 

in correlation. Thus, a pair of sensors and a loose requirement for data agreement may serve as a quality assurance check to 105 

greatly improve data quality and spot erroneous measurements. This can also help identify defective sensors that need to be 

replaced (Bauerová et al., 2020). 

Though only an absolute (µg/m3) data agreement is considered here, a requirement for percentage agreement between 

sensors could also be considered (Barkjohn et al., 2021; Tryner et al., 2020). R2 begins to decrease with stricter data agreement 

requirements in Fig. 1 (5, 2, and 1 µg/m3), which is the result of higher concentration measurements being unnecessarily 110 

removed. A combination of a percentage and absolute data agreement would prevent this data from being unnecessarily 

removed. However, in this case just a generous absolute data agreement requirement (50 µg/m3) works well since this method 

easily catches the most egregious measurements without deleting data unnecessarily. Agreement between sensor measurements 

will likely depend on both the sensor and the type of measurement, but this type of analysis can be performed inexpensively 

at any location to determine what type of data agreement is necessary to filter out any odd measurements. 115 
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Figure 1. The eight sensor replicas were divided into four pairs with different measurement agreement requirements for the data 

from the sensors in each pair (first averaged to 1-hour intervals). The x-axis shows the allowed difference between paired 

measurements. The top figure shows the percentage of data that is removed from the sensor pair for different data agreement 

requirements. The bottom middle figure shows how R2 between the sensor pair (average of the pair) and reference measurements 120 
changes as when these disagreeing data points are removed. The bottom figure shows how RMSE is impacted as disagreeing data 

points are removed.    

 

Figure 1 shows that good agreement was observed between measurements from duplicate sensors. Figure 2A supports 

this observation, showing close correlation between bias, defined as Csensor – Creference, between duplicates of a sensor. Figure 2 125 

(y axes) shows that sensor bias typically ranges from 10 µg/m3 below to 40 µg/m3 above the reference measurement. It is 

noteworthy that sensor measurements correlated so closely from one sensor to another (Figure 2A) despite such a large range 

of variation from reference measurements. Comparison between only two sensors is shown in Fig. 2A for simplicity, but 

similarly strong correlation was observed for other pairs of sensors. Others have observed similar correlation between 

measurements from duplicates of low-cost sensors (Feenstra et al., 2019; Zamora et al., 2020). Because these measurements 130 

came from separate sensors (same brand and model) in separate housing, the large, yet correlated bias suggests that an external, 
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correctable factor influences how accurately sensor measurements correlate to the reference measurement. However, Fig. 2B-

E shows that only slight correlation was seen between this bias and easily observable external factors like humidity, 

temperature, particulate matter concentration, or time. Solar radiation, wind direction, wind speed, and rain were also 

measured, and no correlationsimilarly little correlation was observed between bias and these factors. Other research has 135 

observed improved PM2.5 predictions when parameters such as temperature and relative humidity are included in analysis 

(Datta et al., 2020; Di Antonio et al., 2018; Gao et al., 2015; Kumar and Sahu, 2021; Levy Zamora et al., 2019; Zou et al., 

2021b). Though some improvement in PM2.5 predictions is still possible using the same approach here, Figure 2 suggests that 

these meteorological parameters are not the primary cause of the similar bias that is observed from one sensor to another. 

The lack of correlation suggests a different external factor, such as particle properties, may influence sensor 140 

measurements. Previous research has observed the impact of particle composition on the accuracy of low-cost sensors 

(Giordano et al., 2021; Kuula et al., 2020; Levy Zamora et al., 2019). Particle size has also been observed to influence 

measurements (Stavroulas et al., 2020; Zou et al., 2021a). Very small particles go undetected and other particles can be 

incorrectly sized by the optical detectors used in low-cost particulate matter sensors. Regardless of the cause in varying, yet 

correlated sensor response, data here suggests that low-cost measurements of meteorology will not be sufficient to improve 145 

low-cost sensor data. It may be possible to improve sensor data through measurements of particle properties, but the high cost 

of these measurements would undo the benefit of the low sensor price. 

 

 
Figure 2. (A) shows the correlation between the bias (Csensor – Creference) of two sensor replicas. (B)-(D) show correlation between 150 
sensor bias and meteorological factors. (E) shows that bias varies over time but not in a consistent pattern. Measurement gaps in (E) 

are the result of the BAM not meeting its internal relative humidity specification (35%). 
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3.2 Performance evaluation 

 The T640 was available for comparisons for approximately one month in April 2019. In contrast to the BAM, which 

reports data only in 1-hour intervals, the T640 was programmed to report a measurement every minute, allowing comparisons 155 

to the high time-resolution data offered by sensors. In addition, the month of April provided useful comparisons as elevated 

concentrations of particulate matter were observed on three different days, likely due to nearby agricultural burning. Under 

different evaluation conditions, the R2 and RMSE of a linear regression were calculated. Impacts to R2 and RMSE from 

different averaging time, reference instrument, and higher concentrations are shown in Fig. 3. 

 One-hour averaged data comparisons between a sensor and the T640 are used as a baseline for comparison (Fig. 3B). 160 

To highlight differences, the three days that included high particulate matter concentrations were not included, except when 

indicated (Fig. 3E). Figure 3A-C shows that less averaging (higher time-resolution data) negatively impacted R2 and RMSE 

while more averaging improved both these metrics. Though higher time-resolution is often considered an advantage of low-

cost sensors compared to some reference measurements, this data shows that time resolution comes at a cost in the ability of 

sensors to predict concentration. If a specific averaging period becomes the standard for evaluations, such as 1-hour averaging 165 

(Duvall et al., 2021), then sensor users will need to carefully assess how the quality of data changes if it is necessary to average 

to a different interval, such as 5 or 1-minute intervals. 

 Figure 3D shows the difference in comparison due to reference instrument. The EPA considers both the BAM and 

the T640 as FEM instruments, but both the R2 and the RMSE are negatively impacted when evaluating with the BAM instead 

of the T640. The T640 is an optical particle counter, which dries and then counts individual particles. It differs from the 170 

evaluated low-cost sensors, which take a nephelometric measurement un-dried, bulk particle concentrations. However, the 

T640 is still an optical measurement that and is more similar to the method used by low-cost particulate matter sensors. This 

comparison shows that the choice of a reference instrument in evaluation of sensors can impact results. 

 Figure 3E is the only chart on Fig. 3 that includes data from the three days in April 2019 in which higher 

concentrations of particulate matter were observed. Most 1-hour measurements were below 50 µg/m3 during this month, but 175 

within these three days, there were 24 observations of 1-hour particulate matter concentrations between 50 and 400 µg/m3. 

During this month, about 565 1-hour data points were captured, but Fig. 3E shows the influence of just a few measurements 

at higher concentrations. R2 in the baseline chart is 0.80, but with the addition of these points it increases all the way to 0.97. 

In contrast, RMSE increases from 3.2 to 5.9 µg/m3 with the addition of this higher concentration data, suggesting decreased 

sensor performance. At high concentrations, small percent differences between sensor and reference measurements translate 180 

into larger errors when expressed in µg/m3. 

 Figure 3 shows that the circumstances surrounding an evaluation such as averaging time, reference instrument, and 

the presence of high particulate matter concentrations can be very influential on the performance results for a sensor, even with 

other factors being held equal. The averaging time and the choice of reference instrument could become smaller issues as 

standard evaluation procedures are developed, such as those recently proposed by the United States Environmental Protection 185 
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Agency (Duvall et al., 2021). However, the influence of concentration range on R2 and RMSE is a challenge in evaluating 

sensors, as it suggests that evaluation location and random circumstances such as high concentration events are influential on 

evaluation results. In addition, R2 and RMSE are not particularly suited to interpreting a new measurement from a sensor once 

an evaluation has been completed. As an alternative to R2 and RMSE, a prediction interval can be considered as an evaluation 

tool for low-cost sensors.   190 

 

Figure 3. The changes to R2 and RMSE from a baseline condition depending on evaluation conditions. (B) shows the baseline of 1-

hour averaged data, T640 as a reference instrument, and without three days of high concentrations. (A) and (C) show the impact of 

less and more data averaging, respectively. (D) shows the impact of switching to the BAM instead of the T640. (E) shows the effect 

of high concentration by including three additional days during which higher concentrations were observed. 195 

 A prediction interval (PI) between sensor and reference data offers a robust, yet straightforward interpretation of 

sensor measurements. A 95% PI suggests that one can be 95% confident that any new measurement will be within its bounds, 

thus a new sensor reading can be converted to a range of estimates with statistical confidence. The width of this PI is a useful 

way to show the performance of the sensor. Though a PI is calculated from a linear regression just like R2 and RMSE, it 

requires a few extra details. The most important of these details is that the residuals of the linear fit need to be even across the 200 
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range of observed values. In the data described here, and likely for other low-cost sensor data, this will require a transformation 

to the data. 

Figure 4 shows the PI for data that was collected at 5-minute intervals in April 2019. After fitting a linear regression 

to this data, it was found that residuals generally increased with increasing concentration, suggesting that bias can be higher 

as concentrations increase. This is also seen in the Fig. 2D comparison between low-cost sensor bias and BAM measurements. 205 

In order to ensure a correct linear fit and PI, these trends in residuals were eliminated by transforming both the sensor and 

reference data prior to the fit. Through examination it was found that residual trends were best eliminated by raising both the 

sensor and reference data to the 0.4 power. Future applications of this method to various sensors may find different powers or 

transformation methods are needed to eliminate trends that are observed in residuals. Even duplicates of the same sensor may 

require different transformations if taking measurements in different locations. A detailed analysis of residuals is an important 210 

step in all model development. In addition to the transformation, measurements less than 70 µg/m3 were randomly sampled to 

capture an equal number of data points below and above 70 µg/m3. This sampling did not change the outcome significantly, 

but helped ensure that the linear regression and PI were equally weighted to the entire range of observed measurements. Before 

this sampling only 5% of the data was above 70 µg/m3. The R software suite was used to calculate the linear regression and PI 

for the transformed data and these curves were then reverse-transformed (raised to the 0.4-1 power) to create the graph shown 215 

in Fig. 4. 
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Figure 4. An example of a prediction interval evaluation for 5-minute data from a single sensor in April 2019 that includes periods 

of high concentration. The curved lines are the upper and lower limits of the 95% prediction interval.  A visual interpretation of a 

new sensor measurement of 200 µg/m3 is also shown. 220 

 Once data has been analyzed using the method shown in Fig. 4, the interpretation of new sensor data becomes easy. 

As shown in Fig. 4, a new sensor measurement at 200 µg/m3 suggests the most likely actual concentration is 138 µg/m3. 

However, more importantly, it can be said with 95% confidence that the true concentration is between 90 and 199 µg/m3. 

Replicating this analysis for similar data from another sensor suggests that for a sensor reading of 200 µg/m3 the most likely 

concentration is 148 µg/m3, with a 95% prediction interval between 97 and 213 µg/m3. These estimates are close to those from 225 

the first sensor, showing again that precision is good for these sensors. Data from multiple replicas of a sensor could also be 

combined to provide a more general prediction interval that applies broadly to sensors of that type. If sensors are not very 

precise then the combined data will have higher variance, which will lead to an appropriately broader prediction interval and 

higher uncertainty in estimates for future sensor measurements. Any non-linearity in sensor response (Zheng et al., 2018) will 

also result in a broader prediction interval if it has not been accounted for in the calibration model. 230 

A range can be provided for any new sensor measurement following this method, with 95% confidence. In some cases 

that uncertainty range may limit the ability to distinguish one concentration from another. For example, in Fig. 4 the estimated 

ranges for 5-minute averaged sensor measurements of 150 µg/m3 and 200 µg/m3 will overlap significantly, so it would not be 

clear whether those measurements capture different concentrations or multiple measurements at the same concentration. 
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However, 5-minute averaged sensor measurements of 30 µg/m3 and 200 µg/m3 will clearly show a difference between 235 

measurements, even with the uncertainty in those measurements. It is notable that the relationship between uncertainty and 

sensor concentration is non-linear. This non-linearity is a detail that would not be captured using RMSE or normalized RMSE 

to describe uncertainty in measurements.  

 Figure 5 shows the dependence of average uncertainty on the concentration (sensor estimate) and on the averaging 

time. For the sake of simplicity Fig. 5 only shows the average difference between the sensor estimate and both the upper and 240 

lower PI. In the example in Fig. 4 uncertainty would be calculated as (199 – 138 µg/m3)/2 + (138 – 90 µg/m3)/2. Generally, 

sensor uncertainty increases with concentration, though it does so non-linearly. For 5-minute averaged data the uncertainty is 

±22 µg/m3 when actual concentration is 30 µg/m3, but this rises to ±88 µg/m3 for measurements of 300 µg/m3.  When averaging 

times are lengthened and more data is included in each measurement the uncertainty ranges can change significantly. For 

example, a measurement of 20 µg/m3 has uncertainty of ±17 µg/m3, ±12 µg/m3, and ±4.4 µg/m3 for averaging times of 5-245 

minutes, 1-hour, and 1-day.  

 

Figure 5. An alternative view of the prediction interval which shows how this interval varies with concentration and with averaging 

time. 

 An PI evaluation such as that shown in Fig. 4 and Fig. 5 offers more information about what to expect from future 250 

sensor measurements versus R2 or RMSE. A future 5-minute averaged sensor measurement of 200 µg/m3 is more meaningful 

if it can be quantified with the statement that there is a 95% probability that the actual concentration is between 90 and 199 

µg/m3.  It An evaluation with a PI also allows for better comparison between sensors, as the evaluation results are not biased 

influenced by the range of concentrations observed during evaluation. Uncertainty at a specific concentration can be compared 

from one brand of sensor to another and is not impacted by the range of concentrations observed, in contrast to RMSE or R2. 255 
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In other words, the uncertainty of a sensor at 35 µg/m3 does not change depending on whether concentrations of 100 µg/m3 

were also measured during evaluation, though the overall R2 or RMSE of that evaluation can be influenced by the 100 µg/m3 

measurements, as shown in Fig. 3.  If presented with this analysis for different sensors, a user can quickly compare the expected 

uncertainty that comes with each sensor. The An analysis such as that shown in Fig. 5 also allows a user can alsoto see how 

averaging time and concentration changes the meaning of a sensor measurement. 260 

Picking a single comparison point allows users to quickly compare measurement uncertainty between different sensor 

types, as they might currently using R2 or RMSE. The breakpoints in the United States Air Quality Index (AQI) could be 

considered as standard comparison points. For example, the United States AQI transitions to “Unhealthy for Sensitive Groups” 

at 35 µg/m3. At this level three sensor replicas showed uncertainty of 14, 16, and 20 µg/m3. 

3.3 Trends over time 265 

 The analysis shown in Fig. 4 and Fig. 5 relies on a user collecting enough data to predict the PI bounds that capture 

95% of future data points. Without sufficient data the PI will be incorrect or will only cover measurements over a limited 

range. This is illustrated in the 1-day averaged uncertainty in Fig. 5, where uncertainty is only calculated for concentrations 

ranging from approximately 5 to 25 µg/m3 due to limited data. The amount of time it will take to collect enough data to build 

a PI analysis for sensor data will vary from one location to another and is explored for this location in Fig. 6. This figure 270 

outlines an approach to determine the amount of time needed to calibrate a sensor using a PI as described in Sect. 3.2, or any 

other method. 
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Figure 6. Linear regression parameters from 1-hour measurements over a two-month period in 2018. (A) shows the range of 

measurements observed on each day. (B)-(D) show the R2, slope, and residual standard error, respectively. In (B)-(D) a rolling 275 
collection of 1, 7, or 14 days of data was used to find linear regression parameters. 

 Figure 6 shows variations to linear fit parameters between 1-hour averaged sensor and reference measurements 

collected during a two-month period. Figure 6A shows the range of values observed each day during this period. In Fig. 6B-D 

a linear regression is calculated for 1-hour measurements in a rolling timeframe of 1, 7, or 14 days. Figure 6B shows that with 

just one day of hour-averaged data, R2 is sporadic from one day to the next. It is much more consistent over time when 7 days 280 

of data are used, but even then there are periods that are inconsistent with the rest of the data. For example, the R2 for a 7 day 
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comparison between sensor and reference data centered around November 24-26th which is lower than at other times. This 

inconsistency is eliminated when using 14 days of data. 

 Just as for R2, Fig. 6C shows a sporadic trend is also observed for slope when fitting a linear regression on just one 

day of data at a time. Notably, the confidence interval on the slope (shown as shaded area) often dips below 0, suggesting a 285 

lack in statistical confidence that a trend has been observed. Slope is much more consistent using 7 days of data, though as 

with R2 there is a 7 day period in November (centered around the 24th-25th) in which slope is different. Using 14 days of data 

eliminates the abnormal period in November, but a difference is still observed between the slope in October and November. 

This suggests that 14 days is an improvement compared to 7 days, but even 14 days may not be enough collocation time for a 

thorough calibration. 290 

 Figure 6D shows residual standard error over time, which can be used as a surrogate for the width of a PI. Calibrations 

using 1 day of data often have low error, as they include only a narrow range of concentrations. The residual standard error 

changes over time, even using 7 and 14 day intervals. All variations in residual standard error should be captured for a thorough 

calibration. It is especially important to capture the maximum in residual standard error to ensure that the prediction interval 

captures the full range of uncertainty in future measurements.  295 

 In short, Fig. 6 shows that even with up to 7 or 14 days of data, variations in linear regression parameters are still 

observed. Considine et al. (2021) observed that approximately 3 weeks were needed for a simple, linear sensor calibration, and 

7-8 weeks were required if using a more complicated correction such as machine learning. Duvall et al. (2021) recommended 

30 days to develop a calibration. The goal of any calibration for low-cost particulate matter sensors should be to observe all 

variations in particle size, composition, and concentration. Thorough calibrations may require lengthy periods of collocation 300 

to capture all variations in these parameters and in the range of concentrations observed. An analysis of linear fit parameters 

over time such as Fig. 6 can be helpful in determining if the full range of situations has been observed and captured by the 

resulting calibration model. 

3.4 Calibration implications 

 Understanding the behavior of low-cost particulate matter sensors over time is important in planning for the amount 305 

of data required to calibrate the sensor. The results presented in this study are useful in analyzing the strengths and weaknesses 

of different calibration methods. Stanton et al. outlined four methods that could be used to capture sensor and reference 

measurements for calibration (Stanton et al., 2018): 

• Routine Collocation: sensors are placed near the reference instrument for a period before deployment. They may be 

brought back periodically for re-calibration. 310 

• Permanent Collocation: one sensor is placed next to a reference instrument with the assumption that any correction 

needed for that sensor applies to the others in the network.  

• Mobile Collocation: a reference instrument is place on a vehicle, and all sensors receive a single point calibration 

update when the reference comes within proximity. 
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• “Golden Sensor”: one sensor is calibrated via collocation with a reference instrument and then slowly moved 315 

throughout the network to calibrate the other sensors. 

The Routine Collocation method is a useful starting point in any sensor network. A period of side-by-side sensor and 

reference data captures the slope, intercept, and typical error that is associated with sensor measurements. Figure 6 suggests 

that this method will have mixed results if calibrating over short time periods but can be reliable given enough time to capture 

all variations in slope, concentration, and residual standard erroris reliable if enough time is allowed to capture all variations 320 

in slope, concentration, and residual standard error. The method does not capture the location bias that may be observed if 

sensors respond differently to the particles at the sensor location compared to those at the calibration location. Despite these 

limitations, Fig. 6 suggests that this method can likely improve sensor data if utilized appropriately. 

The precision between sensors (see Fig. 2) suggests there is potential for a Routine Collocation method to greatly 

improve data, though there may be difficulties in accounting for location bias. The question remains on how much distance 325 

can be allowed between the reference sensor and the field-deployed network sensors before this method fails. This allowable 

distance will depend on how quickly particle properties change between the reference instrument and the network of sensors.  

A mobile approach to calibration is attractive in that it can be used to capture variations to sensor responsiveness at 

different locations with different types of particles compared to those at a fixed reference location. The challenge with this 

approach will be capturing enough data to thoroughly understand the slope and prediction interval of sensor measurements. 330 

Figure 6 shows that even using 24 1-hour data points can lead to unusual estimates for the slope between sensor and reference 

measurements, and a single-measurement spot check between a mobile reference and a sensor would likely be even more 

sporadic. It is possible that these single-measurement spot checks could slowly improve an existing calibration over time, but 

whether that improvement happens within a reasonable time frame is something that would require more exploration. 

The “Golden Sensor” method relies on a calibrated sensor to calibrate other sensors in the network. The challenge 335 

with this approach is that actual concentration is not known once the sensor has left the reference instrument. At this point 

measurements are just an estimate with a 95% confidence interval. The level of uncertainty in measurements (see Fig. 4) would 

make it very challenging to pass a calibration from one sensor to another without greatly increasing uncertainty. 

Regardless of the choice of calibration method, it is important to consider variations in sensor data when conducting 

a calibration and when interpreting future sensor results. As Fig. 6 shows, calibrations may take weeks or longer in order to 340 

capture all variations in the external factors that influence sensor response. If these variations are not captured correctly, then 

the resulting calibration may miss important changes to sensor response that occur due to changing environmental variables. 

Reliance on a calibration that does not account for all variance in measurements may make sensor data less reliable. A 

calibration that also provides a PI ensures that future results can be interpreted with statistical rigor. 
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4 Conclusions 345 

 Low-cost sensors have potential to provide a better understanding of temporal and spatial trends of pollutants like 

particulate matter. Evaluations of low-cost particulate matter sensors alongside reference instruments in Bartlesville, 

Oklahoma have been used to identify methods that ensure more consistent evaluation and interpretation of sensor data. 

Bias in sensor measurements varied over time but was very closely correlated from one sensor to the next (see Fig. 

2). Because bias is so closely correlated, sensors can be deployed in pairs as a simple way to identify erroneous measurements 350 

(see Fig. 1). Finding ways to efficiently and effectively determine sensor performance is critical as sensors become more 

widely adopted. Two of the most popular evaluation metrics, R2 and RMSE, can be influenced by averaging time, choice of 

reference instrument, and the range of concentrations observed (see Fig. 3). This study shows how a prediction interval can be 

used as a more statistically thorough evaluation tool. A PI offers a more robust method of sensor evaluation and a statistical 

confidence interval for interpretation of future sensor measurements (see Fig. 4). When properly applied, this method can show 355 

how uncertainty in sensor measurements varies as a non-linear function of observed concentrations and also varies with the 

averaging time for measurements (see Fig. 5). A standard ambient PM2.5 concentration could be chosen for simple comparisons 

of uncertainty between sensors. For example, uncertainty measurements from multiple sensors at 35 µg/m3 would allow 

convenient comparisons. Standardization of comparison concentration, reference instruments, and averaging times would 

allow more thorough decisions about which sensor is best suited to a proposed task. It is important to consider these impacts 360 

when interpreting sensor measurements. Building an effective prediction interval, linear regression, or any other calibration 

model depends on capturing the necessary data (see Fig. 6), and careful thought is required in planning the method and length 

of time for a calibration. The work presented here shows how adjustments to low-cost particulate matter sensor evaluations 

can greatly improve the interpretation of future data.  
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