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Abstract. Aerosols are a source of great uncertainty in radiative forcing predictions and have poorly understood health 

impacts. Most aerosol mass is formed in the atmosphere from reactive gas phase organic precursors, forming secondary 

organic aerosol (SOA). Semivolatile organic compounds (SVOCs) (effective saturation concentration, C*, of 10-1–103 μg m-15 
3) comprise a large fraction of organic aerosol, while intermediate volatility organic compounds (IVOCs) (C* of 103–106 μg 

m-3) and volatile organic compounds (VOCs) (C* ≥ 106 μg m-3) are gas phase precursors to SOA and ozone. 

The Comprehensive Thermal Desorption Aerosol Gas Chromatograph (cTAG) is the first single instrument 

simultaneously quantitative for a broad range of compound-specific VOCs, IVOCs and SVOCs. cTAG is a two-channel 

instrument which measures concentrations of C5–C16 alkane equivalent volatility VOCs and IVOCs on one channel and C14–20 

C32 SVOCs on the other coupled to a single High Resolution Time of Flight Mass Spectrometer, achieving consistent 

quantification across 15 orders of magnitude of vapor pressure. cTAG obtains concentrations hourly and gas–particle 

partitioning for SVOCs bihourly, enabling observation of the evolution of these species through oxidation and partitioning 

into the particle phase. Online derivatization for the SVOC channel enables detection of more polar and oxidized species. 

In this work we present design details and data evaluating key parameters of instrument performance such as I/VOC 25 

collector design optimization, linearity and reproducibility of calibration curves obtained using a custom liquid evaporation 

system for I/VOCs and the effect of an ozone removal filter on instrument performance. Example timelines of precursors 

with secondary products are shown and analysis of a subset of compounds detectable by cTAG demonstrates some of the 

analytical possibilities with this instrument. 
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1 Introduction 

In recent years, understanding of organic aerosol (OA) sources has changed substantially. Globally, the burden of secondary 

organic constituents, i.e. those formed via atmospheric transformation processes, is much larger than that of directly emitted 

primary organic particulate matter. This is observed in both rural and urban areas (Docherty et al., 2008; Jimenez et al., 

2009; Williams et al., 2010; Zhang et al., 2007). Volatile organic compounds (VOCs) are critical precursors to OA. VOC 5 

oxidation controls the cycling of hydroxyl and nitrogen oxide radicals and the formation of tropospheric ozone (Atkinson 

and Arey, 2003). The oxidation of VOCs produces lower vapor pressure compounds that form secondary organic aerosol 

(SOA) through condensation onto preexisting particles, through new particle formation and growth (Seinfeld and Pankow, 

2003) and through aqueous oxidation processes in aerosol or cloud water (Ervens et al., 2011).  The fate of approximately 

half the VOC emissions entering the atmosphere cannot be observationally accounted for, and this discrepancy is likely at 10 

least partially due to a lack of comprehensive measurements of speciated organic constituents in a variety of atmospherically 

distinct environments  (Goldstein and Galbally, 2007; Hallquist et al., 2009; Heald and Kroll, 2020). 

Recent work has demonstrated that a large fraction of organic aerosol (OA) is semivolatile (Robinson et al., 2007). 

Intermediate volatility organic compounds (IVOCs, defined as having an effective saturation concentration C* of 103 to 106 

μg m-3) and semivolatile organic compounds (SVOCs, C* of 10-1 to 103 μg m-3) have been proposed as a substantial 15 

unaccounted for source of SOA in urban areas (Robinson et al., 2007; Weitkamp et al., 2007) but are notoriously hard to 

measure (Goldstein and Galbally, 2007; Hunter et al., 2017; Isaacman-VanWertz et al., 2018). This hypothesis is supported 

by estimates of intermediate volatility and semivolatile organic compound (I/SVOC) abundances in the atmosphere that are 

an order of magnitude larger than primary organic aerosol (Robinson et al., 2007), and direct evidence that oxidation of 

compounds in the IVOC range efficiently produces SOA (Chan et al., 2009; de Gouw et al., 2011; Lim and Ziemann, 2009; 20 

Presto et al., 2010). 

There is a need for simultaneous measurement of VOCs, IVOCs and gas- and particle-phase SVOCs with sufficient 

temporal resolution to track the rapidly changing chemical composition and atmospheric conditions that directly affect SOA 

formation reactions. Owing to the enormous range of volatility encompassed by VOCs and I/SVOCs, this has typically been 

achieved through collocation of at least two separate instruments – one to measure VOCs (C* ≥ 106 μg m-3) and IVOCs and 25 

another to measure SVOCs. VOCs have traditionally been measured using one of two methods. One way is to collect onto a 

bed of adsorbent materials and desorb and analyze into a gas chromatograph (GC) coupled to a flame ionization detector 

(FID) or a quadrupole mass spectrometer (MS) (e.g. Gentner et al., 2012; Goldan et al., 2004; Goldstein et al., 1995; 

Hopkins et al., 2003; Lamanna and Goldstein, 1999; Lerner et al., 2017; Millet et al., 2005). This method offers excellent 

chemical specificity as isomers are detected separately and low detection limits as samples are usually collected for many 30 

minutes before analysis., Howeverbut due to the GC temperature ramp and sample collection time GC-based methods haves 

a temporal resolution of 20 minutes to 1 hour. Additionally, typically primary pollutants such as alkanes and aromatics and 

early generation secondary products such as carbonyls and alcohols are measurable but multifunctional or fully aged species 
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are too thermally unstable or polar to measure by GC-MS. For example, (Chung et al., (2003) were able to speciate 55-85% 

of total VOCs in urban sites in the Los Angeles Basin, with the lower end of the range corresponding to greater 

photochemical processing and more of the VOC mass present in oxidized species. Another widespread method is chemical 

ionization mass spectrometry (CIMS), e.g. the Proton Transfer Reaction Mass Spectrometer (Ionicon Analytik) and related 

technologies, which compared to GC-based methods offers far greater temporal resolution but less specificity as isomers 5 

cannot be separated, and detection is limited to compounds for which the ionization reaction with the chosen reagent is 

energetically favorable. 

Particle-phase SVOCs and lower volatility organics have traditionally been collected on disposable filters and 

analyzed offline via GCMS (Turpin et al., 2000). Field measurement techniques for gas- and particle-phase SVOCs have 

been developed relatively more recently. The FIGAERO-CIMS utilizes automated quartz filter collection for aerosol 10 

particles and controlled thermal desorption into a CIMS instrument (Lopez-Hilfiker et al., 2014), offering similar advantages 

and tradeoffs of CIMS applied to gas-phase measurements. The Volatility And Polarity Separator (VAPS) sacrifices detailed 

speciation in order to functionally characterize a larger fraction of the organic aerosol mass (Martinez et al., 2016). The 

Thermal desorption Aerosol Gas chromatograph (TAG) family of instruments, consisting of a reusable filter-based collection 

cell or impactor cell coupled to a GCMS, maximizes chemical speciation of gas and particle SVOCs, including separation of 15 

isomers, at hourly time resolution. The first TAG was developed by Williams et al. (2006) with the impactor cell, sensitive to 

particle-phase SVOCs only. Later versions incorporated an automatic liquid injection system for calibrations (Isaacman et 

al., 2011), a filter cell and denuder for measurement of gas-phase SVOCs and gas–particle partitioning of SVOCs (the SV-

TAG; Zhao et al., 2013), a valveless injector for transferring the sample onto the GC column with minimal losses (Kreisberg 

et al., 2014) and online derivatization to enable detection of polar SVOCs including alkanoic acids, polyols, diacids, sugars 20 

and other multifunctional compounds in addition to nonpolar ones (Isaacman et al., 2014). A version of TAG using the 

impactor cell, valveless injector and online derivatization is commercially available from Aerodyne Research, Inc. Recently, 

automated quartz filter collection with thermal desorption and GCMS for chemical speciation of particle-phase SVOCs has 

also been developed (Cropper et al., 2017; Ren et al., 2019). Using TAG with an impactor cell, (Williams et al., (2010) were 

able to quantify an estimated 20% of fine (PM1) organic aerosol mass as measured by an aerosol mass spectrometer at an 25 

urban site. While this statistic has not been estimated directly for the SV-TAG and likely varies with the measurement 

location and conditions, the use of online derivatization on that instrument would increase the analyzable fraction of OA 

mass.  

In recent years both I/VOC instruments and SVOC instruments have benefitted from field-deployable High 

Resolution Time of Flight Mass Spectrometry (HRToFMS, e.g. TOFWERK and IONICON Analytik).  This technology 30 

affords two main advantages over quadrupole mass spectrometers. First, the high resolution (m/Δm ≈ 4000 or more) allows 

for identification of chemical formulas of ions detected due to the unique mass defects of the different elements. Second, 

whereas the quadruple MS scans over a user-specified range of atomic mass units, presenting an implicit tradeoff between 

sensitivity and the range of possible ions detected (because a smaller range or set of discreet masses to detect allows for 
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increased dwell times), the HRToFMS has no such limitation and allows the user to detect the entire useful range of ion 

masses with no compromise in sensitivity and indeed overall enhanced sensitivity. 

Until now no single instrument existed that can measure both precursors and their SOA products at the speciated 

molecular level that spans the relevant 15 decades in volatility. The Comprehensive Thermal desorption Aerosol Gas 

chromatograph (cTAG) combines an I/VOC collector based upon the design of Gentner et al. (2012) and one channel of the 5 

SV-TAG joined together before a HRToFMS to access this entire a broader volatility range of organic volatility at once of 

speciated organic compounds in a single instrument than previously achieved. Nonpolar and some polar VOCs and IVOCs 

as well as nonpolar and derivatization amenable polar SVOCs are quantitatively collected, including many primary and 

secondary organics that lend insight into important sources and oxidation processes in atmospheric chemistry. 

2 Description of instrument 10 

Utilizing reusable adsorbent and stainless steel filter collection, thermal desorption, online derivatization, GC and 

HRToFMS in a dual-channel setup the cTAG measures concentrations of speciated organic compounds from C5 through C32 

alkane equivalent volatility. The instrument operates in an automated fashion with hourly time resolution for concentrations 

and gas-particle partitioning measurements of SVOCs bihourly. Derivatization of SVOCs allows for detection and analysis 

of polar compounds with hydroxyl groups in addition to nonpolar species. In this section, we describe the key components of 15 

the system, the sample collection, separation and detection pathways, calibration methods, timing, and data processing 

procedures. Figure 1 shows a schematic of the instrument. 

2.1 Inlet and I/VOC channel 

Ambient air enters the instrument through either a BGI sharp cut PM2.5 cyclone or a BGI sharp cut PM1 cyclone depending 

on application-specific criteria (SCC BGI Inc., Waltham, MA) (Kenny et al., 2000). The flow is then split to collect I/VOCs 20 

and SVOCs in parallel. 
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Figure 1 Schematic of cTAG. VOCs and IVOCs are collected on the I/VOC collector while SVOCs are collected on the collection and 
thermal desorption cell. The I/VOC and SVOC channels are independent until the GC column outputs from each channel meet and enter 
the HRToFMS. Optionally, the SVOC channel can collect only particle-phase SVOCs by first passing sampled air through a denuder that 
removes all gas-phase compounds. A derivatization agent introduced upon desorption of the SVOCs from the collection cell enables 5 
detection of polar SVOCs in addition to nonpolar ones. Sample collection happens in parallel, for 23 minutes, followed by analysis of the 
I/VOC collector contents, then analysis of the semivolatile collection cell contents, for a total turnaround time of one hour. Calibration is 
done for VOCs and IVOCs by manually disconnecting the ambient inlet and connecting and sampling the output of the calibration gas 
delivery system (Fig. 3) and for SVOCs via liquid standard injections onto the semivolatile collection cell. 

 10 

On the I/VOC channel, 50 sccm of ambient air is pulled from downstream of the cyclone through a stack of three 

quarter-inch diameter punches of sodium thiosulfate (Na2S2O3) impregnated glass fiber filters to remove ozone, followed by 

a six-port valve (6PV, Valco Instruments Co. Inc.) and the I/VOC collector for I/VOC pre-concentration. The I/VOC 

collector consists of a layered bed of adsorbents based on the design of Gentner et al. (2012) whose types and quantities were 

chosen in order to efficiently collect I/VOCs with volatilities between those of n-pentane and n-hexadecane in a 1 L total 15 

sample volume when the collector is held at 30 °C. Adsorbents are layered from least to most adsorptive strength, with the 

IVOCs adsorbing on the least adsorptive material and the most volatile VOCs passing through and adsorbing onto the most 

adsorptive material. Figure 2 is a diagram of the collector. In order along the sample flow path are 60 mg glass beads 

(Alltech, 60/80 mesh, DCMS-treated), 10 mg Tenax TA (Supelco, 60/80 mesh), 10 mg glass beads, 20 mg Carbopack B 

(Supelco, 60/80 mesh), 10 mg glass beads, 20 mg Carbopack X (Supelco, 60/80 mesh) and 10 mg glass beads. The glass 20 

beads do not efficiently trap VOCs or IVOCs and serve solely as separators for the adsorbents. Once assembled and before 

installation on the instrument, the collector is conditioned at 325 °C with 50 sccm nitrogen for 3 hours. Breakthrough volume 
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measurements described in Sect. 3.1 were performed to ensure that this bed composition would fully collect and transfer all 

VOCs and IVOCs in the range of interest. 

 Adsorbents are packed in a custom, pure stainless-steel housing consisting of a 3.18 mm outer diameter (OD) thin-

walled (0.13 mm) tube brazed to a 1.59 mm OD, 0.51 mm ID tube (Fig. 2). A section of the 3.18 mm portion that contains 

the adsorbents is flattened to 1.59 mm OD to reduce swept volume in the collector and improve heat transfer to enable 5 

sharper injections of highly volatile compounds. Brazing to the 1.59 mm tube eliminates the need for a union and the 

associated internal volume, again aiding the rapid injection of the most volatile species. A stainless steel microfiber mesh 

screen (Bekaert) installed at the braze point keeps out particles and retains the adsorbents on the upstream sampling end, 

while a glass wool plug retains the adsorbents on the downstream end. The entire housing is chemically passivated 

(Inertium® treatment, AMCX, PA, USA) to prevent active compounds from reacting with the stainless steel. 10 

During sampling the I/VOC collector is held at a temperature at least several degrees above the dew point to avoid 

water condensation in the system; this is typically around 30 °C.  After sampling the I/VOC collector is briefly purged with 

helium to reduce the amount of air and water sent to the detector. Then the 6PV actuates and helium flows through the 

collector in the reverse direction as the collector heats from ambient temperature to 260 °C to desorb the analytes onto the 

GC column (metal MXT-624, 30 m, 0.32 mm ID, 1.8 μm phase). Two 100 W cartridge heaters mounted in an aluminum 15 

block clamped to the collector housing ensure a rapid initial heating time of 35 s, producing sharp chromatography peaks 

even for the unretained, most volatile species. Total desorption time is 4 minutes. GC analysis time is 25 minutes, with an 

initial hold for 1 minute at 40 °C followed by a 10 °C min-1 ramp to 250 °C and a 3 minute hold at 250 °C. 

2.2 SVOC channel 

After splitting off from the combined ambient air flow through the cyclone, 10 Lpm of ambient air passes through a stainless 20 

steel filter collection and thermal desorption cell (F-CTD) maintained at 30 °C. The F-CTD quantitatively collects 

compounds with volatilities as high as n-tetradecane (C14) and as low as n-dotriacontane (C32) in the gas and particle phases. 

 

 

Figure 2 Schematic of I/VOC collector. Semivolatile and lower volatility species, including particles, are captured on the metal filter. 25 
IVOCs are captured on the glass beads and Tenax TA, while the most volatile analytes including isoprene are retained by the more 
aggressive adsorbents. Flow is reversed for desorption so that the less volatile compounds never interact with the more aggressive 
adsorbents. 
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Directly upstream of the F-CTD, an optional 500-channel activated carbon denuder (MAST Carbon) efficiently removes gas-

phase species, allowing for gas-particle partitioning measurements by difference with and without the denuder in line. F-

CTD and denuder characteristics are described in further detail in Zhao et al. (2013). 

 After collection, the F-CTD is heated to 315 °C and flushed with 20–150 sccm helium during a two-stage 

desorption process as described in Zhao et al. (2013). Upstream of the F-CTD the helium may optionally be bubbled through 5 

a liquid reservoir of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, Sigma-Aldrich, > 98 % purity, synthesis 

grade) for online derivatization of species containing hydroxyl groups. Evaluation of online derivatization for TAG is 

discussed in Isaacman et al. (2014). The sample is re-concentrated onto a focusing trap held at 30 °C made of a 1 meter 

metal, thick phase chromatography column (MXT-5, 0.53 mm ID, 5 μm phase thickness; Restek). This step allows for faster 

transfer of low volatility species and efficient purging of excess derivatization agent and by-products. Flow is reversed on 10 

the trap to about 2 sccm for transfer of the sample onto the GC column (metal MXT-5, 20 m, 0.18 mm ID, 2 μm phase 

thickness; Restek) via the restrictive section of a valveless interface (VLI), described by Kreisberg et al. (2014). GC analysis 

time is 19 minutes, with an initial hold for 1 minute at 50 °C followed by a 20 °C min-1 ramp to 330 °C and a 4 minute hold 

at 330 °C. 

2.3 Miniature gas chromatographs 15 

cTAG requires two separate GC columns each optimized for the separation of target species on a given channel and whose 

temperatures are controlled independently. In order to achieve this while preserving the instrument’s compactness and time 

resolution we developed miniature gas chromatographs. Each chromatograph consists of a custom machined aluminum hub 

around which the metal column is wrapped in a single layer so that it is in thermal contact with the hub along its entire 

length. On the inside surface of the hub, an expanding split-band 150 W heater heats the hub evenly around its 20 

circumference. A thermocouple inserted into a bored hole in the hub body tracks its temperature. PID heating control allows 

for programmable, reproducible temperature ramping for GC analysis. When the temperature program completes, a fan 

blows ambient air onto the hub to bring it back to its initial temperature in time for the next sample injection. As with 

traditional GC systems, the front of the column may be trimmed (at the expense of one full winding on the aluminum hub) to 

extend column life. Design schematics, photos and temperature ramp reproducibility data can be found in Appendix A.  25 

 The use of miniature gas chromatographs has obvious benefits for instrument compactness and field portability. 

Additionally, the independent temperature control allows analysis on one channel to start while the column from the other 

channel is cooling down, increasing the maximum possible time resolution as compared with the traditional approach of 

using a single oven for dual column GC methods. While commercial miniature GC systems are available (e.g. Valco 

Instruments Company Inc., 2020), we chose to design our own for greater flexibility and the ability to use off-the-shelf 30 

columns. 
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2.4 High resolution time of flight mass spectrometer 

The two chromatography columns are joined in a passivated tee connected to an approximately 18 cm passivated stainless 

steel 794 mm OD, 125 µm ID tube that serves as the mass spectrometer transfer line, held at a constant 275 °C. While one 

column progresses through its temperature program, the other is held at its initial temperature with constant flow and the 

analytes and carrier gas are pulled through the transfer line into the vacuum chamber of the mass spectrometer. 5 

Chromatographically separated analytes are detected by a field portable HRToFMS (TOFWERK). The HRToFMS 

is operated at 70 eV electron impact ionization over a user-selected mass-to-charge ratio range, typically from 15 to 450 on 

cTAG. This allows for matching to compounds found in mass spectral databases. For compounds not identifiable by 

database matching or authentic standard calibration, the mass to charge resolution of m/Δm ≈ 4000 enables determination of 

the molecular formula of the ions, lending insight to molecular structure and ultimately compound identity, a critical 10 

capability for studying the complex interactions of organic molecules in the atmosphere. 

2.5 Calibration 

Calibration on both channels relies on injection and analysis of a suite of authentic standards in varying amounts. On the 

I/VOC channel, a mixture in either liquid or gas form is introduced into a custom dynamic dilution system for fine control of 

the output concentration. The dynamic dilution system uses a heated platinum catalyst to generate zero air at ambient relative 15 

humidity and a series of mass flow controllers (0–20 and 0–1000 sccm MFCs, Bronkhorst EL-FLOW) and valves to choose 

and dilute the input mixture for sampling (Fig. 3). Dilution ratios ranging from 50:1 to 1000:1 ensure near ambient relative 

humidity for diluted mixtures. From the point of mixing to the collector, all plumbing is heated to at least 55 °C. A specialty 

gas cylinder with multiple components at ppm levels is introduced in one port of the system. 

Calibration using custom compressed gas cylinders limits the user to compounds amenable to storage in cylinders 20 

over years and does not allow significant flexibility after standard cylinders are produced. We developed a liquid evaporation 

system modeled after Jardine et al. (2010) to circumvent these limitations by allowing the user to purchase individual pure 

standards and prepare liquid solutions for evaporation and sampling. The liquid mixture is drawn into a syringe pump 

(TECAN Cavro Centris Pump, 250 μL glass syringe) and dispensed into another port of the dynamic dilution system at a rate 

of 1.6 μL min-1 into a dedicated evaporation chamber. From one end of the chamber a dedicated MFC flows 1000 sccm zero 25 

air over the emerging liquid feed. Most of the resulting evaporated mixture in zero air is exhausted while 0–20 sccm is 

subsampled for subsequent dilution in the same manner as a gas cylinder. Once diluted, the gas or liquid calibration mixture 

is collected on the I/VOC collector, then desorbed and analyzed exactly like ambient air samples. 

On the SVOC channel, liquid calibration mixtures are held in reservoirs pressurized under helium. A multiport 

selector (Rheodyne MHP7970-500-4) selects a reservoir to fill a 5 μL sample loop. A 6-port valve (Rheodyne MHP9900-30 

500-1) actuates to allow pressurized helium to push the liquid out of the loop and inject it directly onto the F-CTD via a 
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dedicated port in the cell housing. A detailed description of the SVOC liquid calibration injection system may be found in 

Isaacman et al. (2011). 

Prior to applying calibrations from analysis of authentic standards, ambient data are normalized by an internal standard 

introduced onto the sampling medium of each channel on every ambient sample. For the I/VOC channel, several ambient 

long-lived and therefore atmospherically well-mixed anthropogenic compounds with no significant current emission sources 5 

serve as suitable internal standards to control for run-to-run variability. Carbon tetrachloride is commonly used for this 

purpose (Lerner et al., 2017) and CFC-113 and 1,1,1-trichloroethane are also adequate for cTAG on the timescale of a 

typical field campaign (Engel et al., 2018; Karbiwnyk et al., 2003). The compound with the clearest signal and fewest 

coelutions among these is generally preferred. On the SVOC channel, a single 5 µL loop of a calibration mixture of 

isotopically labeled compounds spanning a variety of volatilities and functional groups is injected onto the F-CTD after 10 

collection of every ambient sample. These compounds are desorbed and analyzed with the sample and serve to track 

variability of derivatization efficiency and instrument response. 

 

 

Figure 3 Schematic of dynamic dilution system for VOC and IVOC calibration. Gas cylinders or liquid mixtures can be used for 15 
calibration. Liquid mixtures are introduced into an evaporation cell using a syringe pump. The liquid is evaporated into 1 Lpm of zero air 
to reach ppm or lower concentrations. The resulting gaseous mixture (or, by user choice, the output of a calibration gas cylinder) is 
subsampled with a 2–20 ccm MFC and further diluted up to 500 times with more zero air before being sampled by the I/VOC collector. 
Zero air for the dilution system is generated by passing ambient air through a heated platinum catalyst. 
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2.6 Instrument operation 

cTAG is fully automated. All valves, fans, temperature-regulated zones and electronic pneumatic controllers are controlled 

by a microprocessor-based control box developed by Aerodyne Research, Inc. for commercially available TAG systems and 

adapted and upgraded for our system. A Microsoft Visual Basic .NET software program operating on a PC platform 

interfaces between the user and the control box, using serial communication to send commands and load sequences for 5 

unattended field operation and receive, display, plot and record temperature and voltage readings. 

 Total turnaround time for a single instrument cycle is exactly one hour. A typical operation sequence begins with 23 

minutes of concurrent sampling on the I/VOC and SVOC channels with the SVOC channel optionally sampling through the 

denuder to remove gas phase species. During sampling the SVOC chromatographic analysis of the previous hour’s sample 

finishes. Once sampling is completed, the I/VOC collector is purged with helium for 1 minute. Then the 6PV actuates, at 10 

which point the 25 minute I/VOC GC temperature program and HRToFMS data acquisition begin and the I/VOC collector is 

rapidly heated to 280 °C and held at that temperature for 4 minutes while 1.5 sccm of helium carries the analytes to the head 

of the GC column. 

 While the I/VOC sample is being analyzed, the SVOC liquid calibration system injects 5 µL of the internal standard 

mixture onto the F-CTD. The F-CTD is then heated to 315 °C under 20 sccm of helium. Total helium purge flow is 15 

controlled by a mass flow controller (MFC). The flow is split downstream of the MFC, with 80 % bubbling through the 

reservoir of liquid derivatization agent before rejoining the other 20 % and purging the F-CTD. This flow ratio was 

determined to be sufficient for complete derivatization of all compound classes of interest in Isaacman et al. (2014). After 8 

minutes, the total flow is increased to 150 sccm for 4 minutes to aid the transfer of the least volatile compounds. During this 

process analytes are refocused on the focusing trap, held at 30 °C. Flow is then reversed and the trap heats to 315 °C as the 20 

I/VOC GC analysis finishes. Continued purge flow from the MFC raises the pressure in the F-CTD and forces the analytes 

through the restrictive portion of the VLI and onto the head of the GC column over the course of the 4-minute trap 

desorption period. The SVOC GC analysis begins, followed by sampling for the next cycle. 

 A typical field campaign day sees round-the-clock sampling and analysis as previously described, alternating 

sampling with and without the denuder inline on the SVOC channel. Approximately every 2 weeks, calibrations are 25 

performed on both channels of the instrument simultaneously lasting 10 to 12 hours to generate multiple data points per 

compound for a range of loadings. The stack of sodium thiosulfate filters is replaced every 2 weeks to avoid ozone 

breakthrough by a safe margin (Sect. 34.4). At least once per field campaign a tank of nitrogen or zero air is plumbed into 

the inlet and sampled on both channels in order to quantify contaminants in the system. 

2.7 Data processing 30 

Chromatogram integrations are performed in TERN, software developed in Igor Pro 7 (Wavemetrics) by Isaacman-

VanWertz et al. (2017). TERN enables automatic batch integration of single compounds on hundreds of chromatograms at a 
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time for rapid generation of compound concentration timelines. Compounds are organized in templates and the ability to 

search commercial or custom mass spectral libraries for compound identification is built in. 

3 System evaluation 

The focus of development and system evaluation was on the I/VOC channel, as the SVOC channel is identical to a single 

channel of the previously developed SV-TAG instrument extensively documented elsewhere (Isaacman et al., 2011, 2014; 5 

Kreisberg et al., 2014; Zhao et al., 2013). Development for the cTAG focused on optimizing the design of the I/VOC 

collector, developing a calibration system for the I/VOC channel capable of using custom liquid mixtures, ensuring removal 

of ozone for accurate collection of ozone-reactive VOCs and IVOCs, and field deployment in a polluted urban area. 

3.1 I/VOC collector breakthrough tests 

The target collection range for the I/VOC channel was chosen to include isoprene, a key biogenic C5 hydrocarbon, on the 10 

high volatility end. The low volatility end was chosen to overlap with the SVOC channel range (which starts at C14) by 

several carbon numbers and to include sesquiterpenes, a class of C15 compounds also of biogenic origin but with greatly 

varying structures and reactivity and which are far less well documented and understood (Bouvier-Brown et al., 2009; Chan 

et al., 2016; Yee et al., 2018). 

In order to decide the final quantities of adsorbents in the I/VOC collector, three different collector compositions 15 

were tested for breakthrough of the most volatile species. Briefly, breakthrough volume is defined as the volume of carrier 

gas required to purge an analyte through the adsorbent bed, dependent on adsorbent quantity, temperature and analyte 

volatility (Definition of Breakthrough Volumes, 2020). The breakthrough volume must be larger than the volume of air 

sampled for the most volatile analyte of interest to ensure complete collection of all analytes. 

 Breakthrough volumes were measured using a real-time VOC instrument, a Proton Transfer Reaction Mass 20 

Spectrometer (PTR-MS, IONICON Analytik). The output of a specialty gas cylinder of biogenic VOCs was diluted using the 

custom dynamic dilution system to deliver ppb-level concentrations of analytes to the collector, held via PID temperature 

control at 30 °C. The PTR-MS inlet was connected downstream of the prototype collector while sampling from the 

controlled gas mixture at 100 sccm. For each analyte, the PTR-MS measured zero concentration until the breakthrough 

volume was reached, after which the downstream measured concentration rapidly rose and plateaued. The beginning of the 25 

rapid rise in concentration was taken to be the point of breakthrough. Based on the results of these tests, a final collector 

composition was chosen with quantities of the more aggressive adsorbents in between those of the second and third 

prototypes tested. 

Breakthrough volume measurement results for isoprene and the sum of methyl vinyl ketone and methacrolein 

(MVK+MACR) for several collector prototypes are shown in Table 1. For compactness and to reduce thermal mass to 30 

ensure rapid desorption, we targeted a final design containing the minimum quantity of adsorbents that would safely and 
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robustly meet our requirements for breakthrough volume. Collector #3, which had the lowest quantities of adsorbents of the 

three different prototype collectors tested, had a breakthrough volume of twice our usual 1 L sample volume for 

MVK+MACR. We therefore settled on a fourth prototype with quantities intermediate between collectors #2 and #3 of the 

most aggressive adsorbents to ensure a safe margin. We also reduced the quantity of Tenax TA, as the 10 mg final quantity 

provides more than 5 

sufficient 

breakthrough 

volumes for the 

lower volatility 

compounds that it 10 

collects (Tenax® 

TA Breakthrough 

Volume Data, 

2020). 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

Table 1 Composition of different I/VOC collectors and corresponding breakthrough volumes for some of the most volatile target 
compounds. Collector #4 is a compromise between collectors #2 and #3 with reduced Tenax TA. 

3.2 Dynamic dilution system testing 

The dynamic dilution system for evaporation of liquid I/VOC mixtures and dilution and delivery of liquid and gas 

calibration mixtures was evaluated for linearity and reproducibility of delivered concentrations. In addition, for compounds 30 

present in both gas cylinders and liquid solutions calibration curves were compared for agreement. Calibrant compounds 

from liquid (prepared in lab) and gas cylinder (Custom mixture prepared by Apel-Riemer Environmental, Inc., 2019) 

Collector No: 1 2 3 4 

Bed Material (mg of sorbent)  

Glass beads 40 40 40 40 

Tenax TA 20 20 20 10 

Carbopack B 30 20 10 20 

Carbopack X 40 30 15 20 

Breakthrough volume at 30 °C (L)  

MVK+MACR 13.2 8.7 2.0 >2 

Isoprene 18.3 19.9 3.6 >2 
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mixtures were introduced at 0, 1, 2, 4, 8 and 12 ppb (10 times lower concentration for β-caryophyllene) with a total volume 

of air sampled of 280 cm3 with 6 (0, 1, 2, 4, 8 ppb) or 3 (12 ppb) replicates at each level. From a separate gas cylinder, 1 ppm 

neohexane was introduced at a constant 1 ccm and used to normalize the responses from the calibrant compounds. This step 

served to account for variations in sample volume and instrument sensitivity between samples. 

 5 

Figure 4 shows calibration curves for benzene, o-xylene, α-pinene and β-caryophyllene from both thea standard gas 

cylinder and a the custom liquid solution evaporated and delivered via the dynamic dilution system. Normalized detector 

response on the y-axis is the integrated area of the chromatographic peak divided by that of neohexane , our internal standard 

(Sect. 3.2), on the same chromatogram. Additionally, for benzene all data points had the mean of the 0 ppb values subtracted 

from them to account for a small persistent benzene contaminant likely due to the presence of Tenax TA in our adsorbent 10 

bed (Cao and Hewitt, 1994). Points are mean values of the six individual samples at each level (three samples at the highest 

level) with error bars representing plus or minus one standard deviation. To evaluate performance against our theoretical 

model of linear response with zero response at zero concentration, dotted curves are best fit lines forced through the origin. 

These compounds show excellent linearity with R2 ≥ 0.93. Agreement between gas and liquid is within 5 %, as 

measured by the difference in the slopes of the best fit lines. The compounds span a range of volatility from that of a C6 15 

alkane to a C15 alkane, demonstrating the dynamic dilution system’s suitability for evaporating and diluting IVOCs as well as 

VOCs. 

Isoprene and methyl vinyl ketone were also analyzed and found to be linear, with R2 ≥ 0.92. However, we found 

consistently and significantly lower responses using the liquid mixtures, likely indicating issues during preparation and 

storage of the liquid solution related to the high volatility and reactivity of these compounds. For C5 to C6 alkane-equivalent 20 

volatility compounds, we thus plan to continue to rely on gas cylinder standards until and unless our liquid preparation 

process can be modified to remove this source of error.  

Octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane also had excellent linearity (R2 ≥ 0.91) but were 

found to have about 30 % higher responses using the liquid solution than using the gas cylinder. This could suggest depletion 

of these compounds in the gas cylinder, but we were not able to test this hypothesis. 25 

 

3.3 Limits of detection 

Limits of detection (LOD) are species dependent. On the I/VOC channel, limits of detection were estimated using the 

following formula: 

LOD ൌ  3 ∗  𝜎 / 𝑚  ሺ1ሻ 

where σblank is the standard deviation of the integrated area of the chromatographic blank signal (12 replicates) of 30 

the quantification ion at the retention time of the analyte in question in units of counts and m is the instrument sensitivity for 

that analyte, i.e., the slope of the best fit to the calibration curve, in units of counts pptv-1 (Foley and Dorsey, 1984).  

Formatted: Normal, Indent: First line:  0.5"
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Limits of detection were estimated for the 44 compounds present in the Photochemical Assessment Monitoring 

Stations 57-component commercial standard (Scott-Specialty) that are within the volatility range collected on cTAG’s 

I/VOC channel, including linear, branched and aromatic hydrocarbons (Table 2). The LODs range from 0.5 to 8 pptv except 

for benzene and toluene which have known contamination issues from the Tenax used in the collector (Cao and Hewitt, 

1994). 5 

 

 The SVOC channel is equivalent to one channel of the SV-TAG as described in Isaacman et al. (2014). The average 

limit of detection reported for that instrument is 1 to 2 ng m-3 (~0.1 ppt) for a 20 minute sample collected at 10 Lpm. We 

determined that the LOD for the SVOC channel on cTAG determined according to equation (1) is consistent with that 

reported previously for SV-TAG. 10 
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Figure 4 Calibration curves with R2 values for (a) benzene, (b) o-xylene, (c) α-pinene and (d) β-caryophyllene in a gas cylinder (red) and 
in a custom liquid mixture (blue), delivered by the dynamic dilution system (Fig. 3). Normalized detector response on the y-axis is the 
integrated area of the chromatographic peak divided by that of neohexane, our internal standard, on the same chromatogram. Maximum 
normalized detector response for a given compound ranged from 0.030 (β-caryophyllene, max concentration delivered 1.2 ppb) to 3.0 (o-5 
Xylene, max concentration delivered 12 ppb). Additionally, for benzene all data points had the mean of the 0 ppb values subtracted. Points 
are mean values of the individual samples at each level with error bars representing plus or minus one standard deviation. Dotted lines are 
best fit lines forced through the origin, while R2 values are from best fits not forced through the origin. Compounds show excellent 
linearity and agreement within 5 % between the gas cylinder and liquid solution. 
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 15 

Table 2 Limits of detection (LOD) for a selection of linear, branched and aromatic hydrocarbons on the I/VOC channel of cTAG. 
Compounds are presented in order of volatility from isopentane (5 carbon atoms) to dodecane (12 carbon atoms). a Contamination from the 
adsorbent materials used in the collector leads to elevated limits of detection for benzene and toluene, consistent with previous reports 
(Cao and Hewitt, 1994). 

 20 

3.4 Evaluation of ozone removal on the I/VOC channel 

Ozone has been shown to be able to penetrate standard VOC sampling inlets and react with certain analytes collected on 

adsorbent beds like ours (Calogirou et al., 1996; Helmig, 1997; Pollmann et al., 2005). A common practice for ozone 

removal is to pass the sample flow through a sodium thiosulfate impregnated filter upstream of the adsorbent bed (Helmig, 

1997). Pollmann et al. (2005) demonstrated that this technique is effective at preventing ozone reaction artifacts for some 25 

sesquiterpenes as well as the previously studied monoterpenes and other hydrocarbons. We explored the effects of ozone on 

the recovery of a suite of compounds of interest known to have short lifetimes with respect to reaction with ozone, including 

monoterpenes and sesquiterpenes, and tested how placement of sodium thiosulfate (Na2S2O3) impregnated filters upstream of 

the collector altered the recovery of these compounds. The Na2S2O3 filters were obtained from the Barsanti research group at 

UC Riverside (Hatch et al., 2017). 30 

Compound LOD 

(pptv) 

Compound LOD 

(pptv) 

Compound LOD 

(pptv) 

Isopentane 2.0 2,3-Methylpentane 3.8 o-Xylene 3.7 

1-Pentene 0.5 3-Methylhexane 0.6 Styrene 7.1 

Pentane 2.2 Cyclohexane 0.9 Cumene 1.1 

trans-2-Pentene 8.0 2,2,4-Trimethylpentane 0.9 n-Propylbenzene 2.5 

cis-2-Pentene 1.3 Benzene 90a Decane 2.7 

Isoprene 6.7 Heptane 1.1 m- and p-Ethyltoluene 0.7 

2,3-Dimethylbutane 2.3 Methylcyclohexane 1.1 1,3,5-Trimethylbenzene 1.5 

2-Methylpentane 7.7 2,3,4-Trimethylpentane 1.3 o-Ethyltoluene 1.1 

Cyclopentane 2.4 2-Methylheptane 1.2 1,2,4-Trimethylbenzene 0.6 

3-Methylpentane 2.1 3-Methylheptane 0.9 1,2,3-Trimethylbenzene 0.9 

1-Hexene 7.2 Octane 3.1 m-Diethylbenzene 0.6 

Hexane 1.3 Toluene 60a Undecane 2.6 

2,4-Dimethylpentane 1.1 Nonane 2.8 p-Diethylbenzene 0.6 

Methylcyclopentane 0.8 Ethylbenzene 3.9 Dodecane 2.4 

2-Methylhexane 1.1 m- and p-Xylene 3.5   
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 To quantify the effects of the presence of ozone in sampled air, we diluted air from the output of an ozone 

generator (Model 1008-RS, Dasibi Environmental Corp) with humidified zero air to achieve an ozone concentration of 100 

ppb ozone. We then verified that the ozone was completely removed by three inline filters by measuring the ozone 

concentration downstream (Model 202, 2B Technologies). At 1 Lpm (20 times our ambient sampling rate), ozone 

breakthrough through a stack of three Na2S2O3 filters occurred after 8 hours, indicating a single filter stack can be used 5 

without breakthrough for 9,600 minutes, or about 20 days of continuous operation. 

After verifying the efficient removal of ozone by the filter stack, we combined 9 Lpm of 100 ppb ozone with the 1 

Lpm output from our dynamic dilution calibration system described in Sect. 2.5. Using that calibration system, we 

evaporated a liquid mixture of sesquiterpenes and other compounds to achieve a concentration of 5.60 ppb, which once 

combined with the 9 Lpm zero air was reduced to 560 ppt for sampling. 10 

 We sampled this liquid mixture onto the I/VOC channel under four different conditions: without ozone and without 

a Na2S2O3 filter, without ozone and with the filter, with 100 ppb ozone and without the filter, and with 100 ppb ozone with 

the filter. This allowed us to establish (1) whether an ozone removal method is needed in our instrument for accurate 

quantification of ozone-reactive species such as some sesquiterpenes and (2) whether the presence of the filter altered the 

concentrations of non-ozone-reactive VOCs and IVOCs or of reactive VOCs and IVOCs in the absence of ozone. 15 

At 1 Lpm (20 times our ambient sampling rate), ozone breakthrough through a stack of three Na2S2O3 filters 

occurred after 8 hours, indicating a single filter stack can be used without breakthrough for 9,600 minutes, or about 20 days 

of continuous operation. 

Figure 5 shows the effects of the Na2S2O3 filter on several analytes of interest with and without ozone. In the 

absence of ozone, VOC and IVOC concentrations were unperturbed by the presence of the filter except for manageable 20 

losses of lower volatility compounds when the filter was present (Fig. 5 (a)). In the presence of ozone, placement of the 

Na2S2O3 impregnated filters in the sampling flow upstream of the collector prevented degradation (Fig. 5 (b)). In general, 

losses of analytes in the absence of the filter were greater for compounds with lower atmospheric lifetimes with respect to 

reaction with ozone. 

The results imply having a Na2S2O3 impregnated filter inline improves quantification of ozone-reactive species 25 

without significant downsides. However, prior literature suggests some very polar compounds, not tested in this experiment, 

may become trapped on the filter, hindering their measurement (Hatch et al., 2017). Such compounds are unlikely to elute on 

our GC column, which is optimized for less-polar species. During normal operation of the instrument we thus include a filter 

inline. 

 30 

3.5 Region of sensitivity overlap 

Some of the chemical compounds with alkane equivalent volatility between that of n-tetradecane and n-hexadecane can be 

detected and quantified on both the I/VOC and the SVOC channels. Comparing quantifications of such compounds between 

Formatted: Indent: First line:  0.5"

Commented [RW1]: Moved here from former section 4.4. 

Formatted: Indent: First line:  0.5"

Formatted: Indent: First line:  0.5"



18 
 

channels can serve as a useful check of instrument performance. However in practice the number of compounds suitable for 

such an analysis is small, and for any given ambient data set there may be none. One reason for this is the 200 times larger 

sample volume collected on the SVOC channel, so that some compounds that are easily quantifiable on the SVOC channel 

are below detection limit on the I/VOC channel. Compounds which are reactive with ozone on timescales of under an hour 

or so, including many sesquiterpenes (Fig. 5), must be quantified on the I/VOC channel where ozone is removed at the inlet. 5 

Highly polar species may not elute on the I/VOC column; the SVOC channel with its online derivatization is more 

appropriate in this case. Thus there is usually reason to choose one channel over the other for quantification purposes. 

 
Figure 5 Results of evaluation of effectiveness of sodium thiosulfate filter in mitigating the effects of ozone on reactive analytes during 
collection of VOCs and IVOCs. Error bars represent plus or minus one standard deviation of six replicate measurements. Panel (a) 10 
confirms that in the absence of ozone, the filter does not affect the detected quantities of each compound, except for slight (< 15 %) losses 
of IVOCs with the filter present leading to response ratios greater than 1. Panel (b) demonstrates that the filter prevents substantial losses 
of reactive species in the presence of ozone, confirming that without preventive measures ozone can significantly deplete certain analytes. 
Values are compared with published lifetimes with respect to reaction with ozone, with overall qualitative agreement. Published lifetimes 
are from Atkinson and Arey (2003) unless above 10,000 minutes or otherwise indicated. a Pollmann et al., 2005; b No published 15 
experimental value; assumed reactivity equal to that of the stereoisomer aromadendrene; c Ham, 2013 

 

 A survey of compounds from the ambient data set from the cTAG deployment in McCall, Idaho for the 2019 Fire 

Influence on Regional to Global Environments and Air Quality (FIREX-AQ, 2019) field campaign was conducted to test 

cross-channel agreement for compounds in the volatility overlap region. Of the compounds found, all but one, bornyl 20 

acetate, was subject to one of the restrictions listed above. Results for bornyl acetate are presented in Section 4.5. 
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Bornyl acetate (C12H20O2) is found in essential oils from pine trees (Garneau et al., 2012). Though it elutes close to 

tridecane, which is outside the reliably quantifiable range on the SVOC channel, we were able to quantify it on both the 

I/VOC and SVOC channels in McCall, Idaho during the 2019 FIREX-AQ field campaign. The concentration ranges from 0.1 

to 16.5 ppt  

as measured on the SVOC channel. The correlation of concurrent sampling points on both channels is shown in Fig. 5 

6. The I/VOC and SVOC channels agree on average within 11 %, with R2 = 0.79 and 96 % of the data points agreeing within 

±4.8 ppt (3 times the I/VOC channel limit of detection for bornyl acetate). We consider this excellent agreement between the 

two channels given that the sample sizes differ by more than 2 orders of magnitude, they are calibrated independently, and 

all data points are within a factor of 10 of the detection limit on the I/VOC channel.  

 10 

  

Figure 6 Bornyl acetate measured on the I/VOC and SVOC channels of cTAG during FIREX-AQ. Dashed lines represent ±4.8 ppt (3 
times the I/VOC channel limit of detection for bornyl acetate). 96 % of data points fall within the region bounded by the dashed lines. R2 is 
0.79. 

3.6 Measurements of ambient air 15 

The cTAG was deployed in Livermore, CA in April 2018 for its first field test. This test was undertaken to evaluate the 

stability of instrument performance during round-the-clock automated operation and demonstrate the capability to measure 

concentrations of a variety of compound classes from C5 to C32 alkane-equivalent volatility. The instrument was deployed 

approximately 100 yards from a Bay Area Air Quality Management District monitoring site to make use of their air quality 

measurements for comparison (specifically, ozone and ambient temperature reported here). Livermore is a valley city on the 20 

eastern and downwind edge of the San Francisco Bay Area, where pollution outflow from the region combined with optimal 

conditions for secondary photochemical smog formation frequently leads to the highest ozone levels in the Bay Area 
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(Knoderer et al., 2018). In addition, Livermore has substantial wood burning for heat during winter. An analysis of a subset 

of VOCs, IVOCs and SVOCs measured in Livermore by cTAG is presented to demonstrate some of the analytical 

capabilities of this instrument. 

 4 Results 

4.1 I/VOC collector breakthrough tests 5 

Breakthrough volume measurement results for isoprene and the sum of methyl vinyl ketone and methacrolein 

(MVK+MACR) for several collector prototypes are shown in Table 1. For compactness and to reduce thermal mass 

to ensure rapid desorption, we targeted a final design containing the minimum quantity of adsorbents that would 

safely and robustly meet our requirements for breakthrough volume. Collector #3, which had the lowest quantities of 

adsorbents of the three different prototype collectors tested, had a breakthrough volume of twice our usual sample 10 

volume for MVK+MACR. We therefore settled on a fourth prototype with quantities intermediate between collectors 

#2 and #3 of the most aggressive adsorbents to ensure a safe margin. We also reduced the quantity of Tenax TA, as 

the 10 mg final quantity provides more than sufficient breakthrough volumes for the lower volatility compounds that 

it collects (Tenax® TA Breakthrough Volume Data, 2020). 

4.2 Dynamic dilution system testing 15 

Figure 4 shows calibration curves for benzene, o-xylene, α-pinene and β-caryophyllene from both a standard gas 

cylinder and a custom liquid solution evaporated and delivered via the dynamic dilution system. Normalized detector 

response on the y-axis is the integrated area of the chromatographic peak divided by that of neohexane, our internal 

standard (Sect. 3.2), on the same chromatogram. Additionally, for benzene all data points had the mean of the 0 ppb 

values subtracted from them to account for a small persistent benzene contaminant likely due to the presence of 20 

Tenax TA in our adsorbent bed (Cao and Hewitt, 1994). Points are mean values of the six individual samples at each 

level (three samples at the highest level) with error bars representing plus or minus one standard deviation. To 

evaluate performance against our theoretical model of linear response with zero response at zero concentration, 

dotted curves are best fit lines forced through the origin. 

These compounds show excellent linearity with R2 ≥ 0.93. Agreement between gas and liquid is within 5 %, 25 

as measured by the difference in the slopes of the best fit lines. The compounds span a range of volatility from that of 

a C6 alkane to a C15 alkane, demonstrating the dynamic dilution system’s suitability for evaporating and diluting 

IVOCs as well as VOCs. 

Isoprene and methyl vinyl ketone were also analyzed and found to be linear, with R2 ≥ 0.92. However, we 

found consistently and significantly lower responses using the liquid mixtures, likely indicating issues during 30 

preparation and storage of the liquid solution related to the high volatility and reactivity of these compounds. For C5 
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to C6 alkane-equivalent volatility compounds, we thus plan to continue to rely on gas cylinder standards until and 

unless our liquid preparation process can be modified to remove this source of error.  

Octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane also had excellent linearity (R2 ≥ 0.91) but 

were found to have about 30 % higher responses using the liquid solution than using the gas cylinder. This could 

suggest depletion of these compounds in the gas cylinder, but we were not able to test this hypothesis. 5 

4.3 Limits of detection 

Limits of detection were estimated for the 44 compounds present in the Photochemical Assessment Monitoring 

Stations 57-component commercial standard (Scott-Specialty) that are within the volatility range collected on cTAG’s 

I/VOC channel, including linear, branched and aromatic hydrocarbons (Table 2). The LODs range from 0.5 to 8 pptv 

except for benzene and toluene which have known contamination issues from the Tenax used in the collector (Cao 10 

and Hewitt, 1994). 

4.4 Evaluation of ozone removal on the I/VOC channelAt 1 Lpm (20 times our ambient sampling rate), ozone 

breakthrough through a stack of three Na2S2O3 filters occurred after 8 hours, indicating a single filter stack can be 

used without breakthrough for 9,600 minutes, or about 20 days of continuous operation. 

Figure 5 shows the effects of the Na2S2O3 filter on several analytes of interest with and without ozone. In the 15 

absence of ozone, VOC and IVOC concentrations were unperturbed by the presence of the filter except for 

manageable losses of lower volatility compounds when the filter was present (Fig. 5 (a)). In the presence of ozone, 

placement of the Na2S2O3 impregnated filters in the sampling flow upstream of the collector prevented degradation 

(Fig. 5 (b)). In general, losses of analytes in the absence of the filter were greater for compounds with lower 

atmospheric lifetimes with respect to reaction with ozone. 20 

The results imply having a Na2S2O3 impregnated filter inline improves quantification of ozone-reactive species 

without significant downsides. However, prior literature suggests some very polar compounds, not tested in this 

experiment, may become trapped on the filter, hindering their measurement (Hatch et al., 2017). Such compounds 

are unlikely to elute on our GC column, which is optimized for less-polar species. During normal operation of the 

instrument we thus include a filter inlineBornyl acetate (C12H20O2) is found in essential oils from pine trees (Garneau 25 

et al., 2012). Though it elutes close to tridecane, which is outside the reliably quantifiable range on the SVOC channel, 

we were able to quantify it on both the I/VOC and SVOC channels in McCall, Idaho during the 2019 FIREX-AQ 

field campaign. The concentration ranges from 0.1 to 16.5 ppt 

as measured on the SVOC channel. The correlation of concurrent sampling points on both channels is shown in Fig. 6. The 

I/VOC and SVOC channels agree on average within 11 %, with R2 = 0.79 and 96 % of the data points agreeing within ±4.8 30 

ppt (3 times the I/VOC channel limit of detection for bornyl acetate). We consider this excellent agreement between the two 

channels given that the sample sizes differ by more than 2 orders of magnitude, they are calibrated independently, and all 

data points are within a factor of 10 of the detection limit on the I/VOC channel4.6 Measurements of ambient aircTAG is 
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sensitive to a wide variety of organic compound classes. Figure 7 shows some sample chromatograms from Berkeley, 

California ambient air sampled from outside the lab window, the Livermore 2018 deployment (Sect. 3.6) and McCall, Idaho 

for the 2019 FIREX-AQ field campaign highlighting compounds of interest. The total ion chromatograms and selected ion 

chromatograms with mass-to-charge ratio of 57, the dominant ion in most alkanes, show the volatility range detected as well 

as the overlap region of both channels between C14 and C16 alkane-equivalent volatility. Common air toxics such as benzene, 5 

toluene, ethylbenzene, xylene, polycyclic aromatic hydrocarbons BTEX, PAHs and quinones are readily visible, as well as 
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Figure 7 Example chromatograms from cTAG. Panels (a) and (b) from FIREX-AQ 2019 in McCall, Idaho demonstrate the range of 
volatility covered by the two channels, including their overlap region. Single ion chromatograms (panels (c) through, (d) and (f) from 
Berkeley, California and (e) from Livermore, California) show examples of the compound classes observable by cTAG, including 
aromatics, polycyclic aromatic hydrocarbons, organic acids and anhydrosugars. 5 
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biogenic terpenes and aldehydes, organic acids and polar biomass burning markers. Compounds as polar as glucose (five 

hydroxy groups) can be detected on the SVOC channel. 

cTAG can observe gas-phase chemicals and many of their oxidation products in gas and particle phases. 

Naphthalene is a gas phase product of incomplete combustion of fossil fuels (Baek et al., 1991) and in urban areas has been 

observed to primarily originate from vehicle emissions (Howsam and Jones, 1998; Lim et al., 1999). Phthalic anhydride is a 5 

major gas-phase photooxidation product of naphthalene and phthalic acid has been found in secondary organic aerosol 

formed from naphthalene photooxidation (Chan et al., 2009; Kleindienst et al., 2012; Wang et al., 2007). cTAG is sensitive 

to naphthalene on the I/VOC channel and the sum of phthalic anhydride and phthalic acid on the SVOC channel. (We have 

found through laboratory testing of an authentic phthalic acid standard that phthalic acid converts to and is detected as 

phthalic anhydride in cTAGon the collection cell.). As Fig. 8 shows, the precursor and products have extremely distinct 10 

temporal profiles, with naphthalene concentrations elevated at night and in the early morning hours while the phthalic 

anhydride plus phthalic acid signal rises in the early to mid-afternoon, consistent with secondary formation and in agreement 

with observations at other field sites (Williams et al., 2010).  

 
Figure 8 Concentration timelines for naphthalene, a primary emission from vehicle exhaust measured on cTAG’s I/VOC channel, and the 15 
sum of phthalic anhydride and phthalic acid, secondary photooxidation products of naphthalene detected on cTAG’s SVOC channel. 
Another secondary compound, ozone, measured at a nearby Bay Area Air Quality Management District monitoring site, provides an 
independent indication of photochemical activity. 

An analysis of straight-chain alkanes along with some aromatics, alkenes and branched alkanes demonstrates 

cTAG’s volatility range and highlights the different source categories for sub-groups of this set of compounds. The cross-20 

correlation matrix (Fig. 9) indicates three distinct groupings of compounds. The first group is characteristic of gasoline 

emissions, spanning a volatility range from below C5 alkane-equivalent volatility to about C11 (Gentner et al., 2013) and 

including linear, branched and cyclic alkanes as well as aromatics. It shows short periods of elevated levels in the early 

morning consistent with a morning rush hour traffic pattern (Fig. 10). The lack of a similar peak near the end of the day 

could point to the outsized contribution of cold start emissions to total VOC emissions from gasoline vehicles (Drozd et al., 25 

2016, 2019), as the sampling site was located in a primarily residential area. There is also a well-defined group from C20 to 

C26 alkanes with a smooth diurnal variability and daily maximum concentration in the late afternoon (Fig. 10), consistent 
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Figure 9 Pearson’s R correlation matrix for a suite of petroleum-derived compounds observed by cTAG in Livermore, California between 
April 11th and April 21st, 2018, ordered by volatility. Two distinct groupings emerge from C5 alkane-equivalent volatility to about C11 and 
C20 to C26, with a third less distinct but still prominent grouping from approximately C11 to C19. 5 

with a petroleum-based evaporative source such as asphalt (Khare et al., 2020). The afternoon peaks in concentration result 

in a clear anti-correlation with the rest of the alkanes in Fig. 9 (blue and dark red areas). The third group is less pronounced 

but follows a roughly similar pattern to the high-volatility source category and likely corresponds to diesel fuel emissions, 

Commented [RW3]: Added alkane number markings on top and 
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which typically span a volatility range from about C10 to C22, with minor contributions from C23–C25 alkanes (Gentner et al., 

2013; Isaacman et al., 2012; Drozd et al., 2021). Our data suggest that overlapping contributions from gasoline and the 

petroleum-based evaporative sources make this source group less well-defined in the correlation matrix, but semivolatile 

compounds that have no other major source still correlate well with each other. 

 5 

Figure 10 Timelines for characteristic species from each of the three main groupings of compounds evident in the correlation matrix (Fig. 
9). The two more volatile groups, represented by octane and heptadecane, tend to peak in the early morning, consistent with morning rush 
hour cold start emissions. The least volatile group, which includes tricosane, appears to have an evaporative source as it tracks closely, but 
slightly delayed, with ambient temperature. 

5 Summary and concluding remarks 10 

The Comprehensive Thermal Desorption Aerosol Gas Chromatograph is a novel instrument capable of measuring nonpolar 

and some polar organic compounds as well as some more oxidized semivolatile organics from C5 through C32 alkane-

equivalent volatility on two separate channels connected to a single HRToFMS. This set of quantifiable compounds 

encompasses many key VOC pollutantsFor the first time, VOC emissions, reactive intermediates, and secondary products, 

can all be observed on a single instrument captured at hourly time resolution. The expanded range of measurable compounds 15 

allows for more robust source categorization, with detailed chemical specificity of each identified source category.  

 Building off development of previous TAG family instruments, development for cTAG focused on the I/VOC 

channel as well as miniature gas chromatographs to enhance field portability of the instrument. The I/VOC collector is 

optimized for collection of C5 through C16 alkane-equivalent volatility organics to capture major biogenic VOC and IVOC 

emissions and ensure overlap with the SVOC channel collection range. The dynamic dilution system with controlled liquid 20 

evaporation developed in house is shown to produce stable, linear calibration curves and allows for maximum flexibility in 

calibration of the I/VOC channel, including quantification of commercially available VOCs and IVOCs not commonly 

available in calibration gas cylinders or which are difficult or prohibitively expensive to put in such cylinders. Placement of a 

Na2S2O3 impregnated filter in the sampling path for the I/VOC channel is shown to effectively remove ozone without 

removing appreciable amounts of analytes of interest. Example chromatograms, timelines and correlations for a suite of 25 
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compounds at a polluted urban field site demonstrate some of the potential for analysis of the data sets produced by this 

instrument.  

Comprehensive, speciated measurements of reactive organic carbon across the full range of volatility are required to 

fully understand the atmospheric processes that lead to secondary aerosol formation and dictate the atmospheric lifetimes of 

key atmospheric oxidants (Heald and Kroll, 2020; Hunter et al., 2017). Moreover, the organic composition and thus the 5 

dominant atmospheric processes are likely to vary greatly in different environments (e.g. remote, forested, rural/agricultural, 

urban), and current science lacks such comprehensive measurements across these different types of sites (Heald and Kroll, 

2020). The cTAG is designed for field portability and speciated measurement of a significant fraction of the total reactive 

organic carbon, making it an ideal choice for helping to close this gap in our current scientific understanding.  

Appendix A Miniature gas chromatogram development 10 

cTAG uses dual miniature gas chromatographs to preserve compactness and independent temperature control. Figure A1 

shows a schematic of the final design and a photo of a GC hub on the instrument.  Having reproducible temperature ramps is 

critical for batch chromatogram analysis, since the exact elution time of each compound is dependent upon the column 

temperature. Figure A2 shows that we can run a consistent, repeatable temperature program using PID control on the mini 

GCs. 15 
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Figure A1 Schematic and photo of miniature gas chromatographs. Clamps on the edges of the rim of the hub hold the chromatography 
column in place at each end. An aluminium sheet is wrapped around the outside of the hub over the column to further ensure even heating 
of the column itself. 

 

Figure A2 Demonstration of reproducibility of temperature ramps on the miniature gas chromatographs. This leads to consistent elution 5 
times of compounds of interest, streamlining batch peak integration. 

 

 

Data availability. Data for each figure are available from the first author upon request. 
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