
Review #1: ‘Truth and Uncertainty at the Crossroads’ by
Antonio Possolo

Comment: Recommendation
The article’s Abstract sums up the central claims accurately that
the authors develop and substantiate in their narrative, including
what I believe to be the correct conclusion that the “error” and “un-
certainty” concepts are not fundamentally different, and may be re-
garded as alternative and complementary interpretations of the doubt
about the true value of the measurand that remains after measure-
ment.
However, my reading of the Guide to the Expression of Uncertainty
in Measurement (GUM) [Joint Committee for Guides in Metrology
(JCGM), 2008] suggests less polarizing views about this issue than
the views that the authors of the article under review derive from
the same Guide.
Their take on things brings to mind the acerbic discussion of essen-
tially the same issues that took place in meetings of the ISO/TAG-
4 Working Group 3, around 1986-87 [Collé, 1987a,b] [Schumacher,
1987].
The article should be published after it will have been shortened and
more sharply focused to convey its message most effectively, and af-
ter improvements will have been made to deficient passages that are
discussed under Specific Comments.

Reply: The authors thank the reviewer for this insightful and thorough review
of their manuscript.

Action: See below, under specific comments.

Comment: The Technical Corrections offer an assortment of sugges-
tions concerning English usage that the authors should consider.

Reply: The authors appreciate these corrections.

Action: See below for details.

Comment: General Comments
Acknowledgment should be made of an understanding of the rela-
tion between measurement uncertainty and measurement error that
predates the GUM, and that the authors of the article under review
likely will find agreeable: “The uncertainty of a reported value is
meant to be a credible estimate of the likely limits to its actual error,
i.e., the magnitude and sign of its deviation from the truth” [Eisen-
hart and Collé, 1980]. Churchill Eisenhart was my most illustrious
predecessor at NIST, and Ronald Collé, a distinguished and esteemed
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NIST colleague, served as convener of the working group (ISO-TAG-
4/WG3) that laid the groundwork for the creation of the GUM [Collé
and Karp, 1987].
A discussion whose tenor places the “error approach” on Mars and
the “uncertainty approach” on Venus sounds more like the discussions
that inflamed the metrological community thirty-five years ago, than
a useful discussion that we can engage in today with the benefit of the
experience accumulated in these many intervening years [Eisenhart
and Collé, 1980] [Collé, 1987a] [Colclough, 1987] [Schumacher, 1987].
The viewpoint that the authors of the article under review wish to
convey, can be conveyed quite simply also by means of an allegory:
measurement errors are the “carriers” of measurement uncertainty,
in a sense analogous to how photons are the “carriers” of light waves
and, more generally, of the electromagnetic force.
Accepting such dualism between errors and uncertainty facilitates
the scientific discourse without excluding individual or cultural pref-
erences, and tones down the drama that has been unfolding in the
literature and that, at times, this article also exacerbates unnecessar-
ily.

Reply: Agreed.

Action: Relevant parts of the paper were reorganized and rewritten. Care has
been taken not to give the impression of a split of the community in two blocs
in hostile opposition. Relevant references have been included.

Comment: The 26 pages of text of the article under review arguably
are overkill to convey this simple, conciliatory message: what they do
prompt is a review almost as long as the article itself, thus making
this review much too long by any standard.
In fact, the key message of the article will be delivered more ef-
fectively, and the article will have greater impact, if the article is
shortened and its arguments are streamlined.
The article’s length can be reduced at least by deleting those portions
that distract more than they add insight: for example, the digressions
in section 2 and in subsections 5.2 and 5.3.

Reply: We agree to shorten/rewrite particularly Section 2. We are not re-
ally convinced that Sections 5.2 and 5.3 are disgressions. The impossibility to
evaluate errors/uncertainties in the nonlinear case without approximate knowl-
edge of the true value and the inadequacy to conceive the measured value as
the most probable value without consideration of the a priori probability seem
essential to us. Instead we shortened the paper by reorganizing it in a way
that repetition could better be avoided. Further, we have deleted the Section
on Bayesianism versus non-Bayesianism, because the current version of GUM
is not fully Bayesian, and this Section was thus connected only loosely to the
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main topic of the paper.

Action: The paper has been substantially reorganized and shortened.

Comment: The authors may wish to extend their criticism to the
International Vocabulary of Metrology (VIM) [Joint Committee for
Guides in Metrology, 2012], whose Introduction states: “The change
in the treatment of measurement uncertainty from an Error Approach
(sometimes called Traditional Approach or True Value Approach) to
an Uncertainty Approach necessitated reconsideration of some of the
related concepts appearing in the second edition of the VIM.”

Reply: Agreed.

Action: Added before the criticism is formulated: “The International Vocabu-
lary of Metrology document (BIPM, 2012) points in the same direction”

Comment: The authors also seem to be unaware of the critical eval-
uation of the GUM that Gleser [1998] published shortly after the
original, 1993 edition of the GUM was corrected and reprinted, in
1995 [BIPM et al., 1995]. References to suitable portions of this
evaluation will add value to the article under review, and will also
facilitate shortening it.

Reply: Yes, indeed. We were unaware of this review.

Action: Reference to Gleser (1998) has been made.

Comment: The article is very repetitive in the multiple instances
where it rehashes the relations between the concepts of error, un-
certainty, true value, and Bayesianism. Consolidating and refocusing
the fragmentary discussion of these relations would make the article
much easier to read and would enhance the cogency of its arguments.
However, accomplishing this would involve a major rewrite.

Reply: Agreed.

Action: The paper has been reorganized, and parts of the article have been
rewritten, in order to avoid repetition and to make the structure of the argu-
ment clearer.

Comment: In its Annex E (E.5.1) the GUM addresses the issue that
is the main focus of the article under review, when it states that “The
focus of this Guide is on the measurement result and its evaluated un-
certainty rather than on the unknowable quantities “true” value and
error (see Annex D). By taking the operational views that the result
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of a measurement is simply the value attributed to the measurand
and that the uncertainty of that result is a measure of the dispersion
of the values that could reasonably be attributed to the measurand,
this Guide in effect uncouples the often confusing connection between
uncertainty and the unknowable quantities “true” value and error.”
The authors of the article under review quite correctly point out that
the uncertainty is neither a property of the measured value nor is it
about the measured value. The uncertainty surrounds or clouds the
true value, and qualifies the state of knowledge that the metrologist
has of the true value. To the extent that the target of measurement
is the true value, the measurement error is meaningful even if not
observable (however, it can be estimated in some cases, as discussed
below in relation with Line 180).

Reply: Fully agreed.

Comment: The suggestion, made in the aforementioned E.5.1, that
“uncertainty,” “error,” and “true value” should be uncoupled from
one another seems at odds with what is actually done in the prac-
tice of measurement science. For example, in relation with certified
reference materials, “NIST asserts that a certified value provides an
estimate of the true value of a defined measurand” [Beauchamp et
al., 2020, 1.2.4].
Therefore, the implied understanding of the scientists developing
these materials is that the uncertainties reported in the corresponding
certificates are informative about the relation between the measured
value and the true value, the difference between the former and the
latter being the measurement error.

Reply: We fully agree.

Action: None, because the Beauchamp-statement seems to address the uncer-
tainty issue only indirectly. Although this quotation could possibly strengthen
our point, its inclusion would imply considerably more text, which we want to
avoid for reasons of brevity.

Comment: Specific Comments
The numbers in boldface refer to line numbers in the version of the
preprint made available for discussion on June 29, 2021.
002 + 245 Here and elsewhere throughout the article, “GUM8”
should be replaced by “GUM” because the GUM and its existing
and planned supplements are being rearranged and renumbered, and
“GUM8” is already reserved to refer to something other than the
current GUM. For similar reasons, “GUM09” is likely to be mis-
interpreted, and should not be used: in fact, it is not needed at all
because the authors use this acronym only in the very same line (245)
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where they introduce it.

Reply: Thank you for bringing this to our attention.

Action: To be able to still distinguish between GUM in general and the 2008
version, and not to clash with the GUM numbering system, we have changed
‘GUM08’ to ‘GUM-2008’. The abbreviation GUM09 is not used any longer.

Comment: Specific Comments
010 the term ‘error’ was used, with some caveats, for designating a statistical
estimate of the expected difference between the measured and the true value of a
measurand
The traditional and still customary meaning of “error” in statistical
models is of a non-observable difference between the observed and
the (generally also non-observable) true value of a quantity [Davison,
2008, Example 1.1].
For example, in the relationship m = µ+ ε between a measured value,
m, and the true value, µ, of the mass of a massive entity, ε is the
error.
The error is generally neither known nor observable, but in many
situations it can be estimated, with ε being commonly used to denote
the estimate (refer to the discussion of Line 180). In the discussion
of Lines 518 + 738 below, it will become clear how useful the explicit
consideration of error can be, by allowing one conceptually to sepa-
rate contributions made by different sources of uncertainty.

Reply: We fully agree.

Action: In the course or rewriting the terminology part, we have made clearer
that in the traditional terminology, the term ‘error’ implies an equivocation.

Comment: 015 stipulated a new terminology, where the term ‘measurement
uncertainty’ is used in situations where one would have said ‘measurement er-
ror’
The word “error” occurs 131 times throughout the GUM, and not
always deprecatingly. For example, in its 2.2.4, the GUM acknowl-
edges that “The definition of uncertainty of measurement [...] is not
inconsistent with other concepts of uncertainty of measurement, such
as a measure of the possible error in the estimated value of the mea-
surand.”

Reply: In the definitions part, GUM defines error as the difference between the
measured value and the measurand. There is no instance in GUM where they
acknowledge the equivocation that the term ‘error’ can also refer to a statistical
estimate of this difference. On page 5, Note 3, GUM says “In this Guide, great
care is taken to distinguish between the terms “error” and “uncertainty”. They
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are not synonyms, but represent completely different concepts; they should not
be confused with one another or misused.” This, we think, justifies our state-
ment.

Action: We have not taken any action in reply to this specific comment, but our
rewriting of the introductory sections in reply to the general comment should
have made our point clearer.

Comment: 025 the error statisticians and the uncertainty statisticians
This classification of statisticians into these two classes is an inven-
tion of the authors that is more reflective of their imagination than
of reality. In fact, the principal participants in the debates that took
place in and around the aforementioned ISO/TAG-4/WG-3 were not
statisticians.

Reply: Agreed.

Action: In the new version of the manuscript, the terms “error statistician”
and “uncertainty statistician” are no longer used.

Comment: Furthermore, the issue of “systematic” versus “random”
errors (which we will discuss below, in relation with Line 597) may
have been even more divisive than the issue of “error” versus “un-
certainty.” Therefore, I urge the authors to devise a different way of
characterizing the two camps they are alluding to here. A reference
to Mayo and Spanos [2011] would be appropriate.

Reply: We use a definition of random vs. systematic errors which is based
fully on observational grounds. This terminology has been agreed by the entire
TUNER consortium. To avoid confusion, we do not want to change the termi-
nology again.

Action: We mention that our random errors correspond to the volatile errors
and that our systematic errors correspond to the persistent errors. However, we
use the terms ‘volatile’ and ‘persistent’ as purely descriptive terms, not as new
technical terms.

Comment: 046 according to Bayesian statistics (Bayes, 1763) the measured
value cannot always be interpreted as the most probable value of the measurand
Since one does not need to invoke Bayesian statistics to reach the
same conclusion [Possolo and Iyer, 2017, Page 011301-12], this re-
mark is spurious.

Reply: Here we have to respectfully disagree. The argument of Possolo and
Iyer, 2017, Page 011301-12 is based on the assumption that the error correla-
tions between multiple measured values are not known or not considered when
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a higher-level data product is produced. Under this assumption the conclusion
that the resulting value is not the most probable one is correct. However, von
Clarmann et al. (2020) offer a method to estimate the higher-level data prod-
uct (here: trace gas mixing ratios) under consideration of the full measurement
error covariance matrix. Even if the latter does include all uncertainties and
covariances, and the Possolo an Iyer argument thus does not apply, still the base
rate problem is there, and without consideration of the a priori probabilities the
estimate will not render the most probable mixing ratios but only the most
likely ones. Thus, we do not see what is spurious about the base rate argument.

Comment: 071 Recapitulation of the concept of indirect measure-
ments I believe that this long foray into inverse problems adds noth-
ing of value to the discussion, hence suggest that section 2 be deleted.
The discussion in subsection 6.3, The causal arrow, can easily be refor-
mulated, and in the process also shortened, to drive the same points
across — refer to specific suggestions below, for Line 618.

Reply: We agree in part. This section contained unnecessary formalism and
detail, and it was too long. However, to understand how a measured or esti-
mated value is probabilistically related to the true value, we still think that it
is important to highlight the inverse nature of a measurement process.

Action: This section has been merged with other sections and has been con-
siderably shortened. All unnecessary formalism has been removed.

Comment: 119 ancient researchers realized that measurement results always
have errors
It is all a matter of perspective, of course, but I am of the opinion
that it is unfair to call Gauss or Legendre “ancient.” In the context of
European history, the word is typically reserved for the period end-
ing with the fall of the Western Roman Empire (around 500 CE). In
addition, and in particular concerning Gauss, with whose works I am
more familiar than with Legendre’s, I can only say that it is difficult
for me to imagine a person of more luminous modernity, or with a
better sense for what is relevant in scientific practice (of his time or
contemporary), than Gauss.

Reply: The term ‘ancient’ was by no means meant in any dismissive way. We
realize that it can be understood in this way and replace it.

Action: New wording: “Investigators realized already in the 19th century that
measurement results always have errors.”

Comment: 149 In the case of ‘error’, its statistical estimate is mostly under-
stood to be a quadratic estimate and thus does not carry any information about
the sign of the error.
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The authors may like to replace this awkward sentence with some-
thing along the following lines: “In most cases, errors are not esti-
mated individually. Instead, their typical size is summarized by the
square root of their mean squared value, or by the median of their
absolute value. Such summaries do not preserve information about
the signs of any individual errors.”

Reply: We agree to reword this statement:

Action: New wording: In the case of ‘error’, its statistical estimate is mostly
understood to be the square root of the variance of the probability density func-
tion of the error and thus does not carry any information about the sign of the
error.

Comment: 154 the term ‘error’ has commonly been used to signify a statistical
estimate of the size of the difference between the measured and the true value of
the measurand
This is repetitive of the material around Line 10 that was discussed
above. In both instances, the authors are unnecessarily turning some-
thing simple into something complicated. One thing is the error ε in
the example discussed above, m = µ + ε. Another thing is how this
error may be characterized or quantified.

Reply: Agreed; however, we prefer to leave this part and avoid the repetition
elsewhere in the paper.

Action: The text has been restructured and shortened in order to make the
arguments clearer and to avoid repetition. The new structure is intended to
make our arguments w.r.t. terminological versus structural arguments clearer.

Comment: For example, the possible errors may be characterized by
the probability distribution of ε, like when one says: the signal was
corrupted by white noise with mean 0 and standard deviation σ.
The sizes of possible errors may be summarized by the mean squared
error (MSE) of the estimator of the measurand, which captures the
difference between expected value of the estimator and the true value
of the measurand, as well as dispersion around that expected value.
Other summaries include the standard deviation of the error distri-
bution, or the now outmoded probable error.
The error may also be characterized indirectly, by an expression
of the uncertainty surrounding the quantity of interest. For ex-
ample, Yoshino et al. [1988] reported the measurement result for
the absorption cross-section of ozone at 253.65 nm as 1145+7.1

−14410−20

cm2/molecule, which says that the measurement error has an asym-
metric distribution.
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Reply: Agreed. Most such cases in our context are caused by the non-linearity
of Beer’s law. Symmetrically distributed errors in the transmission measure-
ments cause an asymmetric distribution of the inferred cross section errors.
This highlights how important the non-linearity issue actually can be.

Action: Added: “Nonlinear error propagation may in some cases make asym-
metric error estimates adequate.”

Comment: 180 Since the true value is not known, the actual difference between
the measured or estimated value and the true value of the measurand cannot be
calculated.
The authors quite correctly point out that this argument lacks co-
gency. In fact, more can be said further to dismiss this claim as
being no more than a myth. Consider the simplest of cases of statis-
tical estimation, where one has replicated determinations of the same
quantity, r1, . . . , rm, which are then combined to obtain an estimate
t = T (r1, . . . , rm) of a quantity τ . The estimate t could be as simple
as the average or the median of the replicates, or it could be their
coefficient of variation (standard deviation divided by the average).
It is then possible, using the statistical jackknife [Mosteller and Tukey,
1977, Chapter 8] or the statistical bootstrap [Efron and Tibshirani,
1993], to estimate not only the standard deviation of t (based on this
single set of replicates ri), but also both the sign and the magnitude
of the error t− τ .

Reply: We are happy that we agree on this important point. With respect to
the example presented in the review, however, GUM defenders would probably
object that these methods provide a handle on the random part of the error but
not on what they call “systematic” effects.

Action: None, for the sake of brevity.

Comment: 200 + 364 our reading is that an error distribution is understood
as a distribution whose spread is the estimated statistical error and whose expec-
tation value is the true value, while an uncertainty distribution is understood as
a distribution whose spread is the estimated uncertainty and whose expectation
value is the measured or estimated value / The error distribution must not be
conceived as a probability density distribution of a value to be the true value
In the simple model for a measured mass, m = µ + ε, the “error dis-
tribution” generally refers to the probability distribution of ε, hence
the expected value of the “error distribution” will not be µ, which
denotes the true value of the measurand. Instead, this expected value
will be the bias, which is the persistent offset of m from µ. (Refer to
the discussion of Line 597, where I explain why I prefer “persistent”
to “systematic,” and “volatile” to “random.”)
Neither “error distribution” nor “uncertainty distribution” are men-

9



tioned in the GUM. While the GUM offers considerable guidance
about the assignment of distributions to input quantities, xj, in its
first 69 pages (out of a total of 120) all that it provides about the
probability distribution of the output quantity, y, is an approxima-
tion to its standard deviation, in Equations (10) and (13).
Furthermore, the GUM seems to be more concerned with evaluat-
ing u(y) than with estimating the measurand optimally, because the
“substitution” estimate of the measurand, which is obtained by sub-
stituting the xj by their best estimates in y = f(x1, . . . , xn), generally
will not yield the best estimate of the measurand in the sense of min-
imizing mean squared error, mean absolute error, or other similar
criteria [Possolo and Iyer, 2017, Page 011301-12].
In the course of those initial 69 pages, the GUM touches upon the
topic of the distribution of y tangentially – for example when it dis-
cusses expanded uncertainty, coverage factors, and coverage interval
–, but only in its Annex G (beginning on Page 70) does the GUM
venture into a discussion of how to characterize the probability dis-
tribution of y. Annex G invokes the Central Limit Theorem based
on a first-order Taylor approximation of the measurement function
f in y = f(x1, . . . , xn), to claim that y’s distribution may be taken as
being approximately Gaussian. This argument can, on occasion, be
spectacularly inaccurate [Possolo, 2015, Example E11].
Since u(y) typically is based on finitely many degrees of freedom, the
GUM argues (using a slightly different notation) that (y − ν)/u(y),
where ν denotes y’s true value, should have a Student’s t distribution
approximately, wherefrom coverage intervals then issue readily, thus
achieving the goal, stated in its clause 0.5, of providing “an interval
about the measurement result that may be expected to encompass a
large fraction of the distribution of values that could reasonably be
attributed to the quantity subject to measurement.”
The meaning of this distribution that the GUM, by hook or by crook
assigns to y, and, even more importantly, the meaning of the distribu-
tions derived for y by application of the Monte Carlo method, and of
the coverage intervals based on them, should be the more appropriate
and productive targets for critical review, similarly to what Stoudt
et al. [2021] have done.

Reply: The example discussed by [Possolo and Iyer, 2017, Page 011301-12]
inquires into a case where a higher level data product (here: the area of a
rectancle) is calculated from the direct measurements of the lengths of the ver-
tices. Possolo and Iyer demonstrate that the most probable area cannot be
determined without knowledge of the error correlation of the length measure-
ments of both vertices. Von Clarmann et al. (2020) concede that retrieved
values of atmospheric state variables are not optimal as long as the measure-
ment error covariance matrix includes only measurement noise but not the other
error sources, mapped into the measurement space. The problem mentioned by
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Possolo and Iyer falls in this category of problems. In the paper under review,
we indeed forgot to consider this problem. But independent from this, our ar-
gument invoking the base rate still holds.
Gaussian error propagation (extended to consider covariances) holds, regard-
less of the error distributions of the ingoing quantities, as long as the function
through which the errors are propagated is sufficiently linear. In particular, it
is not required that the errors of the ingoing quantities follow a Gaussian distri-
bution. Monte Carlo methods are needed either if the function is too nonlinear
for Gaussian error propagation (we tackle this issue in old Section 5.3, new Sec-
tion 3.3), if more information than only the expectation value and the variance
shall be inferred (beyond the scope of our paper) or if the measurement error
covariance matrix used for the inversion does not include all error components.
In the latter case MC methods can be used to correct the result, but that is
somewhat beyond the issue of error estimation. However, MC methods do not
solve the problem of the base rate fallacy.

Action:. Added “[...yield the probability distribution of any value to be the
true value.] This holds even if the error distribution is extended to include also
systematic effects, and if all error correlations are adequately taken into account
in the case of multi-dimensional measurements.”

Comment: 213 Frequentist statistics, we understand, is a concept where the
term ‘probability’ is defined via the limit of frequencies for a sample size ap-
proaching infinity. This definition is untenable because it involves a circularity
The authors oversimplify and are unacceptably dismissive. If the
Frequentist interpretation of probability were this “obviously” defec-
tive, then none of John Venn, Richard von Mises, Andrey Nikolaevich
Kolmogorov, Jerzy Neyman or Jack Kiefer – all intellectual giants in
their own right – would have embraced it.
I suggest that the authors avoid embarrassment by considering the
excellent overview of the interpretations of probability compiled by
Hájek [2007].

Reply: If this argument was conclusive, then we should either believe in the
ether theory or we should deny Lorentz and Poincaré the status of an intel-
lectual giant. Scientific knowledge is approximately accumulative, and thus it
is not astonishing that later generations know more than earlier generations.
Stegmüller’s argument runs as follows: Hypothetical frequentism (i.e. frequen-
tism involving an infinite reference class; this seems necessary to be able to
extend the probability concept to probability density functions of continuous
random variables) rely on the large number theorem. Both the weak and the
strong version of the large number theorem involve probabilities. Thus the def-
inition is circular or involves an infinite regress. We do not see any flaw in his
argument, and this argument is refuted neither by Hájek [2007] nor by any other
literature of our knowledge.
It is important to note that the distinction between frequentism and other con-
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ceptions of probability such as subjective probability is about how the term
‘probability’ is defined, and not about the methods used. Methods still can
work well, even if the definition of the underlying key term is flawed.

Action: As a compromise, we have replaced “is untenable” with “challenged”.

Comment: 265 The values the rational agent believes to be true are sufficient
in this case, because the error distribution does not tell us anything about the
truth anyway but only about the agent’s believe of what truth is.
The simplest measurement error model mentioned above, m = µ + ε,
is meaningful under essentially all paradigms of statistical inference.
In neither the classical (Frequentist) nor in the Bayesian approaches
does the probability distribution of ε convey any information about
µ, other than in special cases: for example, when the variance of ε
depends on µ.
Both approaches involve assigning a probability distribution to ε,
which then determines the likelihood function. The Bayesian ap-
proach involves also assignments of probability distributions to µ and
to any parameters in the distribution of ε whose values are unknown.
The marginal distribution of m typically will differ in the classical
and Bayesian approaches even when the same choice is made for the
distribution of ε.

Reply: Agreed for the mathematical part but we are afraid that our original
text did not make clear the point we intended to make. Thus we reword our
statement for clarity.

Action: Reworded: “In GUM the error concept is discarded because the capa-
bility of conducting an error estimate allegedly depends on the knowledge of the
true value. However, once having invoked the concept of subjective probability,
no objective knowledge of the unknowable true value is needed any longer. The
subjectivist can work with the value they believes to be true. This solves the
alleged problem of the error concept, namely, that the true value is unknown.”

Comment: 317 Monte Carlo uncertainty estimation, however, is in its heart
a frequentist method, because it estimates the uncertainty from the frequency
distribution of the Monte Carlo samples.
The authors are quite wrong on this one.
Of course, the extent of how wrong depends on what they mean by
“Monte Carlo uncertainty estimation.” I assume that they mean
it in the sense and context in which it was introduced into uncer-
tainty analysis by Morgan and Henrion [1992], subsequently having
been incorporated into the GUM Supplement 1 [Joint Committee for
Guides in Metrology, 2008]. In such sense and context, the Monte
Carlo method is purely mathematical, and non-denominational (nei-
ther Frequentist nor Bayesian), and solves the following problem:
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given a random vector X whose probability distribution has been
fully specified, and a real-valued, measurable function f defined on
the range of X, determine the probability distribution of Y = f(X).
The Monte Carlo method solves this problem using numerical meth-
ods and sampling driven by pseudo-random numbers. It solves it in
the sense that it can produce the value of Pr(Y ∈ B) to within any
specified accuracy, for any measurable subset B in the range of Y .
The fact that its accuracy is guaranteed by the Law of Large Num-
bers does not make it Frequentist because the Law of Large Numbers
is neither Frequentist nor Bayesian. The Law of Large Numbers is a
mathematical result about sums of random variables based on Kol-
mogorov’s axioms for probability measures [Kolmogorov, 1933]. If
the authors’ views on the Monte Carlo method were correct, then
Markov Chain Monte Carlo sampling, which is the workhorse of con-
temporary Bayesian inference, would be “in its heart a frequentist
method” too!

Reply: We still think that, by employing samples, MC methods do use the
frequentist toolbox. A Monte Carlo sample is a sample where values considered
as more probable occur more frequently. But since we think that the use of
the frequentist toolbox does not make a subjectivist a frequentist, and since
this statement is not needed to support our stance, we decided to withdraw our
argument on MC methods.

Action: Argument deleted.

Comment: 318 it is astonishing why GUM08, if representing a Bayesian con-
cept, does not in the first place require to apply the Bayes theorem
The authors should reference Gleser [1998] who points out the mixed-
bag of viewpoints coexisting in the GUM. Clearly the authors are well
entitled to feel astonishment at the GUM not using Bayes rule at all,
especially considering the whirlwind of claims about the GUM and
its Supplements being Bayesian.
However, in fairness to the GUM, such whirlwind has been more of
an afterthought than a consequence of the GUM itself. First, the
word “Bayes” is nowhere to be found in the GUM, and the word
“Bayesian” occurs exactly once: n the title of reference [14], on Page
115.
Only in Annex E (E.3.5) does the GUM venture into this controver-
sial territory when it says “In contrast to this frequency-based point
of view of probability, an equally valid viewpoint is that probability
is a measure of the degree of belief that an event will occur.” And
then it adds: “Recommendation INC-1 (1980) upon which this Guide
rests implicitly adopts such a viewpoint of probability.”
The expression “degree of belief” occurs exactly once in the main
body of the GUM (3.3.5), where it says: “Thus a Type A standard

13



uncertainty is obtained from a probability density function (C.2.5)
derived from an observed frequency distribution (C.2.18), while a
Type B standard uncertainty is obtained from an assumed probabil-
ity density function based on the degree of belief that an event will
occur [often called subjective probabil- ity (C.2.1)]. Both approaches
employ recognized interpretations of probability.
The same expression occurs in Annex C, and again in Annex E, where
E.3.6 comes the closest to advocacy by enumerating “three distinct
advantages to adopting an interpretation of probability based on de-
gree of belief.” Therefore, and on the whole, the GUM is far more
discreetly or ambiguously Bayesian than it has more recently been
heralded to be (surprisingly, mostly by “born again,” self-declared
Bayesians).
The GUM’s alleged Bayesianism in fact reduces to (i) entertaining
(subjective) probability distributions for input quantities that are
elicited from experts, and (ii) regarding the probability distribution
of the measurand as quantification of degrees of belief about the true
value of the measurand, even though it is not a Bayesian posterior
distribution [Gleser, 1998, 2.2].

Reply: We do not claim that GUM is Bayesian. However, we recognize that
there exist readings of GUM that see it as Bayesian. We do not say that we are
astonished that the Bayes theorem plays no role in GUM but we say we should
be astonished that the Bayes theorem plays no role in GUM if GUM really was
Bayesian. Our argument follows the form of a reduction to the absurd: As a
working hypothesis we assume that GUM is Bayesian, we then find that this
assumptions lead to inconsistencies, and finally we conclude that the purported
Bayesian turn cannot explain the difference between the error concept and the
uncertainty concept.

Action: We have reworded the related text to make the argument clearer, and
to make it more obvious that our argument form is a reductio ad absurdum.

Comment: 343 This suggests that the uncertainty is an attribute of the true
value while the error is associated with a measurement or an estimate. Because
of the measurement error there is an uncertainty as to what the true value is.
The uncertainty thus describes the degree of ignorance about the true value while
the estimated error describes to which degree the measurement is thought to de-
viate from the true value
The authors are quite right. Please consider the following rewrite,
which, although allegorical, I believe further enhances the expression
of the authors‘ sentiment – also compare with Possolo [2015, Note 3.2,
Page 16]: This suggests that measurement uncertainty surrounds the
true value of the measurand like a fog that obfuscates it, while mea-
surement error is both the source of that fog and part and parcel
of the measured value. Measurement uncertainty thus describes the
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doubt about the true value of the measurand, while measurement er-
ror quantifies the extent to which the measured value deviates from
the true value.

Reply: Agreed.

Action: Footnote added.

Comment: 379 The weight of Thomas Bayes or the body height of David
Hume at a certain time are well-defined quantities although we have no chance
to measure them today
I suggest that, for the sake of propriety and good taste, the authors
abstain from referring to properties of the bodies of Thomas Bayes
and David Hume, refined and excellent gentlemen both, long de-
ceased, and use instead properties of other notable material entities
that are no longer amenable to measurement, like the Colossus of
Rhodes or the Lighthouse of Alexandria.

Reply: Agreed.

Action: Changed as suggested; footnote added with reference to the originator
of this idea for this illustrative example.

Comment: 411 5.2 Likelihood, probability, and the base rate fallacy
I believe that this subsection is a digression from the main topic that
would best be deleted. A shorter, better focused article will have
greater impact than one with multiple digressions that are largely
off-topic.

Reply: Since we conceive measurements (and their analysis) as estimation of
the true value involving an inverse process, we think that this argument is quite
essential. We do, however, agree that this section was too long, and that the
original structure of the paper did not make our argument sufficiently clear.

Action: This concern has been considered when the manuscript was reorga-
nized.

Comment: 481 5.3 Nonlinearity issues
The same suggestion as for subsection 5.2, for the same reasons.

Reply: The denial of the approximate knowledge of the true value poses serious
problems particular in the case of non-linearity. In linear cases the statistical er-
ror can be estimated without knowledge of the true value because the Jacobian
does not depend on the measurand. This is not the case if there is non-linearity.
We do not think that this is a disgression or off-topic, but a serious challenge
to an uncertainty concept that pretends to be able to avoid the concept of the
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true value.

Comment: 518 + 738 5.4 Incompleteness of the error budget
This is an important issue that the authors should address in greater
generality than in the context of inverse problems. The following ex-
ample captures the key issues clearly and simply. The authors allude
to the same ideas in Line 738.
The values measured in inter-laboratory studies are often modeled as
mj = µ+ λj + εj for j = 1, . . . , n, where µ denotes the true value of the
quantity of interest, and the λj and the εj are errors of different kinds:
the former express laboratory effects [Toman and Possolo, 2009a,b,
2010], which in many cases will be persistent effects attributable to
differences between measurement methods or between forms of cali-
bration; the latter are laboratory-specific measurement errors quan-
tified in the uncertainties reported by the participants.
The reality of the λj (that is, that they cannot all be zero) becomes
apparent only when the measurement results are put on the table
and inter-compared.
If the measured values are significantly more dispersed than the as-
sociated, reported uncertainties intimate that they should be, then
this is an indication that there is some dark uncertainty [Thompson
and Ellison, 2011] afoot that was not captured in the individual un-
certainty budgets.
This dark uncertainty is “carried” (in the sense in which this term
was used in the General Comments) by the λj. Refer to Koepke et
al. [2017] and to Possolo et al. [2021] for more extended discussions
of this concept.

Reply: The rationale behind limiting our discussion to inverse problems is that
this manuscript has been written for an AMT special issue that deals exclusively
with error reporting in remote sensing contexts. There are certainly many peo-
ple who are better qualified than we are to discuss these issues in the context
of general metrology. We see it as our task to scrutinize the applicability and
usefulness of the BIPM guidelines to remote sensing of the atmosphere.
By the way: Those passages in our manuscript where the incompleteness of the
error budget is discussed do not refer explicitly to inverse problems.

Comment: 548 We have mentioned above that the uncertainty concept depends
on the acceptance of the subjective probability in the sense of degree of rational
belief. Without that, an error budget including systematic effects would make
no sense because systematic effects cannot easily be conceived as probabilistic in
a frequentist sense; that is to say, the resulting error cannot be conceived as a
random variable in a frequentist sense.
These statements are inaccurate.
First, the uncertainty concept may be contingent on a Bayesian per-
spective, but this perspective need not be subjective: it can be
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a so-called “objective Bayesian” perspective, which Jeffreys [1946],
Bernardo [1979], and Berger [2006], among others, have favored.

Reply: The uncertainty concept explicitly invokes subjective probability (Sect
3.3.5). We think that the uncertainty concept is contingent on the concept
of subjective probability (i.e., a degree of belief concept of probability) but
not necessarily on Bayesianism. While objective probability (both frequentist
probability and Popper’s propensity) is a characteristic of the event (the object),
subjective probability is a characteristic of the knowledge of the agent (the
subject) dealing with this event. Any concept of probability that conceives
errors, uncertainties etc as a degree of ignorance and characterize them with a
degree of belief are thus based on subjective probability, because the ignorance
is a characteristic of the agent (the subject), not of the value (object).
Thus we think that even objective Bayesians employ the concept of subjective
probability. That is to say, also objective Bayesianism depends on a concept of
probability which describes the information (and its uncertainty) an agent (the
‘subject’) has. Thus one could argue that the term “objective Bayesianism” is
a misnomer, or at least is misleading.
Our use of the terms ‘subjective probability’ and our understanding of ‘objective
Bayesianism’ seem to be fully consistent with D. R. White (2016 Metrologia 53
S107) who states: “There are two main branches of Bayesian statistics, objec-
tive and subjective, both of which are founded on three main principles: the use
of subjective probability, the use of Bayes’ theorem to invert conditional proba-
bilities, and the likelihood principle” (his Section 3.2). Thus, the contradiction
between subjective probability and objective Bayesianism is only apparent but
not real. Anyway, since GUM invokes subjective probability but not Bayesian-
ism, the discussion of objective Bayesianism is not relevant to the paper.

Action: (Only indirectly linked to this comment) We have deleted the section
on Bayesianism versus non-Bayesianism.

Comment: Second, the main difficulty facing a Frequentist approach
to the characterization of measurement uncertainty concerns what
the GUM calls Type B evaluations of uncertainty components, not
the recognition of the contributions that persistent (“systematic”)
effects make to said uncertainty.

Reply: We must distinguish between methods that use frequency distribu-
tions as estimators of probability distributions and the way how the concept of
‘probability’ is defined. Type B evaluations work well even for frequency distri-
butions. Take a finite sample of parameters bi, calculate the variance, propagate
the variance through the system using linear theory; and in parallel, propagate
each parameter bi through the system and calculate the variance in the result
space. If the system is sufficiently linear, both variances will be approximately
the same (and exactly the same in the linear case). We see no difficulty to apply
Type B evaluations to frequency distributions.
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The problem solved by GUM by abolishing frequentism and turning towards a
subjective concept of probability is that systematic effects cannot be character-
ized by a probability distribution at all. In a frequentist’s world it would simply
make no sense to assign an error distribution to a systematic effect, because
the systematic effect is only one number. To assign an error distribution to a
systematic effect requires to conceive the error distribution as a characteriza-
tion of the knowledge or belief of the rational agent instead of a frequency of
events. And this is exactly what the subjective concept of probability does. For
a frequentist it is absurd to assign a distribution to a systematic error.

Comment: In fact, the contributions from some persistent effects can
be evaluated by Type A methods (refer to the comments above for
line 180), and the contributions from some volatile (“random”) effects
can be evaluated by Type B methods (for example, the imprecision
of a balance that a laboratory technician has great familiarity with).

Reply: We agree that there is no clear correspondence between Type A vs.
Type B evaluation of uncertainty on the one hand and random vs. systematic
error components on the other hand. TUNER recommends to evaluate all error
components via Type B analysis. This seems necessary to disentangle the dif-
ferent error components (i.e. error from the different sources). For example, the
error due to measurement noise is estimated by propagating known measure-
ment noise through the retrieval. The same holds for, e.g., volatile parameter
uncertainties. Type A evaluation is recommended to test the validity of the
Type B estimates.

Comment: 597 Von Clarmann et al. (2020) explicitly demand that error es-
timates be classified as random or systematic [. . . ] In summary, the denial of
the importance of distinguishing between random errors and systematic errors
does not provide proper guidance, and altogether is a strong misjudgment.
The word “demand” appears to be too strong a descriptor of what von
Clarmann et al. [2020] actually did, which was to “formulate recom-
mendations with respect to the evaluation and reporting of random
errors, systematic errors, and further diagnostic data,” where the
emphasis on “recommendations” is mine.
We need to discuss two separate issues regarding this point: the
first concerns the choice of terms (“systematic” and “random”); the
second concerns whether and when to bundle them all into a single
expression of uncertainty.
Concerning the first issue – the choice of terms:
My dislike of terms like “systematic” and “random” is that they are
metaphysical:
they speak to the nature of the errors, which is often elusive and may
be shifting.
For example, von Clarmann et al. [2020, R3, Page 4420] recognize
that “depending on the application of the data, the same type of er-
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ror can act as random or systematic error,” and many other authors
have acknowledged the same.
“Random,” in particular, is a thorny concept, whose definition seems
to be far from settled [Landsman, 2020] [Eagle, 2016] [Bennett, 2011]
[Gács, 2005].
For these reasons, I recommend descriptive qualifiers instead, for ex-
ample persistent (instead of “systematic”) and volatile (instead of
“random”). They are less committal and afford greater flexibility, in
particular to address cases where a volatile error becomes persistent,
or vice versa. Writing almost thirty-five years ago, Collé [1987a], sum-
marized the two approaches to measurement uncertainty that were
then dominant as follows: The “classical” approach is based on a cen-
tral distinction between so-called random and systematic uncertain-
ties. The uncertainties are presumably classified by the underlying
physical error type [. . . ] and the approach demands that the different
uncertainty types be combined by different methods. Causing even
further confusion, the uncertainties in these classical treatments are
said to depend on one’s “perspective” and hey possess chameleon-
like properties, and may change from one type to another. In con-
trast, the “romantic” approach dispenses with the underlying error
distinction, and classifies the uncertainties only on the basis of how
the uncertainty estimates were made. All uncertainty components
in this approach can be combined by the same general propagation
formulae. The romantic approach underlies the BIPM/CIPM Rec-
ommendation.

Reply: We agree to replace “demand” with “recommend”. We are reluctant
to change terminology in favor of ‘volatile’ and ‘persistent’ errors because this
would lead to inconsistent terminology within the AMT special issue this paper
is written for. However the connotation of our terms ‘random errors’ and ‘sys-
tematic’ errors, as defined in von Clarmann et al. (2020) matches that of the
‘volatile’ and ‘persistent’ errors of Possolo. There, systematic errors are defined
as bias-generating errors while random errors are defined as variance-generating
errors. They can be distinguished fully on observational grounds.

Action: “demand” replaced with “recommend”. Further we have added the
following footnote: “In this context it is important to note that, in contrast to
some older conceptions, von Clarmann et al. (2020) define ‘systematic errors’
as bias-generating errors and ‘random errors’ as variance-generating errors. To
avoid confusion with the older conceptions, one can use instead the descriptive
terms ‘persistent’ and ‘volatile’ errors as suggested by Possolo (2021). This is
not done here to maintain consistency with von Clarmann et al. (2020).

Comment: Concerning the second issue – the bundling of contribu-
tions from all sources of uncertainty:
While agreeing with the romantic approach in principle, I believe that

19



it is advisable to consider how uncertainty evaluations will be used,
before deciding whether to combine contributions from all sources of
uncertainty into a single evaluation, or not. This is a more nuanced,
less extreme approach than either of the two approaches aforemen-
tioned.
Consider an inter-laboratory study where several laboratories mea-
sure the same quantity independently of one another, or a meta-
analysis of results from preexisting studies that were carried out and
published independently of one another.
Suppose that the purpose is to blend the corresponding estimates into
a consensus value: for example, as was done for the ozone absorption
cross-section at 253.65 nm [Hodges et al., 2019].
Typically, the consensus value will be some form of weighted aver-
age. There- fore, the errors behind the uncertainties reported by the
participants will “average out” in the process to some extent. This
may be fine, or it may be inappropriate. Such “averaging out” will
be fine if laboratory-specific persistent errors lead to estimates that
are high for some laboratories and low for other laboratories, with
the true value lying somewhere in the middle. But such “averaging
out” will be inappropriate if a common bias, unbeknownst to all, af-
fects all results similarly. Reporting separately the evaluation of the
contributions made by persistent effects, and by volatile effects, as is
commonly done in astrophysics and in particle physics, will then be
an appropriate, prudent way to report uncertainty intended for use
by a downstream user.
The need for such discretion, and the role that considerations of
fitness-for-purpose of uncertainty evaluations should play in deciding
what to do and when, is mentioned already in the pre-GUM litera-
ture [Ku, 1980].

Reply: We fully agree that the choice if errors of different type shall be bun-
dled or not depends on the application. However, we still uphold our criticism
that the denial of the importance of distinguishing between random errors and
systematic errors does not provide proper guidance, and altogether is a strong
misjudgment. The data provider does, in general, not know what the data user
will do with the data, and since the data user may use the data for a purpose
where it is essential to distinguish between systematic and random errors, the
information which error component contributes to which category must be pro-
vided.

Action: Added: “[...is a strong misjudgment]. The data users must be pro-
vided with all information required to taylor the relevant error budget to the
given application of the data.”

Comment: 618 6.3 The causal arrow – [. . . ] We think that it is essential to
appreciate the inverse nature of the problem, and this is much easier if the mea-
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surement equation describes the forward problem and thus does not suggest an
unambiguous determination of the measurand from the measured quantity.
The measurement model in the GUM is only one of many kinds of
measurement models to which the principles for uncertainty evalua-
tion that are enunciated in the GUM apply. The GUM-6 [Joint Com-
mittee for Guides in Metrology, 2020], published recently, describes
several other kinds of measurement models, including statistical mea-
surement models.
Rodgers [2000, 2.3.2] explains how Bayesian statistical models can be
used in general to solve inverse problems, and Ganesan et al. [2014]
describe an application of hierarchical Bayesian methods to atmo-
spheric trace gas inversions.
The Bayesian approach can be fruitful in such settings because the
prior distribution acts as a regularization prescription.
Possolo [2015] gives examples of measurements involving models that
are quite different from the conventional measurement model in the
GUM. In particular, Examples E7 (Thermistor Calibration), E17
(Gas Analysis), and E32 (Load Cell Calibration) concern calibrations
that are structurally similar to the thermometer example that the
authors mention in Line 109.
Using x1, . . . , xn and y with the same roles that the GUM gives them, a
statistical forward model can be formulated simply by saying x1, . . . , xn ∼
Ly, which is shorthand for “the joint probability distribution of (the
random variables whose realized values are) the observable inputs
x1, . . . , xn has y as a parameter and likelihood function Ly.
A Bayesian formulation will then add y ∼ P , where P is the prior
distribution of y, and application of Bayes’s rule produces a solution
for the inverse problem in the form of the posterior distribution, Q,
of y ∼ Qx1, . . . , xn . Compare this formulation with the treatment of
calibration via conventional regularization in Hagwood [1992].

Reply: Our point is that for a given measurand and a given realization of the
measurement error, the measured signal is, putting quantum effects aside, which
can be embraced by the measurement error, unambiguously determined. Con-
versely, for a given measured signal, the most likely or most probable value of
the measurand is not unambiguously determined. Since traditionally a mathe-
matical function (which is the theoretical core of the measurement model) maps
an independent variable x unambiguously to a dependent variable y, while the
opposite direction may be ambiguous, we find the GUM (2008) notation counter-
intuitive.

Action: We have inserted: “Many conceptions exist of measurement mod-
els, which relate the measured value to the true value, and depending on the
context, one can be more adequate than another (Possolo, 2015). GUM recom-
mends a model that conceives the estimate of the true value of the measurand
as a function of the measured value. Since in remote sensing of the atmosphere
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multiple atmospheric states can cause the same set of measurements, and the
measurement function thus would be ambiguous, we prefer a different concept,
as outlined in the following. Further, we have deleted the section on Bayesian-
ism.

Comment: 662 paradoxes shatter the bedrocks of Bayesian philosophy, namely
the likelihood principle that says that all relevant evidence about an unknown
quantity obtained from an experiment is contained in the likelihood. Others ac-
cept the theoretical validity of the Bayes theorem but challenge its applicability
in real life because of the unknown and unknowable prior probabilities.
The paradoxes alluded to often relate more to the adoption of so-
called “non- informative” prior distributions than to the acceptance
of the likelihood principle, as Cox [2006] points out, in a contribution
referenced by White [2016].
All theories of inference have given rise to paradoxes, and neverthe-
less most often they produce valid and practically useful inferences.
Regarding the likelihood principle in particular, at least one well-
known “paradox” has been dismissed as a false alarm [Goldstein and
Howard, 1991].
In any case, White [2016] does not come even close to suggesting that
such paradoxes “shatter the bedrocks of Bayesian philosophy,” in par-
ticular as applied in measurement science. I know for a fact that Rod
White does not object to the use of Bayesian methods when these
are warranted and there is genuine prior information that should be
taken into account.
The objection, which is also raised by Bayesians [O’Hagan, 2006], is
to the systematic reliance on “non-informative” prior distributions
just for the sake of going through the motions of the Bayesian ma-
chinery or to pay lip service to scientific objectivity.
The Bayesian approach to problems of statistical inference is a choice
among many that can be made, similarly to how some people choose
to drink lemonade and others bourbon. Different approaches to sta-
tistical inference (be they frequentist, fiducial, or Bayesian) all can
claim notable successes in solving problems of practical importance.
Bayesian methods, in particular, can boast a long and varied roster
of accomplishments that prove beyond reasonable doubt that they
are applicable in real life, and that they can be used to solve im-
portant practical problems, and that often they do so better than
non-Bayesian alternatives [O’Hagan, 2008].
A particularly striking, recent accomplishment of Bayesian methods
concerns the use of measurements of ∆14 CO2 , in conjunction with at-
mospheric transport models, to demonstrate that several bottom-up
approaches to the estimation of national inventories likely underesti-
mate U.S. fossil fuel CO2 emissions [Basu et al., 2020].
This study, which is based on methodological advances published in
this very journal [Basu et al., 2016], includes rigorous, model-based
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uncertainty evaluations, and also serves to show that the GUM and
its supplements have much catching-up to do if they will ever come
to play a role in addressing momentous issues like the measurement
of greenhouse gas emissions. The suggestion that Bayesian methods
are questionable because prior distributions are “unknown and un-
knowable” reveals a misconception about prior distributions: they
are meant to encapsulate the knowledge that someone has about the
quantity of interest, prior to performing an experiment that generates
fresh information about it. Therefore, proper, informative, subjective
prior distributions are known to who formulates them, by construc-
tion.
Of course, the Bayesian can be much mistaken and construct a prior
distribution that reflects an erroneous conception of reality, in which
case the “knowledge” that the prior encapsulates is false knowledge
and its use will lead the inference astray. However, Bayesian methods
cannot be blamed for delusions any more than Newton’s laws can be
blamed for accidental falls.

Reply: We do not deny the benefits provided by the Bayesian toolbox but we
reported related critical issues. The aim was to provide an argument why we
consider it as inadequate to commit the community to a full-blown Bayesian
philosophy. The context of this argument are the question (a) if the “Bayesian
turn” can explain the alleged difference between the error concept and the un-
certainty concept, and (b), if so, if it is adequate to anchor Bayesianism in a
normative document. Our reply to both these questions is negative. However,
since the current version of GUM is not fully Bayesian, we now consider the
section on Bayesianism as irrelevant for the title topic.

Action: The section on Bayesianism has been deleted.

Comment: 674 the Bayesian philosophy relies on a couple of unwarranted
assumptions, e.g., the likelihood principle and the indifference principle.
The authors convey a wrong impression on both counts. Adherence
to the likelihood principle is a choice that, in most applications, turns
out to be a better choice than most alternatives. Still, it is only a
choice, among many that can be made. Making such choice is neces-
sary but not sufficient to be Bayesian. Many statisticians, physicists,
chemists, and biologists adhering to the likelihood principle are not
Bayesian.
Neither is adopting an indifference principle (or, more generally, using
an allegedly non-informative prior distribution) necessary to qualify
as being Bayesian.
In fact, quite the contrary is true: reliance on proper, informative,
and suitably elicited subjective prior distributions, are the hallmarks
of genuine Bayesian practice. But this, too, is only a choice [Robert,
2007].
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Reply: We did not want in this paper to argue about which to positions make
a user of the Bayesian toolbox a “real Bayesian” and which of the unwarranted
assumptions belong to the bedrocks of Bayesian philosophy. We also did not
want to judge if Bayesianism is good or bad. Instead, our point was that a
philosophy that is challenged by a non-negligible part of the community shall
not be made generally binding. However, since GUM itself (contrary to some
of its readings) does not promote Bayesianism, we now consider this issue as
irrelevant for the paper.

Action: As said above, the section on Bayesianism has been deleted.

Comment: Technical Corrections
025 Replace comes down to the question if and how with “comes
down to the question of whether, and if so how”

Reply: Agreed.

Action: Changed as suggested.

Comment: 056 Replace Second we assess to which degree with “Sec-
ond, we assess the degree to which”

Reply: Agreed.

Action: Corrected.

Comment: 068 Replace we conclude to which degree with “we conclude
the degree to which”

Reply: Agreed.

Action: Corrected as suggested. In the same spirit we have changed “to which
degree the measurement is thought...” to “the degree to which the measurement
is thought...”

Comment: 128 Replace A rich methodical toolbox with “A rich
methodological toolbox”

Reply: Agreed

Action: Corrected.

Comment: 180 Replace This argument is often used to dispraise with “This
argument is often used to disparage”
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Reply: Agreed but no longer relevant.

Action: None. because in the shortened manuscript this statement does no
longer appear.

Comment: 267 Replace agent’s believe with “agent’s belief”

Reply: Thanks for spotting!

Action: Corrected.

Comment: 364 Replace Quantities of which the value cannot determined
with “Quantities whose values cannot be determined.” This sugges-
tion deliberately ignores the antiquated invective against using the
possessive whose for inanimate objects, consistently with the recom-
mendation in O’Conner [2019, Page 243].

Reply: Agreed; the Copernicus editorial team usually does a great job with
respect to language issues, and we trust that they will remove any language-
related inconsistencies and outdatedness.

Action: Changed as suggested.

Comment: 373 Replace Others have been formulated by us, serving, as argu-
ments of the Devil’s advocate, as working hypotheses in order to moot the error
and uncertainty concepts in the context of indirect measurements with “We
have formulated others as Devil’s advocates, which are intended to
serve as working hypotheses to MOOT the error and uncertainty con-
cepts in the context of indirect measurements,” except that “moot”
needs to be replaced by a word that is suitable for this passage: maybe
“merge” or “reconcile”, depending on what the authors wish to ex-
press.

Reply: Agreed.

Action: The new sentence now reads: “We have formulated others as Devil’s
advocates, which are intended to serve as working hypotheses to critically discuss
the error and uncertainty concepts in the context of indirect measurements.”

Comment: 413 Replace measurements are not in the focus with either
“measurements are not in focus” or “measurements are not the fo-
cus,” depending on what the authors wish to say exactly.

Reply: Agreed, but obsolete.
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Action: None, because this sentence does no longer appear in the revised ver-
sion of the manuscript.

Comment: 420 Replace the probability that a person suffering fever to have
Covid-19 is 50% with “the probability is 50% that a person with fever
has COVID-19”

Reply: Agreed.

Action: Corrected as suggested.

Comment: 429 Replace distribution which is missing with “distribution
that is missing”

Reply: Agreed but obsolete.

Action: None, because this sentence does no longer appear in the revised ver-
sion of the manuscript.

Comment: 470 Replace the aggregation of random uncertainties with “the
aggregation of random uncertainties”

Reply: Agreed, thanks for spotting.

Action: corrected as suggested.

Comment: 612 Replace strong misjudgement with “strong misjudg-
ment” (unless the British spelling be preferred)

Reply: Agreed.

Action: Corrected: “misjudgment”.

Comment: 743 The sentence that includes traditional error analysis can
connotate a statistical quantity is unclear, and should be rewritten, tak-
ing into account the fact that the verb connotate is obsolete and has
been replaced by connote. However, a term more generally familiar
would be preferable, like suggest, possibly.

Reply: Agreed.

Action: “[...] that the traditional error analysis can deal with a statistical
quantity, and that [...]”
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