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Abstract. Contrary to the statements put forward in “Evaluation of measurement data — Guide to
the expression of uncertainty in measurement” 7, edition 2008 (GUM-2008), issued by the
Joint Committee for Guides in Metrology, the error concept and the uncertainty concept are the same.
Arguments in favour of the contrary have been analyzed and were found not compelling. Neither was
any evidence presented in GUMO8-GUM-2008 that “errors” and “uncertainties” define a different
relation between the measured and the true value of the variable of interest, nor does this document
refer to a Bayesian account of uncertainty beyond the mere endorsement of a degree-of-belief-type

conception of probability.

1 Introduction

has long been recognized that the quantitative characterization of the reliability of a measurement is
essential to draw quantitative conclusions from the measured data. Various and often contradicting
methods and terminologies emerged over the years. The activity “Towards Unified Error Reporting,
(TUNER),” aims at a unification of the reporting of errors in estimates of atmospheric state

variables retrieved from satellite measurements (von Clarmann et al. 2020)). On request of the

Bureau International de Poids et Mesures (BIPM)presented-a-contrasting-definttion-how-—we-have

3 s 3

the Joint Committee for Guides in Metrolo JCGM has issued

a uideline how measurement uncertaint should be dealt with




25

30

35

40

45

50

55

(Joint Committee for Guides in Metrology (JCGM), 2008, this source is henceforth referenced as GUM-2008).

Supplementary material in the context of GUM is found inJoint Committee for Guides in Metrology|
(2012) and several supplements to GEMO8GUM-2008, that are found on the BIPM website
(https://www.bipm.org/en/publications/guides/gum.html). The new-coneeptconcept of uncertainty
was developed long before the GUM-2008 was issued and has seen several refinements since then
(e.g. [Eisenhart and Collé| [1980; [Collé, [1987; [Colcloughl [1987} [Schumacher, [1987). A key claim

underlying concepts are different. GUM-2008 has been critically discussed by, e.g., 2012)),
[Grégis| (2015), [Elster et al| (2013) and [The European Centre for Mathematics and Statistics in|

(2019), and more favorably by, e.g., Kacker et al| (2007). The-claim-is-made-that-the

In this paper we

both-in-the-communities—of statisties—andcritically asses some of empirteat-seiences—Further—we

rcally—discy he -applicability ol the GUMOS recommendations in the conte W
made in GUM-2008 and, as part of the TUNER activity, discuss its applicability to remote sensing
of the atmosphere. Remote sounding employs-indirect-measurements-where the-measurand-is 1o

traditional-coneept-of-erroranalysis{Seetion—22)-We start with analyzing GUM’s claim about the

differences between error and uncertainty (Section|2)), whereby it is important to distinguish between
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terminological (Section and conceptual (Section issues. We shall find that the concept of
the ‘true value of the measurand’ makes up the alleged key difference. That is to say, the uncertainty
concept endorsed by GUM is claimed, contrary to traditional error analysis, to be able to dispense
with the concept of the true value —Thejafeb{e&kef—%he%uew&me—i%that is neither known
nor knowable -
MWWM@WM

measurand has in reality and what the problems related to the ignorance of the uneertainty-analysis
bee&&%e—&—va%ue—m—%ufﬁe}eﬂ{—pfe*mnfy%e%true value %heakkb&ehe%e&%%meaf&&ﬁeﬂﬁem{

m%%ﬁ%%%%ﬁ%ﬂ%%m@mmmwm

Section|3)). In this context, we first address the question, if it is adequate to use the true value, which

is typically unknown and unknowable, in the definition of the term error, and to base error analysis on
such a definition (Section . Second, we 1nvest1gate %de%whelweﬁdiﬂeﬂs—cm—efref—eﬁuﬁeefwﬁfy

asstgn—to—a—valueto-be-the implications that the inverse nature of a measurement process has on
the probabilistic relationship between the measured value, the true value, given-a-—certain-measured

to-which-degree-and the measurement (Section In this context we discuss the problem of the
baserate fallacy. Further, it is investigated if the alleged difference between the error concept and the

uncertainty concept can be explained by a Bayesian turn in metrology. Third, we assess the degree to
which the nonlinearity of the relationship between the measured signal and the target quantity, viz.,

the radiative transfer equation, poses additional problems (Section @) And third-fourth, we scruti-
nize the claim that there will always be unknown sources of uncertainty and that it is thus impossible
to relate the measured value along with its uncertainty estimate to the true value (Section[3.4). After

these more general considerations we critically discuss the applicability of the GEM68-GUM-2008

concept to indirect measurements of atmospheric state variables (Section ). There we discuss the
problems of measurands that are not well-defined in the sense of GUMO8-GUM-2008 (Section @,
and if it is really adequate to report the combined error only (Sectlon @aﬁdﬂﬁheﬁeasufemeﬂ{




afrequentist conception-of probability—. Finally (SectionE[) we conclude to-which-degree-the degree
95 to which the arguments put forward by the Joint Committee for Guides in Metrology (JCGM) are

conclusive and what the differences between the error concept and the uncertainty concept actually

are.

2 Reecapitulation-of-the-concept-of-indireet-measurementsError and Uncertaint
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br-context of the work undertaken by the TUNER activity, a project aiming at unification of error
reporting of satellite data (von Clarmann et al},2020))], terminological and conceptual divergence
is particularly problematic. Without agreement on the concepts and the terminology of error versus

According to  GUM:-2008. the concept of uncertainty analysis should replace the
concept  of error analysis. The International Vocabulary of Metrology _document
([Joint Committee for Guides in Metrology (JCGM), 2012) points _in _the same direction. Thus,

some conceptual and terminological remarks seem appropriate. While, on the face of it, this is
uibbling about words, actually conceptual differences between the radiative—transfer—model—-F

Ab-this-helds-A key claim of GUM-2008 is that the “concept of mutatis-mutandisuncertainty also
8 ] s w]

error_analysis have long been part of the practice of measurement science or metrology”

([Joint Committee for Guides in Metrology (JCGM). [2008| Sect 0.2, 1. 1-2; emphases in the original.).
be used properly and care taken to distinguish between them.” The discussion of these issues is
occasionally led astray, because it is often not distinguished between two different questions: first,
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whether the terms ‘error’ and ‘uncertainty’ have the same connotation, and second, whether the
underlying concepts are indeed different. In the following, we try to shed some light on these issues.

3 The connotation of the term ‘error’

2.1 Terminological Issues

“Already in the pre-GUM language there have been subtle linguistic differences
between the terms ‘error’ and ‘uncertainty’. The error has been conceived as an attribute of a
measurement or an estimate, while the term ‘uncertainty” has been used as an attribute of the true
state, We perfectly know our measurement — even if it is erroneous — and thus we are uncertain about
the true value. Because of the measurement error there is an uncertainty as to what the true value is.
The uncertainty thus describes the degree of ignorance about the true value while the estimated error
describes the degree to which the measurement is thought to deviate from the true value. In this use of

language, both terms still relate to the same concept. This notion seems, as far as we can judge, to be
consistent with the language widely used in the orbitof Mars-based-on-the rich-observational-dataset

~both terms have referred
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to the same thing but from a different perspective [} The estimate of the total error includes both
measurement noise and all known components of further errors, random or systematic, caused by
imperfections in the measurement and data analysis system.
In-the-context-of-measurements;—It_ must, however, be noted, that the term ‘error’ traditionally
has—two—stightly —different—connotiations—The—first—is—the—is_an_equivocation. It has been
used both for the unknown and unknowable signed actual difference between the mea-
sured or—in—the——context—of indirect—measurements;—retrieved;—value and the true value of

the measurand;—the—second—meaning—of—the—term—error—is—, and for a statistical estimate

of this—differe

thus—dees-it. The statistical estimate is mostly understood to be the square root of the variance of
the probability density function of the erroiff| and thus does not carry any information about the

sign of the error. Nonlinear error propagation may in some cases make asymmetric error estimates
necessary, but typically these do not carry any information about-the-on the actual sign of the error -

This-either. The ignorance of the sign of the error entails that the true or most probable value cannot
simply be determined by subtracting the estimated error from the measured value.

One of the first major documents, where the term ‘error’ has been used with this statis-
tical connotation is, to the best of our knowledge, “Theoria Motus Corporum Celestium” by
C. G. (I809). Since then, the term ‘error’ has commonly been used to signify a sta-

tistical estimate of the size of the difference between the measured and the true value of

the measurand. Seminal books—such—as—Statistical-Methods—ForResearech—Workers™byR—A-
X .

« ..
» A 1 1ng >

D-[Rodgers|{2000)-publications by |Gauss| (1816)), [Pearson . [Fisher| (1925)), [Rodgers| (1990)

of the measurand like a fog that obfuscates it, while measurement error is both the source of that fog and part and parcel of the

measured value. Measurement uncertainty thus describes the doubt about the true value of the measurand, while measurement

error quantifies the extent to which the measured value deviates from the true value.”.
2When we use variances and standard deviations, we do not mean sample variances and sample standard variations but

simply the second central moment of a distribution or its square root. In accordance with GUM-2008, this distribution can

represent a probability in the sense of personal belief, and thus can include also systematic effects. See also Section22)

30ther estimates are also used, e.g., robust ones like the interquartile range.
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mated error is understood as a measure of the width of a distribution around the measured
(er—estimated)—value which tells the data user the probability —er—the—likelihood,—depending
on—the—statistical framewerk—uased—-density of a certain value to be measured or—estimated
if the value actually measured er—estimated—was the true value. Ceunterintuitively,—in—general

This—issue—will-be—diseussed—in—Seection—22-0One might criticize equivocation of the traditional

language, but one can equally well consider this as a non-issue and trust that the context will
make clear what is_meant. Often, some attributes are used for clarification and specification,
e.g., ‘probable error’ (Gauss 1816 Bichl[2012), ‘statistical error’
(Zhang et al.|[2010) or ‘error anal ,[2000; [Hughes and Hasel, 2010).

P nea ’ an a O o—refe P

the-error-of-a—measurentis—the—More recently, GUM-2008 presented a narrower definition how

we have to_conceive the term ‘error’_and have stipulated a new terminology, where the term
‘measurement uncertainty” is used in situations where one would have said ‘measurement error’
before. According to GUM-2008, p.2. the uncertainty of a measurement is defined as “a parameter,
associated with the result of a measurementminus-a-true-value-of-the-measurand”(GUMO8;p-—5)-

that characterizes the dispersion of the values that could reasonably be attributed to the measurand”.
Conversely, GUM-2008 (Annex B.2.19) allows for the term ‘error’ fer-the-statistieal-estimate-of-the

3 3

e he-seie aty § 1309%)-whe-uses-the-terms—error—and-only the
connotation ‘signed difference’, but their use of the terms ‘ineertitudeo(atinforerrorand-uneertainty;

k)

are-notknown-with-eertainty—error and error analysis’ in the first sentence of their 0.2 or “possible

error’ in their 2.2.4 only make sense if the statistical meaning of the term ‘error’ is conceded.
In spite of the explicit definition in GUMO8;-there-is-GUM-2008, there seems to be no unified

stance among GEM6&GUM-2008 endorsers as to what ‘error” is. E.g.,[Merchant et al.| (2017) uphold

that ‘error’ eonnotates—onty—the-absetate-connotes only the signed difference, while

(2007) or |White| (2016) refer to ‘error’ as a statistical estimate. [Kacker et al.[ (2007) complain that
GUMO8-GUM-2008 is often misunderstood, and we suspect that the cause for this might be that

GUMO8-GUM-2008 is indeed not sufficiently clear with respect to the differences between the error
conecept-and-the-uneertainty-eoneeptunderlying error and uncertainty concepts.

value-and-the-true-The use of the term ‘uncertainty’ in GUM-2008 seems inconsistent: The general
GUM-2008 concept seems to be that the ‘error’ has to include all error sources and thus cannot
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be known;: ‘uncertainty’ is weaker, it is only an estimate of quantifiable errors, excluding the
unknown components. This view is supported by the following quotation (GUM-2008, p. viii) “Tt
is now widely recognized that, when all of the known or suspected components of error have been
evaluated and the appropriate corrections have been applied, there still remains an uncertainty about

the correctness of the stated result, that is. a doubt about how well the result of the measurement

measurand-quantity being measured.” It is not fully clear what this means. One possible reading is
that they use the term ‘error” in the redefined sense, viz., as a quantity which measures the actual
deviation from the true value. Then this statement would be a mere truism, just saying that after all
correction and calibration activities there is still a need for error (in the error concept terminology)
estimation. The only other possible reading is that they want to say that, since due to unknown
(unrecognized and/or recognized but not guantified) error sources, error estimation will always be
incomplete and there remains an additional uncertainty not covered by the error estimation. This
often is very true but the use of the term ‘uncertainty’ would then be inconsistent in their document,
because here the connotation of ‘uncertainty” is the unknown (unquantified or even unrecognized)
part of the error, which by definition cannot be assessed, while in the main part of their document,
the connotation of ‘uncertainty’ seems to be a quantified statistical estimate. In summary, it is not
clear if the "uncertainty” includes the unknown error terms or not.

The introduction of the term ‘uncertainty of measurement’ seems to us a mere linguistic revision of
an established terminology which does not connect to any further insights. The issue of whether the

term ‘error’ should be used also for a statistical estimate cannot be judged on scientific grounds. It is
amatter of stipulation, although in the main body of GEMO8-GUM-2008 this stipulation is presented
as if it was a factual statement (“In this Guide, great care is taken to distinguish between the terms
‘error’ and ‘uncertainty’. They are not synonyms, but represent completely different concepts; they
should not be confused with one another or misused.”, Sect 3.2, Note 2). The synonymity of ‘error’
and ‘uncertainty’ is thus neither true nor false but adequate or inadequate. Instead of quibbling about
words we will, in the next Section, concentrate on the concepts behind these terms.

RAANAARARAANAIEINAR
GUMOS-

2.2 Conceptual Issues

Although GUM-2008 (Sect. 0.2) claims the “concept of uncertainty as a quantifiable attribute
to be a relatively new concept in the history of measurement”, we uphold the view that it

4

Rigorously speaking, within the concept of subjective probability recognized but unquantified uncertainties should not

exist.
AL
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has long been recognized that the result of a measurement remains to some degree uncertain
even when a_thorough measurement procedure and error evaluation is performed. Investigators
realized already in the 19th century that measurement results always have errors. Carl Friedrich
imperfect astrometric measurements by least squares fitting, in support of orbital calculations from
overdetermined data sets. And there is no reason to believe that earlier investigators were unaware of
the fact that they were not working on perfect observational data, Kepler's conclusion concerning the
elliptical shape of the orbit of Mars based on the rich observational dataset collected by Brahe would
have been impossible without proper implicit assumptions concerning the limited validity of the
reported values (Kepler, [1609). A rich methodological toolbox for error estimation and uncertainty_

assessment has been developed since then, including systematic errors, error correlations, etc.
GUM-2008 does not only present traditional error analysis in a revised language but suggests

that there is more to it. That is to say, the entire concept is claimed to be replaced —(see, e.g.,
GUM-2008, Sect 3.2.2., Note 2). We understand that GEUMO8-GUM-2008 grants that the classical
concept of error analysis deals with statistical quantities, but these are statistical estimates of the
difference between the measured or estimated value and the true value. We take GGM-GUM-2008
to be saying that the reference of even this statistical quantity to the true value poses certain problems,
because the true value is unknown and unknowable. As a solution of this problem, the uncertainty
concept is introduced which allegedly makes no reference to the true value of the measurand and is
thus hoped to avoid related problems. GEMO68-GUM-2008 (particularly Section 2.2.4) unfortunately
leaves room for multiple interpretations, but our reading is that an error distribution is understood
by GUM-2008 as a distribution whose spread-dispersion is the estimated statistical error and whose
expectation value is the true value, while an uncertainty distribution is understood as a distribution
whose spread-dispersion is the estimated uncertainty and whose expectation value is the measured
or estimated value.

GUMO8-GUM-2008 (p.5) characterizes error as “an idealized concept” and states that “errors
cannot be known exactly”. This is certainly true but it has never been claimed that errors can be
known exactly. Since not all relevant error sources are necessarily known, any error estimate remains
fallible but still it is and has always been the goal of error analysis to provide error estimates as
realistic as possible. To use the statistical conception of ‘error’ and conceding the fallibility of its
estimated value, it is not necessary to know the true value. It is only necessary to know the chief
mechanisms which can make the measured value deviate from the true value and to have estimates
available on the uncertainties of the input values to these mechanisms.

Some GUMO8-GUM-2008 endorsers (e.g., [Kacker et al., 2007) try to draw a borderline between
error analysis and uncertainty assessment in a way that they associate error analysis with frequentist
statistics while uncertainty is placed in the context of Bayesian statistics. Frequentist statistics, we

understand, is a concept where the term ‘probability’ is defined via the limit of frequencies for

10
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a sample size approaching infinity. This definition is untenable—challenged because it involves a
circularity: It is based on the large number theorem, according to which (strong version) a frequency
distribution will almost certainly converge towards its limit. This limit is then associated with the

probability. ‘Almost certainly’ means ‘with probability 1°. The circularity is given by the fact that

the definiendum appears in the definiens (See, e.g., Stegmiiller, |1973, pp. 27). Also the weak version

of the large number theorem involves the concept of probability and thus poses a similar problem
to the definition of the term ‘probability’. We concede that many estimators in error estimation

rely on frequency distributions. It is, however, a serious misconception to conclude from this that
error analysis is based on a frequentist definition of ‘probability’. This is simply a non sequitur.
Frequency-based estimators are consistent with any of the established definitions of probability, and

their use does not allow any conclusion en-about the definition of ‘probability’ in use.

differences between error analysis and uncertainty analysis seem to come down to the different
relations between the measured and the true value of the measurand. In GUM-2008 (p. 3 and p.
5), the claim is made that the uncertainty concept can be construed without reference to the “troe—

valae-which-is-unknown-anyway-unknown and unknowable true value while the error concept cannot
GUM-2008, p.3), and that the uncertainty concept is more adequate because there can always exist

unknown error sources which entail that an error budget can never be guaranteed to be complete

(6BMO8-GUM-2008 p. viii). It is stated that the uncertainty concept is not inconsistent with the error
concept [GUMO8-GUM-2008 p. 2/3]. There are, however, certain inconsistencies and shortcomings,
which are discussed in the following.

One of the major purposes of making scientific observations, besides triggering ideas on possi-
ble relations between quantities, is to test predictions based on theories on the real world
[1935). To decide if an observation corroborates or refutes a hypothesis, it is necessary to have an
estimate how well the observation represents the true state, because it must be decided how well any
discrepancy between the prediction and the observation can be explained by the observational error
(e.g., [1996). Any concept of uncertainty whieh-that is not related to the true state cannot serve
this purpose.

On page 3, GUMO8-GUM-2008 says that the attribute ‘true’ is intentionally not used within the
uncertainty concept because truth is not knowable. In GEMO8GUM-2008, p. 59 it is claimed that
the uncertainty concept “uncouple the often confusing connection between uncertainty and the un-

knowable quantities “true” value and “error”. The term ‘measurand’ in their definition, however,

11
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is defined as the quantity intended to be measured (Joint Committee for Guides in Metrology|

(JCGM), 2009)thenceforth-abbreviated-GUMO9);-GUMO8; GUM-2008, (p.32) says basically the
same; GUMO9GUM-2009, p. 20, says that the ‘quantity’ is the same as the ‘true quantity value’.

Inserting this definition in the GUMO8-GUM-2008 definition of uncertainty yields that, through the
back door, uncertainty still refers to the true value. Thus it is not clear what the difference between
the traditional concept of error analysis and the uncertainty concept is. Further, it is stated that sys-
tematic effects can contribute to the uncertainty. GUMO8-GUM-2008 falls short of clarifying how
a systematic effect be understood other than a systematic deviation between the measurement and
the true value ;-the-corcept-GUMO8-that the concept GUM-2008 apparently tries to avoid. In order
to justify the attribution of an uncertainty distribution to the systematic effects without relying on
frequentist statistics, they invoke the concept of subjective probability. With this it becomes possible
to assign an uncertainty distribution to the combined random and systematic uncertainty but still it
is not clear how the systematic effect is defined without reference to the unknown truth.

Subjective probability reflects the personal degree of belief (GUMO8GUM-2008, p. 39). Thus,
a knowledge-dependent concept of probability is used in GUMO8—As—discussed—in—the-previeus
paragraph,—this-GUM-2008. This approach has been chosen to allow the treatment of systematic
errors as dispersions, although the systematic error does not vary and cannot thus be characterized
by a distribution in a frequentist sense (GEMO8-GUM-2008 p. 60). If we construe ‘estimated error’
and ‘estimated value’ as parameters of a distribution assigning to each possible value the probability
(in a Bayesian context) or the likelihood (in a maximum likelihood contextEb that it is the true value,
no knowledge of the true value is required. This is because, by definition, the subjective probability

distribution merely represents the knowledge of the person generating it. In the-eentext-ofsubjective

distribution-The vatues-the rationat-agent believes GUM the error concept is discarded because the
capability of conducting an error estimate allegedly depends on the knowledge of the true value.
However, once having invoked the concept of subjective probability, no objective knowledge of the
unknowable true value is needed any longer. The subjectivist can work with the value they beliefs

to be truea

truth-anyway-but-only-about-the-agent’s-believe-of-what-trath-is—, This solves the alleged problem

of the error concept, namely, that the true value is unknown.
There is nothing wrong with the subjectivist concept of probability, nor do we attack the possibility

to combine random and systematic errors in a single distribution. This concept, however, makes the
knowledge of the true value and the true error unnecessary, and still the estimated error can be
conceived as a statistical estimate of the absolute difference between the measured value and the

true value. We consider it untenable and inconsistent to refer to the concept of subjective probability

Ssee Section m for a deeper discussion of this issue.

12
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when it comes in handy and to deny it when it would solve the conflict between the error and the
uncertainty concepts.

Our skepticism about the possibility of dispensing with the concept of the true value is shared by,
e.g.,[Ehrlich| (2014), [Grégis| (2013), and Mari and Giordani| (2014). Note that in the International Vo-
cabulary of Metrology (known as VIM) (Joint Committee for Guides in Metrology (JCGM), 2012),

although also issued by the JCGM, the concept and definition of the true value are explicitly retained.

In GUMO8;-GUM-2008, p. 2/3 it is claimed that the concept of uncertainty “is not inconsistent
with other concepts of uncertainty of measurement, such as a measure of the possible error in the
estimated value of the measurand as provided by the result of a measurement [or] an estimate charac-
terizing the range of values within which the true value of the measurand liesﬂ (VIM:1984 definition
3.09). Although these two traditional concepts are valid as ideals, they focus on unknowable quanti-
ties: the “error” of the result of a measurement and the “true value” of the measurand (in contrast to
the estimated value), respectively. Nevertheless, whichever concept of uncertainty is adopted, an un-
certainty component is always evaluated using the same data and related information...” (emphases
in the original). It remains unclear how the concepts can, on the one hand, be consistent, while, on the

other hand, it is claimed that the error approach and the uncertainty approach are actually conceptu-

61t is not clear how this can be achieved without explicit consideration of the Bayes theorem.
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ally different and not only with respect to terminology. Ir-GUMOS8p-5-itreadsIn-this-Guide;great

d a vas spiqe O

Since both concepts, however, are consistent, it is not clear in what the difference of the concepts

consists.

Interestingly enough, early documents of the history of GUM (Kaarls), [1980; [Bureau Internationall

|des Poids et Mésures) provide evidence that the terminological turn from ‘error’ to ‘uncertainty’

was triggered only by linguistic arguments, based upon the fact that in common language the term
‘uncertainty’ is often associated with “doubt, vagueness, indeterminacy, ignorance, imperfect knowl-
edge”. These early documents provide no evidence that ‘error’ and ‘uncertainty’ were conceived as
two different technical terms eonnetating-connoting different concepts. Any re-interpretation of the
terms ‘error’ and ‘uncertainty’ as frequentist versus Bayesian terms or operational versus idealistic

concepts came later.

14
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different—The-first-questionis-The answer to the terminological differences was found to be contin-
gent upon the underlying stipulation, and that any statement about their equivalence or difference

without reference to a definition is a futile pseudo-statement. The answer to the second-question
uestion of conceptual differences is less trivial and deserves some deeper scientific discussion. The
main question still seems to be how the true value, the error or uncertainty, and the measured value

are related with each other. This question will be addressed in the following seetionssection.

3 The unknown true value of the measurand

The alleged key problem of the error concept is, in our reading of GEMOSGUM-2008, that the value
of the true value of the measurand is not known, and that this true value must appear neither in the
definition of any term nor in the recipes to estimate it. To better understand this key problem, we

decompose it into four sub-problems.
1. Quantities of-whieh-whose the value cannot be determined must not appear in definitions.

2. The error distribution must not be conceived as a probability density distribution of a value to

be the true value.

3. Nonlinearity issues pose problems on error estimation if the true value is not known, at least

P S OV NA AV AV A S-S v v
in approximation.

4. ©a-One can never know that the uncertainty budget is complete because it can always happen
that a certain source of uncertainty has been overlooked; thus, the full error estimate is an

unachievable ideal and thus the estimated error does not provide a link between the measured
value and the true value.

Some of these sub-problems are in some way formulated in GUMO8-GUM-2008 but it is not exactly
specified there why the fact that the true value of the measurand is unknowable poses a problem

to the ¢

he-scientist
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applying traditional error estimation, We have formulated others as Devil’s advoeate;—advocates,
which are intended to serve as working hypotheses in-orderto-meot-to critically discuss the error

and uncertainty concepts in the context of indirect measurements. In the following we will scrutinize

these theses one after the other.
3.1 The operational definition

GUMOE-GUM-2008 tries to avoid to use the true value of the measurand in the definition of the term
‘uncertainty’. This strategy is employed because the true value of the measurand is “not knowable”
(GUMOZGUM-2008, p. 3). It may be found puzzling why it should be necessary to know the value
of a quantity to use it in the definition of a term. The weight-of- Thomas-Bayes-or-the-body-height
of David-Hume at-a-eertain-time-height of the Colossus of Rhodes or the Lighthouse of Alexandria
are well-defined quantities although we have no chance to measure them todayﬂ Also we might
have a clear physical conception of what the temperature in the center of the sun might be although
it may not be practicable to put a thermometer there, and we even might not be able to figure out
any other, more sophisticated, method to assign an accurate observation-based value to this quantity.
Intuitively, we conceive the definition of a quantity and the assignment of the value to a quantity as
quite different things.

In GUMO8-GUM-2008 it is claimed that the definition of ‘uncertainty’ is an operational one
(p- 2). An operational definition defines a quantity by stipulating a procedure by which a value
is assigned to this quantity. The concept of operational definitions was suggested by Bridgeman
(1927) in order to give terms in science a clear-cut meaning. This operationalism, at least a narrow
conception of it, has its own problems, has received considerable criticism and has led to deep
philosophical discussions (see, e.g., (Chang, 2019). To summarize these is beyond the scope of this
paper and for here it must suffice to mention that there are alternatives, such as theoretical definitions
or reduction of the definiendum to previously defined terms.

GUMO8GUM-2008’s claim that the uncertainty concept is based on an operational definition leads
to two further inconsistencies. First, no unambiguous operation is stipulated on which the definition
can be based, but multiple operations are proposed, which might give different uncertainty estimates.
Thus, the definition is void. Our critical attitude with respect to operationalism in the context of GUM

The other problem with the operational definition is the following: In GEMO8GUM-2008, pp
2-3, it is claimed that the uncertainty concept is not inconsistent with the error concept, and a few
lines later it reads “an uncertainty component is always evaluated using the same data and related
information>" (emphasis in the original). The latter suggests that within the error concept the same
operations are used as within the uncertainty concept. Since the operations define the term and the

related concept, the uncertainty concept and the error concept must be the same.

TWe owe this illustrative example to Possolo| (2021).
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In summary, the fact that the true value of the measurand is unknowable is a problem for the
definition of the term ‘error’ and its statistical estimates only if we commit ourselves to the doctrine
of that only operational definitions must be used. If we abandon this dogma, there is nothing wrong
with conceiving the estimated error as a statistical estimate between the measured or estimated and
the true value, and the problem is restricted to the assignment of a value to this quantity. Related

issues are investigated in the following.

3.2 Likelihood;probability;and-the-baseratefallaeyMeasurements as inverse processes

GUM:-2008 recommends a model that conceives the estimate of the true value of the measurand as a

function of the measured value. Since in remote sensing of the atmosphere multiple atmospheric

states can cause the same set of measurements, and the measurement function thus would be

ambiguous, we prefer a different concept, as outlined in the following.

The causal error points from the true value to the measured signal. Thus, the estimation of the
true value from a measured value can be conceived as an inverse process. An argument along this
line of thought, but in a context wider than that of remote sensing of the atmosphere, has been
put forward by [Possolo and Toman| (2007). The inverse characteristic of the estimation problem is.

particularly true for indirect measurements, e.g., remote sensing, but direct measurements can easily.
be conceived as indirect measurements. When reading the thermometer, we actually read the length
of the mercury column (the measured value), apply inversely the law of thermal expansion, and get
an estimate of the temperature. In trivial cases, when a measurement device has a calibrated scale
from which the target quantity can be directly read, the inverse process is effectively pretabulated in
the scale. Only in these cases the measured value and the estimate of the measurand are the same.

transfer function F' available, that approximately describes the process that links the true value z of

interest to the measured value, the expected measured signal cted = F'(x) can be estimated. The

distribution of the measurement error around Yexpected describes the probability of the-measurand
has-beenconsidered-in-the retrievalany value y to be measured.
estimate the true value x. If a genuine inversion of the transfer function is not possible due to

workarounds like least squares

posedness of the inverse problem in the sense of|[Hadamard 1902)

methods or regularized inversion schemes are available (see, e.g., lvon Clarmann et al [2020 for a
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summary of some methods of particular relevance for remote sensing). Counterintuitively, however.

in_general, neither the estimate will be the most probable value of x, nor will the mapping of the
measurement error distribution into the x-space yield the probability distribution of any value to
be the true value. This holds even if the error distribution is extended to include also systematic
effects, and if all error correlations are adequately taken into account in the case of multi-dimensional
measurements. It is the theorem of which makes the difference. The only inverse
scheme where such a probabilistic interpretation is valid in the z-space, is the maximum a posteriori
method (Rodgers|, [2000)

The non-consideration of the Bayes theorem goes under the name of ‘base rate fallacy’. 50% of

which employs a Bayesian estimator.,

people suffering Covid-19 have fever (Robert Koch Institut, 2020), but this does not imply that the
probability is 50% that a person sufferingfever-to-have-with fever has Covid-19is-50%. To estimate

the latter probability requires knowledge of the percentage of people being infected with the Corona

virus, and the probability that a person suffers fever for any reason. In metrology the situation is

dﬁeﬁbﬁﬁmﬂ which-is—missing—There are three ways—out-of-possible solutions to cope with this

on13-41

problem. Fernow-we-will-defer-the-problem-of-apessibly-incomplete-error-budget-to-Seetion {34l
The first solution is to apply a Bayesianretrieval scheme-Indeedinmanycases;thesolution-ofthe

inverse-problem+—-employsretrieval scheme that is based on a Bayesian estimator. Examples are
found, e.g., in[Rodgers| (2000) or[von Clarmann et al.|(2020). On the supposition that the error budget

is complete, the interpretation of the error bar as the spread-dispersion of a distribution representing

the probability density that a certain value is the true value is correct.

values of the measurand. With this, e.g., in the application to a linear inverse problem and normal

distributions of uncertainties, the Bayesian solution collapses back to a simple unconstrained least
squares solution. Due to the assumption of the equidistribution of the a priori probabilities, the

estimated uncertainty of the estimate can still be interpreted as the width of the probability density

85]: the-b lE‘]igﬁiliﬁd f—feq e distribution-
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function of the true value of the measurand. This concept of ‘non-informative a priori’, however,
has its own problems. Even if we ignore some more trivial problems for the moment, e.g., that
some quantities cannot, by definition, take negative values, this concept can lead to absurdities:
If we assume that we have no knowledge on, say, the volume density of small-particle aerosols
in the atmosphere, and describe this missing knowledge by an equidistribution of probabilities, this
would correspond to a non-equidistribution of the surface densities, due to the non-linear relationship
between surface and volume. It strikes us as absurd that information can be generated just by such a
simple transformation from one domain into another. The principle of indifference, upon which the
concept of non-informative priors is built, is critically but still favorably discussed, e.g., by
Chapter IV). The concept of non-informative priors is still criticized even in the Bayesian
community (e.g. 2003).

The third solution is the likelihood interpretation, which has been introduced by (1922).
The likelihood that the true value is x if the measured signal is y equals the probability density
that y is measured if the true value is z. No prior information is considered. Solution of the inverse
problem #=Lby maximizing the likelihood of 2 does not provide the most probable estimate of
z, and accordingly the error bar of the solution must not be interpreted as the width of a probabil-
ity distribution of the true value. Application to a linear inverse problem and normal distributions of
uncertainties renders formally the same estimator as the Gaussian least squares solution, but its inter-
pretation has changed. It can no longer be interpreted as the mean-of-a-pdf-maximum of a probability
density function of the true value. FThe-distribution-with-mean—t-and-the-standard-deviation-oean

ill be-interpreted-as-a likelihood distribution of the true value around the estimate. If need be, in
some cases, i.e., if the inverse problem is well-posed enough to allow an unconstrained solution, the
maximum likelihood estimate can be, post factum, transformed into a Bayesian estimate by applica-

tion of the Bayes theorem.

We_concede that the interpretation of a measured value as the most probable true value is
problematic. This implies that also the interpretation of the error estimate as the width of a
distribution around the true value is not generally valid. These problems could justify some
reluctance with regard to_the concept of the true value. This argumentis—onty—applicableby

ist—statistiel aintystatistieians, involving the base-rate fallacy, how-
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Tn-summarySome interpretations of GUM-2008 (e.g. White), 2016}, [Kacker et al [2007) associate

it with a Bayesian conception of probability and seem to suggest that error estimation and uncertainty.
analysis are best distinguished in the sense that the former relies on frequentist statistics while the
latter is founded on Bayesian statistics. Thus one might suspect that ‘uncertainty’ is simply the
Bayesian replacement of error. Here the following remarks are in order:

(1)_Many of the methods presented in GUM-2008, including their “Type A evaluation (of
uncertainty)’, which is the ‘method of evaluation of uncertainty by the statistical analysis of series

judge, not commit one to use a frequentist definition of the term ‘probability’. The GUM-2008 does

not provide a clear reference to a specifically Bayesian uncertainty analysis method. GUM-2008
makes reference to

Jeffreys, however, whi

And-in-offers no clue as to what the difference between ‘error’ and ‘uncertainty’ might be. In the
context of maximum-tikelihood-estimates;-measurements or observations, Jeffreys always uses the

term ‘error’ (e.g. . 72), and often we find statements like “the probable error

uncertainty usually quoted” (op. cit., p. 72), “no uncertainty beyond the sampling errors” (op. cit.

. 389), or “treat the errors as independent” (op. cit., p. 443). With the statement that errors are
not mistakes (op. cit. |

GUM-2008 endorsers [Merchant et al| (2017). Also [Press|(1989) is referenced by GUM-2008 onl

to defend the use of a subjective concept of probability but not in a context aiming at the clarification
of the alleged difference between error’ and ‘uncertainty’.

(2)_If the uncertainty concept was indeed founded on a Bayesian framework, it would be
astonishing why it does not in the first place require to apply the Bayes theorem to convert the

likelihood distributions into a posteriori probability distributions. The methodolo roposed in
GUM-2008 is uncertainty propagation. This is a mere forward (or direct) problem: given that x . is

a-eertatn-—valueis-the-true valueof-the-measurement, and a measurement procedure with some error

distribution, it returns a probability distribution for values Zesqueg that might be measured. However,
GUM-2008's definition of uncertainty “parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to the measurand”
(emphasis added by us), seems associated with another meaning: given a measured value (“result of
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ameasurement”) and a measurement procedure with some error distribution, what is the probability.
density distribution of the “values that could reasonably be attributed to the measurand” to be the
true one. This is an inverse problem, for which Bayes theorem is applicable rather than uncertainty
propagation.

(3) Interestingly enough, [Willink and White| (2012). who use the term ‘uncertainty’ also in a
frequentist framework, report that the turn to the new terminology happened already in 1980/81,
and make a strong case that various allegedly purely Bayesian concepts of GUM:-2008 can be given
a valid frequentist interpretation. e r-th on

Thus, we reject the hypothesis that uncertainty concept as presented in GUM-2008 is a Bayesian
concept. Bayesianism does not help to understand the claimed differences between the error concept
and the uncertainty concept.

3.3 Nonlinearity issues

The uncertainty concept relies on the possibility of evaluating uncertainties caused by measure-

ment errors and “systematic effects” without knowledge of the true value. This is certainly granted

for linear problems.

z—and-the—true-Here the uncertainty estimates do not depend on the value of the measurands—is

required. This is because in the linear case Gaussian error propagation holds;-

2
2 O 2
Ox.noise — (971/ Uy,noise )

and-
ox\ 2
2 _ (9T 2
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; il L.
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Scb = GpSpGi ,

21



715

720

725

730

735

740

745

750

For nonlinear problems the situation is more complicated because Equations—<22)to«22)-are
only-valid-Gaussian error propagation is valid only in approximation. Fhe-errorseientistean-inveke

Within the concept of error propagation, the concept of moderate nonlinearity (Rodgers| 2000) can
be invoked. Thatis to say, #the estimated value of the measurand is assumed to be a reasonably good

approximation of «the measurand, and the partial derivatives needed for Gaussian error estimation

are evaluated at #this estimate. If the error-in-b-is-small-enough-ensuring-that the resulting#+o¢is
within-resulting error bars are small enough to ensure that the range covered by the interval defined

by the estimated value plus minus the error bar is confined to the range where linear approximation
is justifiable, then eis—a-the error estimates are, while less-than-perfectbut-far-better-than-useless

AAAANANAAARAAR AR AARIANARAANANASN

estimate-of-the-corresponding-errorcomponentin-, still far better than useless.

The uneertainty-seientist-endorser of the uncertainty concept has a problem if they want to stay
consistent with their doctrine. Since knowledge of #-the true value is denied, the-approximation
#=-x-begsjustification-and-it is not clear how Gaussian error estimation can be applied to systematie
effeetsthe propagation of uncertainties, because it is not clear for which value of the measurand the

required partial derivatives shall be evaluated.
On the face of it, Monte Carlo error estimation or other variants of ensemble-based sensitivity

studies can serve as an alternative. These, however, also invoke the nonlinear model F—and-results
that links the measured signal with the measurand, and uncertainty estimates thus still depend on
the choice of #;-and-the estimate that represents the true value; any choice of this value which is
not closely related to the true value #-of the measurand will produce uncertainty estimates which
are recalcitrant against any interpretation. Monte Carlo and related methods, however, are apt for
the error-scientists-to-estimate-estimation of the error budget including the systematic effects if f is
too nonlinear to justify Gaussian error estimation, if the approximate knowledge of the measurand
is conceded.

In summary, the evaluation of uncertainties in the case nonlinearity poses a problem to the
uneertaintyseientist_scientist who _denies the approximate knowledge of the true value of the
measurand, because the uncertainty estimate depends on the assumed value of the measurand, and
#-#z-it must be assumed that it represents the true value reasonably well. Within the framework of
error analysis this assumption is allowed and measurement errors as well as systematic effects thus

can be evaluated also for nonlinear inverse problems.
3.4 Incompleteness of the error budget

The arguments put forward above are based on the supposition that the error budget is complete.

Beyond measurement noise, the total error budget includes systematic effects in the measured sig-

naly, uncertainties in parameters bother than the measurand that affect the measured signal, and
effects due to the chosen inverse schemeZ L. If our reading of GUM08-GUM-2008 is correct, then

the most severe criticism by GUM-2008 of the ‘error concept’ by-GUM®O8-is that one can never be
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sure that the error budget is indeed complete, and that thus the distribution-with-#-expectation-and

andard-deviation-cannot-tell-us-the-probability-density-that-any-value-of-e-is-the-error estimate

does not characterize the difference between the value estimated from the measurement and the true
value.

The precision of a measurement is a well-behaved quantity in a sense that it is testable in a straight
forward way: Fromfrom at least three sets of collocated measurements of the same quantity, where
each set is homogeneous with respect to the expected precision of its measurements, the variances
of the differences provide unambigeus-precision-estimates—unambiguous precision estimates (see,
e.g.,[McColl et al 2014 orStoffelen|1998). The situation is more difficult for biases. Biases between

different measurement systems do not tell us what the bias of one measurement system with respect

to the — unfortunately unknowable — truth is. Even if the number of measurement systems is quite
large, it is not guaranteed that the mean bias of all of them is zero. And an infinite number of
measurement systems is out of reach in a real world. Up to that point we concede that a positive
proof of the completeness of the error budget is impossible. But this is not the end of the story.

A falsificationist [1935) approach is more promising. It follows the rationale that it will
never be possible to prove that our assumptions on the bias of a measurement system is correct.
Instead, we estimate the bias as well as we can, and use it as a best estimate of the bias until some test
provides evidence that the estimate is incorrect. Such a test typically consists of the intercomparison
of data sets from different measurement systems. If the bias between these data sets is larger than
the combined systematic error estimates, at least one of the systematic error estimates is too low
and has to be refuted. Further work is then needed to find out which of the measurement systems is
most likely to underestimate its systematic error. Conversely, as long as the mean difference of the
measurements of the same measurand can be explained by the combined estimate of the systematic
errors of both measurement systems, the systematic error estimates can be maintained, although
this is, admittedly, no proof of the correctness of the error estimates. But as long as severe tests as

described above are executed and the error estimates cannot be refuted, it is rational to believe that

they are sufficiently complete.
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4 The applicability of GEM-GUM-2008 to remote sensing of the atmosphere

In this Section we identify issues where GUMO8-GUM-2008 clashes with the needs of error or uncer-
tainty estimation in the field of remote sensing of atmospheric constituents and temperature. These
issues are (1) since the atmospheric state varies quasi-continuously in space and time, the measur-

and is not well defined; and (2) there are applications of atmospheric data where the total uncertainty

estimate alone does not help;-3)EqH-in-GUMO8-is-in~conflict-with-the-causal-arrow,and-(4)-some

4.1 What if the measurand is not well-defined?

On macroscopic scales, atmospheric state variables vary continuously in space on time. On mir-
croscopic scales, the typical target quantities, concentrations or temperature, are not even defined.
A typical example of this problem is be-the volume mixing ratio (VMR) of a certain species at
a point in the atmosphere (See also, [von Clarmann, [2014). The determination of a quantity like
this requires a canonical ensemble of air but in the real, inhomegeneusinhomogeneous, atmosphere,
this quantity does not exist. It is an uninstantiated ideal. Due to these inhomogeneities the air vol-
ume sounded must be infinitesimally small, i.e., it must approach a point. In the real atmosphere
there is either a target molecule at this point (VMR = 1) or another molecule (VMR = 0) or no
molecule at all (undefined VMR due to division by zero). Thus, one measures only averages over
finite inhomogeneous air volumes. This approach, supposedly the only possible approach, clashes
with the premise of GHMGS\(‘LUAM[-QQQ% that the measurand needs to be well defined. Measuring
atmospheric state variables requires the specification of the region the average is made over. The
relevant toolbox of atmospheric data characterization includes concepts like resolution, averaging
kernels etc. (see Rodgers, 2000 for detail). Since this type of measurements is apparently out of
the scope of GUMO8GUM-2008, the latter is very-quite silent with respect to solutions to the prob-
lem of the characterization of measurements of quantities that are not well defined. Broadening the
scope and applicability of the GEM68-GUM-2008 framework to include less than ideally defined
measurands and measurements that demand inverse methods would significantly increase the value
and utility of GEMO8-GUM-2008 approach. Relevant recommendations on data characterization
developed within the TUNER activity (von Clarmann et al.,|2020) aim at helping to reach this goal.

4.2 The combined error

One of the positive aspects of GUMO8-GUM-2008 is that it breaks with the misled concept of char-
acterizing systematic errors with ‘safe bounds’ (Kaarls| |1980; [Kacker et al.l|2007; Bichl|2012). This

8In GHUMO8-GUM-2008 this problem is recognized but no solution is offered;-sinee-; the term ’definitional uncertainty” is

introduced in this context but not applied in practice.
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concept was sometimes endorsed by error statisticians subscribing to frequentism. Within a fre-
quentist concept of probability, a probabilistic treatment of systematic errors was not easily possible
because due to its systematic nature a systematic error cannot easilyﬂ be characterized by a fre-
quency or probability distribution. The concept of subjective probability solves this problem. With
the subjectivist’s toolbox, it is no longer a problem to assign probability density functions, standard
deviations and so forth when characterizing systematic errors. This possibility is a precondition for
aggregating systematic and random errors to give the total error. GUMO8GUM-2008, however, goes
a step further and even denies the necessity to report random and systematic errors independently.
Here we have to urge severe objections.

Von Clarmann et al. (2020) explicitly demand-recommend that error estimates be classified as
random or systematic ﬂln contrast, GUMO8-GUM-2008 (E.3.3 / E3.7) state: “In fact, as far as
the calculation of the combined standard uncertainties [...] is concerned, there is no need to classify
uncertainty components and thus no real need for any classificational scheme.” If indeed meant as
written, we challenge the claim that a total combined error budget is sufficient and therefore no
classificational scheme is needed at all. Characterizing the measurement of a unique quantity, e.g.
the value of a natural constant ageed-agreed upon by the calibration authorities, by a single error
margin might be sufficient. But most measurements, and particularly those of atmospheric state
variables such as temperature, concentrations of trace species, and so forth, deal with quantities
varying as function of time and space. Any sensible use of the resulting datasets requires a clear
distinction between statistical and systematic error budgets. For example, for time series analysis
targeted at the determination of trends, the total error budget is of no use but the random error
budget is needed instead. This is because any purely additive systematic error component cancels out
in this application and their-consideration-would-unduely-its consideration in the error budget would
unduly distort the weights of the data points available. In summary, the denial of the importance

of distinguishing between random errors and systematic errors does not provide proper guidance,

and altogether is a strong misjudgement—misjudgment. The data users must be provided with all

information required to tailor the relevant error budget to the given application of the data.
Benevolent readers of GEM68-GUM-2008 take the GUM authors to be saying only that the ag-

gregation of estimated errors to give the total error budget follows the same rules for systematic and
random errors, and that the criticized statement is not meant to deny the importance of distinguish-
ing between random and systematic errors beyond the mere aggregation process. If this reading is

correct, we agree, but here GBMO8-GUM-2008 leaves room for interpretation.

9The qualification not easily was chosen because frequentists still might sample over multiple universes or apply other

measures to squeeze systematic errors in a frequentist concept.

10Ty this context it is important to note that, in contrast to some older conceptions, von Clarmann et al [(2020) define

‘systematic errors’ as bias-generating errors and ‘random errors’ as variance-generating errors. To avoid confusion with the

older conceptions, one can use instead the descriptive terms ‘persistent’ and ‘volatile’ errors as suggested by |Possolo| (2021).
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5 Conclusions

We have mentioned above that the uncertainty concept depends on the acceptance of the subjective
880 probability in the sense of degree of rational belief. Without that, an error budget includin

systematic effects would make no sense because systematic effects cannot easily be conceived as
robabilistic in a frequentist i
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is to say, the resulting error cannot be conceived as a random variable in a frequentist sense.
Being forced to adopt the concept of probability as a degree of rational belief, it makes perfectl
sense to conceive, after consideration of the Bayes theorem but—chalenge—its—applieability—in
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The denial that a valid connotation of the term ‘error’ is a statistical characterization between a
measured or estimated and the true value of the measurand would be an attempt to brush away cen-
turies of scientific literature. This is, however, a matter of stipulation or convention and thus beyond
the reach of a scientific argument. We thus take GEMO8-GUM-2008 to be conceding that both the
concepts, error analysis and uncertainty assessment, aim at providing a statistical characteristic of
the imperfectness of a measurement or an estimate. We understand GEMO8-GUM-2008 in a sense
that the problem of the error concept is that it conceives the estimated error as a statistical measure
of the difference between the measured or estimated value and the true value. Since the true value
is unknowable, according to GEMO8-GUM-2008 the term ’error’ can neither be defined nor can its
value be known.

It has been shown that the problem of the unknown true value of the measurand is a problem for
the definition of terms like ‘error’ or ‘uncertainty’ only if the concept of an operational definition is
persuedpursued. This concept, however, has its own problems and is by no means without alternative.
As soon as the concept of an operational definition is given up, problems associated with defining
the estimated error as a statistical estimate of the difference between the measurement or estimate
and the true value of the measurand disappear, and the problem remaining is only one of assigning a
reasonable value to this now well-defined quantity.

Since GUMO8-GUM-2008 did not provide many reasons why, in the context of indirect mea-
surements, the error allegedly cannot be estimated without knowledge of the true value, or why
an uncertainty distribution does not tell us anything about the true value, we list the most obvious
ones one could put forward to bolster this claim. These are the problem of the base rate fallacy,
the problem of non-linearity, and the problem that one can never know that the error budget is
complete. The problem of the base rate fallacy can be solved by either performing a Bayesian inver-
sion, or by conceiving the resulting distribution as a likelihood distribution. Astonishingly enough,
the GUMO8GUM-2008’s “dispersion or range of values that could be reasonably attributed to the
measurand” is determined without explicit consideration of prior probabilities and thus cannot be
interpreted in terms of posterior probability. The problem of nonlinearity can be solved by-the-errer
setentist-either by assuming that the estimate is close enough to the true value and linearizing around
this peing-point or by Monte-Carlo-like studies. The-uneertainty-seientistA GUM-oriented scientist,
who has to avoid referring to the true value, is at a loss in the case of nonlinearity because any es-
timate of the uncertainty of the estimate will be correct only when evaluated at the true value or an
approximation of it. The problem of the unknown completeness of the error budget can be tackled
by performing comparisons between measurement systems. While this will never provide a positive
proof of the completeness of the error budget, it still justifies rational belief in its completeness, and
if error or uncertainty distributions are conceived as subjective probabilities in the sense of degrees of
rational belief, this is good enough. In summary, if (a) our reading of GUMO8-GUM-2008 is correct
in the sense that the traditional error analysis can eennotate-deal with a statistical quantity, and that
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the key difference between the ‘error’ and ‘uncertainty’ concepts is their relation to the true value
of the target quantity and (b), that our list of arguments against the error concept is complete, and
finally, if (c) our refutation of these arguments is conclusive, then the claim that the ‘error’ concept
and the ‘uncertainty’ concepts are fundamentally different is untenablﬂ.

Beyond this, reasons have been identified that put the applicability of the GEM68-GUM-2008
concept to atmospheric measurements into question. At the—very—least we can state that
GUMOBGUM-2008, by presenting their terminological stipulation about the terms ‘error’ and ‘un-
certainty’ in the appearance of a factual statement, has triggered a linguistic discussion that distracted
the attention from the more important issues how the principles of error or uncertainty estimation,
whatever one prefers to call it, could be made better applicable to measurements beyond the idealized

cases covered by their document.
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