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Abstract. Contrary to the statements put forward in “Evaluation of measurement data – Guide to

the expression of uncertainty in measurement”(GUM08
:
,
::::::
edition

:::::
2008

::::::::::
(GUM-2008), issued by the

Joint Committee for Guides in Metrology, the error concept and the uncertainty concept are the same.

Arguments in favour of the contrary have been analyzed and were found not compelling. Neither was

any evidence presented in GUM08
:::::::::
GUM-2008

:
that “errors” and “uncertainties” define a different5

relation between the measured and the true value of the variable of interest, nor does this document

refer to a Bayesian account of uncertainty beyond the mere endorsement of a degree-of-belief-type

conception of probability.

1 Introduction

For more than 200 years, error estimation used a more or less unified terminology where the10

term ‘error’ was used, with some caveats, for designating a statistical estimate of the expected

difference between the measured and the true value of a measurand (Gauss,1809; Gauss, 1816;

Pearson, 1920; Fisher, 1925; Rodgers, 1990; Mayo, 1996; Rodgers, 2000; just to name a few).
::
It

:::
has

::::
long

::::
been

:::::::::
recognized

::::
that

:::
the

::::::::::
quantitative

:::::::::::::
characterization

::
of

:::
the

::::::::
reliability

::
of

::
a
:::::::::::
measurement

::
is

:::::::
essential

::
to

:::::
draw

::::::::::
quantitative

::::::::::
conclusions

::::
from

:::
the

::::::::
measured

:::::
data.

::::::
Various

::::
and

:::::
often

:::::::::::
contradicting15

:::::::
methods

:::
and

::::::::::::
terminologies

:::::::
emerged

::::
over

:::
the

:::::
years.

::::
The

::::::
activity

::::::::
‘Towards

:::::::
Unified

:::::
Error

:::::::::
Reporting,

:::::::::
(TUNER),’

:::::
aims

::
at
::

a
::::::::::

unification
::
of

::::
the

::::::::
reporting

:::
of

::::::
errors

::
in

:::::::::
estimates

::
of

:::::::::::
atmospheric

:::::
state

:::::::
variables

::::::::
retrieved

:::::
from

:::::::
satellite

::::::::::::
measurements

:::::::::::::::::::::::::
(von Clarmann et al., 2020)).

:::
On

:
request of the

Bureau International de Poids et Mesures (BIPM)presented a contrasting definition how we have

to conceive the term ‘error’ and have stipulated a new terminology, where the term ‘measurement20

uncertainty’ is used in situations where one would have said ‘measurement error’ before

(Joint Committee for Guides in Metrology (JCGM), 2008, this source is henceforth referenced as GUM08),

::
the

::::::::
Joint

::::::::::::
Committee

::::::
for

:::::::::
Guides

::::::
in

::::::::::::
Metrology

::::::::::
(JCGM)

::::::
has

:::::::::
issued

:
a
::::::::::::

guideline
:::::::

how
:::::::::::::::

measurement
:::::::::::::

uncertainty
::::::::::

should
::::::

be
::::::::

dealt
::::::::

with
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Joint Committee for Guides in Metrology (JCGM), 2008, this source is henceforth referenced as GUM-2008).25

Supplementary material in the context of GUM is found in Joint Committee for Guides in Metrology

(JCGM) (2012) and several supplements to GUM08
::::::::::
GUM-2008, that are found on the BIPM website

(https://www.bipm.org/en/publications/guides/gum.html). The new concept
:::::::
concept

::
of

::::::::::
uncertainty

:::
was

:::::::::
developed

::::
long

::::::
before

:::
the

::::::::::
GUM-2008

:::
was

::::::
issued

:::
and

::::
has

::::
seen

::::::
several

::::::::::
refinements

:::::
since

::::
then

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Eisenhart and Collé, 1980; Collé, 1987; Colclough, 1987; Schumacher, 1987).

:::
A

::::
key

::::::
claim30

::
of

::::::::::
GUM-2008

::
is

::::
that

:::
the

:::::
terms

:::::::
“error”

:::
and

::::::::::::
“uncertainty”

:::::::
connote

::::::::
different

::::::
things,

::::
and

:::
that

::::
the

:::::::::
underlying

:::::::
concepts

:::
are

:::::::::
different.

::::::::::
GUM-2008 has been critically discussed by, e.g., Bich (2012),

Grégis (2015), Elster et al. (2013) and The European Centre for Mathematics and Statistics in

Metrology (2019), and more favorably by, e.g., Kacker et al. (2007). The claim is made that the

uncertainty concept can be construed without reference to the unknown and unknowable true35

value while the error concept cannot (GUM08, p.3 and p. 5). Thus, the dispute between the error

statisticians and the uncertainty statisticians comes down to the question if and how the error (or

uncertainty) distribution is related to the true value of the measurand.

In this paper we try to shed some light upon this relation which seems to have caused a rift

both in the communities of statistics and
:::::::
critically

:::::
asses

:::::
some

:
of empirical sciences. Further, we40

critically discuss the applicability of the GUM08 recommendations in the context of
:::
the

::::::
claims

::::
made

::
in
::::::::::

GUM-2008
::::
and,

:::
as

:::
part

::
of

:::
the

::::::::
TUNER

:::::::
activity,

::::::
discuss

::
its

:::::::::::
applicability

::
to

:
remote sensing

of the atmosphere. Remote sounding employs indirect measurements where the measurand is not

measured directly but retrieved from the measured signal by the inverse solution of the radiative

transfer equation which provides the link between the measurand and the measured signal. In the45

context of the work undertaken by the activity ‘Towards Unified Error Reporting, (TUNER),’ a

project aiming at unification of error reporting of satellite data (von Clarmann et al., 2020)), this

issue is particularly problematic. Without agreement on the concepts and the terminology of error

versus uncertainty assessment, any unification is out of reach.

At the outset we recapitulate the concept of indirect measurements and lay down an appropriate50

terminology and notation (Section??). In the subsequent section (Section ??), we analyze the use of

the term ‘error’ by the uncertainty statisticians1 and will find that it is often not consistent with

the use of this term as originally used by the error statisticians. Then we try to find out what

the exact connotation of the term ‘uncertainty’ is and how it is actually distinguished from the

traditional concept of error analysis (Section ??)
::
We

::::
start

:::::
with

::::::::
analyzing

:::::::
GUM’s

:::::
claim

:::::
about

:::
the55

:::::::::
differences

:::::::
between

::::
error

::::
and

:::::::::
uncertainty

:::::::
(Section

:::
2),

:::::::
whereby

:
it
::
is
::::::::
important

::
to
::::::::::
distinguish

:::::::
between

1We use the term ‘uncertainty concept’ for a concept where it is claimed that error and uncertainty are different entities

and that ‘uncertainty’ can be defined without reference to the true value of the measurand. We use the term ‘uncertainty

scientists’ or ‘uncertainty statisticians’ for scientists endorsing the uncertainty analysis concept. Conversely, we use the term

‘error analysis concept’ for a concept which denies a fundamental difference between the traditional concept of error analysis

and the uncertainty concept as endorsed by GUM08’, and we call ‘error scientists’ or ‘error statisticians’ those scientists who

endorse the traditional concept of error analysis.
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::::::::::::
terminological

:::::::
(Section

::::
2.1)

:::
and

::::::::::
conceptual

:::::::
(Section

::::
2.2)

:::::
issues. We shall find that the concept of

the ‘true value of the measurand’ makes up the alleged key difference. That is to say, the uncertainty

concept
:::::::
endorsed

:::
by

:::::
GUM is claimed, contrary to traditional error analysis, to be able to dispense

with the concept of the true value . The problem of the true value is that it
:::
that

:
is neither known60

nor knowable . In Section 3 we discuss how this affects error and uncertainty estimation and the

relation between the measured and
:::::::::::
(GUM-2008,

:::
p.3

:::
and

::
p.

::
5).

::::
This

:::::
leads

::
to

:::
the

:::::::
question

::
of

::::::::
whether,

:::
and

::
if

:::
so,

::::
how

:::
the

::::::::
measured

::
or

::::::::
estimated

:::::
value

:::::
along

:::::
with

:::
the

::::::::
estimated

::::
error

:::
(or

:::::::::::
uncertainty)

:::
are

:::::
related

::
to
:
the true value . We find (1) that according to Bayesian statistics (Bayes, 1763) the measured

value cannot always be interpreted as the most probable value of the measurand . (2) We further65

find that nonlinear relationships between the measurand and the measured signal poses problems to

:::::::::
measurand

:::
has

::
in

::::::
reality

:::
and

::::
what

:::
the

::::::::
problems

::::::
related

:::
to

:::
the

::::::::
ignorance

::
of

:
the uncertainty analysis

because a value in sufficient proximity to the true value should be chosen as linearization point

for uncertainty estimation and thus must be – at least approximately – known; and (3)we accept

that we can never know for certain if the error or uncertainty budget is complete. In the following we70

investigate the implications of these three problems in turn. First
::
are

::
in

:::
the

::::::
context

:::
of

::::
error

:::::::::
estimation

:::::::
(Section

::
3).

::
In

::::
this

:::::::
context,

::
we

::::
first

::::::
address

:::
the

::::::::
question,

::
if

:
it
::
is

::::::::
adequate

::
to

:::
use

:::
the

:::
true

:::::
value,

::::::
which

:
is
::::::::
typically

::::::::
unknown

:::
and

::::::::::
unknowable,

::
in
:::
the

::::::::
definition

::
of

:::
the

::::
term

:::::
error,

:::
and

::
to

::::
base

::::
error

:::::::
analysis

:::
on

::::
such

:
a
::::::::
definition

:::::::
(Section

::::
3.1).

::::::
Second, we investigate under which conditions an error or uncertainty

distribution can be understood as a distribution which tells us which likelihood or probability we can75

assign to a valueto be
::
the

:::::::::::
implications

::::
that

:::
the

::::::
inverse

::::::
nature

:::
of

:
a
::::::::::::

measurement
::::::
process

::::
has

:::
on

::
the

:::::::::::
probabilistic

::::::::::
relationship

:::::::
between

:::
the

:::::::::
measured

:::::
value, the true value, given a certain measured

value (Section ??). We shall see that the interpretation of resulting error or uncertainty estimates

is completely different in a maximum likelihood versus a Bayesian framework. Second we assess

to which degree
:::
and

:::
the

:::::::::::
measurement

:::::::
(Section

::::
3.2.

::
In

::::
this

::::::
context

:::
we

:::::::
discuss

:::
the

:::::::
problem

:::
of

:::
the80

:::::::
baserate

::::::
fallacy.

:::::::
Further,

:
it
::
is

::::::::::
investigated

::
if

:::
the

::::::
alleged

::::::::
difference

:::::::
between

:::
the

:::::
error

::::::
concept

::::
and

:::
the

:::::::::
uncertainty

:::::::
concept

:::
can

::
be

::::::::
explained

:::
by

:
a
::::::::
Bayesian

::::
turn

::
in

:::::::::
metrology.

:::::
Third,

:::
we

:::::
assess

:::
the

::::::
degree

::
to

:::::
which the nonlinearity of the relationship between the measured signal and the target quantity, viz.,

the radiative transfer equation, poses additional problems (Section 3.3). And third
:::::
fourth,

:
we scruti-

nize the claim that there will always be unknown sources of uncertainty and that it is thus impossible85

to relate the measured value along with its uncertainty estimate to the true value (Section 3.4). After

these more general considerations we critically discuss the applicability of the GUM08
::::::::::
GUM-2008

concept to indirect measurements of atmospheric state variables (Section 4). There we discuss the

problems of measurands that are not well-defined in the sense of GUM08
:::::::::
GUM-2008

:
(Section 4.1),

:::
and

:
if it is really adequate to report the combined error only (Section 4.2)and if the measurement90

equation as presented in GUM08 does optimally support the uncertainty assessment in atmospheric

remote sensing (Section ??) In this context, we also investigate whether the difference between the

traditional concept of error analysis and the uncertainty concept might be linked to a Bayesian versus
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a frequentist conception of probability.
:
. Finally (Section 5) we conclude to which degree

:::
the

::::::
degree

::
to

:::::
which

:
the arguments put forward by the Joint Committee for Guides in Metrology (JCGM) are95

conclusive and what the differences between the error concept and the uncertainty concept actually

are.

2 Recapitulation of the concept of indirect measurements
:::::
Error

::::
and

::::::::::
Uncertainty

In the case of indirect measurements, e.g., remote sensing, the measurand, i.e., the quantity of

interest, x, and the measured signal y are linked via a function f as100

y = f(x;b)+ ε,

where b represents the parameters of f representing physical side conditions and ε is the

actual measurement error in the y-domain (Rodgers, 2000)
::::::::::
GUM-2008

:::::::
endorses

::
a

:::
new

:::::::::::
terminology

::::::::
compared

::
to

::::
that

:::
of

:::::::::
traditional

::::
error

::::::::
analysis. In the case of remote sensing of the atmosphere

f is the radiative transfer function. We use vector notation because in remote sensing typically105

multiple measurands are estimated from multiple measurement signals. For example, y could be

a spectral measurement of an ozone emission line in the infrared; x could be a vertical profile of

ozone concentrations, and b could include a vertical profile of temperature, known a priori with

some uncertainty and affecting the signal in the ozone line. To obtain information on the measurand,

some kind of inverse solution of Equation ?? is required, because the estimate of the target quantity110

x involves a conclusion from the effect to the cause. More often than not, this inverse problem is

ill-posed in the sense of Hadamard (1902), and the direct inversion is impossible and some kind of

workaround is employed. Candidate workarounds are least-squares solutions, regularized solutions

and so forth. von Clarmann et al. (2020) summarize the most common methods to solve this kind of

problem, along with related error estimation schemes. Here we call this substitute for the genuine115

inversion F̃−1. HereF is a function representing the true radiative transfer function to the best of our

knowledge, i. e., the descriptive radiative transfer law as opposed to the governing but unknown law.

The˜symbol reminds us that the inversion is not necessarily a genuine inversion in a mathematical

sense. With this an estimate of the measurand can be obtained1:

x̂= F̃−1(y;b)120

Differences between the estimate1 x̂ and the true value of the measurand x can be due to

measurement errors representd by ε, erroneous assumptions on the values of the parameter vector
1Strictly speaking, it would be adequate to assign a different symbol to the vector of parameters b when it appears in the

context of f , where it designates the true parameters, and in the context of F , where it represents estimates or uncertain a

priori knowledge about these parameters. However, we assume that it is clear from the context what is meant.
1In the context of direct measurements, ‘estimated value’ and ‘measured value’ connote the same thing; in the context

of indirect measurements, we use the term ‘estimated value’ for the value of the target quantity that was inferred from the

measured signal.
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b,
::::::
context

::
of

:::
the

:::::
work

::::::::::
undertaken

::
by

:::
the

::::::::
TUNER

:::::::
activity,

:
a
::::::
project

:::::::
aiming

::
at

:::::::::
unification

::
of

:::::
error

:::::::
reporting

:::
of

:::::::
satellite

::::
data

:::::::::::::::::::::::
(von Clarmann et al., 2020))],

::::::::::::
terminological

::::
and

:::::::::
conceptual

::::::::::
divergence

:
is
::::::::::
particularly

:::::::::::
problematic.

:::::::
Without

:::::::::
agreement

::
on

:::
the

::::::::
concepts

:::
and

:::
the

::::::::::
terminology

:::
of

::::
error

::::::
versus125

:::::::::
uncertainty

::::::::::
assessment,

:::
any

:::::::::
unification

::
is
:::
out

::
of

::::::
reach.

::::::::
According

::::
to

::::::::::::
GUM-2008,

::::
the

::::::::
concept

:::
of

:::::::::::
uncertainty

:::::::::
analysis

:::::::
should

:::::::
replace

:::::
the

::::::
concept

::::
of

::::::
error

::::::::::
analysis.

:::::
The

::::::::::::
International

::::::::::::
Vocabulary

::::
of

::::::::::
Metrology

:::::::::::
document

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Joint Committee for Guides in Metrology (JCGM), 2012) points

:::
in

::::
the

::::::
same

:::::::::
direction.

::::::
Thus,

::::
some

::::::::::
conceptual

:::
and

:::::::::::::
terminological

:::::::
remarks

:::::
seem

::::::::::
appropriate.

:::::::
While,

:::
on

:::
the

::::
face

::
of

:::
it,

::::
this

::
is130

::::::::
quibbling

:::::
about

::::::
words,

:::::::
actually

::::::::::
conceptual

:
differences between the radiative transfer model F

and the true but not exactly known radiative transfer physics f , and characteristics of F̃−1, i.e.,

tricks applied to make a non-invertible inverse problem solvable. These error sources and recipes

to estimate related error components of x̂ are discussed in depth in von Clarmann et al. (2020),

drawing upon Rodgers (2000) and Rodgers (1990)
:::::
errors

:::
and

:::::::::::
uncertainties

:::
are

:::::::
claimed

::
to

:::::
exist.

::::
This135

::::
issue

::
is

::::::::
discussed

::
in

:::
the

::::::::
following.

Some complication arises because the true atmospheric state can be represented only by spatially

continuous functions while we work with vectors of finite dimension. Here we avoid related

difficulties by assuming that the measurand x represents a discretized atmosphere, i.e., it does not

represent a point value but some kind of spatio-temporal average.140

All this holds
::
A

:::
key

:::::
claim

::
of

::::::::::
GUM-2008

::
is

:::
that

:::
the

::::::::
“concept

::
of mutatis mutandis

:::::::::
uncertainty also

for scalar quantities where

y = f(x)+ ε

but this distinction has no bearing upon our argument.

When reading the thermometer, we actually read the length of the mercury column, apply inversely145

the law of thermal expansion, and get an estimate of the temperature:

x̂= F̃−1(y;b)

Only in trivial cases, when a measurement device has a calibrated scale from which x̂ can be

directly read, F is unity. Here the inverse process is effectively pretabulated in the scale. In any

case, the availability of F̃−1 allows to statistically estimate the effect of measurement noise150

ε and systematic effects in b or F̃−1 on x̂ (Rodgers, 1990, 2000; von Clarmann et al., 2020)
::
as

:
a
::::::::::
quantifiable

::::::::
attribute

::
is
:::::::::

relatively
::::
new

:::
in

:::
the

:::::::
history

:::
of

:::::::::::::
measurements,

::::::::
although

:::::
error

:::
and

::::
error

::::::::
analysis

::::
have

:::::
long

::::
been

:::::
part

:::
of

:::
the

::::::::
practice

:::
of

:::::::::::
measurement

::::::::
science

::
or

:::::::::::
metrology”

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Joint Committee for Guides in Metrology (JCGM), 2008, Sect 0.2, l. 1–2; emphases in the original.).

::
In

:
a
::::
note

::
to

:::::
their

::::::
Section

:::::
3.2.3,

::::::::::
GUM-2008

:::::
states

::::
that

::::
“The

::::::
terms

:::::
‘error’

::::
and

:::::::::::
‘uncertainty’

::::::
should155

::
be

::::
used

::::::::
properly

:::
and

:::::
care

:::::
taken

::
to

:::::::::
distinguish

::::::::
between

::::::
them.”

::::
The

:::::::::
discussion

::
of

:::::
these

::::::
issues

::
is

::::::::::
occasionally

:::
led

::::::
astray,

:::::::
because

:
it
::

is
:::::
often

:::
not

:::::::::::
distinguished

::::::::
between

:::
two

::::::::
different

::::::::
questions:

:::::
first,

5



::::::
whether

::::
the

:::::
terms

::::::
‘error’

:::
and

::::::::::::
‘uncertainty’

::::
have

:::
the

:::::
same

:::::::::::
connotation,

:::
and

:::::::
second,

:::::::
whether

::::
the

:::::::::
underlying

:::::::
concepts

:::
are

::::::
indeed

::::::::
different.

::
In

:::
the

::::::::
following,

:::
we

:::
try

::
to

::::
shed

:::::
some

::::
light

::
on

:::::
these

:::::
issues.

3 The connotation of the term ‘error’160

2.1
::::::::::::
Terminological

::::::
Issues

Although GUM08 (Sect. 0.2) claims the “concept of uncertaintyas a quantifiable attribute to

be a relatively new concept in the history of measurement”, we uphold the view that it has

long been recognized that the result of a measurement remains to some degree uncertain even

when a thorough measurement procedure and error evaluation is performed. We recall that165

even ancient researchers realized that measurement results always have errors. Carl Friedrich

(Gauss, 1809) and Adrien-Marie Legendre (1805) formalized the required procedure of balancing

imperfect astrometric measurements by least squares fitting, in support of orbital calculations from

overdetermined data sets. And there is no reason to believe that earlier investigators were unaware

of the fact that they were not working on perfect observational data. Kepler‘s conclusion concerning170

the elliptical shape of
:::::::
Already

::
in

:::
the

::::::::
pre-GUM

::::::::
language

::::
there

::::
have

::::
been

::::::
subtle

:::::::
linguistic

::::::::::
differences

:::::::
between

:::
the

:::::
terms

::::::
‘error’

::::
and

::::::::::::
‘uncertainty’.

::::
The

:::::
error

:::
has

:::::
been

:::::::::
conceived

::
as

:::
an

:::::::
attribute

:::
of

::
a

:::::::::::
measurement

::
or

::
an

::::::::
estimate,

:::::
while

:::
the

:::::
term

:::::::::::
‘uncertainty’

:::
has

::::
been

:::::
used

::
as

::
an

::::::::
attribute

::
of

:::
the

::::
true

::::
state.

:::
We

::::::::
perfectly

:::::
know

:::
our

:::::::::::
measurement

:
–
::::
even

::
if
::
it

:
is
:::::::::
erroneous

:
–
:::
and

::::
thus

:::
we

:::
are

::::::::
uncertain

:::::
about

::
the

::::
true

:::::
value.

::::::::
Because

::
of

:::
the

:::::::::::
measurement

::::
error

:::::
there

:
is
:::
an

:::::::::
uncertainty

:::
as

::
to

::::
what

:::
the

::::
true

::::
value

:::
is.175

:::
The

::::::::::
uncertainty

:::
thus

::::::::
describes

:::
the

::::::
degree

::
of

::::::::
ignorance

:::::
about

:::
the

::::
true

::::
value

:::::
while

:::
the

::::::::
estimated

:::::
error

:::::::
describes

:::
the

::::::
degree

::
to

:::::
which

:::
the

:::::::::::
measurement

::
is

::::::
thought

::
to

::::::
deviate

:::::
from

:::
the

:::
true

:::::
value.

::
In

::::
this

:::
use

::
of

::::::::
language,

::::
both

:::::
terms

:::
still

:::::
relate

::
to

:::
the

::::
same

::::::::
concept.

::::
This

:::::
notion

::::::
seems,

::
as

:::
far

::
as

:::
we

:::
can

:::::
judge,

::
to

:::
be

::::::::
consistent

::::
with

:::
the

::::::::
language

::::::
widely

::::
used

::
in the orbit of Mars based on the rich observational dataset

collected by Brahe would have been impossible without proper implicit assumptions concerning the180

limited validity of the reported values (Kepler, 1609).

A rich methodical toolbox for error estimation and uncertainty assessment has been developed

since then, and a confusing plethora of conventions how to communicate measurement uncertainties

exists. Unification of error or uncertainty reporting is overdue but this requires, at a minimum,

agreement on terminology and the underlying concepts. While many of the technical terms used185

are quite clear and often self-explanatory, there is a particularly troublesome terminological issue. It

is related to the use of the term ‘error’ and the underlying concept. According to the Joint Committee

for Guides in Metrology (JCGM), the concept of uncertainty analysis should replace the concept of

erroranalysis
::::::::
pre-GUM

::::::::
literature

:::::
since

:::::::::::
Gauss (1809),

::::
who

::::
used

:::
the

::::
latin

:::::
terms

:::::
error

:::
and

::::::::::
incertitudo

::
in

:::
this

::::
way. Thus, some conceptual and terminological remarks seem appropriate. While on the190

face of it, this is quibbling about words, actually conceptual differences between the errors and

uncertainties are claimed to exist. This issue is discussed in the following.
::::
both

:::::
terms

::::
have

:::::::
referred
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::
to

:::
the

::::
same

:::::
thing

:::
but

:::::
from

::
a

:::::::
different

::::::::::
perspective 1

:
.
::::
The

:::::::
estimate

::
of

:::
the

:::::
total

::::
error

:::::::
includes

:::::
both

:::::::::::
measurement

:::::
noise

:::
and

:::
all

::::::
known

::::::::::
components

::
of

::::::
further

::::::
errors,

:::::::
random

::
or

::::::::::
systematic,

::::::
caused

:::
by

:::::::::::
imperfections

::
in

:::
the

:::::::::::
measurement

::::
and

:::
data

:::::::
analysis

:::::::
system.195

In the context of measurements,
::
It

:::::
must,

::::::::
however,

::
be

::::::
noted,

::::
that the term ‘error’ traditionally

has two slightly different connotiations. The first is the
:
is

:::
an

::::::::::::
equivocation.

:::
It

::::
has

:::::
been

::::
used

:::::
both

:::
for

::::
the

:::::::::
unknown

::::
and

:::::::::::
unknowable

:::::::
signed

:
actual difference between the mea-

sured or, in the context of indirect measurements, retrieved, value and the true value of

the measurand; the second meaning of the term ‘error’ is ,
::::

and
::::

for
:

a statistical estimate200

of this difference. Often some attributes are used for clarification and specification, e.g.,

‘probable error’ (Gauss, 1816; Bich, 2012), ‘statistical error’ Nuzzo (2014), ‘error estimation’

(Zhang et al., 2010) or ‘error analysis’ (Rodgers, 1990, 2000; Hughes and Hase, 2010). GUM08

(Annex B.2.19) allows only the connotation ‘actual difference’, but their use of the terms ‘error

and error analysis’ in the first sentence of their 0.2 or ’possible error’ in their 2.2.4 only make205

sense if the statistical meaning of the term ‘error’ is conceded. The authors of this paper are not

aware of any case where the ambiguity of these connotations of the term ‘error’ has ever led to any

misunderstanding, most probably because it is always clear from the context what is meant.

In the case of ‘error ’, its statistical estimate is mostly understood to be a quadratic estimate and

thus does
::
it.

::::
The

::::::::
statistical

:::::::
estimate

::
is
::::::
mostly

::::::::::
understood

::
to

:::
be

:::
the

::::::
square

::::
root

::
of

:::
the

:::::::
variance

:::
of210

::
the

::::::::::
probability

::::::
density

::::::::
function

::
of

:::
the

:::::
error23

:::
and

::::
thus

:::::
does

:::
not

:::::
carry

:::
any

::::::::::
information

::::::
about

:::
the

:::
sign

:::
of

:::
the

::::
error.

:::::::::
Nonlinear

::::
error

:::::::::::
propagation

::::
may

::
in

:::::
some

::::
cases

:::::
make

::::::::::
asymmetric

:::::
error

::::::::
estimates

::::::::
necessary,

:::
but

::::::::
typically

::::
these

:::
do not carry any information about the

::
on

:::
the

:::::
actual

:
sign of the error .

This
:::::
either.

::::
The

::::::::
ignorance

::
of

:::
the

::::
sign

::
of

:::
the

::::
error

:
entails that the true or most probable value cannot

simply be determined by subtracting the estimated error from the measured value.215

One of the first major documents, where the term ‘error’ has been used with this statis-

tical connotation is, to the best of our knowledge, “Theoria Motus Corporum Celestium” by

C. G. Gauss (1809). Since then, the term ‘error’ has commonly been used to signify a sta-

tistical estimate of the size of the difference between the measured and the true value of

the measurand. Seminal books such as “Statistical Methods For Research Workers” by R. A.220

Fisher (1925)or “Inverse Methods For Atmospheric Sounding - Theory and Practice” by C.

D. Rodgers (2000)
::::::::::
publications

::
by

::::::::::::
Gauss (1816),

::::::::::::::
Pearson (1920),

::::::::::::
Fisher (1925),

::::::::::::::
Rodgers (1990),

:::
and

::::::::::::
Mayo (1996) furnish evidence of this claim about the use of this term

::::::
‘error’. The esti-

1
::::::::::::::::
Possolo (2021) expresses

:::
this

::::::
construal

::
in

:::
more

::::::
colorful

::::
words:

:
“[

::
. . .

::
M]

:::::::
easurement

::::::::
uncertainty

:::::::
surrounds

::
the

:::
true

::::
value

:
of
:::
the

:::::::
measurand

:::
like

:
a
::
fog

:::
that

:::::::
obfuscates

::
it,

::::
while

::::::::
measurement

::::
error

:
is
::::
both

::
the

::::
source

::
of

:::
that

::
fog

:::
and

:::
part

::
and

:::::
parcel

:
of
:::
the

::::::
measured

::::
value.

:::::::::
Measurement

::::::::
uncertainty

:::
thus

::::::
describes

::
the

::::
doubt

::::
about

:::
the

::
true

::::
value

::
of

::
the

::::::::
measurand,

::::
while

:::::::::
measurement

:::
error

:::::::
quantifies

::
the

::::
extent

::
to

::::
which

:::
the

::::::
measured

::::
value

::::::
deviates

:::
from

:::
the

::
true

::::::
value.”.

2
::::
When

::
we

:::
use

::::::
variances

:::
and

::::::
standard

:::::::
deviations,

:::
we

::
do

::
not

::::
mean

:::::
sample

:::::::
variances

::
and

::::::
sample

:::::
standard

:::::::
variations

:::
but

::::
simply

:::
the

:::::
second

:::::
central

:::::
moment

::
of
:
a
::::::::

distribution
::
or

::
its

:::::
square

:::
root.

::
In

::::::::
accordance

:::
with

::::::::
GUM-2008,

:::
this

::::::::
distribution

:::
can

::::::
represent

:
a
:::::::
probability

::
in

::
the

::::
sense

::
of

::::::
personal

::::
belief,

:::
and

:::
thus

:::
can

:::::
include

:::
also

:::::::
systematic

:::::
effects.

:::
See

:::
also

:::::
Section

:::
2.2.

3
::::
Other

::::::
estimates

::
are

:::
also

::::
used,

:::
e.g.,

::::
robust

::::
ones

:::
like

::
the

::::::::
interquartile

::::
range.
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mated error is understood as a measure of the width of a distribution around the measured

(or estimated) value which tells the data user the probability – or the likelihood, depending225

on the statistical framework used – density of a certain value to be measured or estimated

if the value actually measured or estimated was the true value. Counterintuitively, in general

it does not always provide the probability density that the measured value is the true value.

This issue will be discussed in Section ??.
:::
One

::::::
might

:::::::
criticize

:::::::::::
equivocation

:::
of

:::
the

::::::::::
traditional

::::::::
language,

:::
but

::::
one

:::
can

:::::::
equally

:::::
well

:::::::
consider

::::
this

::
as

::
a
:::::::::

non-issue
:::
and

:::::
trust

::::
that

:::
the

:::::::
context

::::
will230

::::
make

:::::
clear

:::::
what

::
is
:::::::

meant.
::::::
Often,

:::::
some

::::::::
attributes

::::
are

::::
used

::::
for

::::::::::
clarification

::::
and

::::::::::::
specification,

:::
e.g.,

:::::::::
‘probable

:::::
error’

::::::::::::::::::::::
(Gauss, 1816; Bich, 2012),

:::::::::
‘statistical

:::::
error’

::::::::::::
Nuzzo (2014),

:::::
‘error

::::::::::
estimation’

::::::::::::::::::
(Zhang et al., 2010) or

:::::
‘error

::::::::
analysis’

:::::::::::::::::::::::::::::::::::::::
(Rodgers, 1990, 2000; Hughes and Hase, 2010).

In some cases, uncertainty scientists repudiate the use of the term ’error’ to refer to a statistical

estimate. Instead, they claim that the term ’error’ only connotes the actual difference between235

the measured or estimated and the true value of the measurand. E.g., on page 5 in GUM08,

the error of a measurent is the “
::::
More

::::::::
recently,

::::::::::
GUM-2008

:::::::::
presented

:
a
::::::::
narrower

:::::::::
definition

::::
how

::
we

:::::
have

::
to
::::::::

conceive
::::

the
::::
term

:::::::
‘error’

:::
and

:::::
have

:::::::::
stipulated

::
a

::::
new

:::::::::::
terminology,

::::::
where

:::
the

:::::
term

:::::::::::
‘measurement

:::::::::::
uncertainty’

::
is

::::
used

:::
in

::::::::
situations

::::::
where

:::
one

::::::
would

::::
have

::::
said

::::::::::::
‘measurement

::::::
error’

::::::
before.

:::::::::
According

::
to

::::::::::
GUM-2008,

::::
p.2,

:::
the

:::::::::
uncertainty

::
of

::
a
:::::::::::
measurement

::
is

::::::
defined

::
as

:::
“a

:::::::::
parameter,240

::::::::
associated

::::
with

:::
the

:
result of a measurementminus a true value of the measurand” (GUM08, p. 5).

It may be challenged that this definition is fully adequate, because it suppresses the use of the
:
,

:::
that

:::::::::::
characterizes

:::
the

:::::::::
dispersion

::
of

:::
the

:::::
values

::::
that

:::::
could

:::::::::
reasonably

::
be

::::::::
attributed

::
to

:::
the

:::::::::::
measurand”.

:::::::::
Conversely,

::::::::::
GUM-2008

:::::::
(Annex

::::::
B.2.19)

::::::
allows

:::
for

:::
the term ‘error’ for the statistical estimate of the

actual error in the scientific literature since Gauss (1809) who uses the terms ‘error ’ and
::::
only

:::
the245

:::::::::
connotation

:::::::
‘signed

:::::::::
difference’,

:::
but

::::
their

:::
use

::
of

:::
the

:::::
terms ‘incertitudo’ (latin for errorand uncertainty,

respectively) broadly as synonyms. The only difference, if any, in Gauss’ use of these terms seems

to be that error refers to estimated values, and uncertainty refers to the true values, saying that they

are not known with certainty.
::::
error

::::
and

::::
error

::::::::
analysis’

::
in

:::
the

::::
first

:::::::
sentence

::
of

:::::
their

:::
0.2

::
or

::::::::
’possible

:::::
error’

::
in

::::
their

::::
2.2.4

::::
only

:::::
make

:::::
sense

::
if

:::
the

::::::::
statistical

:::::::
meaning

::
of

:::
the

::::
term

::::::
‘error’

::
is

::::::::
conceded.

:
250

In spite of the explicit definition in GUM08, there is
::::::::::
GUM-2008,

::::
there

::::::
seems

::
to

:::
be no unified

stance among GUM08
::::::::::
GUM-2008 endorsers as to what ‘error’ is. E.g., Merchant et al. (2017) uphold

that ‘error’ connotates only the absolute
:::::::
connotes

::::
only

:::
the

::::::
signed

:
difference, while Kacker et al.

(2007) or White (2016) refer to ‘error’ as a statistical estimate. Kacker et al. (2007) complain that

GUM08
::::::::::
GUM-2008 is often misunderstood, and we suspect that the cause for this might be that255

GUM08
:::::::::
GUM-2008

:
is indeed not sufficiently clear with respect to the differences between the error

concept and the uncertainty concept
::::::::
underlying

:::::
error

:::
and

::::::::::
uncertainty

:::::::
concepts.

Since the true value is not known, the actual difference between the measured or estimated

value and the true
:::
The

:::
use

::
of

:::
the

:::::
term

:::::::::::
‘uncertainty’

::
in

:::::::::
GUM-2008

::::::
seems

:::::::::::
inconsistent:

:::
The

:::::::
general

:::::::::
GUM-2008

:::::::
concept

::::::
seems

::
to

:::
be

::::
that

:::
the

::::::
‘error’

:::
has

::
to

:::::::
include

:::
all

::::
error

:::::::
sources

::::
and

::::
thus

::::::
cannot260
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::
be

:::::::
known;

:::::::::::
‘uncertainty’

::
is
:::::::

weaker,
::

it
:::

is
::::
only

:::
an

:::::::
estimate

:::
of

::::::::::
quantifiable

:::::::
errors,

::::::::
excluding

::::
the

:::::::
unknown

:::::::::::
components.

::::
This

:::::
view

::
is

::::::::
supported

:::
by

:::
the

::::::::
following

:::::::::
quotation

:::::::::::
(GUM-2008,

::
p.

::::
viii)

:::
“It

:
is
::::
now

::::::
widely

::::::::::
recognized

::::
that,

:::::
when

::
all

::
of
::::

the
:::::
known

:::
or

::::::::
suspected

::::::::::
components

:::
of

::::
error

::::
have

:::::
been

::::::::
evaluated

:::
and

:::
the

:::::::::
appropriate

::::::::::
corrections

::::
have

::::
been

:::::::
applied,

:::::
there

:::
still

:::::::
remains

::
an

::::::::::
uncertainty

:::::
about

::
the

::::::::::
correctness

::
of

::::
the

:::::
stated

:::::
result,

::::
that

:::
is,

:
a
:::::
doubt

::::::
about

::::
how

::::
well

:::
the

:::::
result

::
of

:::
the

::::::::::::
measurement265

::::::::
represents

:::
the

:
value of the measurand cannot be calculated.This argument is often used to dispraise

the traditional concept of erroranalysis as an obsolete concept. However, history and existing

literature tell a different story. Above we have listed numerous sourceswhere the term ‘error’

connotes a statistical quantity which can be estimated without knowledge of the true value of the

measurand.
::::::
quantity

:::::
being

::::::::::
measured.”

:
It
::

is
:::
not

:::::
fully

::::
clear

:::::
what

:::
this

::::::
means.

::::
One

:::::::
possible

:::::::
reading

::
is270

:::
that

::::
they

:::
use

:::
the

:::::
term

::::::
‘error’

::
in

:::
the

::::::::
redefined

:::::
sense,

:::::
viz.,

::
as

:
a
::::::::

quantity
:::::
which

::::::::
measures

:::
the

::::::
actual

:::::::
deviation

:::::
from

:::
the

:::
true

::::::
value.

::::
Then

::::
this

::::::::
statement

::::::
would

::
be

:
a
:::::

mere
::::::
truism,

::::
just

:::::
saying

::::
that

::::
after

:::
all

::::::::
correction

::::
and

:::::::::
calibration

:::::::
activities

:::::
there

::
is

:::
still

::
a
::::
need

:::
for

:::::
error

::
(in

:::
the

:::::
error

:::::::
concept

:::::::::::
terminology)

:::::::::
estimation.

::::
The

::::
only

:::::
other

:::::::
possible

:::::::
reading

::
is

::::
that

::::
they

:::::
want

::
to

:::
say

:::::
that,

:::::
since

:::
due

:::
to

::::::::
unknown

:::::::::::
(unrecognized

::::::
and/or

:::::::::
recognized

::::
but

:::
not

::::::::
quantified4

:
)
::::
error

:::::::
sources,

:::::
error

::::::::
estimation

::::
will

::::::
always

:::
be275

:::::::::
incomplete

:::
and

:::::
there

:::::::
remains

:::
an

:::::::::
additional

:::::::::
uncertainty

:::
not

:::::::
covered

:::
by

:::
the

:::::
error

:::::::::
estimation.

:::::
This

::::
often

::
is

::::
very

::::
true

:::
but

:::
the

:::
use

::
of

:::
the

::::
term

:::::::::::
‘uncertainty’

:::::
would

::::
then

:::
be

::::::::::
inconsistent

::
in

::::
their

:::::::::
document,

::::::
because

::::
here

:::
the

:::::::::::
connotation

::
of

:::::::::::
‘uncertainty’

::
is

:::
the

::::::::
unknown

:::::::::::
(unquantified

::
or

:::::
even

::::::::::::
unrecognized)

:::
part

::
of

:::
the

:::::
error,

::::::
which

::
by

:::::::::
definition

:::::
cannot

:::
be

::::::::
assessed,

:::::
while

::
in

:::
the

:::::
main

:::
part

::
of

:::::
their

:::::::::
document,

::
the

:::::::::::
connotation

::
of

:::::::::::
‘uncertainty’

:::::
seems

::
to
:::

be
:
a
:::::::::

quantified
::::::::
statistical

::::::::
estimate.

::
In

:::::::::
summary,

::
it

:
is
::::

not280

::::
clear

::
if

:::
the

::::::::::
’uncertainty’

::::::::
includes

::
the

::::::::
unknown

:::::
error

:::::
terms

::
or

:::
not.

:

The
::::::::::
introduction

::
of

:::
the

::::
term

::::::::::
‘uncertainty

::
of

::::::::::::
measurement’

:::::
seems

::
to

::
us

::
a

::::
mere

::::::::
linguistic

:::::::
revision

::
of

::
an

:::::::::
established

:::::::::::
terminology

:::::
which

::::
does

:::
not

:::::::
connect

::
to

:::
any

::::::
further

:::::::
insights.

::::
The

:
issue of whether the

term ‘error’ should be used also for a statistical estimate cannot be judged on scientific grounds. It is

a matter of stipulation, although in the main body of GUM08
::::::::::
GUM-2008 this stipulation is presented285

as if it was a factual statement (“In this Guide, great care is taken to distinguish between the terms

‘error’ and ‘uncertainty’. They are not synonyms, but represent completely different concepts; they

should not be confused with one another or misused.”, Sect 3.2, Note 2). The synonymity of ‘error’

and ‘uncertainty’ is thus neither true nor false but adequate or inadequate. Instead of quibbling about

words we will
:
,
::
in

:::
the

::::
next

:::::::
Section, concentrate on the concepts behind these terms.290

GUM08

2.2
:::::::::
Conceptual

::::::
Issues

::::::::
Although

::::::::::
GUM-2008

:::::
(Sect.

::::
0.2)

:::::::
claims

:::
the

::::::::
“concept

::
of
::::::::::

uncertainty
:::

as
::
a
::::::::::
quantifiable

::::::::
attribute

::
to

::
be

::
a
:::::::::

relatively
::::

new
::::::::

concept
::
in

::::
the

::::::
history

:::
of

:::::::::::::
measurement”,

:::
we

:::::::
uphold

::::
the

::::
view

:::::
that

::
it

4
:::::::
Rigorously

:::::::
speaking,

::::
within

:::
the

:::::
concept

::
of

:::::::
subjective

:::::::
probability

::::::::
recognized

::
but

:::::::::
unquantified

::::::::
uncertainties

:::::
should

:::
not

:::
exist.
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:::
has

::::
long

:::::
been

::::::::::
recognized

:::
that

::::
the

:::::
result

:::
of

::
a

:::::::::::
measurement

:::::::
remains

:::
to

:::::
some

::::::
degree

:::::::::
uncertain295

::::
even

:::::
when

::
a

::::::::
thorough

:::::::::::
measurement

:::::::::
procedure

::::
and

:::::
error

:::::::::
evaluation

::
is

::::::::::
performed.

:::::::::::
Investigators

::::::
realized

:::::::
already

::
in

:::
the

:::::
19th

:::::::
century

:::
that

::::::::::::
measurement

::::::
results

::::::
always

::::
have

::::::
errors.

:::::
Carl

::::::::
Friedrich

:::::::::::::::
(Gauss, 1809) and

:::::::::::
Adrien-Marie

::::::::::::::::::::::::
Legendre (1805) formalized

:::
the

:::::::
required

:::::::::
procedure

::
of

:::::::::
balancing

::::::::
imperfect

:::::::::
astrometric

::::::::::::
measurements

:::
by

::::
least

:::::::
squares

:::::
fitting,

:::
in

::::::
support

::
of

::::::
orbital

::::::::::
calculations

:::::
from

::::::::::::
overdetermined

::::
data

::::
sets.

::::
And

:::::
there

:
is
:::
no

:::::
reason

::
to
:::::::
believe

:::
that

::::::
earlier

::::::::::
investigators

::::
were

::::::::
unaware

::
of300

::
the

::::
fact

:::
that

::::
they

::::
were

:::
not

:::::::
working

:::
on

::::::
perfect

:::::::::::
observational

::::
data.

:::::::
Kepler‘s

::::::::::
conclusion

:::::::::
concerning

:::
the

:::::::
elliptical

:::::
shape

::
of

:::
the

::::
orbit

::
of

:::::
Mars

:::::
based

::
on

:::
the

::::
rich

:::::::::::
observational

::::::
dataset

::::::::
collected

::
by

:::::
Brahe

::::::
would

::::
have

::::
been

::::::::::
impossible

::::::
without

::::::
proper

:::::::
implicit

:::::::::::
assumptions

::::::::::
concerning

:::
the

::::::
limited

:::::::
validity

::
of
::::

the

:::::::
reported

:::::
values

:::::::::::::
(Kepler, 1609).

::
A

::::
rich

:::::::::::::
methodological

::::::
toolbox

:::
for

:::::
error

:::::::::
estimation

:::
and

::::::::::
uncertainty

:::::::::
assessment

:::
has

::::
been

:::::::::
developed

:::::
since

::::
then,

::::::::
including

:::::::::
systematic

::::::
errors,

::::
error

:::::::::::
correlations,

:::
etc.305

:::::::::
GUM-2008

:
does not only present traditional error analysis in a revised language but suggests

that there is more to it. That is to say, the entire concept is claimed to be replaced .
:::
(see,

:::::
e.g.,

::::::::::
GUM-2008,

::::
Sect

:::::
3.2.2.,

:::::
Note

:::
2). We understand that GUM08

:::::::::
GUM-2008

:
grants that the classical

concept of error analysis deals with statistical quantities, but these are statistical estimates of the

difference between the measured or estimated value and the true value. We take GUM
::::::::::
GUM-2008310

to be saying that the reference of even this statistical quantity to the true value poses certain problems,

because the true value is unknown and unknowable. As a solution of this problem, the uncertainty

concept is introduced which allegedly makes no reference to the true value of the measurand and is

thus hoped to avoid related problems. GUM08
::::::::::
GUM-2008 (particularly Section 2.2.4) unfortunately

leaves room for multiple interpretations, but our reading is that an error distribution is understood315

::
by

::::::::::
GUM-2008 as a distribution whose spread

::::::::
dispersion

:
is the estimated statistical error and whose

expectation value is the true value, while an uncertainty distribution is understood as a distribution

whose spread
::::::::
dispersion is the estimated uncertainty and whose expectation value is the measured

or estimated value.

GUM08
::::::::::
GUM-2008 (p.5) characterizes error as “an idealized concept” and states that “errors320

cannot be known exactly”. This is certainly true but it has never been claimed that errors can be

known exactly. Since not all relevant error sources are necessarily known, any error estimate remains

fallible but still it is and has always been the goal of error analysis to provide error estimates as

realistic as possible. To use the statistical conception of ‘error’ and conceding the fallibility of its

estimated value, it is not necessary to know the true value. It is only necessary to know the chief325

mechanisms which can make the measured value deviate from the true value and to have estimates

available on the uncertainties of the input values to these mechanisms.

Some GUM08
::::::::::
GUM-2008 endorsers (e.g., Kacker et al., 2007) try to draw a borderline between

error analysis and uncertainty assessment in a way that they associate error analysis with frequentist

statistics while uncertainty is placed in the context of Bayesian statistics. Frequentist statistics, we330

understand, is a concept where the term ‘probability’ is defined via the limit of frequencies for
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a sample size approaching infinity. This definition is untenable
:::::::::
challenged because it involves a

circularity: It is based on the large number theorem, according to which
::::::
(strong

:::::::
version) a frequency

distribution will almost certainly converge towards its limit. This limit is then associated with the

probability. ‘Almost certainly’ means ‘with probability 1’. The circularity is given by the fact that335

the definiendum appears in the definiens (See, e.g., Stegmüller, 1973, pp. 27).
::::
Also

:::
the

::::
weak

:::::::
version

::
of

:::
the

::::
large

:::::::
number

:::::::
theorem

::::::::
involves

:::
the

::::::
concept

:::
of

:::::::::
probability

::::
and

::::
thus

:::::
poses

:
a
::::::
similar

::::::::
problem

::
to

:::
the

::::::::
definition

:::
of

:::
the

::::
term

::::::::::::
‘probability’.

:
We concede that many estimators in error estimation

rely on frequency distributions. It is, however, a serious misconception to conclude from this that

error analysis is based on a frequentist definition of ‘probability’. This is simply a non sequitur.340

Frequency-based estimators are consistent with any of the established definitions of probability, and

their use does not allow any conclusion on
:::::
about the definition of ‘probability’ in use.

3 The definition of the term ‘uncertainty’

According to GUM08, p.2, the uncertainty of a measurement is defined as “a parameter, associated

with the result of a measurement, that characterizes the dispersion of the values that could reasonably345

be attributed to the measurand”. GUM08 claims that this context does not make
:::
The

::::::::::
conceptual

:::::::::
differences

:::::::
between

:::::
error

:::::::
analysis

::::
and

::::::::::
uncertainty

:::::::
analysis

:::::
seem

::
to

:::::
come

:::::
down

:::
to

:::
the

::::::::
different

:::::::
relations

:::::::
between

:::
the

:::::::::
measured

:::
and

::::
the

:::
true

:::::
value

:::
of

:::
the

::::::::::
measurand.

::
In

::::::::::
GUM-2008

:::
(p.

::
3
:::
and

:::
p.

::
5),

:::
the

:::::
claim

::
is

:::::
made

::::
that

:::
the

:::::::::
uncertainty

:::::::
concept

:::
can

:::
be

::::::::
construed

:::::::
without reference to the ‘true ’

value which is unknown anyway
::::::::
unknown

:::
and

::::::::::
unknowable

::::
true

::::
value

:::::
while

:::
the

::::
error

:::::::
concept

::::::
cannot350

::::::::::
(GUM-2008,

:::::
p.3), and that the uncertainty concept is more adequate because there can always exist

unknown error sources which entail that an error budget can never be guaranteed to be complete

(GUM08
:::::::::
GUM-2008 p. viii). It is stated that the uncertainty concept is not inconsistent with the error

concept [GUM08
::::::::::
GUM-2008 p. 2/3]. There are, however, certain inconsistencies and shortcomings,

which are discussed in the following.355

One of the major purposes of making scientific observations, besides triggering ideas on possi-

ble relations between quantities, is to test predictions based on theories on the real world (Popper,

1935). To decide if an observation corroborates or refutes a hypothesis, it is necessary to have an

estimate how well the observation represents the true state, because it must be decided how well any

discrepancy between the prediction and the observation can be explained by the observational error360

(e.g., Mayo, 1996). Any concept of uncertainty which
:::
that

:
is not related to the true state cannot serve

this purpose.

On page 3, GUM08
:::::::::
GUM-2008

:
says that the attribute ‘true’ is intentionally not used within the

uncertainty concept because truth is not knowable. In GUM08
:::::::::
GUM-2008, p. 59 it is claimed that

the uncertainty concept “uncouple the often confusing connection between uncertainty and the un-365

knowable quantities “true” value and “error”. The term ‘measurand’ in their definition, however,
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is defined as the quantity intended to be measured (Joint Committee for Guides in Metrology

(JCGM), 2009)(henceforth abbreviated GUM09); GUM08;
::::::::::

GUM-2008, (p.32) says basically the

same; GUM09
:::::::::
GUM-2009, p. 20, says that the ‘quantity’ is the same as the ‘true quantity value’.

Inserting this definition in the GUM08
::::::::::
GUM-2008 definition of uncertainty yields that, through the370

back door, uncertainty still refers to the true value. Thus it is not clear what the difference between

the traditional concept of error analysis and the uncertainty concept is. Further, it is stated that sys-

tematic effects can contribute to the uncertainty. GUM08
:::::::::
GUM-2008

:
falls short of clarifying how

a systematic effect be understood other than a systematic deviation between the measurement and

the true value , the concept GUM08
:::
that

:::
the

::::::
concept

::::::::::
GUM-2008

:
apparently tries to avoid. In order375

to justify the attribution of an uncertainty distribution to the systematic effects without relying on

frequentist statistics, they invoke the concept of subjective probability. With this it becomes possible

to assign an uncertainty distribution to the combined random and systematic uncertainty but still it

is not clear how the systematic effect is defined without reference to the unknown truth.

Subjective probability reflects the personal degree of belief (GUM08
:::::::::
GUM-2008, p. 39). Thus,380

a knowledge-dependent concept of probability is used in GUM08. As discussed in the previous

paragraph, this
::::::::::
GUM-2008.

::::
This

:
approach has been chosen to allow the treatment of systematic

errors as dispersions, although the systematic error does not vary and cannot thus be characterized

by a distribution in a frequentist sense (GUM08
:::::::::
GUM-2008

:
p. 60). If we construe ‘estimated error’

and ‘estimated value’ as parameters of a distribution assigning to each possible value the probability385

(in a Bayesian context) or the likelihood (in a maximum likelihood context5) that it is the true value,

no knowledge of the true value is required. This is because, by definition, the subjective probability

distribution merely represents the knowledge of the person generating it. In the context of subjective

probability it is not clear why the true error or the true value should be needed to generate an error

distribution. The values the rational agent believes
:::::
GUM

:::
the

::::
error

:::::::
concept

::
is

::::::::
discarded

:::::::
because

:::
the390

::::::::
capability

::
of

::::::::::
conducting

::
an

:::::
error

:::::::
estimate

::::::::
allegedly

::::::::
depends

::
on

:::
the

::::::::::
knowledge

::
of

:::
the

::::
true

::::::
value.

::::::::
However,

::::
once

::::::
having

:::::::
invoked

:::
the

::::::
concept

:::
of

::::::::
subjective

::::::::::
probability,

::
no

::::::::
objective

:::::::::
knowledge

:::
of

:::
the

::::::::::
unknowable

:::
true

:::::
value

::
is
:::::::
needed

:::
any

::::::
longer.

::::
The

::::::::::
subjectivist

:::
can

:::::
work

::::
with

:::
the

:::::
value

::::
they

::::::
beliefs

to be trueare sufficient in this case, because the error distribution does not tell us anything about the

truth anyway but only about the agent’s believe of what truth is . .
:::::
This

:::::
solves

:::
the

::::::
alleged

::::::::
problem395

::
of

:::
the

::::
error

:::::::
concept,

:::::::
namely,

:::
that

:::
the

::::
true

:::::
value

::
is

::::::::
unknown.

:

There is nothing wrong with the subjectivist concept of probability, nor do we attack the possibility

to combine random and systematic errors in a single distribution. This concept, however, makes the

knowledge of the true value and the true error unnecessary, and still the estimated error can be

conceived as a statistical estimate of the absolute difference between the measured value and the400

true value. We consider it untenable and inconsistent to refer to the concept of subjective probability

5see Section ??
::

3.2 for a deeper discussion of this issue.

12



when it comes in handy and to deny it when it would solve the conflict between the error and the

uncertainty concepts.

Our skepticism about the possibility of dispensing with the concept of the true value is shared by,

e.g., Ehrlich (2014), Grégis (2015), and Mari and Giordani (2014). Note that in the International Vo-405

cabulary of Metrology (known as VIM) (Joint Committee for Guides in Metrology (JCGM), 2012),

although also issued by the JCGM
:
, the concept and definition of the true value are explicitly retained.

The use of the term ‘uncertainty’ in GUM08 seems inconsistent: The general GUM08 concept

seems to be that the ‘error’ has to include all error sources and thus cannot be known; ‘uncertainty’

is weaker, it is only an estimate of quantifiable errors, excluding the unknown components. This410

view is supported by the following quotation (GUM08, p. viii) “It is now widely recognized that,

when all of the known or suspected components of error have been evaluated and the appropriate

corrections have been applied, there still remains an uncertainty about the correctness of the stated

result, that is, a doubt about how well the result of the measurement represents the value of the

quantity being measured.” It is not fully clear what this means. One possible reading is that they415

use the term ‘error’ in the redefined sense, viz., as a quantity which measures the actual deviation

from the true value. Then this statement would be a mere truism, just saying that after all correction

and calibration activities there is still a need for error (in the error concept terminology) estimation.

The only other possible reading is that they want to say that, since due to unknown (unrecognized

and/or recognized but not quantified6) error sources, error estimation will always be incomplete420

and there remains an additional uncertainty not covered by the error estimation. This often is very

true but the use of the term ‘uncertainty’ would then be inconsistent in their document, because

here the connotation of ‘uncertainty’ is the unknown (unquantified or even unrecognized) part of

the error, which by definition cannot be assessed, while in the main part of their document, the

connotation of ‘uncertainty’ seems to be a quantified statistical estimate. In summary, it is not clear425

if the ’uncertainty’ includes the unknown error terms or not.

In GUM08,
::::::::::
GUM-2008,

:
p. 2/3 it is claimed that the concept of uncertainty “is not inconsistent

with other concepts of uncertainty of measurement, such as a measure of the possible error in the

estimated value of the measurand as provided by the result of a measurement [or] an estimate charac-

terizing the range of values within which the true value of the measurand lies6 (VIM:1984 definition430

3.09). Although these two traditional concepts are valid as ideals, they focus on unknowable quanti-

ties: the “error” of the result of a measurement and the “true value” of the measurand (in contrast to

the estimated value), respectively. Nevertheless, whichever concept of uncertainty is adopted, an un-

certainty component is always evaluated using the same data and related information...”
:::::::::
(emphases

::
in

::
the

::::::::
original). It remains unclear how the concepts can, on the one hand, be consistent, while, on the435

other hand, it is claimed that the error approach and the uncertainty approach are actually conceptu-

6Rigorously speaking, within the concept of subjective probability recognized but unquantified uncertainties should not

exist.
6It is not clear how this can be achieved without explicit consideration of the Bayes theorem.
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ally different and not only with respect to terminology. In GUM08, p.5 it reads “In this Guide, great

care is taken to distinguish between the terms “error” and “uncertainty”. They are not synonyms, but

represent completely different concepts; they should not be confused with one another or misused”

Since both concepts, however, are consistent, it is not clear in what the difference of the concepts440

consists.

Again, we come back to Kacker et al. (2007) who claim that error estimation and uncertainty

analysis are best distinguished in the sense that the former relies on frequentist statistics while the

latter is founded on Bayesian statistics. Here the following remarks are in order: (1) Many of the

methods presented in GUM08, including their ‘Type A evaluation (of uncertainty)’, which is the445

‘method of evaluation of uncertainty by the statistical analysis of series of observations’ are from the

frequentist toolbox. (2) Kacker et al. (2007) endorse Monte Carlo methods to estimate uncertainty.

Monte Carlo uncertainty estimation, however, is in its heart a frequentist method, because it estimates

the uncertainty from the frequency distribution of the Monte Carlo samples. And (3) it is astonishing

why GUM08, if representing a Bayesian concept, does not in the first place require to apply the450

Bayes theorem to convert the likelihood distributions into a posteriori probability distributions.

The methodology proposed in GUM is uncertainty propagation. This is a mere forward (or direct)

problem: given that xtrue is the true value, and a measurement procedure with some error distribution,

it returns a probability distribution for values xmeasured that might be measured. However, GUM08’s

definition of uncertainty “parameter, associated with the result of a measurement, that characterizes455

the dispersion of the values that could reasonably be attributed to the measurand” (emphasis added

by us), seems associated with another meaning: given a measured value xmeasured (“result of a

measurement”) and a measurement procedure with some error distribution, what is the probability

distribution xtrue (“values that could reasonably be attributed to the measurand”). This is an inverse

problem, for which Bayes theorem is applicable rather than uncertainty propagation.460

Interestingly enough, early documents of the history of GUM (Kaarls, 1980; Bureau International

des Poids et Mésures) provide evidence that the terminological turn from ‘error’ to ‘uncertainty’

was triggered only by linguistic arguments, based upon the fact that in common language the term

‘uncertainty’ is often associated with “doubt, vagueness, indeterminacy, ignorance, imperfect knowl-

edge”. These early documents provide no evidence that ‘error’ and ‘uncertainty’ were conceived as465

two different technical terms connotating
::::::::
connoting different concepts. Any re-interpretation of the

terms ‘error’ and ‘uncertainty’ as frequentist versus Bayesian terms or operational versus idealistic

concepts came later.

In summary, it appears that the uncertainty concept is not essentially different from the error

concept. We do, however, not claim that the terms ‘error’ and ‘uncertainty’ are fully equivalent;470

even in pre-GUM language there might be some subtle linguistic differences.We perfectly know our

measurement (even if it is erroneous) and are ignorant with respect to and have imperfect knowledge

only about the true value. This suggests that the uncertainty is an attribute of the true value while
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the error is associated with a measurement or an estimate. Because of the measurement error there

is an uncertainty as to what the true value is. The uncertainty thus describes the degree of ignorance475

about the true value while the estimated error describes to which degree the measurement is thought

to deviate from the true value. In this use of language both terms still relate to the same concept. This

notion seems, as far as we can judge, to be consistent with the language widely used in the pre-GUM

literature, but this issue deserves a more thorough linguistic assessment that is beyond the scope of

this paper. The introduction of the term ‘uncertainty of measurement’ seems to us a mere linguistic480

revision of an established terminology which does not connect to any further insights.

In summary, we have to distinguish between two questions; first, whether the terms ‘error’ and

‘uncertainty’ have the same connotation, and second, whether the underlying concepts are indeed

different. The first question is
:::
The

:::::::
answer

::
to

:::
the

::::::::::::
terminological

:::::::::
differences

::::
was

:::::
found

::
to

::
be

:
contin-

gent upon the underlying stipulation, and
:::
that

:
any statement about their equivalence or difference485

without reference to a definition is a futile pseudo-statement. The answer to the second question

:::::::
question

::
of

:::::::::
conceptual

:::::::::
differences

:
is less trivial and deserves some

:::::
deeper

:
scientific discussion. The

main question still seems to be how the true value, the error or uncertainty, and the measured value

are related with each other. This question will be addressed in the following sections
::::::
section.

3 The unknown true value of the measurand490

The alleged key problem of the error concept is, in our reading of GUM08
:::::::::
GUM-2008, that the value

of the true value of the measurand is not known, and that this true value must appear neither in the

definition of any term nor in the recipes to estimate it. To better understand this key problem, we

decompose it into four sub-problems.

1. Quantities of which
:::::
whose

:
the value cannot

::
be

:
determined must not appear in definitions.495

2. The error distribution must not be conceived as a probability density distribution of a value to

be the true value.

3. Nonlinearity issues pose problems on error estimation
:
if
:::
the

::::
true

:::::
value

::
is

:::
not

::::::
known,

::
at
:::::

least

::
in

::::::::::::
approximation.

4. On
:::
One

:
can never know that the uncertainty budget is complete because it can always happen500

that a certain source of uncertainty has been overlooked; thus, the full error estimate is an

unachievable ideal
:::
and

::::
thus

:::
the

::::::::
estimated

:::::
error

::::
does

:::
not

::::::
provide

::
a
:::
link

::::::::
between

:::
the

::::::::
measured

::::
value

::::
and

:::
the

:::
true

:::::
value.

Some of these sub-problems are in some way formulated in GUM08
:::::::::
GUM-2008

:
but it is not exactly

specified there why the fact that the true value of the measurand is unknowable poses a problem505

to the error scientist . Others have been formulated by us, serving, as arguments of the
:::::::
scientist
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:::::::
applying

:::::::::
traditional

:::::
error

:::::::::
estimation.

::::
We

::::
have

::::::::::
formulated

:::::
others

:::
as Devil’s advocate,

:::::::::
advocates,

:::::
which

:::
are

::::::::
intended

::
to

:::::
serve as working hypotheses in order to moot

::
to

::::::::
critically

::::::
discuss

:
the error

and uncertainty concepts in the context of indirect measurements. In the following we will scrutinize

these theses one after the other.510

3.1 The operational definition

GUM08
:::::::::
GUM-2008

:
tries to avoid to use the true value of the measurand in the definition of the term

‘uncertainty’. This strategy is employed because the true value of the measurand is “not knowable”

(GUM08
::::::::::
GUM-2008, p. 3). It may be found puzzling why it should be necessary to know the value

of a quantity to use it in the definition of a term. The weight of Thomas Bayes or the body height515

of David Hume at a certain time
:::::
height

::
of

:::
the

::::::::
Colossus

::
of

::::::
Rhodes

:::
or

:::
the

:::::::::
Lighthouse

::
of

::::::::::
Alexandria

are well-defined quantities although we have no chance to measure them today7. Also we might

have a clear physical conception of what the temperature in the center of the sun might be although

it may not be practicable to put a thermometer there, and we even might not be able to figure out

any other, more sophisticated, method to assign an accurate observation-based value to this quantity.520

Intuitively, we conceive the definition of a quantity and the assignment of the value to a quantity as

quite different things.

In GUM08
:::::::::
GUM-2008

:
it is claimed that the definition of ‘uncertainty’ is an operational one

(p. 2). An operational definition defines a quantity by stipulating a procedure by which a value

is assigned to this quantity. The concept of operational definitions was suggested by Bridgeman525

(1927) in order to give terms in science a clear-cut meaning. This operationalism, at least a narrow

conception of it, has its own problems, has received considerable criticism and has led to deep

philosophical discussions (see, e.g., Chang, 2019). To summarize these is beyond the scope of this

paper and for here it must suffice to mention that there are alternatives, such as theoretical definitions

or reduction of the definiendum to previously defined terms.530

GUM08
:::::::::
GUM-2008’s claim that the uncertainty concept is based on an operational definition leads

to two further inconsistencies. First, no unambiguous operation is stipulated on which the definition

can be based, but multiple operations are proposed, which might give different uncertainty estimates.

Thus, the definition is void. Our critical attitude with respect to operationalism in the context of GUM

:::::::::
GUM-2008

:
is shared, e.g., by MARI14

:::::::::::::::::::::
Mari and Giordani (2014).535

The other problem with the operational definition is the following: In GUM08
:::::::::
GUM-2008, pp

2-3, it is claimed that the uncertainty concept is not inconsistent with the error concept, and a few

lines later it reads “an uncertainty component is always evaluated using the same data and related

information.”
:
”
:::::::::
(emphasis

::
in

:::
the

::::::::
original). The latter suggests that within the error concept the same

operations are used as within the uncertainty concept. Since the operations define the term and the540

related concept, the uncertainty concept and the error concept must be the same.

7
::
We

:::
owe

:::
this

:::::::
illustrative

::::::
example

:
to
:::::::::::
Possolo (2021).
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In summary, the fact that the true value of the measurand is unknowable is a problem for the

definition of the term ‘error’ and its statistical estimates only if we commit ourselves to the doctrine

of that only operational definitions must be used. If we abandon this dogma, there is nothing wrong

with conceiving the estimated error as a statistical estimate between the measured or estimated and545

the true value, and the problem is restricted to the assignment of a value to this quantity. Related

issues are investigated in the following.

3.2 Likelihood, probability, and the base rate fallacy
::::::::::::
Measurements

:::
as

::::::
inverse

:::::::::
processes

The argument discussed in the following is not put forward in GUM08, probably because there

indirect measurementsare not in the focus.However, since we do focus on indirect measurements,550

and since this argument is of particular importance in this context, we present and discuss this

argument
::::
Many

::::::::::
conceptions

:::
of

:::::::::::
measurement

::::::
models

:::::
exist,

::::::
which

:::::
relate

:::
the

::::::::
measured

:::::
value

:::
to

:::
the

:::
true

:::::
value,

::::
and

:::::::::
depending

:::
on

:::
the

:::::::
context,

:::
one

:::
can

:::
be

:::::
more

:::::::
adequate

::::
than

:::::::
another

::::::::::::::
(Possolo, 2015).

:::::::::
GUM-2008

:::::::::::
recommends

:
a
::::::
model

:::
that

:::::::::
conceives

::
the

::::::::
estimate

::
of

:::
the

:::
true

:::::
value

::
of

:::
the

:::::::::
measurand

::
as

::
a

:::::::
function

::
of

:::
the

:::::::::
measured

:::::
value.

:::::
Since

::
in
:::::::

remote
::::::
sensing

:::
of

:::
the

::::::::::
atmosphere

:::::::
multiple

:::::::::::
atmospheric555

::::
states

::::
can

:::::
cause

::::
the

:::::
same

:::
set

:::
of

::::::::::::
measurements,

::::
and

::::
the

:::::::::::
measurement

::::::::
function

::::
thus

::::::
would

:::
be

:::::::::
ambiguous,

:::
we

:::::
prefer

::
a
:::::::
different

:::::::
concept,

::
as
::::::::
outlined

::
in

:::
the

::::::::
following.

:

:::
The

::::::
causal

::::
error

::::::
points

::::
from

::::
the

:::
true

:::::
value

:::
to

:::
the

::::::::
measured

::::::
signal.

:::::
Thus,

:::
the

:::::::::
estimation

:::
of

:::
the

:::
true

:::::
value

:::::
from

:
a
::::::::
measured

:::::
value

::::
can

::
be

:::::::::
conceived

::
as

:::
an

::::::
inverse

:::::::
process.

:::
An

::::::::
argument

:::::
along

::::
this

:::
line

::
of

::::::::
thought,

:::
but

::
in
::

a
:::::::
context

:::::
wider

::::
than

::::
that

::
of

:::::::
remote

:::::::
sensing

::
of

:::
the

:::::::::::
atmosphere,

:::
has

:::::
been560

:::
put

::::::
forward

:::
by

:::::::::::::::::::::::
Possolo and Toman (2007).

:::
The

:::::::
inverse

:::::::::::
characteristic

::
of

:::
the

:::::::::
estimation

::::::::
problem

::
is

:::::::::
particularly

::::
true

:::
for

::::::
indirect

:::::::::::::
measurements,

:::
e.g.,

::::::
remote

:::::::
sensing,

:::
but

:::::
direct

::::::::::::
measurements

::::
can

:::::
easily

::
be

::::::::
conceived

:::
as

::::::
indirect

:::::::::::::
measurements.

:::::
When

::::::
reading

:::
the

::::::::::::
thermometer,

::
we

:::::::
actually

::::
read

:::
the

::::::
length

::
of

:::
the

:::::::
mercury

::::::
column

::::
(the

::::::::
measured

::::::
value),

:::::
apply

::::::::
inversely

:::
the

:::
law

:::
of

::::::
thermal

:::::::::
expansion,

::::
and

:::
get

::
an

:::::::
estimate

::
of
::::

the
::::::::::
temperature.

::
In
::::::

trivial
:::::
cases,

:::::
when

::
a

:::::::::::
measurement

::::::
device

:::
has

::
a

::::::::
calibrated

:::::
scale565

::::
from

:::::
which

:::
the

:::::
target

:::::::
quantity

::::
can

::
be

:::::::
directly

::::
read,

:::
the

::::::
inverse

:::::::
process

:
is
:::::::::
effectively

:::::::::::
pretabulated

::
in

::
the

:::::
scale.

:::::
Only

::
in

:::::
these

::::
cases

:::
the

::::::::
measured

:::::
value

::::
and

:::
the

:::::::
estimate

::
of

:::
the

:::::::::
measurand

:::
are

:::
the

::::
same.

Counterintuitively, in general, the error bar or the uncertainty estimate do not tell the probability

density of the true value with respect to the measured value , unless the prior probability
::::
With

::
a

::::::
transfer

:::::::
function

::
F
:::::::::
available,

:::
that

::::::::::::
approximately

::::::::
describes

:::
the

:::::::
process

:::
that

::::
links

:::
the

::::
true

:::::
value

:
x
:::

of570

::::::
interest

::
to

:::
the

::::::::
measured

:::::
value,

:::
the

:::::::
expected

::::::::
measured

::::::
signal

::::::::::::::
yexpected = F (x)

:::
can

:::
be

::::::::
estimated.

::::
The

:::::::::
distribution

::
of
::::

the
:::::::::::
measurement

::::
error

:::::::
around

:::::::
yexpected::::::::

describes
::::

the
:::::::::
probability

:
of the measurand

has been considered in the retrieval
:::
any

:::::
value

:
y
::
to
:::
be

::::::::
measured.

:

:::::::::
Conversely,

:::
for

::
a
:::::
given

:::::::::::
measurement

:::::::::
ymeasured,

:::
the

::::::::
inversion

::
of

::::
the

::::::
transfer

::::::::
function

:::::
allows

:::
to

:::::::
estimate

:::
the

::::
true

:::::
value

::
x.

:::
If

:
a
:::::::

genuine
:::::::::

inversion
::
of

:::
the

:::::::
transfer

::::::::
function

::
is

:::
not

::::::::
possible

:::
due

:::
to575

::::::::::
ill-posedness

::
of
:::
the

::::::
inverse

:::::::
problem

::
in
:::
the

:::::
sense

::
of

:::::::::::::::
Hadamard (1902),

:::::::::::
workarounds

:::
like

::::
least

:::::::
squares

:::::::
methods

::
or

::::::::::
regularized

::::::::
inversion

::::::::
schemes

:::
are

::::::::
available

::::
(see,

::::
e.g.,

::::::::::::::::::::::::
von Clarmann et al. 2020 for

::
a
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:::::::
summary

:::
of

::::
some

::::::::
methods

::
of

::::::::
particular

::::::::
relevance

:::
for

::::::
remote

::::::::
sensing).

:::::::::::::::
Counterintuitively,

::::::::
however,

::
in

:::::::
general,

::::::
neither

:::
the

:::::::
estimate

::::
will

:::
be

:::
the

::::
most

::::::::
probable

:::::
value

::
of

::
x,

::::
nor

:::
will

::::
the

:::::::
mapping

:::
of

:::
the

:::::::::::
measurement

::::
error

::::::::::
distribution

::::
into

:::
the

:::::::
x-space

:::::
yield

:::
the

::::::::::
probability

:::::::::
distribution

:::
of

:::
any

:::::
value

:::
to580

::
be

:::
the

::::
true

:::::
value.

:::::
This

:::::
holds

::::
even

::
if
:::
the

:::::
error

::::::::::
distribution

::
is

::::::::
extended

::
to

:::::::
include

::::
also

:::::::::
systematic

::::::
effects,

:::
and

::
if

::
all

::::
error

::::::::::
correlations

:::
are

:::::::::
adequately

:::::
taken

:::
into

:::::::
account

::
in

:::
the

::::
case

::
of

:::::::::::::::
multi-dimensional

:::::::::::
measurements. It is the theorem of Bayes (1763) which makes the difference. The

:::
only

:::::::
inverse

::::::
scheme

:::::
where

::::
such

::
a
::::::::::
probabilistic

::::::::::::
interpretation

:
is
:::::
valid

::
in

:::
the

:::::::
x-space,

::
is

:::
the

::::::::
maximum

::
a

::::::::
posteriori

::::::
method

:::::::::::::::
(Rodgers, 2000),

:::::
which

::::::::
employs

:
a
::::::::
Bayesian

::::::::
estimator.

:
585

:::
The

:
non-consideration of the Bayes theorem goes under the name of ‘base rate fallacy’. 50% of

people suffering Covid-19 have fever (Robert Koch Institut, 2020), but this does not imply that the

probability
::
is

::::
50% that a person suffering fever to have

:::
with

:::::
fever

:::
has Covid-19is 50%. To estimate

the latter probability requires knowledge of the percentage of people being infected with the Corona

virus, and the probability that a person suffers fever for any reason. In metrology the situation is590

quite analogous. If we define the true value to be x, the ideally measured value f(x) = yideal, and the

estimated measurement error in terms of the standard deviation σy , then the probability density of a

certain value y to be measured is given by a pdf with yideal mean and σy spread. This, however, does

not imply that, if we measure y with an uncertainty of σy , and propagate σy through the inversion

procedure to get the uncertainty of x̂, namely, σx, that the probability of some x being the true value595

of the measurand is given by the pdf with mean x̂ and σx spread. Again, it is the a priori probability

distribution8 which is missing. There are three ways out of
:::::::
possible

::::::::
solutions

::
to

:::::
cope

::::
with

:
this

problem. For now we will defer the problem of a possibly incomplete error budget to Section 3.4

and assume that the error buget is complete.

The first solution is to apply a Bayesian retrieval scheme . Indeed in many cases, the solution of the600

inverse problem F̃−1 employs
::::::
retrieval

:::::::
scheme

:::
that

::
is
:::::
based

:::
on a Bayesian estimator. Examples are

found, e.g., in Rodgers (2000) or von Clarmann et al. (2020). On the supposition that the error budget

is complete, the interpretation of the error bar as the spread
::::::::
dispersion

:
of a distribution representing

the probability density that a certain value is the true value is correct.

The second solution is the application of the principle of indifference. Often
:::
The

:::::::
problem

::::
with

::::
this605

:::::::
approach

::
is
::::
that

:::::
often there is no firm a priori knowledge on the value of the measurand available.

Gauss (1809) solves this problem by

:::
The

::::::
second

::::::::
solution

::
is

:::
the

:
application of the indifference principle .

:::::::
principle

:::
of

:::::::::::
indifference,

::
as

:::::::
applied,

::::
e.g.,

::
by

::::::::::::
Gauss (1809).

:
That is, the same a priori probability is assigned to all possible

values of the measurand. With this, e.g., in the application to a linear inverse problem and normal610

distributions of uncertainties, the Bayesian solution collapses back to a simple unconstrained least

squares solution. Due to the assumption of the equidistribution of the a priori probabilities,
:

the

estimated uncertainty of the estimate can still be interpreted as the width of the probability density

8or the background frequency distribution.
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function of the true value of the measurand. This concept of ‘non-informative a priori’, however,

has its own problems. Even if we ignore some more trivial problems for the moment, e.g., that615

some quantities cannot, by definition, take negative values, this concept can lead to absurdities:

If we assume that we have no knowledge on, say, the volume density of small-particle aerosols

in the atmosphere, and describe this missing knowledge by an equidistribution of probabilities, this

would correspond to a non-equidistribution of the surface densities, due to the non-linear relationship

between surface and volume. It strikes us as absurd that information can be generated just by such a620

simple transformation from one domain into another. The principle of indifference, upon which the

concept of non-informative priors is built, is critically
::
but

::::
still

::::::::
favorably

:
discussed, e.g., by Keynes

(1921, Chapter IV). The concept of non-informative priors is still criticized even in the Bayesian

community (e.g. D’Agostini, 2003).

The third solution is the likelihood interpretation, which has been introduced by Fisher (1922).625

The likelihood that the true value is x if the measured signal is y equals the probability
::::::
density

that y is measured if the true value is x. No prior information is considered. Solution of the inverse

problem F̃−1 by maximizing the likelihood of x does not provide the most probable estimate of

x, and accordingly the error bar of the solution must not be interpreted as the width of a probabil-

ity distribution of the true value. Application to a linear inverse problem and normal distributions of630

uncertainties renders formally the same estimator as the Gaussian least squares solution, but its inter-

pretation has changed. It can no longer be interpreted as the mean of a pdf
::::::::
maximum

::
of

:
a
::::::::::
probability

::::::
density

:::::::
function

:
of the true value. The distribution with mean x̂ and the standard deviation σx can

still be interpreted as a likelihood distribution of the true value around the estimate. If need be, in

some cases, i.e., if the inverse problem is well-posed enough to allow an unconstrained solution, the635

maximum likelihood estimate can be, post factum, transformed into a Bayesian estimate by applica-

tion of the Bayes theorem. Certainly one might urge the objection that the true a priori distribution

is never known and that this transformation is thus an idealized concept

:::
We

:::::::
concede

::::
that

:::
the

::::::::::::
interpretation

:::
of

::
a

::::::::
measured

:::::
value

:::
as

:::
the

:::::
most

::::::::
probable

::::
true

:::::
value

:::
is

::::::::::
problematic.

:::::
This

::::::
implies

::::
that

:::::
also

:::
the

::::::::::::
interpretation

:::
of

:::
the

:::::
error

::::::::
estimate

::
as

::::
the

:::::
width

:::
of

::
a640

:::::::::
distribution

:::::::
around

:::
the

::::
true

::::::
value

::
is

::::
not

::::::::
generally

::::::
valid.

:::::
These

:::::::::
problems

:::::
could

::::::
justify

::::::
some

::::::::
reluctance

:::::
with

::::::
regard

::
to
::::

the
:::::::
concept

:::
of

:::
the

:::::
true

:::::
value. This argumentis only applicable by

the frequentist statistician. The uncertainty statisticians,
:::::::::

involving
:::
the

:::::::::
base-rate

::::::
fallacy, how-

ever, have already committed themselves to the concept of subjective probability because

otherwise the aggregarion of random uncertainties and systematic effects into one combined645

uncertaintydistribution would not be possible8. For the uncertainty statistician the a priori

distribution represents the knowledge of a rational agent, as opposed to the true underlying frequency

distribution. Thus this counter-argument is not valid.
:
is

:::
not

:::::::
invoked

::
in

::::::::::
GUM-2008.

:

8Willink and White (2012) might contradict here and make the claim that even systematic errors can be conceived as

drawn from some population of errors, consistent with the frequentist view.
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In summary
::::
Some

::::::::::::
interpretations

:::
of

::::::::::
GUM-2008

:::::::::::::::::::::::::::::::::::::::
(e.g. White, 2016; Kacker et al., 2007) associate

:
it
::::
with

:
a
::::::::
Bayesian

:::::::::
conception

::
of

:::::::::
probability

::::
and

::::
seem

::
to

:::::::
suggest

:::
that

::::
error

:::::::::
estimation

:::
and

::::::::::
uncertainty650

::::::
analysis

:::
are

::::
best

::::::::::::
distinguished

::
in

:::
the

:::::
sense

:::
that

:::
the

::::::
former

:::::
relies

:::
on

:::::::::
frequentist

::::::::
statistics

:::::
while

:::
the

::::
latter

::
is
::::::::

founded
::
on

::::::::
Bayesian

:::::::::
statistics.

::::
Thus

::::
one

::::::
might

::::::
suspect

::::
that

:::::::::::
‘uncertainty’

::
is
::::::
simply

::::
the

:::::::
Bayesian

:::::::::::
replacement

::
of

:::::
error.

::::
Here

:::
the

::::::::
following

:::::::
remarks

:::
are

::
in

:::::
order:

:

::
(1)

::::::
Many

:::
of

:::
the

::::::::
methods

::::::::
presented

:::
in

:::::::::::
GUM-2008,

::::::::
including

:::::
their

::::::
‘Type

::
A

:::::::::
evaluation

::::
(of

:::::::::::
uncertainty)’,

:::::
which

::
is
:::
the

::::::::
‘method

::
of

:::::::::
evaluation

::
of

:::::::::
uncertainty

:::
by

:::
the

::::::::
statistical

:::::::
analysis

:::
of

:::::
series655

::
of

:::::::::::
observations’

:::
are

::::
from

::::
the

:::::::::
frequentist

:::::::
toolbox.

:::::::::::::::
Gleser (1998) find

::::
that

:::
the

:::::::
methods

:::::::::
suggested

::
in

:::::
GUM

:::
are

::::::
neither

::::
fully

:::::::::
frequentist

::::
nor

::::
fully

:::::::::
Bayesian.

::::::
Further, it is true that the error bar does not

necessarily represent the width of a distribution representing the probability density that a certain

value is the true value of the measurement. In the case of a Bayesian estimate
::
not

:::::
quite

::::
clear

::::::
which

::
of

::::::
Bayes’

:::::::
methods

::::
and

::::::::
principles

:
a
:::::::
scientist

::::
has

::
to

:::
use

::
to

::
be

::
a
::::::::
Bayesian

::::::::::::::::::::::
(c.f., e.g., Fienberg, 2006),660

::::
since

:::
the

::::::
Bayes

:::::::
theorem

::
is
::::::::
accepted

::::
also

:::
by

:::::::::::::
non-Bayesians,

:::
and

:::
the

::::
use

::
of

:::::::::
maximum

:::::::::
likelihood

:::::::
methods,

:::::::::
introduced

:::
by

:::
the

::::::
almost

::::::::
‘militant’

:::::::::
frequentist

:::
R.

::
A.

::::::::::::::::
Fisher (1922) does,

::
as

:::
far

::
as

:::
we

::::
can

:::::
judge,

:::
not

:::::::
commit

:::
one

::
to

:::
use

::
a

:::::::::
frequentist

::::::::
definition

::
of

:::
the

::::
term

:::::::::::
‘probability’.

::::
The

::::::::::
GUM-2008

::::
does

:::
not

::::::
provide

::
a
:::::
clear

::::::::
reference

::
to

::
a

:::::::::
specifically

:::::::::
Bayesian

:::::::::
uncertainty

:::::::
analysis

::::::::
method.

::::::::::
GUM-2008

:::::
makes

::::::::
reference

:::
to

:::::::::::::::
Jeffreys (1983) as

::
an

::::::::
authority

:::
of

:::
the

::::::::::::::::::::
degree-of-belief-concept

:::
of

::::::::::
probability.665

::::::
Jeffreys, however, which is quite frequently chosen in remote sensing, it can beconceived this way.

And in
:::::
offers

:::
no

:::
clue

:::
as

::
to

:::::
what

:::
the

::::::::
difference

::::::::
between

:::::
‘error’

::::
and

:::::::::::
‘uncertainty’

:::::
might

:::
be.

:::
In the

context of maximum likelihood estimates,
:::::::::::
measurements

::
or

::::::::::::
observations,

::::::
Jeffreys

:::::::
always

::::
uses

:::
the

::::
term

::::::
‘error’

::::
(e.g.,

:::
op.

::::
cit.,

::
p.

::::
72),

::::
and

::::
often

:::
we

::::
find

:::::::::
statements

::::
like

::::
“the

::::::::
probable

::::
error

:
[
::
...]

::
is

:::
the

:::::::::
uncertainty

::::::
usually

:::::::
quoted”

::
(
::
op.

:::
cit.

:
,
::
p.

::::
72),

:::
“no

::::::::::
uncertainty

::::::
beyond

:::
the

::::::::
sampling

::::::
errors”

::
(
::
op.

:::
cit.

:
,670

::
p.

::::
389),

:::
or

:::::
“treat

:::
the

::::::
errors

::
as

:::::::::::
independent”

::
(
::
op.

:::
cit.

:
,
::
p.

:::::
443).

:::::
With

:::
the

::::::::
statement

::::
that

:::::
errors

::::
are

:::
not

:::::::
mistakes

::
(
::
op.

:::
cit.

:
,
::
p.

::::
13),

:::::::
Jeffreys

::::::::
explicitly

:::::::::
contradicts

:::
the

::::::
GUM

:::::::
pioneers

::::::::::::::::
(Kaarls, 1980) and

:::::::::
GUM-2008

:::::::::
endorsers

:::::::::::::::::::
Merchant et al. (2017).

::::
Also

:::::::::::::
Press (1989) is

:::::::::
referenced

::
by

::::::::::
GUM-2008

:::::
only

::
to

:::::
defend

:::
the

:::
use

:::
of

:
a
::::::::
subjective

:::::::
concept

::
of

:::::::::
probability

:::
but

:::
not

::
in

::
a

::::::
context

::::::
aiming

::
at

:::
the

::::::::::
clarification

::
of

:::
the

::::::
alleged

::::::::
difference

::::::::
between

:::::
‘error’

::::
and

:::::::::::
‘uncertainty’.

:
675

::
(2)

:::
If

:::
the

::::::::::
uncertainty

:::::::
concept

::::
was

:::::::
indeed

:::::::
founded

:::
on

::
a
::::::::

Bayesian
:::::::::::

framework,
::
it

::::::
would

:::
be

:::::::::
astonishing

::::
why

::
it
:::::
does

:::
not

::
in

:::
the

::::
first

:::::
place

:::::::
require

::
to

:::::
apply

::::
the

:::::
Bayes

:::::::
theorem

:::
to

::::::
convert

::::
the

::::::::
likelihood

:::::::::::
distributions

::::
into

::
a

::::::::
posteriori

::::::::::
probability

:::::::::::
distributions.

::::
The

:::::::::::
methodology

::::::::
proposed

:::
in

:::::::::
GUM-2008

::
is

::::::::::
uncertainty

::::::::::
propagation.

::::
This

::
is

:
a
:::::
mere

:::::::
forward

::
(or

::::::
direct)

::::::::
problem:

:::::
given

:::
that

::::
xtrue::

is

the estimated errorstill can be conceived as the width of a distribution representing the likelihood that680

a certain value is the true valueof the measurement
:
,
:::
and

::
a

:::::::::::
measurement

::::::::
procedure

::::
with

:::::
some

:::::
error

::::::::::
distribution,

:
it
::::::
returns

:
a
::::::::::
probability

:::::::::
distribution

:::
for

:::::
values

:::::::
xmeasured::::

that
:::::
might

::
be

:::::::::
measured.

::::::::
However,

:::::::::::
GUM-2008’s

::::::::
definition

::
of

::::::::::
uncertainty

:::::::::
“parameter,

:::::::::
associated

::::
with

:::
the

:::::
result

::
of

::
a

:::::::::::
measurement,

::::
that

::::::::::
characterizes

::::
the

:::::::::
dispersion

::
of

:::
the

::::::
values

::::
that

:::::
could

::::::::::
reasonably

::
be

:::::::::
attributed

::
to

:::
the

::::::::::
measurand

:
”

::::::::
(emphasis

:::::
added

:::
by

:::
us),

::::::
seems

::::::::
associated

::::
with

:::::::
another

::::::::
meaning:

:::::
given

:
a
::::::::
measured

:::::
value

:::::::
(“result

::
of685
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:
a
:::::::::::::
measurement”)

:::
and

:
a
:::::::::::
measurement

:::::::::
procedure

::::
with

:::::
some

::::
error

::::::::::
distribution,

:::::
what

:
is
:::
the

::::::::::
probability

::::::
density

::::::::::
distribution

::
of

:::
the

:::::::
“values

:::
that

:::::
could

::::::::::
reasonably

::
be

::::::::
attributed

:::
to

:::
the

::::::::::
measurand”

::
to

:::
be

:::
the

:::
true

::::
one.

::::
This

::
is

::
an

:::::::
inverse

:::::::
problem,

:::
for

::::::
which

:::::
Bayes

:::::::
theorem

::
is
:::::::::
applicable

:::::
rather

::::
than

::::::::::
uncertainty

::::::::::
propagation.

:

::
(3)

:::::::::::
Interestingly

::::::::
enough,

::::::::::::::::::::::
Willink and White (2012),

::::
who

:::
use

::::
the

::::
term

:::::::::::
‘uncertainty’

:::::
also

::
in

::
a690

:::::::::
frequentist

:::::::::
framework,

::::::
report

::::
that

:::
the

::::
turn

::
to

:::
the

::::
new

:::::::::::
terminology

::::::::
happened

:::::::
already

::
in

::::::::
1980/81,

:::
and

:::::
make

:
a
::::::
strong

::::
case

:::
that

::::::
various

::::::::
allegedly

::::::
purely

::::::::
Bayesian

:::::::
concepts

::
of

::::::::::
GUM-2008

:::
can

:::
be

:::::
given

:
a
::::
valid

:::::::::
frequentist

::::::::::::
interpretation. All these statements, however, are contingent upon the assumption

that the error or uncertainty budget is complete. This problem is deferred to Section 3.4.

:::::
Thus,

::
we

:::::
reject

:::
the

:::::::::
hypothesis

::::
that

:::::::::
uncertainty

:::::::
concept

::
as

:::::::::
presented

::
in

::::::::::
GUM-2008

:
is
::
a
::::::::
Bayesian695

:::::::
concept.

::::::::::
Bayesianism

:::::
does

:::
not

:::
help

::
to
::::::::::
understand

:::
the

::::::
claimed

::::::::::
differences

:::::::
between

:::
the

::::
error

:::::::
concept

:::
and

:::
the

:::::::::
uncertainty

::::::::
concept.

3.3 Nonlinearity issues

The uncertainty concept relies on the possibility of evaluating uncertainties caused by measure-

ment errors and “systematic effects” without knowledge of the true value. This is certainly granted700

for linear problems. The resulting uncertainty in x̂, namely σx, generated by a measurement error

statistically characterized by its standard deviation σy or by a systematic effect, e.g., a not exactly

known value of a constant bwill be the same for each x̂, and no specific relation between the estimate

x̂ and the true
::::
Here

:::
the

::::::::::
uncertainty

::::::::
estimates

::
do

::::
not

::::::
depend

:::
on

:::
the

:
value of the measurandx is

required. This is because in the linear case Gaussian error propagation holds,705

σ2
x,noise =

(
∂x

∂y

)2

σ2
y,noise,

and

σ2
x,b =

(
∂x

∂b

)2

σ2
b ,

or for vectorial quantities

Sx,noise =GSyG
T ,710

and

Sx,b =GbSbG
T
b ,

where Sx,noise, Sx,b and Sb are the covariance matrices and G and Gb the matrices of partial

derivatives ∂xn

∂ym
and ∂xn

∂bk
, respectivly8.

8For standard deviations and covariance matrices we use the notation suggested by von Clarmann et al. (2020) where the

first subscript indicates the domain to which the uncertainty or error estimate refers, and the optional second subscript the

source of te error.
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For nonlinear problems the situation is more complicated because Equations (??) to (??) are715

only valid
:::::::
Gaussian

::::
error

::::::::::
propagation

::
is
:::::
valid

::::
only in approximation. The error scientist can invoke

:::::
Within

:::
the

:::::::
concept

::
of
:::::

error
:::::::::::
propagation, the concept of moderate nonlinearity (Rodgers, 2000)

:::
can

::
be

:::::::
invoked. That is to say, x̂

:::
the

::::::::
estimated

:::::
value

::
of

::
the

::::::::::
measurand is assumed to be a reasonably good

approximation of x
::
the

:::::::::
measurand, and the partial derivatives needed

::
for

::::::::
Gaussian

:::::
error

:::::::::
estimation

are evaluated at x̂
:::
this

:::::::
estimate. If the error in b is small enough ensuring that the resulting x̂±σx is720

within
:::::::
resulting

::::
error

::::
bars

:::
are

:::::
small

::::::
enough

::
to

::::::
ensure

:::
that

:::
the

:::::
range

:::::::
covered

:::
by

:::
the

::::::
interval

:::::::
defined

::
by

:::
the

::::::::
estimated

:::::
value

::::
plus

:::::
minus

:::
the

:::::
error

:::
bar

::
is

:::::::
confined

::
to

:
the range where linear approximation

is justifiable, then σx is a
:::
the

::::
error

::::::::
estimates

::::
are,

:::::
while less-than-perfectbut far-better-than-useless

estimate of the corresponding error component in x
:
,
:::
still

:::
far

:::::
better

::::
than

::::::
useless.

The uncertainty scientist
::::::
endorser

:::
of

:::
the

:::::::::
uncertainty

:::::::
concept

:
has a problem if they want to stay725

consistent with their doctrine. Since knowledge of x
:::
the

:::
true

:::::
value

:
is denied, the approximation

x̂≈ x begs justification and it is not clear how Gaussian error estimation can be applied to systematic

effects
:::
the

::::::::::
propagation

::
of

:::::::::::
uncertainties,

:::::::
because

::
it

::
is

:::
not

::::
clear

:::
for

:::::
which

:::::
value

:::
of

::
the

::::::::::
measurand

:::
the

:::::::
required

:::::
partial

:::::::::
derivatives

:::::
shall

::
be

::::::::
evaluated.

On the face of it, Monte Carlo error estimation or other variants of ensemble-based sensitivity730

studies can serve as an alternative. These, however, also invoke the nonlinear model F and results

:::
that

:::::
links

:::
the

::::::::
measured

:::::
signal

:::::
with

:::
the

::::::::::
measurand,

:::
and

::::::::::
uncertainty

::::::::
estimates

:
thus still depend on

the choice of x̂, and
:::
the

:::::::
estimate

::::
that

::::::::
represents

::::
the

:::
true

::::::
value;

:
any choice of this value which is

not closely related to the true value x
::
of

:::
the

::::::::::
measurand will produce uncertainty estimates which

are recalcitrant against any interpretation. Monte Carlo and related methods, however, are apt for735

the error scientists to estimate
::::::::
estimation

::
of

:
the error budget including the systematic effects if f is

too nonlinear to justify Gaussian error estimation,
::
if
:::
the

:::::::::::
approximate

:::::::::
knowledge

::
of

:::
the

::::::::::
measurand

:
is
::::::::
conceded.

In summary, the evaluation of uncertainties in the case nonlinearity poses a problem to the

uncertainty scientist
:::::::
scientist

::::
who

::::::
denies

::::
the

:::::::::::
approximate

:::::::::
knowledge

:::
of

:::
the

::::
true

::::::
value

::
of

::::
the740

:::::::::
measurand,

:
because the uncertainty estimate depends on the assumed value of the measurand, and

x̂≈ x
:
it
:
must be assumed

:::
that

::
it

::::::::
represents

:::
the

::::
true

:::::
value

:::::::::
reasonably

::::
well. Within the framework of

error analysis this assumption is allowed and measurement errors as well as systematic effects thus

can be evaluated also for nonlinear inverse problems.

3.4 Incompleteness of the error budget745

The arguments put forward above are based on the supposition that the error budget is complete.

Beyond measurement noise, the total error budget includes systematic effects in the measured sig-

naly, uncertainties in parameters b
::::
other

::::
than

:::
the

::::::::::
measurand

:::
that

:::::
affect

::::
the

::::::::
measured

::::::
signal, and

effects due to the chosen inverse schemeF̃−1. If our reading of GUM08
:::::::::
GUM-2008

:
is correct, then

the most severe criticism
::
by

:::::::::
GUM-2008

:
of the ‘error concept’ by GUM08 is that one can never be750
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sure that the error budget is indeed complete, and that thus the distribution with x̂ expectation and

σx standard deviation cannot tell us the probability density that any value of x is the
:::
error

::::::::
estimate

::::
does

:::
not

::::::::::
characterize

:::
the

::::::::
difference

:::::::
between

:::
the

:::::
value

::::::::
estimated

:::::
from

:::
the

:::::::::::
measurement

:::
and

:::
the

:
true

value.

The precision of a measurement is a well-behaved quantity in a sense that it is testable in a straight755

forward way: From
::::
from

::
at

::::
least

:
three sets of collocated measurements of the same quantity, where

each set is homogeneous with respect to the expected precision of its measurements, the variances

of the differences provide unambigous precision estimates .
::::::::::
unambiguous

::::::::
precision

::::::::
estimates

:::::
(see,

:::
e.g.,

::::::::::::::::::
McColl et al. 2014 or

:::::::::::::
Stoffelen 1998).

:
The situation is more difficult for biases. Biases between

different measurement systems do not tell us what the bias of one measurement system with respect760

to the – unfortunately unknowable – truth is. Even if the number of measurement systems is quite

large, it is not guaranteed that the mean bias of all of them is zero. And an infinite number of

measurement systems is out of reach in a real world. Up to that point we concede that a positive

proof of the completeness of the error budget is impossible. But this is not the end of the story.

A falsificationist (Popper, 1935) approach is more promising. It follows the rationale that it will765

never be possible to prove that our assumptions on the bias of a measurement system is correct.

Instead, we estimate the bias as well as we can, and use it as a best estimate of the bias until some test

provides evidence that the estimate is incorrect. Such a test typically consists of the intercomparison

of data sets from different measurement systems. If the bias between these data sets is larger than

the combined systematic error estimates, at least one of the systematic error estimates is too low770

and has to be refuted. Further work is then needed to find out which of the measurement systems is

most likely to underestimate its systematic error. Conversely, as long as the mean difference of the

measurements of the same measurand can be explained by the combined estimate of the systematic

errors of both measurement systems, the systematic error estimates can be maintained, although

this is, admittedly, no proof of the correctness of the error estimates. But as long as severe tests as775

described above are executed and the error estimates cannot be refuted, it is rational to believe that

they are sufficiently complete.

We have mentioned above that the uncertainty concept depends on the acceptance of the subjective

probability in the sense of degree of rational belief. Without that, an error budget including

systematic effects would make no sense because systematic effects cannot easily be conceived as780

probabilistic in a frequentist sense; that is to say, the resulting error cannot be conceived as a random

variable in a frequentist sense. Being forced to adopt the concept of probability as a degree of rational

belief, it makes perfectly sense to conceive, after consideration of the Bayes theorem (see Section

??) the distribution with expectation x̂ and covariance σx,total as the probability distribution which

tells the rational agent the probability of any value to be the true value.785
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4 The applicability of GUM
:::::::::
GUM-2008

:
to remote sensing of the atmosphere

In this Section we identify issues where GUM08
:::::::::
GUM-2008 clashes with the needs of error or uncer-

tainty estimation in the field of remote sensing of atmospheric constituents and temperature. These

issues are (1) since the atmospheric state varies quasi-continuously in space and time, the measur-

and is not well defined;
:::
and (2) there are applications of atmospheric data where the total uncertainty790

estimate alone does not help; (3) Eq 11 in GUM08 is in conflict with the causal arrow, and (4) some

GUM08 interpretations commit one to Bayesianism but some assumptions Bayesianism is based on

cannot be logically inferred from generally accepted axioms nor traced back to observations. .
:

4.1 What if the measurand is not well-defined?

On macroscopic scales, atmospheric state variables vary continuously in space on time. On mir-795

croscopic scales, the typical target quantities, concentrations or temperature, are not even defined.

A typical example of this problem is be the volume mixing ratio (VMR) of a certain species at

a point in the atmosphere (See also, von Clarmann, 2014). The determination of a quantity like

this requires a canonical ensemble of air but in the real, inhomogenous
:::::::::::::
inhomogeneous, atmosphere,

this quantity does not exist. It is an uninstantiated ideal. Due to these inhomogeneities the air vol-800

ume sounded must be infinitesimally small, i.e., it must approach a point. In the real atmosphere

there is either a target molecule at this point (VMR= 1) or another molecule (VMR= 0) or no

molecule at all (undefined VMR due to division by zero). Thus, one measures only averages over

finite inhomogeneous air volumes. This approach, supposedly the only possible approach, clashes

with the premise of GUM08
::::::::::
GUM-20088 that the measurand needs to be well defined. Measuring805

atmospheric state variables requires the specification of the region the average is made over. The

relevant toolbox of atmospheric data characterization includes concepts like resolution, averaging

kernels etc. (see Rodgers, 2000 for detail). Since this type of measurements is apparently out of

the scope of GUM08
:::::::::
GUM-2008, the latter is very

::::
quite silent with respect to solutions to the prob-

lem of the characterization of measurements of quantities that are not well defined. Broadening the810

scope and applicability of the GUM08
:::::::::
GUM-2008

:
framework to include less than ideally defined

measurands and measurements that demand inverse methods would significantly increase the value

and utility of GUM08
:::::::::
GUM-2008

:
approach. Relevant recommendations on data characterization

developed within the TUNER activity (von Clarmann et al., 2020) aim at helping to reach this goal.

4.2 The combined error815

One of the positive aspects of GUM08
::::::::::
GUM-2008 is that it breaks with the misled concept of char-

acterizing systematic errors with ‘safe bounds’ (Kaarls, 1980; Kacker et al., 2007; Bich, 2012). This

8In GUM08
::::::::
GUM-2008 this problem is recognized but no solution is offered, since ;

:
the term ’definitional uncertainty’ is

introduced in this context but not applied in practice.
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concept was sometimes endorsed by error statisticians subscribing to frequentism. Within a fre-

quentist concept of probability, a probabilistic treatment of systematic errors was not easily possible

because due to its systematic nature a systematic error cannot easily9 be characterized by a fre-820

quency or probability distribution. The concept of subjective probability solves this problem. With

the subjectivist’s toolbox, it is no longer a problem to assign probability density functions, standard

deviations and so forth when characterizing systematic errors. This possibility is a precondition for

aggregating systematic and random errors to give the total error. GUM08
:::::::::
GUM-2008, however, goes

a step further and even denies the necessity to report random and systematic errors independently.825

Here we have to urge severe objections.

Von Clarmann et al. (2020) explicitly demand
:::::::::
recommend

:
that error estimates be classified as

random or systematic , 10.
:
In contrast, GUM08

:::::::::
GUM-2008

:
(E.3.3 / E3.7) state: “In fact, as far as

the calculation of the combined standard uncertainties [...] is concerned, there is no need to classify

uncertainty components and thus no real need for any classificational scheme.” If indeed meant as830

written, we challenge the claim that a total combined error budget is sufficient and therefore no

classificational scheme is needed at all. Characterizing the measurement of a unique quantity, e.g.

the value of a natural constant ageed
:::::
agreed

:
upon by the calibration authorities, by a single error

margin might be sufficient. But most measurements, and particularly those of atmospheric state

variables such as temperature, concentrations of trace species, and so forth, deal with quantities835

varying as function of time and space. Any sensible use of the resulting datasets requires a clear

distinction between statistical and systematic error budgets. For example, for time series analysis

targeted at the determination of trends, the total error budget is of no use but the random error

budget is needed instead. This is because any purely additive systematic error component cancels out

in this application and their consideration would unduely
::
its

:::::::::::
consideration

::
in

:::
the

::::
error

::::::
budget

::::::
would840

::::::
unduly distort the weights of the data points available. In summary, the denial of the importance

of distinguishing between random errors and systematic errors does not provide proper guidance,

and altogether is a strong misjudgement.
:::::::::::
misjudgment.

::::
The

::::
data

:::::
users

::::
must

:::
be

::::::::
provided

::::
with

:::
all

:::::::::
information

::::::::
required

::
to

::::
tailor

:::
the

:::::::
relevant

:::::
error

:::::
budget

:::
to

::
the

:::::
given

::::::::::
application

::
of

:::
the

::::
data.

:

Benevolent readers of GUM08
::::::::::
GUM-2008 take the GUM authors to be saying only that the ag-845

gregation of estimated errors to give the total error budget follows the same rules for systematic and

random errors, and that the criticized statement is not meant to deny the importance of distinguish-

ing between random and systematic errors beyond the mere aggregation process. If this reading is

correct, we agree, but here GUM08
:::::::::
GUM-2008

:
leaves room for interpretation.

9The qualification not easily was chosen because frequentists still might sample over multiple universes or apply other

measures to squeeze systematic errors in a frequentist concept.
10

:
In
:::

this
:::::

context
::

it
::
is

:::::::
important

:
to
::::

note
:::
that,

::
in
::::::

contrast
::
to

::::
some

::::
older

::::::::
conceptions,

:::::::::::::::::::::::
von Clarmann et al. (2020) define

:::::::
‘systematic

:::::
errors’

::
as

::::::::::
bias-generating

::::
errors

:::
and

::::::
‘random

:::::
errors’

:
as
::::::::::::::

variance-generating
::::
errors.

::
To

::::
avoid

:::::::
confusion

:::
with

:::
the

:::
older

:::::::::
conceptions,

::
one

:::
can

:::
use

:::::
instead

::
the

:::::::
descriptive

::::
terms

::::::::
‘persistent’

::
and

:::::::
‘volatile’

::::
errors

::
as

::::::
suggested

::
by

:::::::::::
Possolo (2021).

:::
This

:
is
:::
not

:::
done

:::
here

::
to
::::::
maintain

::::::::
consistency

:::
with

::::::::::::::::::
von Clarmann et al. (2020).
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4.3 The causal arrow850

Putting quantum effects aside, the measured value is unambiguously determined by the true value

via causal processes plus a given but unknown error term. In other words, the causal arrow points

from the atmospheric state to the measured value. The inverse direction, however, is ambiguous even

if we set the problem of the unknown error term aside. Many atmospheric states can cause the same

measurement, even if the noise term is exactly the same. Thus, it seems more adequate to us to855

formulate the measurement problem using a function that describes the measurement as a function

of the atmospheric state, viz., the measurand (Eq. ??) and not vice versa. The inverse measurement

equation (Eq. ??) which describes the dependence of the atmospheric state variables on the measured

values is not unambigously defined because the regularization term used to solve ill-posed problems

or the norm chosen to provide a solution for over-determined problems, all contained in the term860

F̃−1, are based on assumptions, depend on the personal preference of the person performing the

inversion, and need to be considered in the data and uncertainty characterization (See, Section

??, and von Clarmann et al., 2020 for details). Thus we think that it is essential to appreciate the

inverse nature of the problem, and this is much easier if the measurement equation describes the

forward problem and thus does not suggest an unambiguous determination of the measurand from865

the measured quantity. An argument along this line of thought, but in a context wider than thatof

remote sensing of the atmosphere, has been put forward by Possolo and Toman (2007).

4.3 Bayesian versus non-Bayesian

Some interpretations of GUM08 (e.g. White, 2016; Kacker et al., 2007) associate it with a Bayesian

conception of probability. Thus one might suspect that ‘uncertainty’ is simply the Bayesian870

replacement of error . But things seem not to be so simple, for two reasons.

(1) It is, however, not quite clear which of Bayes’ methods and principles a statistician has

to use to be a Bayesian (c.f., e.g., Fienberg, 2006), since the Bayes theorem is accepted also by

non-Bayesians, and the use of maximum likelihood methods, introduced by the almost ‘militant’

frequentist R. A. (Fisher, 1922) does, as far as we can judge, not commit one to use a frequentist875

definition of the term ‘probability’.

(2) Interestingly enough, Willink and White (2012) use the term ‘uncertainty’ also

5 Conclusions

:::
We

::::
have

:::::::::
mentioned

:::::
above

::::
that

:::
the

:::::::::
uncertainty

:::::::
concept

:::::::
depends

:::
on

:::
the

:::::::::
acceptance

::
of

:::
the

:::::::::
subjective

:::::::::
probability

::
in

::::
the

:::::
sense

:::
of

::::::
degree

:::
of

:::::::
rational

::::::
belief.

:::::::
Without

:::::
that,

:::
an

:::::
error

::::::
budget

:::::::::
including880

::::::::
systematic

::::::
effects

::::::
would

:::::
make

:::
no

:::::
sense

:::::::
because

:::::::::
systematic

::::::
effects

::::::
cannot

:::::
easily

:::
be

::::::::
conceived

:::
as

::::::::::
probabilistic in a frequentist framework, report that the turn to the new terminology happened already
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in 1980/81, and make a strong case that various allegedly purely Bayesian concepts of GUM08 can

be given a valid frequentist interpretation.

Defenders of the doctrine that ‘error’ and ‘uncertainty’ have a different meaning and that the885

error concept is a purely frequentist concept may refer to (Mayo, 1996, Ch. 13), who admits to

frequentism and indeed proposes an ‘error-statistical philosophy of science’. Her concept, however,

does not deal with measurement errors but with errors in the acceptance or rejection of hypotheses.

Thus it cannot be interpreted in a way that measurement errors are a purely frequentist concept.

In the community of remote sensing, both maximum likelihood and Bayesian retrieval schemes890

are in use. Depending on the measurement type and the anticipated use of the data both have their

pro’s and con’s. In order to avoid to make the rift between the Bayesian and non-Bayesian11 part of

the community even worse, the TUNER consortium has decided not to make a recommendation as

to which of these retrieval schemes is thought to be superior. It was considered as more important to

provide an adequate scheme for error or uncertainty estimation for any of these retrieval approaches.895

As a consequence, it is not considered as adequate to custom-taylor uncertainty reporting to the

Bayesian philosophy.

White (2016) reports that paradoxes shatter the bedrocks of Bayesian philosophy, namely the

likelihood principle that says that all relevant evidence about an unknown quantity obtained from

an experiment is contained in the likelihood. Others accept the theoretical validity
:::::
sense;

::::
that900

:
is
:::

to
::::
say,

:::
the

::::::::
resulting

:::::
error

::::::
cannot

:::
be

:::::::::
conceived

::
as

::
a
:::::::
random

:::::::
variable

:::
in

:
a
::::::::::

frequentist
::::::
sense.

:::::
Being

::::::
forced

::
to

:::::
adopt

:::
the

:::::::
concept

::
of

::::::::::
probability

::
as

::
a

::::::
degree

::
of

:::::::
rational

:::::
belief,

::
it
::::::
makes

::::::::
perfectly

::::
sense

:::
to

::::::::
conceive,

:::::
after

::::::::::::
consideration

:
of the Bayes theorem but challenge its applicability in

real life because of the unknown and unknowable prior probabilities. It has been recognized by

(Hume, 2003/1739, 1748) that what was valid yesterday might not be valid tomorrow. This implies905

that a statistic of past events might not provide a reliable prior for future inverse problems. Also

the use of the so-called non-informative prior can be challenged: The domain in which the prior is

expressed is an ad hocdecision and any non-linear transformation will render an informative prior.

E.g., a flat, thus apparently non-informative velocity distribution goes along with a non-flat, thus

informative distribution of kinetic energy. Similarly an equidistribution of droplet diameters goes910

along with a non-flat, thus informative, distribution of droplet volumes, etc. This is considered by

some as an absurdity brought about by the concept of non-informative priors.

More generally speaking, the Bayesian philosophy relies on a couple of unwarranted assumptions,

e.g., the likelihood principle and the indifference principle. The proof of the former has been

challenged (Evans, 2013; Mayo, 2013, quoted after White, 2007), and the latter has been criticized915

11We challenge the dichotomy ‘Bayesian vs. frequentist’. Not every non-frequentist is a whole-hearted Bayesian; not

all objective probabilities are frequentist (see, e.g. Popper, 1959). Not everybody who endorses a subjective concept of

probability accepts Bayesian tenets on confirmation theory and test theory. Further, subjectivist and objectivist probability

concepts are not necessarily in contradiction but can be bridged (Lewis, 1980).
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as not deducible from any accepted axioms. Thus a pro or contra Bayesian decision is a purely

philosophical decision, and it does not seem adequate to make such a decision generally binding.

While it is fully agreeable that the concept of error reporting has long relied and still relies on a

subjective, i.e., information-dependent concept of probability 11, this does not commit one to accept

Bayesianism in full.920

Coming back to the title question whether error and uncertainty are different things and different

concepts, and accepting that traditional error analysis was compatible with a degree-of-belief

conception of probability, we are left with two possible interpretations. One is that it is only

the endorsement of a subjective concept of probability that allegedly makes uncertainty analysis

Bayesian and defines the difference between error and uncertainty. If so, we raise the objection that925

classical error analysis is not a purely frequentist approach. The other interpretation is that there is

more to it, and Bayesian uncertainty analysis is indeed something entirely different. The GUM08

does not provide a clear reference to such a Bayesian uncertainty analysis method. GUM08 makes

reference to Jeffreys (1983) as an authority of
::::
(see

::::::
Section

::::
3.2)

::::
the

:::::::::
distribution

:::::
with

::::::::::
expectation

:̂
x
::::
and

:::::::::
covariance

::::::
σx,total::

as
:

the degree-of-belief-concept of probability. Jeffreys, however, offers930

no clue as to what the difference between ‘error’ and ‘uncertainty’ might be . In the context of

measurements or observations, Jeffreys always uses the term ‘error’ (e. g., op. cit., p. 72), and often

we find statements like “the probable error ...is the uncertainty usually quoted” (op. cit., p. 72),

“no uncertainty beyond the sampling errors” (op. cit., p. 389), or “treat the errors as independent”

(op. cit., p. 443). With the statement that errors are not mistakes (op. cit., p. 13), Jeffreys explicitly935

contradicts the GUM pioneers (Kaarls, 1980) and GUM08 endorsers Merchant et al. (2017). Also

Press (1989) is referenced by GUM08 only to defend the use of a subjective concept of probability

but not in a context aiming at the clarification of the alleged difference between ‘error’ and

‘uncertainty’.
:::::::::
probability

::::::::::
distribution

:::::
which

::::
tells

:::
the

::::::
rational

:::::
agent

:::
the

:::::::::
probability

::
of

::::
any

::::
value

::
to

:::
be

::
the

::::
true

:::::
value.

:
940

We concede that Bayesians and frequentists may use the error or uncertainty estimates in a

different way. In situations where a hypothesis is to be tested on the basis of measurement data,

the frequentist would rely on Fisherian p-values or Pearsonian rejection limits or a mixture of

these approaches, while the Bayesian would assign a total probability to the hypothesis. The

underlying error or uncertainty estimates, however, are required to support both approaches. We945

think that a quantity for characterizing the error or uncertainty of a direct or indirect measurement

which commits the user to either a frequentist or a Bayesian use of the measurements is of little

use. Reference to Bayesianism alone cannot explain the claimed difference between ‘error’ and

‘uncertainty’.

11We understand that subjective probability is related to the belief of a rational agent. Since two rational agents

having access to the same information will believe the save, this variant of subjective probability should better be called

‘inter-subjective’ probability. This concept is often labelled ‘objective Bayesianism’
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The denial that a valid connotation of the term ‘error’ is a statistical characterization between a950

measured or estimated and the true value of the measurand would be an attempt to brush away cen-

turies of scientific literature. This is, however, a matter of stipulation or convention and thus beyond

the reach of a scientific argument. We thus take GUM08
::::::::::
GUM-2008 to be conceding that both the

concepts, error analysis and uncertainty assessment, aim at providing a statistical characteristic of

the imperfectness of a measurement or an estimate. We understand GUM08
:::::::::
GUM-2008

:
in a sense955

that the problem of the error concept is that it conceives the estimated error as a statistical measure

of the difference between the measured or estimated value and the true value. Since the true value

is unknowable, according to GUM08
::::::::::
GUM-2008 the term ’error’ can neither be defined nor can its

value be known.

It has been shown that the problem of the unknown true value of the measurand is a problem for960

the definition of terms like ‘error’ or ‘uncertainty’ only if the concept of an operational definition is

persued
:::::::
pursued. This concept, however, has its own problems and is by no means without alternative.

As soon as the concept of an operational definition is given up, problems associated with defining

the estimated error as a statistical estimate of the difference between the measurement or estimate

and the true value of the measurand disappear, and the problem remaining is only one of assigning a965

reasonable value to this now well-defined quantity.

Since GUM08
:::::::::
GUM-2008

:
did not provide many reasons why, in the context of indirect mea-

surements, the error allegedly cannot be estimated without knowledge of the true value, or why

an uncertainty distribution does not tell us anything about the true value, we list the most obvious

ones one could put forward to bolster this claim. These are the problem of the base rate fallacy,970

the problem of non-linearity, and the problem that one can never know that the error budget is

complete. The problem of the base rate fallacy can be solved by either performing a Bayesian inver-

sion, or by conceiving the resulting distribution as a likelihood distribution. Astonishingly enough,

the GUM08
:::::::::
GUM-2008’s “dispersion or range of values that could be reasonably attributed to the

measurand” is determined without explicit consideration of prior probabilities and thus cannot be975

interpreted in terms of posterior probability. The problem of nonlinearity can be solved by the error

scientist either by assuming that the estimate is close enough to the true value and linearizing around

this poing
:::::
point or by Monte-Carlo-like studies. The uncertainty scientist

::
A

::::::::::::
GUM-oriented

::::::::
scientist,

who has to avoid referring to the true value
:
, is at a loss in the case of nonlinearity because any es-

timate of the uncertainty of the estimate will be correct only when evaluated at the true value or an980

approximation of it. The problem of the unknown completeness of the error budget can be tackled

by performing comparisons between measurement systems. While this will never provide a positive

proof of the completeness of the error budget, it still justifies rational belief in its completeness, and

if error or uncertainty distributions are conceived as subjective probabilities in the sense of degrees of

rational belief, this is good enough. In summary, if (a) our reading of GUM08
::::::::::
GUM-2008 is correct985

in the sense that the traditional error analysis can connotate
::::
deal

::::
with a statistical quantity, and that
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the key difference between the ‘error’ and ‘uncertainty’ concepts is their relation to the true value

of the target quantity and (b), that our list of arguments against the error concept is complete, and

finally, if (c) our refutation of these arguments is conclusive, then the claim that the ‘error’ concept

and the ‘uncertainty’ concepts are fundamentally different is untenable11..990

Beyond this, reasons have been identified that put the applicability of the GUM08
::::::::::
GUM-2008

concept to atmospheric measurements into question. At the very least we can state that

GUM08
:::::::::
GUM-2008, by presenting their terminological stipulation about the terms ‘error’ and ‘un-

certainty’ in the appearance of a factual statement, has triggered a linguistic discussion that distracted

the attention from the more important issues how the principles of error or uncertainty estimation,995

whatever one prefers to call it, could be made better applicable to measurements beyond the idealized

cases covered by their document.
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11Building upon Willink and White (2012), we conclude instead, that ‘uncertainty’ and ‘uncertainty’ are (at least) two

different things. This seems to hold at least when a frequentist and a Bayesian use this term. Ambiguities related to the term

‘error’ thus seem not to be removed but superseded by other ambiguities.
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