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Recommendation

The article’s Abstract sums up the central claims accurately that the authors
develop and substantiate in their narrative, including what I believe to be the
correct conclusion that the “error” and “uncertainty” concepts are not funda-
mentally different, and may be regarded as alternative and complementary in-
terpretations of the doubt about the true value of the measurand that remains
after measurement.

However, my reading of the Guide to the Expression of Uncertainty in Measure-
ment (GUM) [Joint Committee for Guides in Metrology (JCGM), 2008] suggests
less polarizing views about this issue than the views that the authors of the ar-
ticle under review derive from the same Guide.

Their take on things brings to mind the acerbic discussion of essentially the
same issues that took place in meetings of the ISO/TAG-4 Working Group 3,
around 1986-87 [Collé, 1987a,b] [Schumacher, 1987].

The article should be published after it will have been shortened and more
sharply focused to convey its message most effectively, and after improvements
will have been made to deficient passages that are discussed under Specific Com-
ments.

The Technical Corrections offer an assortment of suggestions concerning English
usage that the authors should consider.
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General Comments

Acknowledgment should be made of an understanding of the relation between
measurement uncertainty and measurement error that predates the GUM, and
that the authors of the article under review likely will find agreeable:

The uncertainty of a reported value is meant to be a credible esti-
mate of the likely limits to its actual error, i.e., the magnitude and
sign of its deviation from the truth [Eisenhart and Collé, 1980].

Churchill Eisenhart was my most illustrious predecessor at NIST, and Ronald
Collé, a distinguished and esteemed NIST colleague, served as convener of the
working group (ISO-TAG-4/WG3) that laid the groundwork for the creation of
the GUM [Collé and Karp, 1987].

A discussion whose tenor places the “error approach” on Mars and the “uncer-
tainty approach” on Venus sounds more like the discussions that inflamed the
metrological community thirty-five years ago, than a useful discussion that we
can engage in today with the benefit of the experience accumulated in these
many intervening years [Eisenhart and Collé, 1980] [Collé, 1987a] [Colclough,
1987] [Schumacher, 1987].

The viewpoint that the authors of the article under review wish to convey, can be
conveyed quite simply also by means of an allegory: measurement errors are the
“carriers” of measurement uncertainty, in a sense analogous to how photons are
the “carriers” of light waves and, more generally, of the electromagnetic force.

Accepting such dualism between errors and uncertainty facilitates the scientific
discourse without excluding individual or cultural preferences, and tones down
the drama that has been unfolding in the literature and that, at times, this article
also exacerbates unnecessarily.

The 26 pages of text of the article under review arguably are overkill to convey
this simple, conciliatory message: what they do prompt is a review almost as
long as the article itself, thus making this review much too long by any standard.

In fact, the key message of the article will be delivered more effectively, and the
article will have greater impact, if the article is shortened and its arguments are
streamlined.

The article’s length can be reduced at least by deleting those portions that dis-
tract more than they add insight: for example, the digressions in section 2 and
in subsections 5.2 and 5.3.

The authors may wish to extend their criticism to the International Vocabulary

POSSOLO PAGE 2 OF 24



AMT-2021-157 REFEREE REPORT

of Metrology (VIM) [Joint Committee for Guides in Metrology, 2012], whose
Introduction states:

The change in the treatment of measurement uncertainty from an
Error Approach (sometimes called Traditional Approach or True
Value Approach) to an Uncertainty Approach necessitated recon-
sideration of some of the related concepts appearing in the second
edition of the VIM.

The authors also seem to be unaware of the critical evaluation of the GUM that
Gleser [1998] published shortly after the original, 1993 edition of the GUM was
corrected and reprinted, in 1995 [BIPM et al., 1995]. References to suitable
portions of this evaluation will add value to the article under review, and will
also facilitate shortening it.

The article is very repetitive in the multiple instances where it rehashes the
relations between the concepts of error, uncertainty, true value, and Bayesian-
ism. Consolidating and refocusing the fragmentary discussion of these relations
would make the article much easier to read and would enhance the cogency of
its arguments. However, accomplishing this would involve a major rewrite.

In its Annex E (E.5.1) the GUM addresses the issue that is the main focus of the
article under review, when it states that

The focus of this Guide is on the measurement result and its evalu-
ated uncertainty rather than on the unknowable quantities “true”
value and error (see Annex D). By taking the operational views
that the result of a measurement is simply the value attributed to
the measurand and that the uncertainty of that result is a measure
of the dispersion of the values that could reasonably be attributed
to the measurand, this Guide in effect uncouples the often confus-
ing connection between uncertainty and the unknowable quantities
“true” value and error.

The authors of the article under review quite correctly point out that the uncer-
tainty is neither a property of the measured value nor is it about the measured
value. The uncertainty surrounds or clouds the true value, and qualifies the
state of knowledge that the metrologist has of the true value.

To the extent that the target of measurement is the true value, the measurement
error is meaningful even if not observable (however, it can be estimated in some
cases, as discussed below in relation with Line 180).
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The suggestion, made in the aforementioned E.5.1, that “uncertainty,” “error,”
and “true value” should be uncoupled from one another seems at odds with
what is actually done in the practice of measurement science. For example, in
relation with certified reference materials, “NIST asserts that a certified value
provides an estimate of the true value of a defined measurand” [Beauchamp
et al., 2020, 1.2.4].

Therefore, the implied understanding of the scientists developing these materi-
als is that the uncertainties reported in the corresponding certificates are infor-
mative about the relation between the measured value and the true value, the
difference between the former and the latter being the measurement error.

Specific Comments

The numbers in boldface refer to line numbers in the version of the preprint
made available for discussion on June 29, 2021.

002 + 245 Here and elsewhere throughout the article, “GUM8” should be re-
placed by “GUM” because the GUM and its existing and planned supplements
are being rearranged and renumbered, and “GUM8” is already reserved to re-
fer to something other than the current GUM. For similar reasons, “GUM09” is
likely to be misinterpreted, and should not be used: in fact, it is not needed at
all because the authors use this acronym only in the very same line (245) where
they introduce it.

010 the term ‘error’ was used, with some caveats, for designating a statistical
estimate of the expected difference between the measured and the true value of a
measurand

The traditional and still customary meaning of “error” in statistical models is
of a non-observable difference between the observed and the (generally also
non-observable) true value of a quantity [Davison, 2008, Example 1.1].

For example, in the relationship m = µ+ ϵ between a measured value, m, and
the true value, µ, of the mass of a massive entity, ϵ is the error.

The error is generally neither known nor observable, but in many situations it
can be estimated, with bϵ being commonly used to denote the estimate (refer to
the discussion of Line 180).

In the discussion of Lines 518 + 738 below, it will become clear how useful the
explicit consideration of error can be, by allowing one conceptually to separate
contributions made by different sources of uncertainty.
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015 stipulated a new terminology, where the term ‘measurement uncertainty’ is
used in situations where one would have said ‘measurement error’

The word “error” occurs 131 times throughout the GUM, and not always depre-
catingly. For example, in its 2.2.4, the GUM acknowledges that “The definition
of uncertainty of measurement [. . . ] is not inconsistent with other concepts
of uncertainty of measurement, such as a measure of the possible error in the
estimated value of the measurand.”

025 the error statisticians and the uncertainty statisticians

This classification of statisticians into these two classes is an invention of the
authors that is more reflective of their imagination than of reality. In fact, the
principal participants in the debates that took place in and around the afore-
mentioned ISO/TAG-4/WG-3 were not statisticians.

Furthermore, the issue of “systematic” versus “random” errors (which we will
discuss below, in relation with Line 597) may have been even more divisive than
the issue of “error” versus “uncertainty.”

Therefore, I urge the authors to devise a different way of characterizing the two
camps they are alluding to here. A reference to Mayo and Spanos [2011]would
be appropriate.

046 according to Bayesian statistics (Bayes, 1763) the measured value cannot
always be interpreted as the most probable value of the measurand

Since one does not need to invoke Bayesian statistics to reach the same conclu-
sion [Possolo and Iyer, 2017, Page 011301-12], this remark is spurious.

071 Recapitulation of the concept of indirect measurements

I believe that this long foray into inverse problems adds nothing of value to the
discussion, hence suggest that section 2 be deleted. The discussion in subsec-
tion 6.3, The causal arrow, can easily be reformulated, and in the process also
shortened, to drive the same points across — refer to specific suggestions below,
for Line 618.

119 ancient researchers realized that measurement results always have errors

It is all a matter of perspective, of course, but I am of the opinion that it is
unfair to call Gauss or Legendre “ancient.” In the context of European history,
the word is typically reserved for the period ending with the fall of the Western
Roman Empire (around 500 CE).

In addition, and in particular concerning Gauss, with whose works I am more
familiar than with Legendre’s, I can only say that it is difficult for me to imagine
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a person of more luminous modernity, or with a better sense for what is relevant
in scientific practice (of his time or contemporary), than Gauss.

149 In the case of ‘error’, its statistical estimate is mostly understood to be a
quadratic estimate and thus does not carry any information about the sign of the
error.

The authors may like to replace this awkward sentence with something along
the following lines: “In most cases, errors are not estimated individually. In-
stead, their typical size is summarized by the square root of their mean squared
value, or by the median of their absolute value. Such summaries do not preserve
information about the signs of any individual errors.”

154 the term ‘error’ has commonly been used to signify a statistical estimate of the
size of the difference between the measured and the true value of the measurand

This is repetitive of the material around Line 10 that was discussed above. In
both instances, the authors are unnecessarily turning something simple into
something complicated.

One thing is the error ϵ in the example discussed above, m = µ+ ϵ. Another
thing is how this error may be characterized or quantified.

For example, the possible errors may be characterized by the probability distri-
bution of ϵ, like when one says: the signal was corrupted by white noise with
mean 0 and standard deviation σ.

The sizes of possible errors may be summarized by the mean squared error
(MSE) of the estimator of the measurand, which captures the difference be-
tween expected value of the estimator and the true value of the measurand,
as well as dispersion around that expected value. Other summaries include
the standard deviation of the error distribution, or the now outmoded probable
error.

The error may also be characterized indirectly, by an expression of the uncer-
tainty surrounding the quantity of interest. For example, Yoshino et al. [1988]
reported the measurement result for the absorption cross-section of ozone at
253.65 nm as 1145+7.1

−14.4 × 10−20cm2/molecule, which says that the measure-
ment error has an asymmetric distribution.

180 Since the true value is not known, the actual difference between the measured
or estimated value and the true value of the measurand cannot be calculated.

The authors quite correctly point out that this argument lacks cogency. In fact,
more can be said further to dismiss this claim as being no more than a myth.

Consider the simplest of cases of statistical estimation, where one has replicated
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determinations of the same quantity, r1, . . . , rm, which are then combined to
obtain an estimate t = T (r1, . . . , rm) of a quantity τ. The estimate t could be
as simple as the average or the median of the replicates, or it could be their
coefficient of variation (standard deviation divided by the average).

It is then possible, using the statistical jackknife [Mosteller and Tukey, 1977,
Chapter 8] or the statistical bootstrap [Efron and Tibshirani, 1993], to estimate
not only the standard deviation of t (based on this single set of replicates {ri}),
but also both the sign and the magnitude of the error t −τ.

200+ 364 our reading is that an error distribution is understood as a distribution
whose spread is the estimated statistical error and whose expectation value is the
true value, while an uncertainty distribution is understood as a distribution whose
spread is the estimated uncertainty and whose expectation value is the measured
or estimated value / The error distribution must not be conceived as a probability
density distribution of a value to be the true value

In the simple model for a measured mass, m = µ + ϵ, the “error distribution”
generally refers to the probability distribution of ϵ, hence the expected value
of the “error distribution” will not be µ, which denotes the true value of the
measurand. Instead, this expected value will be the bias, which is the persistent
offset of m from µ. (Refer to the discussion of Line 597, where I explain why I
prefer “persistent” to “systematic,” and “volatile” to “random.”)

Neither “error distribution” nor “uncertainty distribution” are mentioned in the
GUM. While the GUM offers considerable guidance about the assignment of
distributions to input quantities, {x j}, in its first 69 pages (out of a total of 120)
all that it provides about the probability distribution of the output quantity, y ,
is an approximation to its standard deviation, in Equations (10) and (13).

Furthermore, the GUM seems to be more concerned with evaluating u(y) than
with estimating the measurand optimally, because the “substitution” estimate of
the measurand, which is obtained by substituting the {x j} by their best estimates
in y = f (x1, . . . , xn), generally will not yield the best estimate of the measurand
in the sense of minimizing mean squared error, mean absolute error, or other
similar criteria [Possolo and Iyer, 2017, Page 011301-12].

In the course of those initial 69 pages, the GUM touches upon the topic of the
distribution of y tangentially — for example when it discusses expanded un-
certainty, coverage factors, and coverage interval —, but only in its Annex G
(beginning on Page 70) does the GUM venture into a discussion of how to char-
acterize the probability distribution of y .

Annex G invokes the Central Limit Theorem based on a first-order Taylor ap-
proximation of the measurement function f in y = f (x1, . . . , xn), to claim that
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y ’s distribution may be taken as being approximately Gaussian. This argument
can, on occasion, be spectacularly inaccurate [Possolo, 2015, Example E11].

Since u(y) typically is based on finitely many degrees of freedom, the GUM ar-
gues (using a slightly different notation) that (y − η)/u(y), where η denotes
y ’s true value, should have a Student’s t distribution approximately, where-
from coverage intervals then issue readily, thus achieving the goal, stated in its
clause 0.5, of providing “an interval about the measurement result that may be
expected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the quantity subject to measurement.”

The meaning of this distribution that the GUM, by hook or by crook assigns to y ,
and, even more importantly, the meaning of the distributions derived for y by
application of the Monte Carlo method, and of the coverage intervals based on
them, should be the more appropriate and productive targets for critical review,
similarly to what Stoudt et al. [2021] have done.

213 Frequentist statistics, we understand, is a concept where the term ‘probability’
is defined via the limit of frequencies for a sample size approaching infinity. This
definition is untenable because it involves a circularity

The authors oversimplify and are unacceptably dismissive.

If the Frequentist interpretation of probability were this “obviously” defective,
then none of John Venn, Richard von Mises, Andrey Nikolaevich Kolmogorov,
Jerzy Neyman or Jack Kiefer — all intellectual giants in their own right — would
have embraced it.

I suggest that the authors avoid embarrassment by considering the excellent
overview of the interpretations of probability compiled by Hájek [2007].

265 The values the rational agent believes to be true are sufficient in this case,
because the error distribution does not tell us anything about the truth anyway
but only about the agent’s believe of what truth is.

The simplest measurement error model mentioned above, m = µ+ ϵ, is mean-
ingful under essentially all paradigms of statistical inference.

In neither the classical (Frequentist) nor in the Bayesian approaches does the
probability distribution of ϵ convey any information about µ, other than in spe-
cial cases: for example, when the variance of ϵ depends on µ.

Both approaches involve assigning a probability distribution to ϵ, which then
determines the likelihood function. The Bayesian approach involves also assign-
ments of probability distributions to µ and to any parameters in the distribution
of ϵ whose values are unknown.
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The marginal distribution of m typically will differ in the classical and Bayesian
approaches even when the same choice is made for the distribution of ϵ.

317 Monte Carlo uncertainty estimation, however, is in its heart a frequentist
method, because it estimates the uncertainty from the frequency distribution of the
Monte Carlo samples.

The authors are quite wrong on this one.

Of course, the extent of how wrong depends on what they mean by “Monte Carlo
uncertainty estimation.” I assume that they mean it in the sense and context
in which it was introduced into uncertainty analysis by Morgan and Henrion
[1992], subsequently having been incorporated into the GUM Supplement 1
[Joint Committee for Guides in Metrology, 2008].

In such sense and context, the Monte Carlo method is purely mathematical, and
non-denominational (neither Frequentist nor Bayesian), and solves the follow-
ing problem: given a random vector X whose probability distribution has been
fully specified, and a real-valued, measurable function f defined on the range
of X , determine the probability distribution of Y = f (X).

The Monte Carlo method solves this problem using numerical methods and
sampling driven by pseudo-random numbers. It solves it in the sense that it
can produce the value of Pr(Y ∈ B) to within any specified accuracy, for any
measurable subset B in the range of Y .

The fact that its accuracy is guaranteed by the Law of Large Numbers does not
make it Frequentist because the Law of Large Numbers is neither Frequentist
nor Bayesian. The Law of Large Numbers is a mathematical result about sums
of random variables based on Kolmogorov’s axioms for probability measures
[Kolmogorov, 1933].

If the authors’ views on the Monte Carlo method were correct, then Markov
Chain Monte Carlo sampling, which is the workhorse of contemporary Bayesian
inference, would be “in its heart a frequentist method” too!

318 it is astonishing why GUM08, if representing a Bayesian concept, does not in
the first place require to apply the Bayes theorem

The authors should reference Gleser [1998] who points out the mixed-bag of
viewpoints coexisting in the GUM. Clearly the authors are well entitled to feel
astonishment at the GUM not using Bayes rule at all, especially considering the
whirlwind of claims about the GUM and its Supplements being Bayesian.

However, in fairness to the GUM, such whirlwind has been more of an af-
terthought than a consequence of the GUM itself. First, the word “Bayes” is
nowhere to be found in the GUM, and the word “Bayesian” occurs exactly once:
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in the title of reference [14], on Page 115.

Only in Annex E (E.3.5) does the GUM venture into this controversial territory
when it says “In contrast to this frequency-based point of view of probability, an
equally valid viewpoint is that probability is a measure of the degree of belief
that an event will occur.” And then it adds: “Recommendation INC-1 (1980)
upon which this Guide rests implicitly adopts such a viewpoint of probability.”

The expression “degree of belief” occurs exactly once in the main body of the
GUM (3.3.5), where it says:

Thus a Type A standard uncertainty is obtained from a probability
density function (C.2.5) derived from an observed frequency dis-
tribution (C.2.18), while a Type B standard uncertainty is obtained
from an assumed probability density function based on the degree
of belief that an event will occur [often called subjective probabil-
ity (C.2.1)]. Both approaches employ recognized interpretations of
probability.

The same expression occurs in Annex C, and again in Annex E, where E.3.6
comes the closest to advocacy by enumerating “three distinct advantages to
adopting an interpretation of probability based on degree of belief.”

Therefore, and on the whole, the GUM is far more discreetly or ambiguously
Bayesian than it has more recently been heralded to be (surprisingly, mostly by
“born again,” self-declared Bayesians).

The GUM’s alleged Bayesianism in fact reduces to (i) entertaining (subjective)
probability distributions for input quantities that are elicited from experts, and
(ii) regarding the probability distribution of the measurand as quantification of
degrees of belief about the true value of the measurand, even though it is not a
Bayesian posterior distribution [Gleser, 1998, 2.2].

343 This suggests that the uncertainty is an attribute of the true value while the
error is associated with a measurement or an estimate. Because of the measure-
ment error there is an uncertainty as to what the true value is. The uncertainty
thus describes the degree of ignorance about the true value while the estimated er-
ror describes to which degree the measurement is thought to deviate from the true
value

The authors are quite right. Please consider the following rewrite, which, al-
though allegorical, I believe further enhances the expression of the authors’
sentiment — also compare with Possolo [2015, Note 3.2, Page 16]:

This suggests that measurement uncertainty surrounds the true value
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of the measurand like a fog that obfuscates it, while measurement
error is both the source of that fog and part and parcel of the mea-
sured value. Measurement uncertainty thus describes the doubt
about the true value of the measurand, while measurement error
quantifies the extent to which the measured value deviates from
the true value.

379 The weight of Thomas Bayes or the body height of David Hume at a certain
time are well-defined quantities although we have no chance to measure them
today

I suggest that, for the sake of propriety and good taste, the authors abstain from
referring to properties of the bodies of Thomas Bayes and David Hume, refined
and excellent gentlemen both, long deceased, and use instead properties of
other notable material entities that are no longer amenable to measurement,
like the Colossus of Rhodes or the Lighthouse of Alexandria.

411 5.2 Likelihood, probability, and the base rate fallacy

I believe that this subsection is a digression from the main topic that would best
be deleted. A shorter, better focused article will have greater impact than one
with multiple digressions that are largely off-topic.

481 5.3 Nonlinearity issues

The same suggestion as for subsection 5.2, for the same reasons.

518 + 738 5.4 Incompleteness of the error budget

This is an important issue that the authors should address in greater generality
than in the context of inverse problems. The following example captures the
key issues clearly and simply. The authors allude to the same ideas in Line 738.

The values measured in inter-laboratory studies are often modeled as m j =
µ + λ j + ϵ j for j = 1, . . . , n, where µ denotes the true value of the quantity
of interest, and the {λ j} and the {ϵ j} are errors of different kinds: the former
express laboratory effects [Toman and Possolo, 2009a,b, 2010], which in many
cases will be persistent effects attributable to differences between measurement
methods or between forms of calibration; the latter are laboratory-specific mea-
surement errors quantified in the uncertainties reported by the participants.

The reality of the {λ j} (that is, that they cannot all be zero) becomes apparent
only when the measurement results are put on the table and inter-compared.
If the measured values are significantly more dispersed than the associated,
reported uncertainties intimate that they should be, then this is an indication
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that there is some dark uncertainty [Thompson and Ellison, 2011] afoot that
was not captured in the individual uncertainty budgets.

This dark uncertainty is “carried” (in the sense in which this term was used in
the General Comments) by the {λ j}. Refer to Koepke et al. [2017] and to Possolo
et al. [2021] for more extended discussions of this concept.

548 We have mentioned above that the uncertainty concept depends on the accep-
tance of the subjective probability in the sense of degree of rational belief. Without
that, an error budget including systematic effects would make no sense because
systematic effects cannot easily be conceived as probabilistic in a frequentist sense;
that is to say, the resulting error cannot be conceived as a random variable in a
frequentist sense.

These statements are inaccurate.

First, the uncertainty concept may be contingent on a Bayesian perspective,
but this perspective need not be subjective: it can be a so-called “objective
Bayesian” perspective, which Jeffreys [1946], Bernardo [1979], and Berger
[2006], among others, have favored.

Second, the main difficulty facing a Frequentist approach to the characterization
of measurement uncertainty concerns what the GUM calls Type B evaluations of
uncertainty components, not the recognition of the contributions that persistent
(“systematic”) effects make to said uncertainty.

In fact, the contributions from some persistent effects can be evaluated by Type
A methods (refer to the comments above for line 180), and the contributions
from some volatile (“random”) effects can be evaluated by Type B methods (for
example, the imprecision of a balance that a laboratory technician has great
familiarity with).

597 Von Clarmann et al. (2020) explicitly demand that error estimates be clas-
sified as random or systematic [. . . ] In summary, the denial of the importance
of distinguishing between random errors and systematic errors does not provide
proper guidance, and altogether is a strong misjudgment.

The word “demand” appears to be too strong a descriptor of what von Clarmann
et al. [2020] actually did, which was to “formulate recommendations with re-
spect to the evaluation and reporting of random errors, systematic errors, and
further diagnostic data,” where the emphasis on “recommendations” is mine.

We need to discuss two separate issues regarding this point: the first concerns
the choice of terms (“systematic” and “random”); the second concerns whether
and when to bundle them all into a single expression of uncertainty.

Concerning the first issue — the choice of terms:
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My dislike of terms like “systematic” and “random” is that they are metaphysical:
they speak to the nature of the errors, which is often elusive and may be shifting.

For example, von Clarmann et al. [2020, R3, Page 4420] recognize that “de-
pending on the application of the data, the same type of error can act as ran-
dom or systematic error,” and many other authors have acknowledged the same.
“Random,” in particular, is a thorny concept, whose definition seems to be far
from settled [Landsman, 2020] [Eagle, 2016] [Bennett, 2011] [Gács, 2005].

For these reasons, I recommend descriptive qualifiers instead, for example per-
sistent (instead of “systematic”) and volatile (instead of “random”). They are less
committal and afford greater flexibility, in particular to address cases where a
volatile error becomes persistent, or vice versa.

Writing almost thirty-five years ago, Collé [1987a], summarized the two ap-
proaches to measurement uncertainty that were then dominant as follows:

The “classical” approach is based on a central distinction between
so-called random and systematic uncertainties. The uncertainties
are presumably classified by the underlying physical error type [. . . ]
and the approach demands that the different uncertainty types be
combined by different methods. Causing even further confusion,
the uncertainties in these classical treatments are said to depend
on one’s “perspective” and hey possess chameleon-like properties,
and may change from one type to another.

In contrast, the “romantic” approach dispenses with the underlying
error distinction, and classifies the uncertainties only on the basis of
how the uncertainty estimates were made. All uncertainty compo-
nents in this approach can be combined by the same general propa-
gation formulae. The romantic approach underlies the BIPM/CIPM
Recommendation.

Concerning the second issue — the bundling of contributions from all sources
of uncertainty:

While agreeing with the romantic approach in principle, I believe that it is ad-
visable to consider how uncertainty evaluations will be used, before deciding
whether to combine contributions from all sources of uncertainty into a single
evaluation, or not. This is a more nuanced, less extreme approach than either
of the two approaches aforementioned.

Consider an inter-laboratory study where several laboratories measure the same
quantity independently of one another, or a meta-analysis of results from preex-
isting studies that were carried out and published independently of one another.
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Suppose that the purpose is to blend the corresponding estimates into a con-
sensus value: for example, as was done for the ozone absorption cross-section
at 253.65 nm [Hodges et al., 2019].

Typically, the consensus value will be some form of weighted average. There-
fore, the errors behind the uncertainties reported by the participants will “av-
erage out” in the process to some extent. This may be fine, or it may be inap-
propriate.

Such “averaging out” will be fine if laboratory-specific persistent errors lead to
estimates that are high for some laboratories and low for other laboratories,
with the true value lying somewhere in the middle.

But such “averaging out” will be inappropriate if a common bias, unbeknownst
to all, affects all results similarly. Reporting separately the evaluation of the
contributions made by persistent effects, and by volatile effects, as is commonly
done in astrophysics and in particle physics, will then be an appropriate, pru-
dent way to report uncertainty intended for use by a downstream user.

The need for such discretion, and the role that considerations of fitness-for-
purpose of uncertainty evaluations should play in deciding what to do and
when, is mentioned already in the pre-GUM literature [Ku, 1980].

618 6.3 The causal arrow — [. . . ] We think that it is essential to appreciate
the inverse nature of the problem, and this is much easier if the measurement
equation describes the forward problem and thus does not suggest an unambiguous
determination of the measurand from the measured quantity.

The measurement model in the GUM is only one of many kinds of measurement
models to which the principles for uncertainty evaluation that are enunciated in
the GUM apply. The GUM-6 [Joint Committee for Guides in Metrology, 2020],
published recently, describes several other kinds of measurement models, in-
cluding statistical measurement models.

Rodgers [2000, 2.3.2] explains how Bayesian statistical models can be used in
general to solve inverse problems, and Ganesan et al. [2014] describe an ap-
plication of hierarchical Bayesian methods to atmospheric trace gas inversions.
The Bayesian approach can be fruitful in such settings because the prior distri-
bution acts as a regularization prescription.

Possolo [2015] gives examples of measurements involving models that are quite
different from the conventional measurement model in the GUM. In particular,
Examples E7 (Thermistor Calibration), E17 (Gas Analysis), and E32 (Load Cell
Calibration) concern calibrations that are structurally similar to the thermome-
ter example that the authors mention in Line 109.
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Using x1, . . . , xn and y with the same roles that the GUM gives them, a statistical
forward model can be formulated simply by saying x1, . . . , xn ∼ L y , which is
shorthand for “the joint probability distribution of (the random variables whose
realized values are) the observable inputs x1, . . . , xn has y as a parameter and
likelihood function L y .

A Bayesian formulation will then add y ∼ P, where P is the prior distribution of
y , and application of Bayes’s rule produces a solution for the inverse problem
in the form of the posterior distribution, Q, of y ∼ Q x1,...,xn

. Compare this
formulation with the treatment of calibration via conventional regularization
in Hagwood [1992].

662 paradoxes shatter the bedrocks of Bayesian philosophy, namely the likelihood
principle that says that all relevant evidence about an unknown quantity obtained
from an experiment is contained in the likelihood. Others accept the theoretical
validity of the Bayes theorem but challenge its applicability in real life because of
the unknown and unknowable prior probabilities.

The paradoxes alluded to often relate more to the adoption of so-called “non-
informative” prior distributions than to the acceptance of the likelihood princi-
ple, as Cox [2006] points out, in a contribution referenced by White [2016].

All theories of inference have given rise to paradoxes, and nevertheless most
often they produce valid and practically useful inferences. Regarding the like-
lihood principle in particular, at least one well-known “paradox” has been dis-
missed as a false alarm [Goldstein and Howard, 1991].

In any case, White [2016] does not come even close to suggesting that such
paradoxes “shatter the bedrocks of Bayesian philosophy,” in particular as ap-
plied in measurement science. I know for a fact that Rod White does not object
to the use of Bayesian methods when these are warranted and there is genuine
prior information that should be taken into account.

The objection, which is also raised by Bayesians [O’Hagan, 2006], is to the
systematic reliance on “non-informative” prior distributions just for the sake of
going through the motions of the Bayesian machinery or to pay lip service to
scientific objectivity.

The Bayesian approach to problems of statistical inference is a choice among
many that can be made, similarly to how some people choose to drink lemonade
and others bourbon. Different approaches to statistical inference (be they fre-
quentist, fiducial, or Bayesian) all can claim notable successes in solving prob-
lems of practical importance.

Bayesian methods, in particular, can boast a long and varied roster of accom-
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plishments that prove beyond reasonable doubt that they are applicable in real
life, and that they can be used to solve important practical problems, and that
often they do so better than non-Bayesian alternatives [O’Hagan, 2008].

A particularly striking, recent accomplishment of Bayesian methods concerns
the use of measurements of ∆14CO2, in conjuction with atmospheric transport
models, to demonstrate that several bottom-up approaches to the estimation of
national inventories likely underestimate U.S. fossil fuel CO2 emissions [Basu
et al., 2020].

This study, which is based on methodological advances published in this very
journal [Basu et al., 2016], includes rigorous, model-based uncertainty evalu-
ations, and also serves to show that the GUM and its supplements have much
catching-up to do if they will ever come to play a role in addressing momentous
issues like the measurement of greenhouse gas emissions.

The suggestion that Bayesian methods are questionable because prior distri-
butions are “unknown and unknowable” reveals a misconception about prior
distributions: they are meant to encapsulate the knowledge that someone has
about the quantity of interest, prior to performing an experiment that gener-
ates fresh information about it. Therefore, proper, informative, subjective prior
distributions are known to who formulates them, by construction.

Of course, the Bayesian can be much mistaken and construct a prior distribution
that reflects an erroneous conception of reality, in which case the “knowledge”
that the prior encapsulates is false knowledge and its use will lead the inference
astray. However, Bayesian methods cannot be blamed for delusions any more
than Newton’s laws can be blamed for accidental falls.

674 the Bayesian philosophy relies on a couple of unwarranted assumptions, e.g.,
the likelihood principle and the indifference principle.

The authors convey a wrong impression on both counts.

Adherence to the likelihood principle is a choice that, in most applications, turns
out to be a better choice than most alternatives. Still, it is only a choice, among
many that can be made. Making such choice is necessary but not sufficient to
be Bayesian. Many statisticians, physicists, chemists, and biologists adhering to
the likelihood principle are not Bayesian.

Neither is adopting an indifference principle (or, more generally, using an al-
legedly non-informative prior distribution) necessary to qualify as being Bayesian.
In fact, quite the contrary is true: reliance on proper, informative, and suitably
elicited subjective prior distributions, are the hallmarks of genuine Bayesian
practice. But this, too, is only a choice [Robert, 2007].
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Technical Corrections

025 Replace comes down to the question if and how with “comes down to the
question of whether, and if so how”

056 Replace Second we assess to which degree with “Second, we assess the de-
gree to which”

068 Replace we conclude to which degree with “we conclude the degree to which”

128 Replace A rich methodical toolbox with “A rich methodological toolbox”

180 Replace This argument is often used to dispraise with “This argument is
often used to disparage”

267 Replace agent’s believe with “agent’s belief”

364 Replace Quantities of which the value cannot determined with “Quantities
whose values cannot be determined.” This suggestion deliberately ignores the
antiquated invective against using the possessive whose for inanimate objects,
consistently with the recommendation in O’Conner [2019, Page 243].

373 Replace Others have been formulated by us, serving, as arguments of the
Devil’s advocate, as working hypotheses in order to moot the error and uncertainty
concepts in the context of indirect measurements with “We have formulated oth-
ers as Devil’s advocates, which are intended to serve as working hypotheses to
MOOT the error and uncertainty concepts in the context of indirect measure-
ments,” except that “moot” needs to be replaced by a word that is suitable for
this passage: maybe “merge” or “reconcile”, depending on what the authors
wish to express.

413 Replace measurements are not in the focus with either “measurements are
not in focus” or “measurements are not the focus,” depending on what the au-
thors wish to say exactly.

420 Replace the probability that a person suffering fever to have Covid-19 is 50%
with “the probability is 50 % that a person with fever has COVID-19”

429 Replace distribution which is missing with “distribution that is missing”

470 Replace the aggregarion of random uncertainties with “the aggregation of
random uncertainties”

612 Replace strong misjudgement with “strong misjudgment” (unless the British
spelling be preferred)
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743 The sentence that includes traditional error analysis can connotate a statis-
tical quantity is unclear, and should be rewritten, taking into account the fact
that the verb connotate is obsolete and has been replaced by connote. However,
a term more generally familiar would be preferable, like suggest, possibly.
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