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1 Summary

The article under review, Truth andUncertainty. A critical discussion of the error
concept versus the uncertainty concept, by Thomas von Clarmann, Steven Com-
pernolle, and Frank Hase, deserves to be published because it is provocative
and questions what has become uncritically “accepted wisdom” among many
who follow the guidance in the GUM and in its supplements.
I am of the opinion that reviewers ought not to attempt to force authors to ex-
press only views that the reviewers share. It should be even less so in the case of
a contribution like this one, of von Clarmann’s et al., which is more an opinion
piece than a technical article, welcome nonetheless.
Below I offer assorted comments that do not add up to a thorough and complete
review, which the authors and the editor may like to consider, and, in dialog
with one another, possibly reach a settlement about next steps. I believe that the
review I submitted of the original submission was quite thorough and detailed,
and I appreciate the attention that the authors have obviously given to it.
I will abstain from making detailed comments about how the article is written
in English, or offering specific suggestions for how it can be improved on this
count. But I will make the following general remarks: the facts and arguments
the authors present can, by and large, generally be understood by anyone with
a modicum of familiarity with the relevant subjects; however, the article is far
from being written in good scholarly English, the punctuation being particu-
larly defective, which occasionally actually hinders understanding.
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2 Comments

2.1 L078 The error has been conceived as an attribute of a measurement or an
estimate, while the term ‘uncertainty’ has been used as an attribute of the true
state

Iwould say that the uncertainty is an attribute of the relationship
between the personmaking themeasurement and the true value
of themeasurand, characterizing the incomplete knowledge that
person is left with following the measurement.

2.2 L104 The estimated error is understood as a measure of the width of a distri-
bution around the measured value which tells the data user the probability
density of a certain value to be measured if the value actually measured was
the true value.

The simplest measurement model expresses themeasured value
as 𝑥 = 𝜇 + 𝜀, where 𝜇 denotes the true value of the measurand
and 𝜀 denotesmeasurement error. The error can be positive, neg-
ative, or null, and it is modeled as a (non-observable) random
variable. The spread of the corresponding probability distribu-
tion, gauged using the standard deviation or any other similar
metric, is indicative of the typical magnitude of the error, but it
is not the error itself.

2.3 L244 InGUM the error concept is discarded because the capability of conduct-
ing an error estimate allegedly depends on the knowledge of the true value.

The theory of statistical estimation [Lehmann andCasella, 1998]
has never shied away from entertaining quantities whose values
are unknown, be they parameters of interest, or non-observable
errors. There are statistical procedures that provide estimates
of individual errors, not just summary estimates of their typical
magnitude: for example, cross-validation [Stone, 1978] of a (lin-
ear or nonlinear) regression model.

2.4 L419 Some interpretations of GUM-2008 [. . . ] seem to suggest that error esti-
mation and uncertainty analysis are best distinguished in the sense that the
former relies on frequentist statistics while the latter is founded on Bayesian
statistics.
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The authors are quite right when they dismiss this myth, vari-
ously and repeatedly throughout the article.

2.5 L462The uncertainty concept relies on the possibility of evaluating uncertain-
ties caused bymeasurement errors and “systematic effects”without knowledge
of the true value. This is certainly granted for linear problems. Here the uncer-
tainty estimates do not depend on the value of themeasurand. This is because
in the linear case Gaussian error propagation holds.

I do not understand what the authors meanwhen they say “This
is certainly granted for linear problems.” And regarding the third
sentence: there are nonlinear models where the typical size of
the errors does not depend on the value of the measurand, and
there are linearmodels where it does. Finally, what is “Gaussian
error propagation?”

2.6 L504 The situation is more difficult for biases. Biases between different mea-
surement systems do not tell us what the bias of onemeasurement systemwith
respect to the— unfortunately unknowable— truth is. Even if the number of
measurement systems is quite large, it is not guaranteed that the mean bias
of all of them is zero.

Bias (differently from how the VIM [Joint Committee for Guides
inMetrology, 2012] defines it) is the difference between themath-
ematical expectation of an estimator and the quantity being es-
timated.
The situation is not as desperate as the authors paint it: the sta-
tistical jacknife [Mosteller and Tukey, 1977] [Efron, 1982], the
statistical bootstrap [Efron andTibshirani, 1993], and cross-validation
[Mosteller and Tukey, 1977] can provide useful estimates of bias
without assuming that the target of estimation is known.
As the authors note around L513, by intercomparing indepen-
dent measurement results for the same measurand, one can as-
certain at leastwhether all important sources of uncertainty have
been accounted for in the respective uncertainty budgets or not.
If there should be lurking uncertainty components that mani-
fest themselves only when measurement results (measured val-
ues and their uncertainties) are compared — so-called dark un-
certainty [Thompson and Ellison, 2011] —, then this may be at-
tributed to yet undetected and still unexplained effects, which
can be persistent — that is, biases —, or volatile.
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The so-called Hubble Tension illustrates such situation, in rela-
tion with which Riess et al. [2019] makes the following remark:
“pinpointing the cause of the tension requires further improve-
ment in the local measurements, with continued focus on preci-
sion, accuracy, and experimental design to control systematics.”
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