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Abstract. Contrary to the statements put forward in “Evaluation of measurement data – Guide to the

expression of uncertainty in measurement”, edition 2008 (GUM-2008), issued by the Joint Commit-

tee for Guides in Metrology, the error concept and the uncertainty concept are the same. Arguments

in favour of the contrary have been analyzed and were found not compelling. Neither was any evi-

dence presented in GUM-2008 that “errors” and “uncertainties” define a different relation between5

the measured and the true value of the variable of interest, nor does this document refer to a Bayesian

account of uncertainty beyond the mere endorsement of a degree-of-belief-type conception of prob-

ability.

1 Introduction

It has long been recognized that the quantitative characterization of the reliability of a measure-10

ment is essential to draw quantitative conclusions from the measured data. Various and often con-

tradicting methods and terminologies emerged over the years. The activity ‘Towards Unified Er-

ror Reporting, (TUNER),’ aims at a unification of the reporting of errors in estimates of atmo-

spheric state variables retrieved from satellite measurements (von Clarmann et al., 2020)). On re-

quest of the Bureau International de Poids et Mesures (BIPM), the Joint Committee for Guides in15

Metrology (JCGM) has issued a guideline how measurement uncertainty should be dealt with (Joint

Committee for Guides in Metrology (JCGM), 2008, this source is henceforth referenced as GUM-

2008). Supplementary material in the context of GUM is found in Joint Committee for Guides in

Metrology (JCGM) (2012) and several supplements to GUM-2008, that are found on the BIPM

website (https://www.bipm.org/en/publications/guides/gum.html). The concept of uncertainty was20

developed long before the GUM-2008 was issued and has seen several refinements since then (e.g.

Eisenhart and Collé, 1980; Collé, 1987; Colclough, 1987; Schumacher, 1987). A key claim of GUM-

2008 is that the terms “error” and “uncertainty” connote different things, and that the underlying

concepts are different. GUM-2008 has been critically discussed by, e.g., Bich (2012), Grégis (2015),
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Elster et al. (2013) and The European Centre for Mathematics and Statistics in Metrology (2019),25

and more favorably by, e.g., Kacker et al. (2007).

In this paper we critically asses some of the claims made in GUM-2008 and, as part of the TUNER

activity, discuss its applicability to remote sensing of the atmosphere. We start with analyzing GUM’s

claim about the differences between error and uncertainty (Section 2), whereby it is important to

distinguish between terminological (Section 2.1) and conceptual (Section 2.2) issues. We shall find30

that the concept of the ‘true value of the measurand’ makes up the alleged key difference. That is to

say, the uncertainty concept endorsed by GUM is claimed, contrary to traditional error analysis, to

be able to dispense with the concept of the true value that is neither known nor knowable (GUM-

2008, p.3 and p. 5). This leads to the question of whether, and if so, how the measured or estimated

value along with the estimated error (or uncertainty) are related to the true value the measurand has35

in reality and what the problems related to the ignorance of the true value are in the context of error

estimation (Section 3). In this context, we first address the question, if it is adequate to use the true

value, which is typically unknown and unknowable, in the definition of the term error, and to base

error analysis on such a definition (Section 3.1). Second, we investigate the implications that the

inverse nature of a measurement process has on the probabilistic relationship between the measured40

value, the true value, and the measurement (Section 3.2. In this context we discuss the problem of the

baserate fallacy. Further, it is investigated if the alleged difference between the error concept and the

uncertainty concept can be explained by a Bayesian turn in metrology. Third, we assess the degree to

which the nonlinearity of the relationship between the measured signal and the target quantity, viz.,

the radiative transfer equation, poses additional problems (Section 3.3). And fourth, we scrutinize45

the claim that there will always be unknown sources of uncertainty and that it is thus impossible to

relate the measured value along with its uncertainty estimate to the true value (Section 3.4). After

these more general considerations we critically discuss the applicability of the GUM-2008 concept

to indirect measurements of atmospheric state variables (Section 4). There we discuss the problems

of measurands that are not well-defined in the sense of GUM-2008 (Section 4.1), and if it is really50

adequate to report the combined error only (Section 4.2). Finally (Section 5) we conclude the degree

to which the arguments put forward by the Joint Committee for Guides in Metrology (JCGM) are

conclusive and what the differences between the error concept and the uncertainty concept actually

are.

2 Error and Uncertainty55

GUM-2008 endorses a new terminology compared to that of traditional error analysis. In the context

of the work undertaken by the TUNER activity, a project aiming at unification of error reporting of

satellite data (von Clarmann et al., 2020))], terminological and conceptual divergence is particularly
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problematic. Without agreement on the concepts and the terminology of error versus uncertainty

assessment, any unification is out of reach.60

According to GUM-2008, the concept of uncertainty analysis should replace the concept of er-

ror analysis. The International Vocabulary of Metrology document (Joint Committee for Guides in

Metrology (JCGM), 2012) points in the same direction. Thus, some conceptual and terminological

remarks seem appropriate. While, on the face of it, this is quibbling about words, actually conceptual

differences between the errors and uncertainties are claimed to exist. This issue is discussed in the65

following.

A key claim of GUM-2008 is that the “concept of uncertainty as a quantifiable attribute is rel-

atively new in the history of measurements, although error and error analysis have long been part

of the practice of measurement science or metrology” (Joint Committee for Guides in Metrology

(JCGM), 2008, Sect 0.2, l. 1–2; emphases in the original.). In a note to their Section 3.2.3, GUM-70

2008 states that “The terms ‘error’ and ‘uncertainty’ should be used properly and care taken to

distinguish between them.” The discussion of these issues is occasionally led astray, because it is

often not distinguished between two different questions: first, whether the terms ‘error’ and ‘uncer-

tainty’ have the same connotation, and second, whether the underlying concepts are indeed different.

In the following, we try to shed some light on these issues.75

2.1 Terminological Issues

Already in the pre-GUM language there have been subtle linguistic differences between the terms

‘error’ and ‘uncertainty’. The error has been conceived as an attribute of a measurement or an esti-

mate, while the term ‘uncertainty’ has been used as an attribute of the true state. We perfectly know

our measurement – even if it is erroneous – and thus we are uncertain about the true value. Because80

of the measurement error there is an uncertainty as to what the true value is. The uncertainty thus

describes the degree of ignorance about the true value while the estimated error describes the degree

to which the measurement is thought to deviate from the true value. In this use of language, both

terms still relate to the same concept. This notion seems, as far as we can judge, to be consistent with

the language widely used in the pre-GUM literature since Gauss (1809), who used the latin terms85

error and incertitudo in this way. Thus, both terms have referred to the same thing but from a dif-

ferent perspective 1. The estimate of the total error includes both measurement noise and all known

components of further errors, random or systematic, caused by imperfections in the measurement

and data analysis system.

It must, however, be noted, that the term ‘error’ is an equivocation. It has been used both for the90

unknown and unknowable signed actual difference between the measured value and the true value

1Possolo (2021) expresses this construal in more colorful words: “[. . . M]easurement uncertainty surrounds the true value

of the measurand like a fog that obfuscates it, while measurement error is both the source of that fog and part and parcel of the

measured value. Measurement uncertainty thus describes the doubt about the true value of the measurand, while measurement

error quantifies the extent to which the measured value deviates from the true value.”.
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of the measurand, and for a statistical estimate of it. The statistical estimate is mostly understood to

be the square root of the variance of the probability density function of the error23 and thus does not

carry any information about the sign of the error. Nonlinear error propagation may in some cases

make asymmetric error estimates necessary, but typically these do not carry any information on the95

actual sign of the error either. The ignorance of the sign of the error entails that the true or most

probable value cannot simply be determined by subtracting the estimated error from the measured

value.

One of the first major documents, where the term ‘error’ has been used with this statistical con-

notation is, to the best of our knowledge, “Theoria Motus Corporum Celestium” by C. G. Gauss100

(1809). Since then, the term ‘error’ has commonly been used to signify a statistical estimate of the

size of the difference between the measured and the true value of the measurand. Seminal publi-

cations by Gauss (1816), Pearson (1920), Fisher (1925), Rodgers (1990), and Mayo (1996) furnish

evidence of this use of this term ‘error’. The estimated error is understood as a measure of the width

of a distribution around the measured value which tells the data user the probability density of a105

certain value to be measured if the value actually measured was the true value. One might criticize

equivocation of the traditional language, but one can equally well consider this as a non-issue and

trust that the context will make clear what is meant. Often, some attributes are used for clarification

and specification, e.g., ‘probable error’ (Gauss, 1816; Bich, 2012), ‘statistical error’ Nuzzo (2014),

‘error estimation’ (Zhang et al., 2010) or ‘error analysis’ (Rodgers, 1990, 2000; Hughes and Hase,110

2010).

More recently, GUM-2008 presented a narrower definition how we have to conceive the term

‘error’ and have stipulated a new terminology, where the term ‘measurement uncertainty’ is used in

situations where one would have said ‘measurement error’ before. According to GUM-2008, p.2, the

uncertainty of a measurement is defined as “a parameter, associated with the result of a measurement,115

that characterizes the dispersion of the values that could reasonably be attributed to the measurand”.

Conversely, GUM-2008 (Annex B.2.19) allows for the term ‘error’ only the connotation ‘signed

difference’, but their use of the terms ‘error and error analysis’ in the first sentence of their 0.2

or ’possible error’ in their 2.2.4 only make sense if the statistical meaning of the term ‘error’ is

conceded.120

In spite of the explicit definition in GUM-2008, there seems to be no unified stance among GUM-

2008 endorsers as to what ‘error’ is. E.g., Merchant et al. (2017) uphold that ‘error’ connotes only

the signed difference, while Kacker et al. (2007) or White (2016) refer to ‘error’ as a statistical

estimate. Kacker et al. (2007) complain that GUM-2008 is often misunderstood, and we suspect

2When we use variances and standard deviations, we do not mean sample variances and sample standard variations but

simply the second central moment of a distribution or its square root. In accordance with GUM-2008, this distribution can

represent a probability in the sense of personal belief, and thus can include also systematic effects. See also Section 2.2.
3Other estimates are also used, e.g., robust ones like the interquartile range.
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that the cause for this might be that GUM-2008 is indeed not sufficiently clear with respect to the125

differences between the underlying error and uncertainty concepts.

The use of the term ‘uncertainty’ in GUM-2008 seems inconsistent: The general GUM-2008 con-

cept seems to be that the ‘error’ has to include all error sources and thus cannot be known; ‘uncer-

tainty’ is weaker, it is only an estimate of quantifiable errors, excluding the unknown components.

This view is supported by the following quotation (GUM-2008, p. viii) “It is now widely recognized130

that, when all of the known or suspected components of error have been evaluated and the appro-

priate corrections have been applied, there still remains an uncertainty about the correctness of the

stated result, that is, a doubt about how well the result of the measurement represents the value of the

quantity being measured.” It is not fully clear what this means. One possible reading is that they use

the term ‘error’ in the redefined sense, viz., as a quantity which measures the actual deviation from135

the true value. Then this statement would be a mere truism, just saying that after all correction and

calibration activities there is still a need for error (in the error concept terminology) estimation. The

only other possible reading is that they want to say that, since due to unknown (unrecognized and/or

recognized but not quantified4) error sources, error estimation will always be incomplete and there

remains an additional uncertainty not covered by the error estimation. This often is very true but the140

use of the term ‘uncertainty’ would then be inconsistent in their document, because here the conno-

tation of ‘uncertainty’ is the unknown (unquantified or even unrecognized) part of the error, which

by definition cannot be assessed, while in the main part of their document, the connotation of ‘un-

certainty’ seems to be a quantified statistical estimate. In summary, it is not clear if the ’uncertainty’

includes the unknown error terms or not.145

The introduction of the term ‘uncertainty of measurement’ seems to us a mere linguistic revision

of an established terminology which does not connect to any further insights. The issue of whether

the term ‘error’ should be used also for a statistical estimate cannot be judged on scientific grounds.

It is a matter of stipulation, although in the main body of GUM-2008 this stipulation is presented

as if it was a factual statement (“In this Guide, great care is taken to distinguish between the terms150

‘error’ and ‘uncertainty’. They are not synonyms, but represent completely different concepts; they

should not be confused with one another or misused.”, Sect 3.2, Note 2). The synonymity of ‘error’

and ‘uncertainty’ is thus neither true nor false but adequate or inadequate. Instead of quibbling about

words we will, in the next Section, concentrate on the concepts behind these terms.

2.2 Conceptual Issues155

Although GUM-2008 (Sect. 0.2) claims the “concept of uncertainty as a quantifiable attribute to

be a relatively new concept in the history of measurement”, we uphold the view that it has long

been recognized that the result of a measurement remains to some degree uncertain even when a

4Rigorously speaking, within the concept of subjective probability recognized but unquantified uncertainties should not

exist.
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thorough measurement procedure and error evaluation is performed. Investigators realized already

in the 19th century that measurement results always have errors. Carl Friedrich (Gauss, 1809) and160

Adrien-Marie Legendre (1805) formalized the required procedure of balancing imperfect astrometric

measurements by least squares fitting, in support of orbital calculations from overdetermined data

sets. And there is no reason to believe that earlier investigators were unaware of the fact that they

were not working on perfect observational data. Kepler‘s conclusion concerning the elliptical shape

of the orbit of Mars based on the rich observational dataset collected by Brahe would have been165

impossible without proper implicit assumptions concerning the limited validity of the reported values

(Kepler, 1609). A rich methodological toolbox for error estimation and uncertainty assessment has

been developed since then, including systematic errors, error correlations, etc.

GUM-2008 does not only present traditional error analysis in a revised language but suggests that

there is more to it. That is to say, the entire concept is claimed to be replaced (see, e.g., GUM-2008,170

Sect 3.2.2., Note 2). We understand that GUM-2008 grants that the classical concept of error anal-

ysis deals with statistical quantities, but these are statistical estimates of the difference between the

measured or estimated value and the true value. We take GUM-2008 to be saying that the reference

of even this statistical quantity to the true value poses certain problems, because the true value is un-

known and unknowable. As a solution of this problem, the uncertainty concept is introduced which175

allegedly makes no reference to the true value of the measurand and is thus hoped to avoid related

problems. GUM-2008 (particularly Section 2.2.4) unfortunately leaves room for multiple interpre-

tations, but our reading is that an error distribution is understood by GUM-2008 as a distribution

whose dispersion is the estimated statistical error and whose expectation value is the true value,

while an uncertainty distribution is understood as a distribution whose dispersion is the estimated180

uncertainty and whose expectation value is the measured or estimated value.

GUM-2008 (p.5) characterizes error as “an idealized concept” and states that “errors cannot be

known exactly”. This is certainly true but it has never been claimed that errors can be known exactly.

Since not all relevant error sources are necessarily known, any error estimate remains fallible but still

it is and has always been the goal of error analysis to provide error estimates as realistic as possible.185

To use the statistical conception of ‘error’ and conceding the fallibility of its estimated value, it is not

necessary to know the true value. It is only necessary to know the chief mechanisms which can make

the measured value deviate from the true value and to have estimates available on the uncertainties

of the input values to these mechanisms.

Some GUM-2008 endorsers (e.g., Kacker et al., 2007) try to draw a borderline between error anal-190

ysis and uncertainty assessment in a way that they associate error analysis with frequentist statistics

while uncertainty is placed in the context of Bayesian statistics. Frequentist statistics, we understand,

is a concept where the term ‘probability’ is defined via the limit of frequencies for a sample size ap-

proaching infinity. This definition is challenged because it involves a circularity: It is based on the

large number theorem, according to which (strong version) a frequency distribution will almost cer-195
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tainly converge towards its limit. This limit is then associated with the probability. ‘Almost certainly’

means ‘with probability 1’. The circularity is given by the fact that the definiendum appears in the

definiens (See, e.g., Stegmüller, 1973, pp. 27). Also the weak version of the large number theorem

involves the concept of probability and thus poses a similar problem to the definition of the term

‘probability’. We concede that many estimators in error estimation rely on frequency distributions.200

It is, however, a serious misconception to conclude from this that error analysis is based on a fre-

quentist definition of ‘probability’. This is simply a non sequitur. Frequency-based estimators are

consistent with any of the established definitions of probability, and their use does not allow any

conclusion about the definition of ‘probability’ in use.

The conceptual differences between error analysis and uncertainty analysis seem to come down to205

the different relations between the measured and the true value of the measurand. In GUM-2008 (p.

3 and p. 5), the claim is made that the uncertainty concept can be construed without reference to the

unknown and unknowable true value while the error concept cannot (GUM-2008, p.3), and that the

uncertainty concept is more adequate because there can always exist unknown error sources which

entail that an error budget can never be guaranteed to be complete (GUM-2008 p. viii). It is stated210

that the uncertainty concept is not inconsistent with the error concept [GUM-2008 p. 2/3]. There are,

however, certain inconsistencies and shortcomings, which are discussed in the following.

One of the major purposes of making scientific observations, besides triggering ideas on possi-

ble relations between quantities, is to test predictions based on theories on the real world (Popper,

1935). To decide if an observation corroborates or refutes a hypothesis, it is necessary to have an215

estimate how well the observation represents the true state, because it must be decided how well any

discrepancy between the prediction and the observation can be explained by the observational error

(e.g., Mayo, 1996). Any concept of uncertainty that is not related to the true state cannot serve this

purpose.

On page 3, GUM-2008 says that the attribute ‘true’ is intentionally not used within the uncer-220

tainty concept because truth is not knowable. In GUM-2008, p. 59 it is claimed that the uncertainty

concept “uncouple the often confusing connection between uncertainty and the unknowable quan-

tities “true” value and “error”. The term ‘measurand’ in their definition, however, is defined as the

quantity intended to be measured (Joint Committee for Guides in Metrology (JCGM), 2009); GUM-

2008, (p.32) says basically the same; GUM-2009, p. 20, says that the ‘quantity’ is the same as the225

‘true quantity value’. Inserting this definition in the GUM-2008 definition of uncertainty yields that,

through the back door, uncertainty still refers to the true value. Thus it is not clear what the difference

between the traditional concept of error analysis and the uncertainty concept is. Further, it is stated

that systematic effects can contribute to the uncertainty. GUM-2008 falls short of clarifying how

a systematic effect be understood other than a systematic deviation between the measurement and230

the true value that the concept GUM-2008 apparently tries to avoid. In order to justify the attribu-

tion of an uncertainty distribution to the systematic effects without relying on frequentist statistics,
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they invoke the concept of subjective probability. With this it becomes possible to assign an uncer-

tainty distribution to the combined random and systematic uncertainty but still it is not clear how the

systematic effect is defined without reference to the unknown truth.235

Subjective probability reflects the personal degree of belief (GUM-2008, p. 39). Thus, a

knowledge-dependent concept of probability is used in GUM-2008. This approach has been cho-

sen to allow the treatment of systematic errors as dispersions, although the systematic error does not

vary and cannot thus be characterized by a distribution in a frequentist sense (GUM-2008 p. 60).

If we construe ‘estimated error’ and ‘estimated value’ as parameters of a distribution assigning to240

each possible value the probability (in a Bayesian context) or the likelihood (in a maximum likeli-

hood context5) that it is the true value, no knowledge of the true value is required. This is because,

by definition, the subjective probability distribution merely represents the knowledge of the person

generating it. In GUM the error concept is discarded because the capability of conducting an error

estimate allegedly depends on the knowledge of the true value. However, once having invoked the245

concept of subjective probability, no objective knowledge of the unknowable true value is needed

any longer. The subjectivist can work with the value they beliefs to be true. This solves the alleged

problem of the error concept, namely, that the true value is unknown.

There is nothing wrong with the subjectivist concept of probability, nor do we attack the possibility

to combine random and systematic errors in a single distribution. This concept, however, makes the250

knowledge of the true value and the true error unnecessary, and still the estimated error can be

conceived as a statistical estimate of the absolute difference between the measured value and the

true value. We consider it untenable and inconsistent to refer to the concept of subjective probability

when it comes in handy and to deny it when it would solve the conflict between the error and the

uncertainty concepts.255

Our skepticism about the possibility of dispensing with the concept of the true value is shared by,

e.g., Ehrlich (2014), Grégis (2015), and Mari and Giordani (2014). Note that in the International Vo-

cabulary of Metrology (known as VIM) (Joint Committee for Guides in Metrology (JCGM), 2012),

although also issued by the JCGM, the concept and definition of the true value are explicitly retained.

In GUM-2008, p. 2/3 it is claimed that the concept of uncertainty “is not inconsistent with other260

concepts of uncertainty of measurement, such as a measure of the possible error in the estimated

value of the measurand as provided by the result of a measurement [or] an estimate characterizing

the range of values within which the true value of the measurand lies6 (VIM:1984 definition 3.09).

Although these two traditional concepts are valid as ideals, they focus on unknowable quantities:

the “error” of the result of a measurement and the “true value” of the measurand (in contrast to the265

estimated value), respectively. Nevertheless, whichever concept of uncertainty is adopted, an uncer-

tainty component is always evaluated using the same data and related information...” (emphases in

5see Section 3.2 for a deeper discussion of this issue.
6It is not clear how this can be achieved without explicit consideration of the Bayes theorem.
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the original). It remains unclear how the concepts can, on the one hand, be consistent, while, on the

other hand, it is claimed that the error approach and the uncertainty approach are actually conceptu-

ally different and not only with respect to terminology. Since both concepts, however, are consistent,270

it is not clear in what the difference of the concepts consists.

Interestingly enough, early documents of the history of GUM (Kaarls, 1980; Bureau International

des Poids et Mésures) provide evidence that the terminological turn from ‘error’ to ‘uncertainty’

was triggered only by linguistic arguments, based upon the fact that in common language the term

‘uncertainty’ is often associated with “doubt, vagueness, indeterminacy, ignorance, imperfect knowl-275

edge”. These early documents provide no evidence that ‘error’ and ‘uncertainty’ were conceived as

two different technical terms connoting different concepts. Any re-interpretation of the terms ‘error’

and ‘uncertainty’ as frequentist versus Bayesian terms or operational versus idealistic concepts came

later.

The answer to the terminological differences was found to be contingent upon the underlying stip-280

ulation, and that any statement about their equivalence or difference without reference to a definition

is a futile pseudo-statement. The answer to the question of conceptual differences is less trivial and

deserves some deeper scientific discussion. The main question still seems to be how the true value,

the error or uncertainty, and the measured value are related with each other. This question will be

addressed in the following section.285

3 The unknown true value of the measurand

The alleged key problem of the error concept is, in our reading of GUM-2008, that the value of

the true value of the measurand is not known, and that this true value must appear neither in the

definition of any term nor in the recipes to estimate it. To better understand this key problem, we

decompose it into four sub-problems.290

1. Quantities whose the value cannot be determined must not appear in definitions.

2. The error distribution must not be conceived as a probability density distribution of a value to

be the true value.

3. Nonlinearity issues pose problems on error estimation if the true value is not known, at least

in approximation.295

4. One can never know that the uncertainty budget is complete because it can always happen

that a certain source of uncertainty has been overlooked; thus, the full error estimate is an

unachievable ideal and thus the estimated error does not provide a link between the measured

value and the true value.

Some of these sub-problems are in some way formulated in GUM-2008 but it is not exactly specified300

there why the fact that the true value of the measurand is unknowable poses a problem to the scientist
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applying traditional error estimation. We have formulated others as Devil’s advocates, which are

intended to serve as working hypotheses to critically discuss the error and uncertainty concepts in

the context of indirect measurements. In the following we will scrutinize these theses one after the

other.305

3.1 The operational definition

GUM-2008 tries to avoid to use the true value of the measurand in the definition of the term ‘un-

certainty’. This strategy is employed because the true value of the measurand is “not knowable”

(GUM-2008, p. 3). It may be found puzzling why it should be necessary to know the value of a

quantity to use it in the definition of a term. The height of the Colossus of Rhodes or the Lighthouse310

of Alexandria are well-defined quantities although we have no chance to measure them today7. Also

we might have a clear physical conception of what the temperature in the center of the sun might

be although it may not be practicable to put a thermometer there, and we even might not be able to

figure out any other, more sophisticated, method to assign an accurate observation-based value to

this quantity. Intuitively, we conceive the definition of a quantity and the assignment of the value to315

a quantity as quite different things.

In GUM-2008 it is claimed that the definition of ‘uncertainty’ is an operational one (p. 2). An

operational definition defines a quantity by stipulating a procedure by which a value is assigned to

this quantity. The concept of operational definitions was suggested by Bridgeman (1927) in order to

give terms in science a clear-cut meaning. This operationalism, at least a narrow conception of it,320

has its own problems, has received considerable criticism and has led to deep philosophical discus-

sions (see, e.g., Chang, 2019). To summarize these is beyond the scope of this paper and for here it

must suffice to mention that there are alternatives, such as theoretical definitions or reduction of the

definiendum to previously defined terms.

GUM-2008’s claim that the uncertainty concept is based on an operational definition leads to two325

further inconsistencies. First, no unambiguous operation is stipulated on which the definition can be

based, but multiple operations are proposed, which might give different uncertainty estimates. Thus,

the definition is void. Our critical attitude with respect to operationalism in the context of GUM-2008

is shared, e.g., by Mari and Giordani (2014).

The other problem with the operational definition is the following: In GUM-2008, pp 2-3, it is330

claimed that the uncertainty concept is not inconsistent with the error concept, and a few lines later

it reads “an uncertainty component is always evaluated using the same data and related information”

(emphasis in the original). The latter suggests that within the error concept the same operations are

used as within the uncertainty concept. Since the operations define the term and the related concept,

the uncertainty concept and the error concept must be the same.335

7We owe this illustrative example to Possolo (2021).
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In summary, the fact that the true value of the measurand is unknowable is a problem for the

definition of the term ‘error’ and its statistical estimates only if we commit ourselves to the doctrine

of that only operational definitions must be used. If we abandon this dogma, there is nothing wrong

with conceiving the estimated error as a statistical estimate between the measured or estimated and

the true value, and the problem is restricted to the assignment of a value to this quantity. Related340

issues are investigated in the following.

3.2 Measurements as inverse processes

Many conceptions of measurement models exist, which relate the measured value to the true value,

and depending on the context, one can be more adequate than another (Possolo, 2015). GUM-2008

recommends a model that conceives the estimate of the true value of the measurand as a function345

of the measured value. Since in remote sensing of the atmosphere multiple atmospheric states can

cause the same set of measurements, and the measurement function thus would be ambiguous, we

prefer a different concept, as outlined in the following.

The causal error points from the true value to the measured signal. Thus, the estimation of the

true value from a measured value can be conceived as an inverse process. An argument along this350

line of thought, but in a context wider than that of remote sensing of the atmosphere, has been

put forward by Possolo and Toman (2007). The inverse characteristic of the estimation problem is

particularly true for indirect measurements, e.g., remote sensing, but direct measurements can easily

be conceived as indirect measurements. When reading the thermometer, we actually read the length

of the mercury column (the measured value), apply inversely the law of thermal expansion, and get355

an estimate of the temperature. In trivial cases, when a measurement device has a calibrated scale

from which the target quantity can be directly read, the inverse process is effectively pretabulated in

the scale. Only in these cases the measured value and the estimate of the measurand are the same.

With a transfer function F available, that approximately describes the process that links the true

value x of interest to the measured value, the expected measured signal yexpected = F (x) can be360

estimated. The distribution of the measurement error around yexpected describes the probability of

any value y to be measured.

Conversely, for a given measurement ymeasured, the inversion of the transfer function allows to

estimate the true value x. If a genuine inversion of the transfer function is not possible due to ill-

posedness of the inverse problem in the sense of Hadamard (1902), workarounds like least squares365

methods or regularized inversion schemes are available (see, e.g., von Clarmann et al. 2020 for a

summary of some methods of particular relevance for remote sensing). Counterintuitively, however,

in general, neither the estimate will be the most probable value of x, nor will the mapping of the

measurement error distribution into the x-space yield the probability distribution of any value to

be the true value. This holds even if the error distribution is extended to include also systematic370

effects, and if all error correlations are adequately taken into account in the case of multi-dimensional
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measurements. It is the theorem of Bayes (1763) which makes the difference. The only inverse

scheme where such a probabilistic interpretation is valid in the x-space, is the maximum a posteriori

method (Rodgers, 2000), which employs a Bayesian estimator.

The non-consideration of the Bayes theorem goes under the name of ‘base rate fallacy’. 50% of375

people suffering Covid-19 have fever (Robert Koch Institut, 2020), but this does not imply that the

probability is 50% that a person with fever has Covid-19. To estimate the latter probability requires

knowledge of the percentage of people being infected with the Corona virus, and the probability that

a person suffers fever for any reason. In metrology the situation is quite analogous. There are three

possible solutions to cope with this problem.380

The first solution is to apply a retrieval scheme that is based on a Bayesian estimator. Examples

are found, e.g., in Rodgers (2000) or von Clarmann et al. (2020). On the supposition that the error

budget is complete, the interpretation of the error bar as the dispersion of a distribution representing

the probability density that a certain value is the true value is correct. The problem with this approach

is that often there is no firm a priori knowledge on the value of the measurand available.385

The second solution is the application of the principle of indifference, as applied, e.g., by Gauss

(1809). That is, the same a priori probability is assigned to all possible values of the measurand.

With this, e.g., in the application to a linear inverse problem and normal distributions of uncertain-

ties, the Bayesian solution collapses back to a simple unconstrained least squares solution. Due to the

assumption of the equidistribution of the a priori probabilities, the estimated uncertainty of the esti-390

mate can still be interpreted as the width of the probability density function of the true value of the

measurand. This concept of ‘non-informative a priori’, however, has its own problems. Even if we

ignore some more trivial problems for the moment, e.g., that some quantities cannot, by definition,

take negative values, this concept can lead to absurdities: If we assume that we have no knowledge

on, say, the volume density of small-particle aerosols in the atmosphere, and describe this missing395

knowledge by an equidistribution of probabilities, this would correspond to a non-equidistribution

of the surface densities, due to the non-linear relationship between surface and volume. It strikes

us as absurd that information can be generated just by such a simple transformation from one do-

main into another. The principle of indifference, upon which the concept of non-informative priors

is built, is critically but still favorably discussed, e.g., by Keynes (1921, Chapter IV). The concept of400

non-informative priors is still criticized even in the Bayesian community (e.g. D’Agostini, 2003).

The third solution is the likelihood interpretation, which has been introduced by Fisher (1922).

The likelihood that the true value is x if the measured signal is y equals the probability density that y

is measured if the true value is x. No prior information is considered. Solution of the inverse problem

by maximizing the likelihood of x does not provide the most probable estimate of x, and accordingly405

the error bar of the solution must not be interpreted as the width of a probability distribution of the

true value. Application to a linear inverse problem and normal distributions of uncertainties renders

formally the same estimator as the Gaussian least squares solution, but its interpretation has changed.
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It can no longer be interpreted as the maximum of a probability density function of the true value. If

need be, in some cases, i.e., if the inverse problem is well-posed enough to allow an unconstrained410

solution, the maximum likelihood estimate can be, post factum, transformed into a Bayesian estimate

by application of the Bayes theorem.

We concede that the interpretation of a measured value as the most probable true value is prob-

lematic. This implies that also the interpretation of the error estimate as the width of a distribution

around the true value is not generally valid. These problems could justify some reluctance with re-415

gard to the concept of the true value. This argument, involving the base-rate fallacy, however, is not

invoked in GUM-2008.

Some interpretations of GUM-2008 (e.g. White, 2016; Kacker et al., 2007) associate it with a

Bayesian conception of probability and seem to suggest that error estimation and uncertainty analysis

are best distinguished in the sense that the former relies on frequentist statistics while the latter is420

founded on Bayesian statistics. Thus one might suspect that ‘uncertainty’ is simply the Bayesian

replacement of error. Here the following remarks are in order:

(1) Many of the methods presented in GUM-2008, including their ‘Type A evaluation (of un-

certainty)’, which is the ‘method of evaluation of uncertainty by the statistical analysis of series

of observations’ are from the frequentist toolbox. Gleser (1998) find that the methods suggested in425

GUM are neither fully frequentist nor fully Bayesian. Further, it is not quite clear which of Bayes’

methods and principles a scientist has to use to be a Bayesian (c.f., e.g., Fienberg, 2006), since the

Bayes theorem is accepted also by non-Bayesians, and the use of maximum likelihood methods,

introduced by the almost ‘militant’ frequentist R. A. Fisher (1922) does, as far as we can judge,

not commit one to use a frequentist definition of the term ‘probability’. The GUM-2008 does not430

provide a clear reference to a specifically Bayesian uncertainty analysis method. GUM-2008 makes

reference to Jeffreys (1983) as an authority of the degree-of-belief-concept of probability. Jeffreys,

however, offers no clue as to what the difference between ‘error’ and ‘uncertainty’ might be. In the

context of measurements or observations, Jeffreys always uses the term ‘error’ (e.g., op. cit., p. 72),

and often we find statements like “the probable error [...] is the uncertainty usually quoted” (op. cit.,435

p. 72), “no uncertainty beyond the sampling errors” (op. cit., p. 389), or “treat the errors as inde-

pendent” (op. cit., p. 443). With the statement that errors are not mistakes (op. cit., p. 13), Jeffreys

explicitly contradicts the GUM pioneers (Kaarls, 1980) and GUM-2008 endorsers Merchant et al.

(2017). Also Press (1989) is referenced by GUM-2008 only to defend the use of a subjective concept

of probability but not in a context aiming at the clarification of the alleged difference between ‘error’440

and ‘uncertainty’.

(2) If the uncertainty concept was indeed founded on a Bayesian framework, it would be aston-

ishing why it does not in the first place require to apply the Bayes theorem to convert the likelihood

distributions into a posteriori probability distributions. The methodology proposed in GUM-2008 is

uncertainty propagation. This is a mere forward (or direct) problem: given that xtrue is the true value,445
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and a measurement procedure with some error distribution, it returns a probability distribution for

values xmeasured that might be measured. However, GUM-2008’s definition of uncertainty “parame-

ter, associated with the result of a measurement, that characterizes the dispersion of the values that

could reasonably be attributed to the measurand” (emphasis added by us), seems associated with

another meaning: given a measured value (“result of a measurement”) and a measurement procedure450

with some error distribution, what is the probability density distribution of the “values that could

reasonably be attributed to the measurand” to be the true one. This is an inverse problem, for which

Bayes theorem is applicable rather than uncertainty propagation.

(3) Interestingly enough, Willink and White (2012), who use the term ‘uncertainty’ also in a

frequentist framework, report that the turn to the new terminology happened already in 1980/81, and455

make a strong case that various allegedly purely Bayesian concepts of GUM-2008 can be given a

valid frequentist interpretation.

Thus, we reject the hypothesis that uncertainty concept as presented in GUM-2008 is a Bayesian

concept. Bayesianism does not help to understand the claimed differences between the error concept

and the uncertainty concept.460

3.3 Nonlinearity issues

The uncertainty concept relies on the possibility of evaluating uncertainties caused by measurement

errors and “systematic effects” without knowledge of the true value. This is certainly granted for

linear problems. Here the uncertainty estimates do not depend on the value of the measurand. This

is because in the linear case Gaussian error propagation holds.465

For nonlinear problems the situation is more complicated because Gaussian error propagation

is valid only in approximation. Within the concept of error propagation, the concept of moderate

nonlinearity (Rodgers, 2000) can be invoked. That is to say, the estimated value of the measurand

is assumed to be a reasonably good approximation of the measurand, and the partial derivatives

needed for Gaussian error estimation are evaluated at this estimate. If the resulting error bars are470

small enough to ensure that the range covered by the interval defined by the estimated value plus

minus the error bar is confined to the range where linear approximation is justifiable, then the error

estimates are, while less-than-perfect, still far better than useless.

The endorser of the uncertainty concept has a problem if they want to stay consistent with their

doctrine. Since knowledge of the true value is denied, it is not clear how Gaussian error estimation475

can be applied to the propagation of uncertainties, because it is not clear for which value of the

measurand the required partial derivatives shall be evaluated.

On the face of it, Monte Carlo error estimation or other variants of ensemble-based sensitivity

studies can serve as an alternative. These, however, also invoke the nonlinear model that links the

measured signal with the measurand, and uncertainty estimates thus still depend on the choice of480

the estimate that represents the true value; any choice of this value which is not closely related to
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the true value of the measurand will produce uncertainty estimates which are recalcitrant against

any interpretation. Monte Carlo and related methods, however, are apt for the estimation of the error

budget including the systematic effects if f is too nonlinear to justify Gaussian error estimation, if

the approximate knowledge of the measurand is conceded.485

In summary, the evaluation of uncertainties in the case nonlinearity poses a problem to the scientist

who denies the approximate knowledge of the true value of the measurand, because the uncertainty

estimate depends on the assumed value of the measurand, and it must be assumed that it represents

the true value reasonably well. Within the framework of error analysis this assumption is allowed

and measurement errors as well as systematic effects thus can be evaluated also for nonlinear inverse490

problems.

3.4 Incompleteness of the error budget

The arguments put forward above are based on the supposition that the error budget is complete.

Beyond measurement noise, the total error budget includes systematic effects in the measured signal,

uncertainties in parameters other than the measurand that affect the measured signal, and effects due495

to the chosen inverse scheme. If our reading of GUM-2008 is correct, then the most severe criticism

by GUM-2008 of the ‘error concept’ is that one can never be sure that the error budget is indeed

complete, and that thus the error estimate does not characterize the difference between the value

estimated from the measurement and the true value.

The precision of a measurement is a well-behaved quantity in a sense that it is testable in a straight500

forward way: from at least three sets of collocated measurements of the same quantity, where each

set is homogeneous with respect to the expected precision of its measurements, the variances of

the differences provide unambiguous precision estimates (see, e.g., McColl et al. 2014 or Stoffelen

1998). The situation is more difficult for biases. Biases between different measurement systems do

not tell us what the bias of one measurement system with respect to the – unfortunately unknowable505

– truth is. Even if the number of measurement systems is quite large, it is not guaranteed that the

mean bias of all of them is zero. And an infinite number of measurement systems is out of reach in a

real world. Up to that point we concede that a positive proof of the completeness of the error budget

is impossible. But this is not the end of the story.

A falsificationist (Popper, 1935) approach is more promising. It follows the rationale that it will510

never be possible to prove that our assumptions on the bias of a measurement system is correct.

Instead, we estimate the bias as well as we can, and use it as a best estimate of the bias until some test

provides evidence that the estimate is incorrect. Such a test typically consists of the intercomparison

of data sets from different measurement systems. If the bias between these data sets is larger than

the combined systematic error estimates, at least one of the systematic error estimates is too low515

and has to be refuted. Further work is then needed to find out which of the measurement systems is

most likely to underestimate its systematic error. Conversely, as long as the mean difference of the
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measurements of the same measurand can be explained by the combined estimate of the systematic

errors of both measurement systems, the systematic error estimates can be maintained, although

this is, admittedly, no proof of the correctness of the error estimates. But as long as severe tests as520

described above are executed and the error estimates cannot be refuted, it is rational to believe that

they are sufficiently complete.

4 The applicability of GUM-2008 to remote sensing of the atmosphere

In this Section we identify issues where GUM-2008 clashes with the needs of error or uncertainty

estimation in the field of remote sensing of atmospheric constituents and temperature. These issues525

are (1) since the atmospheric state varies quasi-continuously in space and time, the measurand is not

well defined; and (2) there are applications of atmospheric data where the total uncertainty estimate

alone does not help.

4.1 What if the measurand is not well-defined?

On macroscopic scales, atmospheric state variables vary continuously in space on time. On mircro-530

scopic scales, the typical target quantities, concentrations or temperature, are not even defined. A

typical example of this problem is the volume mixing ratio (VMR) of a certain species at a point in

the atmosphere (See also, von Clarmann, 2014). The determination of a quantity like this requires a

canonical ensemble of air but in the real, inhomogeneous, atmosphere, this quantity does not exist.

It is an uninstantiated ideal. Due to these inhomogeneities the air volume sounded must be infinites-535

imally small, i.e., it must approach a point. In the real atmosphere there is either a target molecule at

this point (VMR= 1) or another molecule (VMR= 0) or no molecule at all (undefined VMR due

to division by zero). Thus, one measures only averages over finite inhomogeneous air volumes. This

approach, supposedly the only possible approach, clashes with the premise of GUM-20088 that the

measurand needs to be well defined. Measuring atmospheric state variables requires the specification540

of the region the average is made over. The relevant toolbox of atmospheric data characterization in-

cludes concepts like resolution, averaging kernels etc. (see Rodgers, 2000 for detail). Since this

type of measurements is apparently out of the scope of GUM-2008, the latter is quite silent with

respect to solutions to the problem of the characterization of measurements of quantities that are

not well defined. Broadening the scope and applicability of the GUM-2008 framework to include545

less than ideally defined measurands and measurements that demand inverse methods would signif-

icantly increase the value and utility of GUM-2008 approach. Relevant recommendations on data

characterization developed within the TUNER activity (von Clarmann et al., 2020) aim at helping to

reach this goal.

8In GUM-2008 this problem is recognized but no solution is offered; the term ’definitional uncertainty’ is introduced in

this context but not applied in practice.
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4.2 The combined error550

One of the positive aspects of GUM-2008 is that it breaks with the misled concept of characterizing

systematic errors with ‘safe bounds’ (Kaarls, 1980; Kacker et al., 2007; Bich, 2012). This concept

was sometimes endorsed by error statisticians subscribing to frequentism. Within a frequentist con-

cept of probability, a probabilistic treatment of systematic errors was not easily possible because due

to its systematic nature a systematic error cannot easily9 be characterized by a frequency or proba-555

bility distribution. The concept of subjective probability solves this problem. With the subjectivist’s

toolbox, it is no longer a problem to assign probability density functions, standard deviations and so

forth when characterizing systematic errors. This possibility is a precondition for aggregating sys-

tematic and random errors to give the total error. GUM-2008, however, goes a step further and even

denies the necessity to report random and systematic errors independently. Here we have to urge560

severe objections.

Von Clarmann et al. (2020) explicitly recommend that error estimates be classified as random or

systematic 10. In contrast, GUM-2008 (E.3.3 / E3.7) state: “In fact, as far as the calculation of the

combined standard uncertainties [...] is concerned, there is no need to classify uncertainty compo-

nents and thus no real need for any classificational scheme.” If indeed meant as written, we challenge565

the claim that a total combined error budget is sufficient and therefore no classificational scheme is

needed at all. Characterizing the measurement of a unique quantity, e.g. the value of a natural con-

stant agreed upon by the calibration authorities, by a single error margin might be sufficient. But

most measurements, and particularly those of atmospheric state variables such as temperature, con-

centrations of trace species, and so forth, deal with quantities varying as function of time and space.570

Any sensible use of the resulting datasets requires a clear distinction between statistical and system-

atic error budgets. For example, for time series analysis targeted at the determination of trends, the

total error budget is of no use but the random error budget is needed instead. This is because any

purely additive systematic error component cancels out in this application and its consideration in

the error budget would unduly distort the weights of the data points available. In summary, the denial575

of the importance of distinguishing between random errors and systematic errors does not provide

proper guidance, and altogether is a strong misjudgment. The data users must be provided with all

information required to tailor the relevant error budget to the given application of the data.

Benevolent readers of GUM-2008 take the GUM authors to be saying only that the aggregation

of estimated errors to give the total error budget follows the same rules for systematic and random580

errors, and that the criticized statement is not meant to deny the importance of distinguishing between

9The qualification not easily was chosen because frequentists still might sample over multiple universes or apply other

measures to squeeze systematic errors in a frequentist concept.
10In this context it is important to note that, in contrast to some older conceptions, von Clarmann et al. (2020) define

‘systematic errors’ as bias-generating errors and ‘random errors’ as variance-generating errors. To avoid confusion with the

older conceptions, one can use instead the descriptive terms ‘persistent’ and ‘volatile’ errors as suggested by Possolo (2021).

This is not done here to maintain consistency with von Clarmann et al. (2020).
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random and systematic errors beyond the mere aggregation process. If this reading is correct, we

agree, but here GUM-2008 leaves room for interpretation.

5 Conclusions

We have mentioned above that the uncertainty concept depends on the acceptance of the subjec-585

tive probability in the sense of degree of rational belief. Without that, an error budget including

systematic effects would make no sense because systematic effects cannot easily be conceived as

probabilistic in a frequentist sense; that is to say, the resulting error cannot be conceived as a ran-

dom variable in a frequentist sense. Being forced to adopt the concept of probability as a degree of

rational belief, it makes perfectly sense to conceive, after consideration of the Bayes theorem (see590

Section 3.2) the distribution with expectation x̂ and covariance σx,total as the probability distribution

which tells the rational agent the probability of any value to be the true value.

The denial that a valid connotation of the term ‘error’ is a statistical characterization between a

measured or estimated and the true value of the measurand would be an attempt to brush away cen-

turies of scientific literature. This is, however, a matter of stipulation or convention and thus beyond595

the reach of a scientific argument. We thus take GUM-2008 to be conceding that both the concepts,

error analysis and uncertainty assessment, aim at providing a statistical characteristic of the imper-

fectness of a measurement or an estimate. We understand GUM-2008 in a sense that the problem

of the error concept is that it conceives the estimated error as a statistical measure of the difference

between the measured or estimated value and the true value. Since the true value is unknowable,600

according to GUM-2008 the term ’error’ can neither be defined nor can its value be known.

It has been shown that the problem of the unknown true value of the measurand is a problem for

the definition of terms like ‘error’ or ‘uncertainty’ only if the concept of an operational definition is

pursued. This concept, however, has its own problems and is by no means without alternative. As

soon as the concept of an operational definition is given up, problems associated with defining the605

estimated error as a statistical estimate of the difference between the measurement or estimate and

the true value of the measurand disappear, and the problem remaining is only one of assigning a

reasonable value to this now well-defined quantity.

Since GUM-2008 did not provide many reasons why, in the context of indirect measurements,

the error allegedly cannot be estimated without knowledge of the true value, or why an uncertainty610

distribution does not tell us anything about the true value, we list the most obvious ones one could

put forward to bolster this claim. These are the problem of the base rate fallacy, the problem of non-

linearity, and the problem that one can never know that the error budget is complete. The problem

of the base rate fallacy can be solved by either performing a Bayesian inversion, or by conceiv-

ing the resulting distribution as a likelihood distribution. Astonishingly enough, the GUM-2008’s615

“dispersion or range of values that could be reasonably attributed to the measurand” is determined
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without explicit consideration of prior probabilities and thus cannot be interpreted in terms of pos-

terior probability. The problem of nonlinearity can be solved either by assuming that the estimate is

close enough to the true value and linearizing around this point or by Monte-Carlo-like studies. A

GUM-oriented scientist, who has to avoid referring to the true value, is at a loss in the case of nonlin-620

earity because any estimate of the uncertainty of the estimate will be correct only when evaluated at

the true value or an approximation of it. The problem of the unknown completeness of the error bud-

get can be tackled by performing comparisons between measurement systems. While this will never

provide a positive proof of the completeness of the error budget, it still justifies rational belief in its

completeness, and if error or uncertainty distributions are conceived as subjective probabilities in the625

sense of degrees of rational belief, this is good enough. In summary, if (a) our reading of GUM-2008

is correct in the sense that the traditional error analysis can deal with a statistical quantity, and that

the key difference between the ‘error’ and ‘uncertainty’ concepts is their relation to the true value

of the target quantity and (b), that our list of arguments against the error concept is complete, and

finally, if (c) our refutation of these arguments is conclusive, then the claim that the ‘error’ concept630

and the ‘uncertainty’ concepts are fundamentally different is untenable.

Beyond this, reasons have been identified that put the applicability of the GUM-2008 concept to

atmospheric measurements into question. At least we can state that GUM-2008, by presenting their

terminological stipulation about the terms ‘error’ and ‘uncertainty’ in the appearance of a factual

statement, has triggered a linguistic discussion that distracted the attention from the more important635

issues how the principles of error or uncertainty estimation, whatever one prefers to call it, could be

made better applicable to measurements beyond the idealized cases covered by their document.

Author contributions. TvC identified the title problem and provided a draft version of the paper. SC contributed

information on the history of the GUM and on literature on GUM (supportive and critical) and helped to

understand some less clear parts of GUM-2008; FH contributed information to the history of science; TvC640

contributed information on the philosophy of science and statistics. All authors co-wrote the final version of the

paper.

Acknowledgements. We acknowledge the scientific guidance and sponsorship of the World Climate Research

Programme to motivate this work, coordinated in the framework of SPARC, and performed as part of the

TUNER activity. The International Space Science Institute (ISSI) has hosted two team meetings and provided645

further support. SC is supported by the EU H2020 project Copernicus Cal/Val Solution (CCVS), grant no.

101004242. We thank A. Possolo and two anonymous reviewers for a thorough and insightful reviews of this

paper.

19



References

Bayes, T.: An essay towards solving a problem in the doctrine of chances, Phil. Trans., 53, 370–418,650

doi:10.1098/rstl.1763.0053, posthume publication with an introduction and appendixi by R. Price, 1763.

Bich, W.: From Errors to Probability Density Functions. Evolution of the Concept of Measurement Uncertainty,

IEEE Transactions on Instrumentation and Measurement, 61, 2153–2159, doi:10.1109/TIM.2012.2193696,

2012.

Bridgeman, P. W.: The Logic of Modern Physics, Macmillan, New York, 1927.655

Bureau International des Poids et Mésures: Report on the BIPM enquiry on error statements, Tech. Rep. BIPM-

80/3, Bureau International des Poids et Mésures, F-92310, 1980.

Chang, H.: Operationalism, in: The Stanford Encyclopedia of Philosophy, edited by Zalta, E. N., Metaphysics

Research Lab, Stanford University, Winter 2019 edn., https://plato.stanford.edu/archives/win2019/entries/

operationalism/, 2019.660

Colclough, A. R.: Two theories of experimental error, Journal of Research of the National Bureau of Standards,

92, 16–185, doi:10.6028/jres.092.016, 1987.

Collé, R.: Minutes of the meeting on measurement uncertainties, NCSL Newsletter, 27, 52–55, 1987.

D’Agostini, G.: Bayesian Reasoning in Data Analysis: A critical Introduction, World Scientific, Singapore,

2003.665

Ehrlich, C.: Terminological aspects of the Guide to the Expression of Uncertainty in Measurements, Metrologia,

4, 5145, doi:10.1088/0026-1394/51/4/5145, 2014.

Eisenhart, C. and Collé, R.: Postscript to expression of the uncertainties of final results, in: NBS Communi-

cations Manual for Scientific, Technical, and Public Information, edited by C. W. Solomon, R. D. B. and

Tilley, W. R., chap. Exhibit 2-E, pp. 2–30 – 2–32, U.S. Dept. of Commerce, National Bureau of Standards,670

Gaithersburg, MD, https://catalog.hathitrust.org/Record/011389799.Lastchecked:9September2021, 1980.

Elster, C., Klauenberg, K., Bär, M., Allard, A., Fischer, N., Kok, G., van der Veen, A., Harris, P., Cox, M.,

Smith, I., Wright, L., Cowen, S., Wilson, P., and Ellison, S.: Novel mathematical and statistical approaches

to uncertainty evaluation in the context of regression and inverse problems, in: 16th International Congress

of Metrology, edited by Filtz, J.-R., Larquier, B., Claudel, P., and Favreau, J.-O., pp. 04 003–p.1–5, Paris,675

doi:10.1051/metrology/201304003, 2013.

Fienberg, S. E.: When did Bayesian Inference become “Bayesian”?, Bayesian Analysis, 1, 1–40,

doi:10.1214/06-BA101, 2006.

Fisher, R. A.: On the Mathematical Foundations of Theoretical Statistics, Phil. Trans. R. Soc. Lond. A, 222,

309–368, 1922.680

Fisher, R. A.: Statistical Methods For Research Workers, Oliver and Boyd, London, 1925.

Gauss, C. F.: Theoria Motus Corporum Coelestium, F. Perthes and I. M. Besser, Hamburg, 1809.

Gauss, C. F.: Bestimmung der Genauigkeit von Beobachtungen, Z. Astronom. Verwandte Wis., 1-2, 185–196,

1816.

Gleser, L. J.: Assessing uncertainty in measurement, Statistical Science, 13, 277–290, 1998.685

Grégis, F.: Can we dispense with the notion of ‘true value’ in metrology?, in: Standardization in Measurement:

Philosophical, Historical and Sociological Issues, edited by Schlaudt, O. and Huber, L., pp. 81–93, Pickering

& Chatto, London, 2015.

20

http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1109/TIM.2012.2193696
https://plato.stanford.edu/archives/win2019/entries/operationalism/
https://plato.stanford.edu/archives/win2019/entries/operationalism/
https://plato.stanford.edu/archives/win2019/entries/operationalism/
http://dx.doi.org/10.6028/jres.092.016
http://dx.doi.org/10.1088/0026-1394/51/4/5145
https://catalog.hathitrust.org/Record/011389799. Last checked: 9 September 2021
http://dx.doi.org/10.1051/metrology/201304003
http://dx.doi.org/10.1214/06-BA101


Hadamard, J.: Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique, Princeton University

Bulletin, 13, 49–52, 1902.690

Hughes, I. G. and Hase, T. P. A.: Measurements and their Uncertainties: A practical guide to modern error

analysis, Oxford University Press, USA, Oxford, UK, 2010.

Jeffreys, H.: Theory of Probability, Oxford University Press, Oxford, third edn., original edition: 1939, 1983.

Joint Committee for Guides in Metrology (JCGM): Evaluation of measurement data – Guide to the expression

of uncertainty in measurement, Pavillon de Breteuil, F-92312 Sèvres Cedex, 1st edn., 2008.695

Joint Committee for Guides in Metrology (JCGM): Evaluation of measurement data – An Introduction to the

‘Guide to the expression of uncertainty in measurement’ and related documents, Pavillon de Breteuil, F-

92312 Sèvres Cedex, 1st edn., 2009.

Joint Committee for Guides in Metrology (JCGM): International vocabulary of metrology - Basic and general

concepts and associated terms (VIM), Pavillon de Breteuil, F-92312 Sèvres Cedex, 3rd edn., https://jcgm.700

bipm.org/vim/en/, 2017 version with minor corrections and informative annotations, last checked on 27 July

2021., 2012.

Kaarls, R.: Report of the BIPM working group on the statement of uncertainties (1st meeting - 21 to 23 October

1980) to the Comité International des Poids et Mésures, Tech. rep., BIPM, Paris, 1980.

Kacker, R., Sommer, K.-D., and Kessel, R.: Evolution of modern approaches to express uncertainty in measure-705

ment, Metrologia, 44, 513–529, doi:10.1088/0026-1394/44/6/011, 2007.

Kepler, J.: Astronomia Nova aitiologetos seu physica coelestis, tradita commentariis de motibus stellae Martis

ex observationibus G.V. Tychonis Brahe, https://archive.org/details/ioanniskepplerih00kepl, 1609.

Keynes, J. M.: A Treatise on Probability, MacMillan and Co., Limited, London, 1921.

Legendre, A.-M.: Nouvelles méthodes pour la détermination des orbites des comètes, F. Didot, Paris, 1805.710

Mari, L. and Giordani, A.: Measurement error and uncertainty, in: Error and uncertainty in scientific practice,

edited by Boumans, A., Horn, G., and Petersen, A., pp. 79–96, Pickering and Chattoo, London, 2014.

Mayo, D. G.: Error and the growth of experimental knowledge, The University of Chicago Press, Chicago,

1996.

McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and Stoffelen, A.: Extended triple715

collocation: Estimating errors and correlation coefficients with respect to an unknown target, Geophys. Res.

Lett., 17, 6229–6236, 2014.

Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng,

A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva,

V. F., and Wagner, W.: Uncertainty information in climate data records from Earth observation, Earth Syst.720

Sci. Data, 9, 511–527, doi:10.5194/essd-9-511-2017, 2017.

Nuzzo, R.: Scientific method: Statistical errors, Nature, 506, 150–152, doi:10.1038/506150a, 2014.

Pearson, K.: The fundamental problem of practical statistics, Biometrika, 13, 1–16, 1920.

Popper, K.: Logik der Forschung, Julius Springer Verlag, Wien, doi:10.1007/978-3-7091-4177-9, mohr Siebeck,

Tübingen, 2002; English Edition, “The Logic of Scientific Discovery”, Routledge, London, 2002, 1935.725

Possolo, A.: Simple Guide for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Tech.

Rep. NIST Technical Note 1900, U.S. Department of Commerce, National Institute of Standards and Tech-

nology, Gaithersburg, MD, doi:10.6028/NIST.TN.1900, 2015.

21

https://jcgm.bipm.org/vim/en/
https://jcgm.bipm.org/vim/en/
https://jcgm.bipm.org/vim/en/
http://dx.doi.org/10.1088/0026-1394/44/6/011
https://archive.org/details/ioanniskepplerih00kepl
http://dx.doi.org/10.5194/essd-9-511-2017
http://dx.doi.org/10.1038/506150a
http://dx.doi.org/10.1007/978-3-7091-4177-9
http://dx.doi.org/10.6028/NIST.TN.1900


Possolo, A.: Truth and Uncertainty at the Crossroads, doi:10.5194/amt-2021-157-RC1, 2021.

Possolo, A. and Toman, B.: Assessment of measurement uncertainty via observation equations, Metrologia, 44,730

464–475, doi:10.1088/0026-1394/44/6/005, 2007.

Press, S. J.: Bayesian statistics: principles, models, and applications, Wiley, New York, NY, 1989.

Robert Koch Institut: SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019 (COVID-19), https://www.rki.

de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText2, retrieved on 18

May 2020, 2020.735

Rodgers, C. D.: Characterization and error analysis of profiles retrieved from remote sounding measurements,

J. Geophys. Res., 95, 5587–5595, 1990.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, vol. 2 of Series on Atmo-

spheric, Oceanic and Planetary Physics, F. W. Taylor, ed., World Scientific, Singapore, New Jersey, London,

Hong Kong, 2000.740

Schumacher, R. B. F.: A dissenting position on uncertainties, NCSL Newsletter, 27, 55–59, 1987.

Stegmüller, W.: Probleme und Resultate der Wissenschaftstheorie und Analytische Philosophie, Band IV, Per-

sonelle und Statistische Wahrscheinlichkeit, Studienausgabe Teil D ’Jenseits von Popper und Carnap:’ Die

logischen Grundlagen des statistischen Schlies̈sens, Springer-Verlag, Berlin Heidelberg New York, 1973.

Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation,745

J. Geophys. Res., 103, 7755–7766, 1998.

The European Centre for Mathematics and Statistics in Metrology: Regression and Inverse Problems,

http://mathmet.org/research/regression/, retrieved on 18 February 2019.

von Clarmann, T.: Smoothing error pitfalls, Atmos. Meas. Tech., 7, 3023–3034, doi:10.5194/amtd-7-3023-

2014, 2014.750

von Clarmann, T., Degenstein, D. A., Livesey, N. J., Bender, S., Braverman, A., Butz, A., Compernolle, S.,

Damadeo, R., Dueck, S., Eriksson, P., Funke, B., Johnson, M. C., Kasai, Y., Keppens, A., Kleinert, A., Kra-

marova, N. A., Laeng, A., Langerock, B., Payne, V. H., Rozanov, A., Sato, T. O., Schneider, M., Sheese, P.,

Sofieva, V., Stiller, G. P., von Savigny, C., and Zawada, D.: Overview: Estimating and Reporting Uncertain-

ties in Remotely Sensed Atmospheric Composition and Temperature, Atmos. Meas. Tech., 13, 4393–4436,755

doi:10.5194/amt-13-4393-2020, 2020.

von Clarmann, T., Degenstein, D. A., Livesey, N. J., Bender, S., Braverman, A., Butz, A., Compernolle, S.,

Damadeo, R., Dueck, S., Eriksson, P., Funke, B., Johnson, M. C., Kasai, Y., Keppens, A., Kleinert, A.,

Kramarova, N. A., Laeng, A., Payne, V. H., Rozanov, A., Sato, T. O., Schneider, M., Sheese, P., Sofieva, V.,

Stiller, G. P., von Savigny, C., and Zawada, D.: Estimating and Reporting Uncertainties in Remotely Sensed760

Atmospheric Composition and Temperature, Atmos. Meas. Tech, doi:10.5194/amt-2019-350, 2020.

White, D. R.: In pursuit of a fit-for-purpose uncertainty guide, Metrologia, 53, 107–124, doi:10.1088/0026-

1394/53/4/s107, 2016.

Willink, R. and White, R.: Disentangling Classical and Bayesian approaches to uncertainty analysis, Tech. Rep.

CCT/12-07, Comité Consultatif de Thermométrie, BIPM, Sèvres, 2012.765

Zhang, Z., Lin, T., and Chu, J.: Remote sounding of atmospheric pressure profile from space, part 3: error

estimation, J. Appl. Rem. Sens., 4, 043536, doi:10.1117/1.3458870, 2010.

22

http://dx.doi.org/10.5194/amt-2021-157-RC1
http://dx.doi.org/10.1088/0026-1394/44/6/005
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText2
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText2
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText2
http://dx.doi.org/10.5194/amtd-7-3023-2014
http://dx.doi.org/10.5194/amtd-7-3023-2014
http://dx.doi.org/10.5194/amtd-7-3023-2014
http://dx.doi.org/10.5194/amt-13-4393-2020
http://dx.doi.org/10.5194/amt-2019-350
http://dx.doi.org/10.1088/0026-1394/53/4/s107
http://dx.doi.org/10.1088/0026-1394/53/4/s107
http://dx.doi.org/10.1088/0026-1394/53/4/s107
http://dx.doi.org/10.1117/1.3458870

